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ABSTRACT

Decision support in fields such as healthcare and finance requires reasoning about
treatment timing. Artificial Intelligence holds great potential for supporting such
decisions by estimating the causal effect of policies such as medication regimens, or
resource allocation schedules. However, existing methods for effect estimation are
limited in their ability to handle irregular time. While treatments and observations
in data are often irregularly spaced across the timeline, existing techniques either
discretize time, do not scale gracefully to large models, or disregard the effect of
treatment time.
We present a solution for effect estimation of sequential treatment times called
Earliest Disagreement Q-Evaluation (EDQ). The method is based on Dynamic
Programming and is compatible with flexible sequence models, such as transform-
ers. It provides accurate estimates under the assumptions of ignorability, overlap,
and no-instantaneous effects. We validate the approach through experiments on a
survival time prediction task.

1 INTRODUCTION

Sequential decision-making is common in fields like healthcare, finance, and beyond. In hospitals,
medical professionals administer treatments based on the evolving observations of a patient’s condi-
tion; in financial markets, traders execute orders based on sequential information flows. Algorithmic
decision support systems can optimize these processes by evaluating different policies with respect to
their expected outcomes. To achieve this, these systems need to answer causal questions.

Consider the scenario of a doctor and patient forming a preventative treatment strategy for Atheroscle-
rotic Cardiovascular Disease (ASCVD). The American Heart Association recommends calculating
the 10-year risk of developing ASCVD and starting preventative treatments for patients with a high
predicted risk. At first glance, this practice may seem straightforward, but other considerations
may come into play. For instance, some patients may prefer to delay starting treatment because of
expected side effects; in other cases alternative treatments may be considered due to comorbidities.
After each decision point, an important question is when to schedule the next checkup to re-evaluate
the treatments. Estimating the difference in expected outcomes between various policies one could
follow is a causal effect estimation question. This question involves several future treatment decisions
taken at varying time points, hence it is a sequential decision-making problem. This type of data,
where observations and treatments are given across time, appears in many applications. For instance,
in intensive care units and in other domains like finance and social networks (Chen et al., 2021a;
Upadhyay et al., 2018).

Formally, as we describe in section 2, the problem falls within the framework of off-policy evaluation
(Fu et al., 2021; Uehara et al., 2022). A defining feature is that timings of observations and treatments
are irregularly spaced, and are governed by a stochastic point process with intensity �, whereas the
type of the treatments at specific times are specified as the marks of this process, governed by a
distribution ⇡. This is in contrast with many applications in domains such as robotics and control,
where only ⇡ is considered. These times must be accounted for in algorithmic solutions, as they have
a large effect on the outcome. Estimating the effect of intervening in treatment timing is a crucial part
of evaluating sequential policies. With irregular times, frameworks for sequential decision-making
that discretize time are problematic, as the discretization can be inaccurate or inefficient and requires
choosing appropriate time scales for each dataset. Existing methods for continuous-time causal
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inference do not scale gracefully, since they solve complex estimation problems such as integrating
importance weights across time (Røysland, 2011). Those that do scale to high capacity models
and large datasets do not handle dynamic policies (i.e., policies that take past states into account)
and are implemented with differential equation solvers (Seedat et al., 2022), limiting the choices of
architecture.

In this work, we give two methods for off-policy evaluation with irregularly sampled data. Our
contributions are as follows:

• We define off-policy evaluation with decision point processes and develop Earliest Disagreement
Q-Evaluation (EDQ), a model-free solution to the problem. While other methods are intractable
in high dimensions or are limited to static treatments, EDQ eliminates these restrictions. EDQ
is based on direct regressions and dynamic programming, which makes it easily applicable to
flexible architectures including sequence models such as transformers.

• In Theorem 1, we prove that EDQ is an empirical estimator of the correct policy value. The
estimator produces an accurate causal effect under assumptions on causal validity based on
Røysland (2011); Røysland et al. (2022).

• With an experimental demonstration on a time-to-failure prediction task for which we implement
a transformer based solution, we validate the efficacy of EDQ, where baselines that discretize
time are suboptimal.

We define the effect estimation problem in section 2 using the formalism of temporal point processes
and develop the solution in section 3. section 4 discusses related work to better frame our solution
before validating it experimentally in section 5.

2 OFF-POLICY EVALUATION WITH DECISION POINT PROCESSES

Consider a decision process defined by a marked point process P (Andersen et al., 2012; Snyder and
Miller, 2012) over observations X 2 X , treatments A 2 A and outcome Y 2 R. For convenience,
we let Y =

P
k Yk, where k is an index of observed outcomes along the trajectory. Though the

methods extend to other outcome functions like discounting future outcomes.1

Marked point processes. Informally, a marked point process defines a distribution over event
times, along with distributions over marks, or details of the events at each time (i.e. treatment times
and which treatment was given at each time). Events occur in the time interval [0, T ]. The events
are defined as trajectories H

l
t = {(tk, lk) : tk  t} where l is an action a, state x, or outcome y.

These event times are also called jumps. The collection of all jumps and marks on a trajectory is
H = H

a
[H

x
[H

y . For l 2 {a, x, y}, the event times are tracked by counting process N l(t), which
equals the number of events by time t. Define dN l(t) such that dN l(t) = 1 if N l jumps at time t.
We assume that intensity functions for processes exist and are given by �l(t|Ht) = E[dN l(t)|Ht].
We assume the process can depend on its own history, i.e., the filtration is the �-algebra generated
by the random variables N l(t) and their marks, and that limn!1 tn =1, i.e., that the number of
events for each trajectory is countable (Aalen et al., 2008; Jacobsen and Gani, 2006).

2.1 PROBLEM DEFINITION

We follow the notation of Upadhyay et al. (2018) from the RL literature. We begin with the data
generating process and then summarize our goal of inferring causal effects of intervening on a policy.
This involves off-policy evaluation under a distribution P , while observing samples from Pobs.
Definition 1. A marked decision point process P is a marked point process with observed components
N l for l 2 {x, y, a} that have corresponding intensity functions �l, and mark spaces X ,R,A, and a
multivariate unobserved process with intensity �u. Realizations of the observed process are given by
trajectories H = {(t0, z0), (t1, l1), . . . , (tn, ln)}, where tk is the jump time and lk 2 {X [A[R} is
the mark, and we denote Ht := {(tk, lk) : tk  t}. Ha

✓ H is the subset of events that correspond to

1Note that we assume the number of rewards in the segment [0, T ] is finite. Furthermore, in practice,
discounting summed outcomes might be necessary for convergence (Sutton, 2018).
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jumps in Na, and likewise for x, y. The intensity function and mark distribution �a(t|Ht),⇡(At|Ht)
are called the policy. Mark distributions for X,Y are denoted PX(xt|Ht), PY (yt|Ht).

Off-policy evaluation. We are given a dataset of m trajectories, where trajectory Hi has ni ob-
servations: {(ti,k, li,k)}i2[m],k2[ni]. These are sampled from an observed decision process Pobs

with policy (�a
obs,⇡obs). Treatment times are samples from a counting process with intensity �a

obs
and treatments at those times are sampled from ⇡obs. We wish to reason about outcomes when
(�a

obs,⇡obs) is replaced with a target policy (�a,⇡), with other processes in Pobs fixed. The resulting
decision process is denoted P , and our goal is to estimate EP [Y |Ht] for all Ht 2 supp(P ) and
t 2 [0, T ].

When to treat. To simplify notation in what follows, we omit the marks ⇡(At|Ht) and focus on
intensities �a(t|Ht). That is, we explore interventions on when to treat (should a medicine be taken
weekly or monthly?) instead of how to treat (which medication should be taken?). Technically, this is
the more challenging and underexplored part of the problem, and the algorithmic solutions can be
easily extended to incorporate interventions on ⇡ using existing methods (Chakraborty and Murphy,
2014; Li et al., 2021). In the ASCVD prevention example, this corresponds to reasoning about
questions like: “what would be the expected change in 10-year risk for patients with characteristics
Ht, if, going forward, we prescribe a daily dose of statins for patients with LDL cholesterol above
180 mg/dL, instead of the policy that has been followed in the population?".

2.2 ROADMAP TO IDENTIFIABILITY VIA LOCAL INDEPENDENCES

U1

Nx Ny

NaU2

Figure 1: The assumed local independence graph
for a decision point processes, where our estimand
is identifiable from observed data (Nx, Na, Ny).

The goal of this section is to display results
from existing work that elucidate the conditions
under which the algorithm we present in
section 3 estimates valid causal effects. Our
assumptions to ensure identifiability of causal
estimands follow Didelez (2008); Røysland
(2011); Røysland et al. (2022), who study
graphical models for point processes. In this
setting, where the goal is to intervene on Na

and estimate EP [Y |Ht] under P rather than
Pobs, in presence of confounders U , Røysland
(2012) show:

• A condition called causal validity ensures that changing treatment intensity �a
obs for interven-

tional treatment intensity �a, while changing no other intensities, changes the joint distribution
from Pobs to P . A graph may not be causally valid when it contains unobserved variables U .

• Local independence (Aalen, 1987; Schweder, 1970) adapts the sequential exchangeability or
“ignorability" condition in discrete time processes (Hernan and Robins, 2023; Robins, 1986) to
the continuous time point process setting.

• A certain set of local independences ensure causal validity even when U is unobserved.

Consider the graph in Figure 1, which we study in this work. An edge means that the history of the
source node affects the future of the target node (Didelez, 2008). It is possible to show that the graph
satisfies the required conditions such that replacing �a

obs with a new treatment intensity �a results
in sampling the interventional distribution P . These conditions involve local independence, which
means that the intensity of a process only makes use of certain information from other processes:
Definition 2. For a multivariate process N(t) = (Na(t), N b(t), . . .) on variables V we say that
Na is locally independent of N b given NV \b, or N b

6! Na
|NV \b, if the intensity �a(t|Ht�) =

�a(t|HV \b
t� ). A graphical local independence model (P, G) is a class of processes P on V and

directed graph G = (V,E), such that (b! a) /2 E ) N b
6! Na

|NV \b holds for all P 2 P .

Røysland et al. (2022) then show that the set of local independences that ensure causal validity are
those that satisfy Eliminability:

3
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Definition 3. If U can be written as a sequence (U1, . . . , UK) such that for each k, either

• (Ny, U>k) is locally independent of Uk given (Nx, Ny), or

• Na is locally independent of Uk given (Nx, Ny).

then the graph is said to satisfy Eliminability.

Eliminability is akin to using d-separation to check the backdoor criterion in directed acyclic graphs,
but accounts for fact that local independence may be asymmetric. We summarize that causal validity
holds under the set of local independences that satisfy eliminability. Here, we stick with the graph
in Figure 1, which satisfies these assumptions. In addition, we assume independence of increments
to rule out any instantaneous effects, and refer to the two conditions together as ignorability, in
accordance with existing terminology for conditions that rule out confounding.
Assumption 1. Ignorability (in continuous time) is satisfied when:

1. the graph satisfies causal validity,

2. the increments of features, treatments, and outcome are mutually independent given the history,
i.e., ((dNx(t), Xt)?? (dNa(t), At)?? (dNy(t), Yt))|Ht.

In addition to ignorability, we require a second, standard assumption, overlap, for the conditional
expectations we estimate to be well-defined. Recall that the interventional distribution P is defined
by replacing the treatment distribution in Pobs, i.e., replacing ⇤a

obs(dt) with ⇤a(dt) and ⇡obs(·|Ht)
with ⇡(·|Ht).
Assumption 2. Overlap is said to hold between the observational and interventional distributions,
Pobs and P , if P is absolutely continuous with respect to Pobs, denoted by P ⌧ Pobs.

Ignorability and overlap are the core assumptions that allow identification in our setting. Under these
assumptions, we can now present algorithms for estimating causal effects in continuous time.

3 MODEL FREE OFF-POLICY EVALUATION FOR DECISION POINT PROCESSES

To estimate EP [Y |Ht] for times t and Ht that overlap with Pobs, we express the expectation recur-
sively as a function of expectations EP [Y | eHt+�] for some � > 0 and trajectory eH. Then, assuming
that expectations at times larger than T have been learned correctly, this recursive expression allows
us to propagate information for conditioning on earlier histories. This type of dynamic programming,
by going backwards in time, is a well known solution for discrete time problems. Thus, we first
describe it and then address the challenges that arise when adapting it to continuous time.

Algorithm 1 Backward-in-time Q-Evaluation

1: Input: Trajectories {Hi}
m
i=1,

2: Policy ⇡ : [Tt=1X
t
⇥A

t�1
! �|A|

3: QT (Hi) = argminf
Pm

i=1 (f(Hi)� yi)
2

4: for t T � 1 to 1 do

5: ŷi = yi,t + Eãt+1⇠⇡(·|Hi,t,xi,t+1)Q
T ( eHt+1)

6: Qt(Ht) = argminf
Pm

i=1 (f(Hi,t)� ŷi)
2

7: end for

8: Return {Qt(·)}Tt=1

Fitted Q evaluation (FQE) in discrete

time. Q-evaluation relies on the tower prop-
erty of conditional expectations, given be-
low in eq. (1). In discrete time decision pro-
cesses, where we consider � = 1, the prop-
erty suggests a dynamic programming solu-
tion that we lay out in algorithm 1 (Le et al.,
2019; Watkins and Dayan, 1992). Here, Ht

includes all actions and observations up to
and including time t, and since they occur
simultaneously, there are exactly t of each.
eHt+1 is defined in the same manner, ex-

cept that it includes ãt+1 sampled from the
target policy ⇡.

EP [Y |Ht] = E eHt+�⇠P (·|Ht)

h
EP

h
Y | eHt+�

ii
, (1)

An attractive property of this algorithm is that it is model-free. That is, to form the label ŷi we only
need to sample ãt+1 from our target policy ⇡, while xi,t+1 is taken from our training data.

4
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The algorithm is correct because if we assume Qt+1(Ht+1) is given and accurately estimates
EP [

P
s�t+1 Ys|Ht+1], then, provided enough samples, the minimizer of the regression in the

algorithm is the conditional expectation, which equals EP [
P

s�t Ys|Ht] according to eq. (1). The
model-free solution is enabled by the equality P (xt+1|Ht) = Pobs(xt+1|Ht), which saves us from
needing to estimate P (xt+1|Ht). In practical implementation, we apply gradient steps on randomly
drawn times and training samples instead of walking backward in time from T to 1. Crucially, for
� > 1, e.g. � = 2, we have P (xt+2|Ht) 6= Pobs(xt+2|Ht). Hence an algorithm based on eq. (1)
will either be model-based, or resort to using solutions such as products of importance weights that
suffer from high variance (Hallak et al., 2016; Precup et al., 2000), or restrict the problem, e.g., by
discounting rewards (Harutyunyan et al., 2016; Munos et al., 2016; Precup et al., 2000).

Challenges in application to continuous time. Moving to continuous time, the tower property turns
into a differential equation, and solving it requires tools that go beyond the common FQE solution,
e.g. (Jia and Zhou, 2023). Regressing to an outcome that is arbitrarily close to the observation at time
t is ill-defined. While we may work under a fine discretization of time, this approach is wasteful, as a
single update in the minimization for estimating Qt takes into account the development of the process
in the interval [t, t+ �], and for small values of � this will usually yield a very small change to the
estimate. Hence, intuitively, when updating Qt, we would like to use estimates of Qt+� for a large �.
As explained above, this is seemingly difficult to achieve in a model-free fashion. However, for point
processes, since the number of decisions over [0, T ] is countable, it seems plausible that a simple and
efficient dynamic programming solution can be devised. In what follows, this is what we present.

3.1 EDQ: FITTED Q-EVALUATION FOR DECISION POINT PROCESSES VIA EARLIEST
DISAGREEMENT TIMES

Consider the following intuition. Assume we observe the entire trajectory of a patient treated by
doctor c, who practices policy �obs

a . We wish to reason about the patient’s outcome had they, from
time t onwards, been treated by doctor c̃ who practices policy �a. With Ht as the patient history up
to time t, we look at c’s treatment decisions and find the first time in the trajectory, say t+ �, where
c̃ would have acted differently from c. It seems reasonable to assume the following: the expected
outcome of a patient with history Ht, had they been treated with �a from time t onwards, would be
similar to the expected outcome of patients treated with �a from time t+ �, with history similar to
Ht+� . This is because we have no reason to assume Hu for u 2 [t, t+ �) would have changed under
c̃’s policy �, as it agreed with �obs up until that time point. The time t+ � is the earliest disagreement
time between the two policies.2 Let us now formalize this intuition and use it to derive an estimation
method based on fitted Q-evaluation.
Definition 4. Consider a fixed trajectory H sampled from Pobs and a time t 2 [0, T ), we define a
marked point process eP a

t on the interval (t, T ] with intensity function �a(u|Hu) and mark distribution
⇡(Au|Hu). We use the notation eHa

u to denote trajectories sampled from eP a
t up to time u and define

eHu := H
a
t [

eHa
u [H

x,y
u for u 2 (t, T ]. For the trajectory eH we define � eH(t) = min{u � t : u >

t, (u, ·) 2 eHa
},3 as the first jump time of a trajectory sampled from eP a

t (·|Ht), and likewise �H(t) for
the observed trajectory H instead of eH.

Here, eH holds the decisions after time t sampled from our target policy, conditioned on the features
observed in H. Notice that to obtain eH, we only need to sample from the target policy �a and not
from �x,y, as H can be taken from our training set sampled from Pobs. Our model-free evaluation
method is thus based on the following result, which expresses our estimand as an expectation over
the trajectories eH.
Theorem 1. Let P, Pobs be multivariate marked decision point processes, t 2 [0, T ), and Ht a list
of events up to time t. For any trajectory H, we let eP a

t (·|H), � eH(t), �H(t) as in definition 4. Under
2Under our formulation, with probability 1, this time will be the first treatment after t drawn by one of

the policies. This is because we choose to work with continuous and differentiable compensators ⇤a,⇤a
obs (a

compensator is ⇤ such that d⇤ is the intensity �). Yet this is a technical convenience, and we can also form our
arguments under conditions where treatment times have a non-zero probability to coincide, and the arguments
about first disagreement times will stay in tact.

3In case the set is empty we define the minimum as T � t

5
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Algorithm 2 Earliest Disagreement Fitted Q-Evaluation

1: Input: Trajectories {Hi}
m
i=1,

2: Policy �a(·|Ht),⇡(·|Ht)
3: Initialize ✓ randomly
4: for N rounds do

5: Draw t ⇠ Unif([0, T ]) and i ⇠ Unif([m])
6: Draw eH ⇠ eP a

t (·|Hi,t) and set � = �H(t) ^ � eH(t)

7: ŷi =
P

(tk,yk)2H
y
i :

tk2(t,t+�]

yk +Qt+�( eHt+�;✓)

8: ✓  ✓ � ⌘r✓ (Qt(Hi,t;✓)� ŷi)
2

9: end for

10: Return {Qt(·;✓)}

assumptions 1-3, we have that

EP [Y |Ht] = EH⇠Pobs(·|Ht)

h
E eH⇠ ePa

t (·|H)

h
EP

h
Y
�� eHt+�H(t)^�fH(t)

iii
. (2)

Takeaways from Theorem 1. Our method, described in algorithm 2, is an empirical version of
eq. (2) akin to FQE being the empirical version of the tower property of conditional expectations,
eq. (1), in discrete time. An analogous result to ours holds for discrete-time decision processes,
where EDQ does not reduce to FQE and instead it bears some resemblance to the eligibility traces
approach of Precup et al. (2000). We provide this result in the appendix for completeness but focus
here on the point process case, as this is our main motivation and where the earliest disagreement
approach is most fruitful. Note that Algorithm 2 does not go backward in time as Algorithm 1 and
follows a more practical version of FQE, e.g. (Le et al., 2019, alg. 1), which updates the Q functions
at randomly drawn times across the trajectory according to the dynamic program implied by the
towered expectations identity. We draw an update time and trajectory uniformly from the interval of
the process and the training set accordingly, although other distributions on time may be considered,
as well as batched optimization over trajectories. Another notable point is that updates are done upon
disagreement in treatments, and the trajectory in time (t, t+ �] may include multiple observations
and outcomes x,y. This is desirable in cases like ICU data, where some vitals are being continuously
monitored (e.g., blood pressure), while decisions, such as changing medication dosages, occur on a
more coarse timescale. The algorithm will then performs updates on the coarser timescale instead of
the finer one.

4 RELATED WORK

Our coverage of related work is divided into an overview of works that solve adjacent tasks to ours,
before transitioning into a detailed discussion in section 4.1 about techniques more closely aligned
with our goal of large scale causal inference in sequential decision making.

Causal inference with sequential decisions. Estimation of causal effects for sequential treatments is
usually studied in discrete time under the sequential exchangeability assumption (Hernan and Robins,
2023; Robins, 1986). Addressing unobserved confounders is also a topic of interest (e.g. (Namkoong
et al., 2020; Tennenholtz et al., 2020)), but this is beyond the scope for our work. As described in
section 2.2, the framework of Røysland et al. (2022) draws a parallel to sequential exchangeability in
continuous-time processes, which we adopt in this work. Regarding estimation, several approaches
for continuous or irregularly sampled times have been explored (Lin et al., 2004; Lok, 2008; Røysland,
2011; Rytgaard et al., 2022; Zhang et al., 2011). Most estimation methods studied in this context do
not scale to large and high-dimensional datasets. For instance, Røysland (2011) requires estimating
an integral of propensity weights across time, and Rytgaard et al. (2022) propose a targeted estimator
that fits each process in Pobs. However, this method is limited to interventions at fixed time points
(i.e. no interventions on scheduling of treatments) and it is unclear how to implement the proposed
estimations with large and expressive models.

Reinforcement learning techniques. The dynamic treatment regimes literature (e.g. (Chakraborty
and Moodie, 2013; Chakraborty and Murphy, 2014)) studies policy learning and evaluation in non-
Markov decision processes, which is a similar setting to ours but in discrete time. Q-learning is

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

a prominent model-free solution in this scenario, where dynamic programming going “backwards
in time" yields the correct policy value (Murphy, 2005). This solution is unsuitable for irregularly
sampled times, but motivates EDQ. We discuss the connection of Q-learning and related n-step
methods from Reinforcement Learning (De Asis et al., 2018; Munos et al., 2016; Precup et al., 2000)
to EDQ in section 3. Some work in reinforcement learning has considered irregularly sampled times,
but their solutions are not applicable to our setting of interest. They either do not intervene on time or
operate in the on-policy setting (Qu et al., 2023; Upadhyay et al., 2018), or incorporate continuous
time positional embeddings into decision transformers (Chen et al., 2021b). The latter facilitates
recommending sets actions to arrive at a desired outcome (Zhang et al., 2023) rather than evaluating
a policy of interest. Furthermore, recent work suggests these goal-conditioned imitation learning
methods such as decision transformers may fail to estimate the causal effect of actions (Malenica and
Murphy, 2023) in some scenarios where there are no unobserved confounders, whereas Q-learning
methods produce correct estimates.

We now turn to a more in-depth discussion of scalable causal estimation methods for sequential
treatments, where we delineate some of the technical assumptions, implementation choices, and
subsequent properties of solutions covered in recent work on the problem.

4.1 LARGE SCALE ESTIMATION APPROACHES FOR SEQUENTIAL TREATMENTS

Table 1: Qualitative comparison of effect estimation methods under sequential treatments, compatible
with large scale ML implementation. The method we presented in this work is marked in bold, while
others can be found in (Bica et al., 2020; Chakraborty and Moodie, 2013; Le et al., 2019; Li et al.,
2021; Lim, 2018; Melnychuk et al., 2022; Schulam and Saria, 2017; Seedat et al., 2022)

Properties Estimation Method
Irregular

Times

Large

Scale

Dynamic

Policy

Prop.

Weights

Model

Based

Balancing

Rep.
DP

CGP 3 7 3 3
CRN , CT 7 3 7 3
R-MSN 7 3 7 3
TE-CDE 3 3—4 7 3 3
G-Net 7 3 3 3
FQE 7 3 3 3
EDQ 3 3 3 3

Notable early work on using machine learning models for estimating counterfactual quantities related
to treatments on a timeline, (Schulam and Saria, 2017), used Gaussian Processes to tackle the
estimation problem. Limitations such as scaling to large datasets and incorporating various features
prompted the development of deep learning approaches to the problem.

Large scale models. One family of solutions (Bica et al., 2020; Lim, 2018; Melnychuk et al., 2022)
took an important step forward by using RNNs and transformers for the estimation problem. All
of these methods build on the idea of learning balancing representations (Johansson et al., 2016).
Roughly, these are representations under which the treatment is randomly assigned. This facilitates
the training of high-capacity effect estimators on large datasets, but these works are restricted to
discrete times.

Dynamic policies. The above methods can only estimate effects of static treatments, meaning the
treatment plan cannot dynamically depend on future observations. For instance, consider a policy
that prescribes a daily dose of statins, and if the patient develops side effects in the future, switches
to another medication. This policy depends on possible future states, which the above methods do
not accommodate for that. G-Net (Li et al., 2021; Xiong et al., 2024) takes a model-based approach,
where models are fit for both ⇡obs(A(t)|Ht�1, X(t)), and Pobs(X(t), Y (t)|Ht�1). Then at inference
time, a dynamic policy is estimated when ⇡obs is replaced with the desired policy ⇡ and conditional
expectations of Y are estimated with Monte-Carlo simulations.

4We mark TE-CDE with a crossed checkmark for scalability, since the algorithm relies on differential
equation solvers which limits the architectures one can use.
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Irregular times. None of the above solutions handle irregular times of observations and actions,
which is one of the main goals of this paper. Some steps in this direction have been taken by Seedat
et al. (2022); Vanderschueren et al. (2023). Seedat et al. (2022) use balanced representations, like
previously mentioned works, but combine them with a neural CDE architecture that is shown to
be more suitable for irregular sampling times. Vanderschueren et al. (2023) experiment with a
reweighting technique to account for sampling times that are informative of the outcome. These
works do not estimate outcomes under interventions on treatment times but instead seek to mitigate
biases induced by sampling times on effect estimation. We further discuss aspects of these related
works, including their identifiability conditions, in appendix C.

Table 1 summarizes the properties of all the above techniques, along with Fitted Q-Evaluation and
EDQ from section 3. Notably, EDQ possesses all the desirable qualities mentioned here and handles
interventions on �a, which these solutions do not.

5 IMPLEMENTATION AND EXPERIMENTS

To implement EDQ for experimentation in section 5 we use a GPT-2 architecture and modify it in the
following manner. Each token is a concatenation of embeddings of time ti, value zi and a type of
event ei 2 {A,X, Y,�T}. The event types A,X, Y correspond to actions, features, and outcomes,
while the �T event is introduced for convenience, as we wish to represent trajectories where time
has passed but no event has yet occured. For example, this allows our model to represent quantities
such as EP [Y |Ht+� = Ht], which may appear in eq. (2). Whereas ti represents the absolute time
passed until a certain event, the value of timestep tokens represents time gaps, yet both are embedded
with a continuous time positional embedding: sin (tCk/dtime) for even k, and cos (tCk�1/dtime) for
odd k. Here C = 105 and dtime is the embedding dimension. We also keep a target network as and
update it with soft-Q updates, as is common in Deep Q-Networks, e.g. Van Hasselt et al. (2016). We
implement two methods as baselines in our experiment.

5.1 BASELINES

Since we are unaware of algorithms that perform effect estimation on treatment timing with high-
dimensional or long sequence data, we implement two baselines that let us glean some important
aspects of EDQ.

ERM / MC is an Empirical Risk Minimizer (ERM) that is trained to predict observed outcomes,
which, in the context of reinforcement learning and policy evaluation is also called Monte-Carlo
prediction (MC). We use the same GPT-2 architecture and data representation as EDQ, but in-
stead of running algorithm 2, we simply seek to learn f✓(Ht) that minimizes prediction loss on
observed data. Assuming each training trajectory Hi comes with a label yi of its outcome, we solve
min✓ m�1

P
i,(ti,zi)2Hi

(`(f✓(Hi,t), yi) with gradient updates, where `(·, ·) is set as the squared loss.
Since this method estimates outcomes under the observed policy �obs, we expect it to perform as
well as, or better than, off-policy evaluation methods, including EDQ, when � = �obs, and to suffer a
drop otherwise.

FQE Is implemented as described in section 3, but with discretized time and Q-updates using
one timestep forward in time. That is, at each iteration, we draw a training example i 2 [m]
and time t 2 [0, T ], define ŷi = yt+1 + Qt+1( eHt+1;✓)), and perform a gradient step on the loss
`(Qt(Hi,t), ŷi). Similarly, we define discrete-time approximations of our policies of interest, which
will be described later. In terms of implementation, the positional embeddings now correspond
to discrete times, and the representations of actions, features and outcomes at each timestep are
concatenated. Other than this, we use the exact same architecture and hyperparameters of EDQ. This
baseline examines the effects of time discretization on estimation quality and optimization.

A comment on computational complexity: The per-iteration runtime of EDQ is similar to that of FQE,
which is a common tool in large-scale offline RL problems; for example, Paine et al. (2020); Voloshin
et al. (2021) use it in benchmarks and evaluations. The difference in computation times between
EDQ and FQE is due to sampling from the target policy, in order to draw the treatments used in the
Q-update. We expand on this discussion in appendix A.
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Vital xt

Treatment

ERM / MC FQE EDQ
�int = 0.1

�obs = 0.1 0.20± 0.007 0.21± 0.02 0.20± 0.005
�obs = 0.5 0.38± 0.011 0.23± 0.04 0.20± 0.006

�int = 0.5
�obs = 0.5 0.11± 0.004 0.197± 0.013 0.10± 0.003
�obs = 0.1 0.28± 0.004 0.31± 0.01 0.11± 0.006

Figure 2: Left. An example of a trajectory from our simulation. Blue curve denotes the value of
the vital xt and red dots mark treatment times. Right. Normalized RMSE of the methods under the
different simulation settings. Mean is taken over all points in the history of patients in the test data.
Rows colored blue are those where �obs = �int, and we expect all methods to perform well since
training and test data are sampled from the same distribution. Red rows are those where the effect of
an intervention needs to be estimated.

5.2 SIMULATIONS ON TIME TO FAILURE AND CANCER TUMOR GROWTH PREDICTION

To validate the efficacy of our methods, we construct two simulated settings. In one, the task is to
predict the effect of treatment timing policies on patients’ time-to-event. The second setting uses
a cancer tumor growth simulator from Geng et al. (2017) to form a policy evaluation problem on
applications of chemotherapy and radiotherapy.

Simulators. We use two simulators. (i) Time-to-failure: In this setting, each data point simulates
the vital of a patient xt 2 R+ measured regularly at a frequency of one time unit, and treatments
at 2 R+ are assigned irregularly in time according to an observational policy. Without treatment,
the vital drops linearly dxt/dt = �(↵+ ⇠t) where ⇠t ⇠ N (0,�) is a noise term drawn at each time
unit. Upon receiving treatment, the vital rises by an amount proportional to the number of treatments,
1  k  m, applied up until that time, where m is the maximal number of treatments that a patient
can receive. That is, the efficacy of treatment reduces with repeated applications. We also inject small
noise terms into the dosage of treatment that a patient receives, which further affect the vital and
add randomness to the problem. Section 5.2 shows an example of a simulated patient trajectory. (ii)

Tumor growth: We use the experimental setting from Bica et al. (2020), which other works use to
study irregular sampling (Seedat et al., 2022; Vanderschueren et al., 2023). As this is a commonly
used simulator, we defer the details on its dynamics to appendix A and focus on the type of irregular
sampling and policies we use. The simulator works in discrete time t 2 [T ], and irregular sampling is
induced by the features being unobserved at certain times. Namely, the covariate xt 2 R+ which
represents tumor volume is observed with probability �((x̄t�d:t�1/dmax)� 1.5), where x̄t�d:t�1 is
the average tumor volume over the last d timesteps, and dmax is the maximum considered volume.

Outcomes and policies. For (i) time-to-failure, our outcome of interest is failure time y 2 R+,
where a patient dies if the vital drops to a value of 0. 5 We focus on effect estimation for interventions
on a rate parameter �a that controls the timing of treatment. At each time t where the observed vital
crosses a threshold, i.e. xt < r for some predetermined r 2 R+, a random time is drawn from an
exponential distribution � ⇠ exp(�a) and treatment is applied at t + �. The threshold r and the
dosage of treatment given are also part of the policy ⇡, yet to focus on the effects of timing we do
not intervene on them in this experiment. At each experiment we observe m patients treated under a
policy with �a = �obs and aim to reason about the expected failure times under the interventional
�int. In (ii) tumor-growth, the goals is to predict xT where T = 20, when the policy at time t assigns
treatment at 2 [4] which is either no-treatment, radiotherapy, chemotherapy or a combined therapy.
Therefore, the estimation here is both on “when" and “what" to do. Policies are determined by two
parameters (�,�) and assign each type of treatment with probability �(�(xlast � �) + t � tlast).
Here, xlast is the last observed volume and � is an intercept controlling how often treatments are

5Note that the vital changes outside measurement times, hence death time does not generally coincide with
vital measurement times.
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ERM / MC FQE EDQ
(�,�)int = (6, 0.75)

(�,�)obs = (6, 0.75) 0.034± 0.001 0.048± 0.001 0.037± 0.001
(�,�)obs = (10, 0.5) 0.07± 0.004 0.080± 0.013 0.052± 0.006

ERM / MC FQE EDQ
�int = 0.2

�obs = 0.2 0.17± 0.01 0.18± 0.004 0.178± 0.01
�obs = 2 0.28± 0.01 0.20± 0.03 0.178± 0.01

�int = 2
�obs = 2 0.22± 0.01 0.197± 0.013 0.22± 0.004
�obs = 0.2 0.32± 0.02 0.31± 0.01 0.22± 0.007

Figure 3: Left. Normalized RMSE on the tumor-growth simulation. All methods are affected by
distribution shift. EDQ is the most robust out of the baselines considered. Right. Normalized RMSE
for time-to-failure simulation on short trajectories.

applied, while � controls the dependence of treatment assignment on tumor volume. Finally tlast is
the time of the last treatment, and the term t� tlast induces a lag between consecutive treatments.

Experiments. We perform two sets of experiments for the time-to-failure simulation. In the first set,
trajectory lengths range between 10 and 100, and the number of possible treatments equals 5. In the
second set (results in Figure 3, right), we change the parameters of the problem by taking a high slope
↵ and capping the number of treatments at 1. This creates short trajectories of length between 3 and
10. To evaluate the performance of the estimator, we sample trajectories (Hi, yi) ⇠ P�int under the
target policy and treat every (Hi,ti , yi) as a labeled data point. We then evaluate normalized RMSE
between f✓(Hi,ti) and the true labels yi. For the tumor growth experiment we evaluate a policy that
increases the likelihood of treatments (i.e increases �) and reduces �, the correlation to the observed
volume. Error is also calculated with normalized RMSE.

Results. The tables in fig. 2 and fig. 3 present the results of both simulations. They show that for
the time-to-failure simulation, EDQ solves the estimation problem both when �obs = �int (blue
rows, no intervention performed), and when �obs 6= �int (red rows). This is evident by comparing its
performance with ERM under the setting where �obs = �int, as ERM should be nearly optimal in
that setting.6 ERM takes a significant performance drop when �obs 6= �int as expected. As for FQE,
while in the first set of experiments, depicted in fig. 2, discretization should not result in significant
information loss, it does create a more difficult optimization problem for FQE. This is because the
updates to Q(Ht) need to propagate backwards and most of the updates get noisy gradient signals by
fitting to the Q value of a trajectory sampled one time step forward Q( eHt+1). This challenge for FQE
is most evident in the results of Figure 2, where �int = 0.5 and it incurs a significant loss both when
�obs = �int and when �obs 6= �int. The results in the right table of Figure 3, demonstrate potential
effects of information loss due to time discretization. Here, since the trajectories are short, the
optimization problem of losses propagating along the trajectory is likely less pronounced. However,
we see that there is still a significant drop when �int = 2 and �obs = 0.2, that is, approximating a
high rate of treatment when data was sampled under low rates. Taken together, these two experiments
demonstrate two possible drawbacks of discretizing time. For tumor-growth, EDQ still outperforms
the alternatives but suffers a certain decrease in performance due to the distribution shift between the
observational and interventional distributions.

6 LIMITATIONS AND FUTURE WORK

To summarize this work, we have developed a method for off-policy evaluation with irregular
treatment and observation times, which facilitates interventions on treatment intensities. We connected
the setting with identifiability results from the causal inference literature to highlight the conditions
under which the estimates are correct, and proved the correctness of our estimator. EDQ is a “direct"
method based on fitting regressions and. as demonstrated in our experiments, it is easily applicable
to high-capacity sequence modeling architectures. To the best of our knowledge, it is the first
available solution to this estimation problem that is applied with such architectures. There are several
limitations to this work, which motivate exciting future research. Empirically, we plan to apply the
method to large real-world datasets to study effects of intervening on treatment times. The method
also does not handle censoring, which is required in order to reliably apply it in most survival analysis
and real-world trial data. Additional potential technical developments include policy optimization in
the setting we studied here and deriving bounds on errors due to unobserved confounding.

6this is up to numerical optimization issues, as we see FQE can outperform it in certain cases
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