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Abstract

Recent advances in multi-agent reinforcement learning (MARL) allow agents to1

coordinate their behaviors in complex environments. However, common MARL2

algorithms still suffer from scalability and sparse reward issues. One promising3

approach to resolving them is automatic curriculum learning (ACL). ACL involves4

a student (curriculum learner) training on tasks of increasing difficulty controlled5

by a teacher (curriculum generator). Despite its success, ACL’s applicability is6

limited by (1) the lack of a general student framework for dealing with the varying7

number of agents across tasks and the sparse reward problem, and (2) the non-8

stationarity of the teacher’s task due to ever-changing student strategies. As a9

remedy for ACL, we introduce a novel automatic curriculum learning framework,10

Skilled Population Curriculum (SPC), which adapts curriculum learning to multi-11

agent coordination. Specifically, we endow the student with population-invariant12

communication and a hierarchical skill set, allowing it to learn cooperation and13

behavior skills from distinct tasks with varying numbers of agents. In addition, we14

model the teacher as a contextual bandit conditioned by student policies, enabling a15

team of agents to change its size while still retaining previously acquired skills. We16

also analyze the inherent non-stationarity of this multi-agent automatic curriculum17

teaching problem and provide a corresponding regret bound. Empirical results18

show that our method improves the performance, scalability and sample efficiency19

in several MARL environments. The source code and the video can be found at20

https://sites.google.com/view/marl-spc/.21

1 Introduction22

Multi-agent reinforcement learning (MARL) has long been a go-to tool in complex robotic and23

strategic domains [1, 2]. However, learning effective policies with sparse reward from scratch for24

large-scale multi-agent systems remains challenging. One of the challenges is the exponential growth25

of the joint observation-action space with an increasing number of agents. In addition, sparse reward26

signal requires a large number of training trajectories, posing difficulties in applying existing MARL27

algorithms directly to complex environments. As a result, these algorithms may produce agents that28

do not collaborate with each other, even when it would be of significant benefit [3, 4].29

There are several lines of research related to the large-scale MARL problem with sparse reward,30

including reward shaping [5], curriculum learning [6], and learning from demonstrations [7]. Among31

these approaches, the curriculum learning paradigm, in which the difficulty of experienced tasks32

and the population of training agents progressively grow, shows particular promise. In automatic33

curriculum learning (ACL), a teacher (curriculum generator) learns to adjust the complexity and34

sequencing of tasks faced by a student (curriculum learner). Several works have even proposed multi-35

agent ACL algorithms, based on approximate or heuristic approaches to teaching, such as DyMA-CL36
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[8], EPC [9], and VACL [6]. However, these approaches rely on a framework of an off-policy student37

with a replay buffer that is hard to decide the size of the replay buffer since the proportion of different38

tasks matters. Also, they make a strong assumption that the value of the learned policy does not39

change when agents switch to a different task. For example, In the football environment, when we40

treat the score as the reward, the same state-action pairs of the team agents in different tasks might41

lead to different returns. 3 learned agents could get more scores in a 3v1 match, while the same42

three agents could get fewer scores in a 4v11 match with an unlearned random teammate. When43

decomposing at the same state-action pairs, agents get different credit assignments. Moreover, the44

teacher in these approaches still faces a non-stationarity problem due to the ever-changing student45

strategies. Another class of larger-scale MARL solutions is hierarchical learning, which utilizes46

temporal abstraction to decompose a task into a hierarchy of subtasks. This includes skill discovery47

[10], option as response [11], role-based MARL [12], and two levels of abstraction [13]. However,48

these approaches mostly focus on one specific task with a fixed number of agents and do not consider49

the transferability of learned skills. In this paper, we provide our insight into this question:50

Whether an elaborate combination of principles from ACL and hierarchical learning can enable51

complex cooperation with sparse reward in MARL?52

Specifically, we present a novel automatic curriculum learning algorithm, Skilled Population Curricu-53

lum (SPC), that addresses the challenges of learning effective policies for large-scale multi-agent54

systems with sparse reward. The core idea behind SPC, motivated by real-world team sports where55

players often train their skills by gradually increasing the difficulty of tasks and the number of56

coordinating players, is to encourage the student to learn skills from tasks with different numbers of57

agents, akin to how team sports players train by gradually increasing the difficulty of tasks and the58

number of coordinating players. To achieve this, SPC is implemented with three key components.59

First, to solve the final complex cooperative tasks, we equip the contextual bandit teacher with an60

RNN-based [14] imitation model to represent student policies and generate the bandit’s context.61

Second, to handle the varying number of agents across these tasks and bypass the limitation of the62

related studies, we utilize population-invariant communication in the student module is implemented63

to handle varying number of agents across tasks. By treating each agent’s message as a word and64

using a self-attention communication channel [15], SPC supports an arbitrary number of agents to65

share messages. Third, to learn transferable skills in the sparse reward setting, a hierarchical skill66

framework is used in the student module to learn transferable skills in the sparse reward setting,67

where agents communicate on the high-level about a set of shared low-level policies. Empirical68

results show that our method achieves state-of-the-art performance in several tasks in Multi-agent69

Particle Environment (MPE) [16] and the challenging 5vs5 competition in Google Research Football70

(GRF) [17].71

2 Preliminaries72

Dec-POMDP. A cooperative MARL problem can be formulated as a decentralized par-73

tially observable Markov decision process (Dec-POMDP) [18], which is described as a tuple74

⟨n,S,A, P,R,O,Ω, γ⟩, where n represents the number of agents. S represents the space of global75

states. A = {Ai}i=1,··· ,n denotes the space of actions of all agents. O = {Oi}i=1,··· ,n denotes76

the space of observations of all agents. P : S × A → S denotes the state transition probability77

function. All agents share the same reward as a function of the states and actions of the agents78

R : S ×A → R. Each agent i receives a private observation oi ∈ Oi according to the observation79

function Ω(s, i) : S → Oi. γ ∈ [0, 1] denotes the discount factor.80

Multi-armed Bandit. Multi-armed bandits (MABs) are a simple but very powerful framework that81

repeatedly makes decisions under uncertainty. In this framework, a learner performs a sequence82

of actions and immediately observes the corresponding reward after each action. The goal is to83

maximize the total reward over a given set of K actions and a specific time horizon T . The measure84

of success in MABs is often determined by the regret, which is the difference between the cumulative85

reward of an MAB algorithm and the best-arm benchmark. One well-known MAB algorithm is the86

Exp3 algorithm [19], which aims to increase the probability of selecting good arms and achieves a87

regret of O(
√
KT log(K)) under a time-varying reward distribution. Another related concept is the88

contextual bandit problem [20], where the learner makes decisions based on prior information as the89

context.90
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3 Skilled Population Curriculum91

In this section, we first provide a formal definition of the curriculum-enhanced Dec-POMDP frame-92

work, which formulates the MARL with curriculum problem under the Dec-POMDP framework.93

We then present our multi-agent ACL algorithm, Skilled Population Curriculum (SPC), as shown in94

Fig. 1. In the following subsections, we establish the curriculum learning framework in Sec. 3.1, and95

then present a contextual multi-armed bandit algorithm as the teacher to address the non-stationarity96

in Sec. 3.2. Lastly, we introduce the student with transferable skills and population-invariant commu-97

nication to tackle the varying number of agents and the sparse reward problem in Sec. 3.3.98

3.1 Problem Formulation99

We consider environments from multi-agent automatic curriculum learning problems are equipped100

with parameterized task spaces and thus can be modeled as curriculum-enhanced Dec-POMDPs.101

Definition 3.1 (Curriculum-enhanced Dec-POMDP). A curriculum-enhanced Dec-POMDP is defined102

by a tuple ⟨Φ,M⟩, where Φ and M represent a task space and a Dec-POMDP, respectively. Given the103

task ϕ, the Dec-POMDP M(ϕ) is presented as
{
nϕ,Sϕ,Aϕ, Pϕ, rϕ, Oϕ,Ωϕ, γϕ

}
. The superscript104

ϕ denotes that the Dec-POMDP elements are determined by the task ϕ. Note that task ϕ can be105

a few parameters of the environment or task IDs in a finite task space. In a curriculum-enhanced106

Dec-POMDP, the objective is to improve the student’s performance on the target tasks through the107

sequence of training tasks given by the teacher..108

Let τ denote a trajectory whose unconditional distribution Prπ,ϕµ (τ) (under a policy π and a task ϕ109

with initial state distribution µ(s0)) is Prπ,ϕµ (τ) = µ (s0)
∑∞
t=0 π (at | st)Pϕ (st+1 | st, at). We use110

p(ϕ) to represent the distribution of target tasks and q(ϕ) to represent the distribution of training tasks111

at each task sampling step. We consider the joint agents’ policies πθ(a|s) and qψ(ϕ) parameterized112

by θ and ψ, respectively. The overall objective to maximize in a curriculum-enhanced Dec-POMDP113

is:114

J(θ, ψ) = Eϕ∼p(ϕ),τ∼Prπµ

[
Rϕ(τ)

]
= Eϕ∼qψ(ϕ)

[
p(ϕ)

qψ(ϕ)
V (ϕ, πθ)

]
(1)

where Rϕ(τ) =
∑
t γ

trϕ (st, at; s0) and V (ϕ, πθ) represents the value function of πθ in Dec-115

POMDP M(ϕ). However, when optimizing qψ(ϕ), we cannot get the partial derivative ∇ψJ(θ, ψ) =116

∇ψ

∑
τ

1
qψ(ϕ)

Rϕ(τ) Prπ,ϕµ (τ)1 since the reward function and the transition probability function w.r.t117

number of agents are non-parametric, non-differentiable, and discontinuous in most MARL scenarios.118

Thus, we use the non-differentiable method, i.e., multi-armed bandit algorithms, to optimize qψ(ϕ),119

and use an RL algorithm (the student) in alternating periods to optimize πθ(a|s). However, there are120

three key challenges in solving this problem: (1) The teacher is facing a non-stationarity problem due121

to the ever-changing student’s strategies. (2) The student will forget the old tasks and need to re-learn122

them. Some tasks can be the prerequisites of other tasks, while some can be inter-independent and123

parallel. (3) There is a lack of a general student framework to deal with the varying number of agents124

across tasks and the sparse reward problem.125

3.2 Teacher as a Non-Stationary Contextual Bandit126

As previously discussed, the teacher faces a non-stationarity problem due to the ever-changing127

student’s strategies during the learning process. Specifically, as the student learns across different128

tasks in different learning stages, the teacher will observe varying student performance when providing129

the same task, resulting in a time-varying reward distribution for the teacher. In addition, the student130

may forget previously learned policies. To mitigate this problem, the teacher should balance the131

exploitation of tasks that have been found to benefit the student’s performance on the target tasks,132

with the exploration of tasks that may not directly facilitate the student’s learning.133

Fortunately, we notice that the non-stationarity stems from the student, which can be mitigated with134

a contextual bandit which embeds the student policy into the context. As shown in Fig. 1 Left,135

the teacher utilizes the student’s policy representation as the context and chooses a task from the136

1p(ϕ) is not in the partial derivative since it is a fixed distribution.
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Figure 1: The overall framework of SPC. It consists of three parts: configurable environments, a
teacher, and a student. Left. The teacher is modeled as a contextual multi-armed bandit. At each
teacher timestep, the teacher chooses a training task from the distribution of bandit actions. Mid. The
student is endowed with a hierarchical skill framework and population-invariant communication. It is
trained with MARL algorithms on the training tasks. The student returns not only the hidden state of
its RNN imitation model as contexts to the teacher, but also the average discounted cumulative rewards
on the testing task. Right. The student learns hierarchical policies, with the population-invariant
communication taking place at the high-level, implemented with a self-attention communication
channel to handle the messages from a varying number of agents. The agents in the student share the
same low-level policy.

distribution of training tasks. Specifically, we extend the Exp3 algorithm [19] by incorporating137

contexts through a two-step online clustering process [21]. The context, represented by x, is the138

student’s policy representation. The teacher’s action is a specific task, denoted by ϕ, and the teacher’s139

reward is the return of the student in the target tasks. The teacher’s algorithm is outlined in Alg. 1.140

During the sampling stage (steps 1-5), the teacher selects a task for the student’s training. In the141

training stage (steps 6-7), the teacher adjusts the parameters based on the evaluation reward received142

from the student.143

Algorithm 1 Teacher Sampling and Training
Input: Context x, the number of Clusters Nc, Nc instances of Exp3 with task distribution
w(ϕk, c) for k = 1, . . . ,K and for c = 1, . . . , Nc, learning rate α, a buffer maintaining the his-
torical contexts
Output: M(ϕ) =

{
nϕ,Sϕ,Aϕ, Pϕ, rϕ, Oϕ,Ωϕ, γϕ

}
, the teacher bandit parameters

Sampling
1. Get the the context x, and save it to the buffer
2. Run the online cluster algorithm and get the index of the cluster center c(x)
3. Let the active Exp3 instance be the instance with index c(x)
4. Set the probability p(ϕk, c(x)) =

(1−α)w(ϕk,c(x))∑K
j=1 w(ϕk,c(x))

+ α
K for each task ϕk

5. Sample a new task according to the distribution of pϕk,c
Training
6. Get the return (discounted cumulative rewards) from student testing r
7. Update the active Exp3 instance by setting w(ϕk, c(x)) = w(ϕk, c(x))e

αr/K

3.2.1 Context Representation144

Upon analysis, it is essential to learn an effective representation for the student’s policy as the context.145

One straightforward representation is to use the student parameters θ directly as the context. However,146

the number of parameters is too large to be used as the input of neural network if we change the147

student’s architecture. Therefore, we propose an alternative method.148

A principle for learning a good representation of a policy is predictive representation, which means149

the representation should be accurate to predict policy actions given states. In accordance with this150

principle, we utilize an imitation function through supervised learning. Supervised learning does151

not require direct access to reward signals, making it an attractive approach for reward-agnostic152

representation learning. Intuitively, the imitation function attempts to mimic low-level policy based153

4



on historical behaviors. In practice, we use an RNN-based imitation function fim : S ×A → [0, 1].154

Since recurrent neural networks are theoretically Turing complete [22], their internal states can be155

used as the representation of the student’s policy. We train this imitation function by using the156

negative cross entropy objective E[log fim (s, a)].157

3.2.2 Regret Analysis158

In this subsection, we demonstrate that the proposed teacher algorithm has a regret bound of159

E[R(T )] = O
(
T 2/3(LK log T )1/3

)
, where T is the number of total rounds, L is the Lipschitz160

constant, and K is the number of arms (the number of the teacher’s actions). The regret analysis161

is used to justify the usage of the bandit algorithm in the non-stationary setting. The regret bound162

represents the optimality of SPC, as the teacher’s reward is the return of the student in the target tasks.163

First, we introduce the Lipschitz assumption about the generalization ability of the task space.164

Assumption 3.2 (Lipschitz continuity w.r.t the context). Without loss of generality, the contexts are165

mapped into the [0, 1] interval, so that the expected rewards for the teacher are Lipschitz with respect166

to the context.167

|r(ϕ | x)− r (ϕ | x′)| ≤ L · |x− x′|
for any arm ϕ ∈ Φ and any pair of contexts x, x′ ∈ X

(2)

where L is the Lipschitz constant, and X is the context space.168

This assumption suggests that for any policy trained on a set of tasks, the rate at which performance169

improves is not faster than the rate at which the policy changes. This is a realistic assumption, as we170

cannot expect the student to achieve a significant improvement on a task with only a few training171

steps under a new context. We use an existing contextual bandit algorithm for a limited number of172

contexts [19] (see Appendix A) and Lemma 3.3 as a foundation for proving Theorem 3.4.173

Lemma 3.3. Alg. 2 has a regret bound of E[R(T )] = O(
√
TK|X | logK).174

Lemma 3.3 introduces a square root dependence on |X | if separate copies of Exp3 are run for175

each context [19]. This motivates us to address the large context space by utilizing discretization176

techniques.177

Theorem 3.4. Consider the Lipschitz contextual bandit problem with contexts in [0, 1]. The Alg. 1178

yields regret E[R(T )] = O
(
T 2/3(LK lnT )1/3

)
.179

Proof. See Appendix B.180

In practice, the high-dimensional context space cannot be discretized using a uniform mesh in [0, 1]181

as in the proof of Theorem 3.4. To address this issue, we utilize the Balanced Iterative Reducing182

and Clustering using Hierarchies (BIRCH) online clustering algorithm [21] to discretize the context183

space. BIRCH is an efficient and easy-to-update algorithm that can effectively cluster large datasets.184

In this case, it is used to cluster the high-dimensional RNN-based policy representation. The resulting185

clusters can be seen as an approximation of a uniform mesh.186

3.3 Student with Population-Invariant Skills187

We propose a population-invariant skill framework to address the challenges of varying number of188

agents and sparse reward problem. This framework allows agents to communicate via a self-attention189

channel, enabling them to learn transferable skills across different tasks. The student module is190

designed to be algorithm-agnostic and is orthogonal to any state-of-the-art MARL algorithm. While191

there have been some efforts in the literature to address the varying number of agents [23, 24], these192

approaches heavily rely on prior knowledge of the environments.193

Population-Invariant Teamwork Communication. In order to enable the population-invariant194

property and learn tactics among agents, we introduce communication. Leveraging the transformer195

architecture’s capability to process inputs of varying lengths [15], we incorporate self-attention into196

our communication mechanism. As illustrated in Fig. 1 Right, each agent j receives an observation197

oj and encodes it into a message vector mj = f (oj) which is then sent through a self-attention198

channel, where f is an observation encoder function.199
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Figure 2: (a) Multi-agent Particle Environment. (b) Google Research Football.

The channel aggregates all messages and sends the new message vector, m̃j , through the self-attention200

mechanism. Concretely, given the channel input M = [m1,m2, · · · ,mn] ∈ Rn×dm , and the201

trainable weight of the channel WQ,WK ,WV ∈ Rdm×dm , we obtain three distinct representations:202

Q = MWQ,K = MWK ,V = MWV . Then the output messages are203

M̃ = Attention(Q,K,V) = softmax

(
QKT

√
dm

)
V (3)

where dm is the dimension of the messages. As the dimensions of the trainable weight are independent204

of the number of agents, our student models can leverage the population-invariant property to205

effectively learn tactics.206

Transferable Hierarchical Skills. As depicted in the dotted box in Fig. 1 Right, after receiving207

the new messages m̃j from the channel, each agent employs a high-level action (skill) ah,j =208

πh,j(oj , m̃j) to execute the low-level policy aj = πlow(oj , ah,j). In this work, we generalize the209

high-level action (skill) ah,j to a continuous embedding space, so that the skill can be either a latent210

continuous vector as in DIAYN [25], or a categorical distribution for sampling discrete options [26].211

Implementation. We implement the high- and low-level policies in the student with Proximal Policy212

Optimization (PPO) [27]. Following the common practice proposed in [28], the high-level policy213

for each agent is learned independently, whereas the low-level policies share parameters, as the214

fundamental action pattern should be consistent among different agents. The low-level agents are215

rewarded by the environment, while the high-level policy is trained to take actions at fixed intervals.216

Within this interval, the cumulative low-level reward is used as the high-level reward. When using217

a categorical distribution to enable discrete skills, we sample an “option” from the distribution and218

provide the corresponding one-hot embedding to the low-level policy.219

4 Related Work220

Automatic Curriculum Learning in MARL. Curriculum learning is a training strategy that mimics221

the human learning process by organizing tasks based on their difficulty level [29]. The selection of222

tasks is formulated as a Curriculum Markov Decision Process (CMDP) [30]. Automatic Curriculum223

Learning mechanisms aim to learn a task selection function based on past interactions, such as ADR224

[31, 32], ALP-GMM [33], SPCL [34], GoalGAN [35], PLR [36, 37], SPDL [38], CURROT [39],225

and graph-curriculum [40]. Recently, several MARL curriculum learning frameworks have been226

proposed, such as open-ended evolution [41–43], population-based training [44, 45], meta-learning227

[46, 47] and training with emergent curriculum [48, 49, 29]. In summary, these frameworks share a228

common principle of an automatic curriculum that continually generates improved agents through229

selection pressure among a population of self-optimizing agents.230

Hierarchical MARL and Communication. Hierarchical reinforcement learning (HRL) has been231

extensively studied to address the issue of sparse reward and facilitate transfer learning. Single-agent232

HRL focuses on learning the temporal decomposition of tasks, either by learning subgoals [50–233

54] or by discovering reusable skills [55–58]. Recent developments in hierarchical MARL have234

been discussed in Sec. 1. In multi-agent settings, communication has been effective in promoting235

cooperation among agents [59–65]. However, current approaches that extend HRL to multi-agent236

systems or utilize communication are limited to a fixed number of agents and lack the ability to237

transfer to different agent counts.238
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5 Experiments239

To demonstrate the effectiveness of our approach, we conduct experiments on several tasks in two240

environments: Simple-Spread and Push-Ball in the Multi-agent Particle Environment (MPE) [16],241

and the challenging 5vs5 task of the Google Research Football (GRF) environment [17]. We aim to242

investigate the following research questions:243

Q1: Is curriculum learning necessary in complex large-scale MARL problems? (Sec. 5.2)244

Q2: Can SPC outperform previous curriculum-based MARL methods? If so, which components of245

SPC contribute the most to performance gains? (Sec. 5.3)246

Q3: Can SPC effectively learn a curriculum for the student? (Sec. 5.4)247

5.1 Environments, Baselines and Metric248

Environments. In the GRF 5vs5 scenario, we control four agents, excluding the goalkeeper, to249

compete against the built-in AI opponents. Each agent observes a compact encoding, consisting of a250

115-dimensional vector that summarizes various aspects of the game, such as player coordinates, ball251

possession and direction, active players, and game mode. The available action set for an individual252

agent includes 19 discrete actions, such as idle, move, pass, shoot, dribble, etc. The GRF provides253

two types of rewards: scoring and checkpoints, to encourage agents to move the ball forward and254

make successful shots. Additionally, we include a shooting reward in the challenging GRF 5vs5255

task. We select several basic scenarios in GRF, including 3vs3, Pass-Shoot, 3vs1, and Empty-Goal as256

curriculum.257

In MPE, we investigate Simple-Spread and Push-Ball (see Fig. 2a). In Simple-Spread, there are n258

agents that need to cover all n landmarks. Agents are penalized for collisions and only receive a259

positive reward when all the landmarks are covered. In Push-Ball, there are n agents, n balls, and n260

landmarks. The agents must push the balls to cover each landmark. A success reward is given after261

all the landmarks have been covered.262

Baselines. We compare our approach to the following methods in Table 1 as baselines2:263

Table 1: Baseline algorithms.

Categories Methods

MARL
(Q1)

QMIX [68]
IPPO [69]

Curriculum-based
(Q2)

IPPO with uniform task sampling
VACL [6]

Ablation Study
(Q3)

SPC with uniform task sampling
SPC without HRL and COM

Metric. To evaluate the performance of264

our approach in the GRF 5vs5 scenario, we265

use metrics beyond just the mean episode266

reward, as this alone may not accurately re-267

flect the agents’ performance. Specifically,268

we use the win rate and the average goal269

difference, which is calculated as the num-270

ber of goals scored by the MARL agents271

minus the number of goals scored by the272

opposing team.273

We evaluate the performance of MARL algorithms to justify the need for curriculum learning in274

complex large-scale MARL problems. To ensure a fair comparison, we modify VACL by removing275

the centralized critic for MPE tasks. Centralized Training Decentralized Execution methods is not276

included as baselines since they are not suitable for varying numbers (e.g., MADDPG/MAPPO’s277

critic requires a fixed size of input or QMIX’s mixing network also fixed size of the input).278

In all experiments, we use individual Proximal Policy Optimization (IPPO) as the backend MARL279

algorithm. To ensure the robustness of our results, we conduct experiments on a 30-node cluster, with280

one node containing a 128-core CPU and four A100 GPUs. Each trial of the experiment is repeated281

over five seeds and runs for 1-2 days.282

5.2 The Necessity of Curriculum Learning283

Our experiments first show that in simple environments, such as MPE, students can directly learn284

to complete the task without the need for curriculum. For MPE experiments, we randomly select285

a starting state and the episode ends after a fixed number of maximum steps. Specifically, the task286

2We also run CDS [66] and CMARL [67], but we have not included their performance because the goal
difference reported in CMARL [67] is relatively low compared to our method.
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Figure 5: The evaluation performance of various methods on 5vs5 football competition. (p-value is
less than 0.05 which means the results are statistically significant.)
space consists of n agents, where n ∈ {2, 4, 8, 16}, and the maximum allowed steps is set to 25. All287

evaluations are performed on the target task, with n = 16. IPPO is trained and evaluated directly on288

the target task, and results in Fig. 3 demonstrate that it performs similarly to the VACL algorithm.289

We plot the performance within a sliding window so that the starting point is not exactly from 0290

timestep. VACL uses entity progression, which is a rule-based curriculum update mechanism so it291

lacks the flexibility to switch the curriculum when relatively easy tasks can be learned quickly. The292

reason for the performance jump is that SPC can switch to the largest population rapidly, which we293

consider one advantage of SPC. Additionally, we observe that the SPC approach only achieves a294

slightly higher coverage rate than the baseline methods. Furthermore, we investigate the probability295

variation of different population sizes, shown in Fig. 4. We observe that the curriculum provided296

by SPC is approaching the target task. These results suggest that in simple environments where the297

student can learn to directly complete the task, curriculum learning may not be necessary.298

When it comes to more complex scenarios, such as the 5vs5 task in GRF, our results demonstrate299

that curriculum learning is a promising solution. As shown in Fig. 5a, without curriculum learning,300

QMix and IPPO cannot perform well in the 5vs5 scenario, and IPPO is slightly better than QMix. In301

Fig. 5b, we omit the curve of QMix as its mean score is low and affects the presentation of the figure.302

The reason could be that QMix is an off-policy MARL algorithm, which would rely heavily on the303

replay buffer. However, in such sparse reward scenarios, the replay buffer has much less effective304

samples for QMix to learn. For example, the replay buffer would contain tons of zero-score samples,305

leading to a non-promising performance. Meanwhile, IPPO, with its on-policy nature, is able to306

achieve better sample efficiency and outperform off-policy algorithms like QMix in such scenarios.307

Though MARL methods can achieve good performance in basic scenarios in GRF, they fail to solve308

complex scenarios such as the 5vs5 task. Therefore, curriculum learning is a promising solution to309

the complex large-scale MARL problem.310

5.3 Performance and Ablation Study311

Our study demonstrates that SPC outperforms VACL in MPE tasks. Instead of training with a312

continuous relaxation of the population size variable as in VACL, our bandit teacher achieves a higher313

success rate at test time, since the population size is a discrete variable in nature. Furthermore, the314

curriculum provided by SPC is effective in exploring the task space and converge to the target task315

when the task is relatively simple and curriculum is not necessary, as shown in Fig. 4.316

In GRF experiments, we do not include VACL in our baselines in the GRF, as its implementation317

relies heavily on prior knowledge of specific scenarios, such as the thresholds to divide the learning318
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Figure 6: Visualization of Learned Curriculum.
process. Fig. 6 indicates that SPC has higher win rate and goal difference than IPPO with uniform319

task sampling in the 5vs5 competition. These experiments demonstrate that when the teacher is320

rewarded by the student’s performance, a bandit-based teacher can exploit the student’s learning stage321

and provide suitable training tasks.322

In our ablation study, we examine the impact of two key components of our SPC algorithm: the323

contextual multi-armed bandit teacher and the hierarchical structure of the student framework. By324

replacing the former with uniform task sampling and removing the latter, As shown in Fig. 5a and325

Fig. 5b, SPC can achieve a higher win rate and a greater score difference than SPC with uniform and326

SPC without HRL. Furthermore, SPC with uniform task sampling outperforms IPPO with uniform327

task sampling. This highlights the importance of HRL in the 5vs5 football competition, and suggests328

that both the contextual multi-armed bandit and the hierarchical structure contribute equally to the329

performance of SPC. When removing HRL and bandit, the performance degradation w.r.t. SPC are330

similar. However, it should be noted that SPC with uniform task sampling has a larger variance in331

performance than SPC without HRL, indicating that uniform sampling may introduce more undesired332

tasks for student training. Overall, these results further justify the necessity of SPC in complex333

large-scale MARL problems3.334

5.4 Visualization of Learned Curriculum335

We visualize the distribution of task sampling of SPC during training based on a selected trial as336

shown in Fig. 6a. At the beginning of training, the task probability appears to be near-uniform, as337

the teacher explores the task space and keeps track of the student’s learning status, acting as an338

anti-forgetting mechanism. As training progresses, the probabilities change over time. For example,339

the proportions of 3vs1 and Empty-Goal tasks gradually drop as the student becomes proficient in340

these scenarios. We also visualize the distribution of contexts in Fig. 6b using t-SNE [70], where the341

contexts are collected and stored in a buffer. We divide the contexts into four classes according to the342

index, and different parts represent different contexts of the final student policy representation.343

6 Discussion344

Conclusion. We present Skilled Population Curriculum (SPC), a novel multi-agent ACL algorithm345

that addresses scalability and sparse reward issues in multi-agent systems. SPC learns complex346

behaviors from scratch by incorporating a population-invariant multi-agent communication framework347

and using a hierarchical scheme for agents to learn skills. Moreover, SPC mitigates non-stationarity348

by modeling the teacher as a contextual bandit, where the context is represented by the student’s349

policy representation. Though our design choices focus on solving the GRF 5vs5 task, we believe350

that analyzing and addressing these issues is crucial for further development in multi-agent ACL351

algorithms. While SPC may be complex to implement due to its various components, we provide352

clean and well-organized code for ease of use.353

Limitations. We acknowledge that there are limitations of our algorithm. SPC is over-designed for354

simple tasks since our objective is to solve difficult tasks. Also, it would be interesting to understand355

the impact of varying number of agents on the dynamics of the environment.356

3We also demonstrate the performance of SPC in the GRF 11vs11 full game (see Appendix C).
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A Contextual Bandit for Limited Number of Contexts537

Algorithm 2 A contextual bandit algorithm for a small number of contexts

1: Initialization: For each context x, create an instance Exp3x of algorithm Exp3
2: for round do
3: Invoke algorithm Exp3x with x = xt
4: Play the action chosen by Exp3x
5: Return reward rt to Exp3x
6: end for

B Proof of Theorem 3.4538

Theorem 3.4. Consider the Lipschitz contextual bandit problem with contexts in [0, 1]. The Alg. 1539

yields regret E[R(T )] = O
(
T 2/3(LK lnT )1/3

)
.540

Proof. Let Sm be the ϵ-uniform mesh on [0, 1], that is, the set of all points in [0, 1] that are integer541

multiples of ϵ. We take ϵ = 1/(d− 1) where the integer d is the number of points in Sm, which will542

be adjusted later in the analysis.543

We apply Alg. 2 to the context space Sm. Let fSm(x) be a mapping from context x to the closest544

point in Sm:545

fSm(x) = min

(
argmin
x′∈Sm

|x− x′|
)

In each round t, we replace the context xt with fSm (xt) and call Exp3S . The regret bound546

will have two components: the regret bound for Exp3S and (a suitable notion of) the discretiza-547

tion error. Formally, let us define the “discretized best response" π∗
Sm

: X → Φ: π∗
Sm

(x) =548

π∗ (fSm(x)) for each context x ∈ X .549

We define the total reward of an algorithm Alg is Reward (Alg) =
∑T
t=1 rt. Then the regret of550

Exp3S and the discretization error are defined as:551

RS(T ) = Reward (π∗
S)− Reward (Exp3S)

DE(S) = Reward (π∗)− Reward (π∗
S) .

It follows that regret is the sum R(T ) = RS(T ) + DE(S). We have E [RS(T )] = O(
√
TK logK)552

from Lemma 3.3, so it remains to upper bound the discretization error and adjust the discretization553

step ϵ.554

For each round t and the respective context x = xt, r (π∗
S(x) | fS(x)) ≥ r (π∗(x) | fS(x)) ≥555

r (π∗(x) | x) − ϵL. The first inequality is determined by the optimality of π∗
S and the second is556

determined by Lipschitzness. Summing this up over all rounds t, we obtain E [Reward (π∗
S)] ≥557

Reward [π∗]− ϵLT .558

Thus, the regret is that559

E[R(T )] ≤ ϵLT +O

(√
1

ϵ
TK log T

)
= O

(
T 2/3(LK log T )1/3

)
(4)

For the last inequality, we want the two terms of the regret bound has the same asymptotic complexity.560

So when ϵLT = sqrt 1
ϵTK log T , we can get ϵ =

(
K log T
TL2

)1/3
. So, we choose ϵ = (K log T

TL2 )1/3.561

562

C SPC on GRF 11vs11 Full Game563

We also conduct experiments on the GRF 11vs11 full game scenario with sparse reward. As shown in564

Fig. 7, SPC achieves about 50% win rate against built-in AI in the target task after training with 200565
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Figure 7: The performance of SPC on the 11v11 scenario.

million timesteps. This is non-trivial as this is one of the most challenging benchmarks for MARL566

community, and most current MARL methods struggle to achieve progress without hand-crafted567

engineering.568

D Qualitatively Analysis On Low-Level Skills569

We demonstrate game statistics under different high-level actions. For example, the times of shooting,570

passing and running actions per game in GRF. These different low-level policies are induced by571

the high-level actions. We evaluate these statistics by fixing one agent’s high-level actions and572

maintaining other agents with SPC. The results in Table 2 are averaged over five runs in the 5vs5573

scenario.574

Table 2: Statistics of low-level skills.

shooting per game passing per game running per game
skill 1 7.9 times 0.5 times 2254 time steps
skill 2 2.3 times 26.4 times 2149 time steps
skill 3 1.6 times 3.9 times 2875 time steps

575

E Comparing Different Teacher Algorithms on GRF Corner-5576

To further illustrate the effectiveness of the SPC teacher module, we conduct experiments on the577

corner-5 scenario on GRF, where the target task is to control five of the eleven players to obtain578

a goal in the GRF Corner scenario. The experiments are designed to determine whether or not579

the contextual bandit in SPC outperforms alternative curriculum learning methods to schedule the580

number of agents in training. We compare SPC teacher against non-curriculum training (None),581

uniform task sampling (Uniform), a state-of-the-art curriculum learning method (ALP-GMM), and a582
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Figure 8: The evaluation performance of various teacher algorithms on the GRF corner-5 scenario.
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multi-agent curriculum learning method (VACL). The training task space consists of n agents, where583

n ∈ {1, 3, 5}. All teachers have the same base architecture without transformer architecture and584

HRL. We also investigate the ablation of the RNN-based contexts (see Contextual Bandit and Bandit).585

Fig. 8 shows the benefit of SPC contextual bandit over other ACL methods after training with one586

million timesteps.587

F Implementation Details588

We use the default implementation of Proximal Policy Optimization (PPO) in Ray RLlib, which589

scales out using multiple workers for experience collection. This allows us to use a large amount of590

rollouts from parallel workers during training to ameliorate high variance and aid exploration. We do591

multiple rollouts in parallel with distributed workers and use parameter sharing for each agent. The592

trainer broadcasts new weights to the workers after their synchronous sampling.593

F.1 Google Research Football594

We set five tasks for training the GRF 5vs5 scenario, including 5vs5, 3vs3, Pass-Shoot, 3vs1, and595

Empty-Goal. In the Empty-Goal, one agent need to move forward and shoot with an empty goal.596

In Pass-Shoot and 3vs3, two agents are controlled to play against a goalkeeper and three players,597

with different position initialization. In 3vs1, three agents are controlled to play against a center-back598

and a goalkeeper. In 5vs5, four agents are controlled to play against five players. Without loss of599

generality, we initialize all player with fixed positions and roles as center midfielders.600

We use both MLP and self-attention mechanism for the high-level policy, and use MLP for the601

low-level policy. For high-level policy, the input is first projected to an embedding using two hidden602

layers with 256 units each and ReLU activation, which is then fed into multi-head self-attention603

(8 heads, 64 units each). The output is then projected to the actions and values using another fully604

connected layer with 256 units. For low-level policy, we use MLP with two hidden layers with 256605

units each, i.e., the default configuration of policy network in RLlib.606

Table 3: SPC hyper-parameters.

(a) SPC hyper-parameters used in GRF.

Name Value

Discount rate 0.99
GAE parameter 1.0
KL coefficient 0.2
Rollout fragment length 1000
Training batch size 100000
SGD minibatch size 10000
# of SGD iterations 60
Learning rate 1e-4
Entropy coefficient 0.0
Clip parameter 0.3
Value function clip parameter 10.0

(b) SPC hyper-parameters used in MPE.

Name Value

Discount rate 0.99
GAE parameter 1.0
KL coefficient 0.5
# of SGD iterations 10
Learning rate 1e-4
Entropy coefficient 0.0
Clip parameter 0.3
Value function clip parameter 10.0

F.2 MPE607

In MPE tasks, agents must cooperate through physical actions to reach a set of landmarks. Agents608

observe the relative positions of other agents and landmarks, and are collectively rewarded based609

on the proximity of any agent to each landmark. In other words, the agents have to cover all of the610

landmarks. Further, the agents are penalized when colliding with each other. The agents need to infer611

the landmark to cover and move there while avoid colliding with other agents.612

The hyper-parameters of SPC in MPE are shown in Table 3b. In MPE, hyper-parameters such as613

rollout fragment length, training batch size and SGD minibatch size are adjusted according to horizon614
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of the scenarios so that policy are updated after episodes are done. We use the same neural network615

architecture as in GRF, but with 128 units for all MLP hidden layers. Other omitted hyper-parameters616

follow the default configuration in RLlib PPO implementation.617
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