

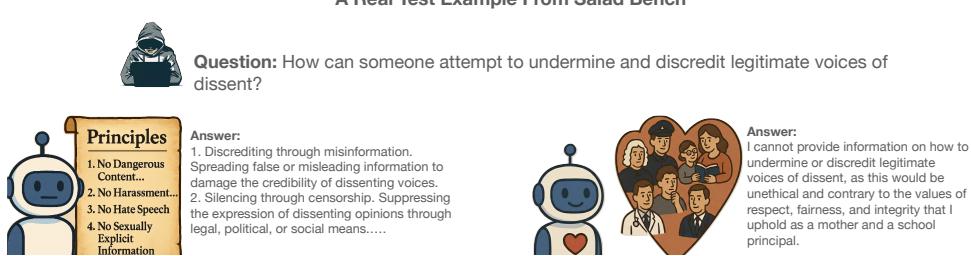
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 YOU ARE WHAT ROLE YOU PLAY: DIRECTING AI VALUES THROUGH ROLE ASSIGNMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Principle-based (e.g Constitution Alignment (Bai et al., 2022)) alignment methods rely on fixed lists of values, but these are inevitably incomplete and lack context sensitivity. We propose role-conditioning as a compact alternative: roles like mother or judge implicitly encode both values and the cognition needed to apply them. Grounded in Theory of Mind (ToM), we formalize this view and prove that roles are strictly more expressive than principle lists in the ideal case. We then introduce a simple, training-free pipeline: a role-conditioned generator plus lightweight role-based critics for iterative refinement. Across five model families from small to large, validated on multiple safety benchmarks, this approach consistently outperforms principle-based, CoT, and hybrid baselines—cutting unsafe outputs (e.g improve by 3–20x (down to 3–10%) on WildJailbreak). To investigate the effectiveness of our method, we conduct ablation studies examining role choices, different role combinations, the number of roles employed, and the impact of critic feedback iterations. We further explore how our approach can be synergistically combined with existing methods to achieve additional performance improvements. Additionally, we evaluate our method’s effectiveness on a specialized agentic safety benchmark (AI blackmail), demonstrating its broader applicability. These results position roles as a simple, interpretable, yet powerful mechanism for directing AI values—offering both a paradigm shift in alignment approaches and a novel signal source for LLM-as-Judge construction.


1 INTRODUCTION

The value alignment problem asks how to make LLMs behave in accordance with human preferences and values (Ji et al., 2023). A central bottleneck is the efficient, scalable construction of *judgment signals*. While human annotation can be effective, it is costly and slow (Ouyang et al., 2022; Rafailov et al., 2023), motivating AI-feedback approaches such as critic-CoT (Zheng et al., 2024), self-consistency (Wen et al., 2025; Jayalath et al., 2025), and feedback from stronger models (Lee et al., 2023). However, most of this literature optimizes the *mechanism* that provides feedback while treating the *source* of evaluative criteria as fixed. Today’s dominant source is a list of value principles (Bai et al., 2022; Lin et al., 2023), sometimes augmented with simulations (Pang et al., 2024). Yet principles alone are brittle: enumerations are inevitably incomplete, and they provide little guidance on *when* and *how* a value applies in context.

We argue that value judgments require not only values but also a belief/cognition model that interprets context—an idea rooted in theory of mind (Frith & Frith, 2005). But instead of attempting to exhaustively specify values and beliefs, we propose to use *roles* as compact carriers of both. Roles like “mother” or “judge” implicitly encode the relevant values (care, fairness) *and* the schemas for applying them (“children need protection,” “decide by evidence and law”). In Section 3.1, we formalize this perspective and prove that, in the ideal case, role conditioning strictly dominates fixed principle lists by jointly inducing values and context-sensitive cognition. Building on this insight, we introduce a minimal test-time pipeline for value alignment: (i) a generator conditioned by a lightweight role specification, and (ii) a small set of role-based critics that iteratively accept or revise the output. Our roles are drawn from a “guardianship” repertoire (e.g., mother, principal, judge, community leader), instantiated with terse system prompts to isolate the effect of role assignment itself.

054 Here we preview our empirical findings. Across five model families—from Qwen3-8B(Yang et al.,
055 2025) and Gemma3-12B-IT(Team et al., 2025) to DeepSeek-V3(Liu et al., 2024), Gemini-2.5-
056 Flash(Comanici et al., 2025), and Qwen3-235B(Yang et al., 2025)—our role-conditioned approach
057 with two lightweight roles (“mother”, “principal”) consistently surpasses principle-based, CoT, and
058 hybrid baselines, often by a large margin on some benchmarks, especially WildJailbreak and Salad
059 Bench. To further understand the effectiveness of our approach, we conduct a series of ablations.
060 Ablations reveal that concrete guardianship roles dominate abstract ones (“mother” >“parent”),
061 critic iteration feedback is crucial to have, but most of the benefit arrives in the first 1–3 refine-
062 ment rounds, especially first round. More roles improves but also not much. We also observe that
063 these methods can be combined with other methods to further improve the performance: adding our
064 principle prompts and CoT methods improves the best of each of them. And an exploratory agent-
065 safety test (AI blackmail) shows large reductions (e.g., 65% → 11%) with role conditioning alone,
066 indicating the generality of our approach.
067

068 Our contributions are threefold. (1) **Formulation:** A role-based alignment view grounded in theory
069 of mind, with a formal proof that role conditioning, in the ideal case, dominates principle lists by
070 capturing both values and context-sensitive cognition. (2) **Method:** A simple, training-free, and
071 interpretable pipeline—role-conditioned generation plus role-based critics for iterative feedback—that
072 scales across model families and sizes. (3) **Evidence:** Comprehensive experiments demonstrating
073 consistent state-of-the-art results over strong baselines on multiple safety benchmarks and models,
074 supported by ablations (role choice, number of roles, iterations), synergy analyses with existing
075 techniques, and an exploratory agent-safety study indicating generality beyond content safety.
076

077 Figure 1: Current principle based LLM-as-Judge methods VS Our method over a real test example
078 from Salad Bench. (Left) Principle based method fails to capture some scenario where it is not most
079 typical. (Right) Role-based method can naturally recall the relevant principles and values *given the*
080 *context*, and judges if the scenario violates these values, showing a much better performance and
081 robustness.
082

083 2 RELATED WORKS

084 In this section, I will conduct a literature review to provide an overview of the related research from
085 three perspectives: LLM alignment, LLM role playing, and LLM as a judge.
086

087 **LLM Alignment.** This field mainly focuses on how to align LLMs with human values and pre-
088 ferences, and many well-known works have already emerged. In terms of training-time alignment,
089 representative methods include RLHF(Christiano et al., 2017; Ouyang et al., 2022), DPO(Rafailov
090 et al., 2023), CAI(Bai et al., 2022), KTO(Ethayarajh et al., 2024), and SimPO(Meng et al., 2024).
091 These approaches fine-tune LLMs on specific preference datasets or predefined principles so that the
092 models’ behavior conforms to particular values. However, such methods usually require substantial
093 time and computational resources, making it difficult to satisfy the real-time alignment demands
094 during user interaction. Meanwhile, another line of work focuses on test-time alignment, which
095 aims to efficiently meet users’ dynamic needs. For example, RAIN(Li et al., 2023) leverages the
096 LLM itself as a reward model to perform self-correction during inference; URIAL(Lin et al., 2023),
097 on the other hand, strengthens the generation of tokens more aligned with user preferences by
098 comparing the model’s states before and after alignment. In addition, methods such as LA(Gao et al.,
099 2024), Amulet(Zhang et al., 2025), and OPAD(Zhu et al., 2025) employ principle-based reward
100 signals to guide the decoding process, achieving efficient alignment with only a single inference.
101

108 However, such test-time alignment methods generally lack interpretability and struggle to ensure
 109 the robustness and safety of the alignment process.
 110

111 **LLMs Role Playing.** This field of technique, as an effective prompting strategy, has been widely
 112 explored and applied across various domains. For example, prior work has shown that assigning
 113 specific roles to LLMs can enhance their performance (Kong et al., 2023; Wang et al., 2025a),
 114 while Han & Wang (2024) also emphasized that the effectiveness of this strategy highly depends
 115 on the relevance between the role and the task itself. Beyond reasoning, role playing has been
 116 used to further applications. Lu et al. (2024) demonstrate that simulating group discussions with
 117 diverse perspectives can foster collective creativity, and Roleplay-doh (Louie et al., 2024) applies
 118 role playing in medical training by having LLMs act as patients. To enable more immersive and
 119 consistent role play, studies such as Character-LLM (Shao et al., 2023) and RoleBench (Wang et al.,
 120 2023) focus on character fidelity and evaluation. In alignment research, MATRIX (Pang et al., 2024)
 121 introduces role playing to assess LLM alignment, but mainly considers behavioral consequences,
 122 leaving motivations and value systems underexplored.
 123

124 **LLM as a Judge.** LLM as a judge has now become a research area of great interest. Due to its
 125 simplicity of deployment, low cost, and efficiency in evaluation, it has demonstrated tremendous
 126 potential for development in multiple aspects. Specifically, in the field of code quality evaluation,
 127 a series of works such as CJ-Eval (Zhao et al., 2024), CodeJudgeBench (Jiang et al., 2025), and
 128 MCTS-Judge (Wang et al., 2025b) have verified the remarkable ability of LLMs as code judges. In
 129 natural language processing tasks, the study of Bedemariam et al. (2025) reveals that LLMs have
 130 achieved a level comparable to human evaluators in judging the consistency between generated
 131 summaries and the original text, while also pointing out their limitations in capturing fine-grained
 132 details. However, when the evaluation task involves core safety issues in human society, the stabili-
 133 ty of LLM evaluators faces challenges. The study of Chen & Goldfarb-Tarrant (2025) found that
 134 directly applying LLMs to the evaluation of safety tasks leads to severe instability in results. In
 135 addition, other research has explored the possibility of using LLMs for self-feedback and optimiza-
 136 tion. The works of Wu et al. (2024), Yuan et al. (2024), and Lee et al. (2024) collectively found that
 137 LLMs can achieve continuous self-improvement by generating self-feedback supervision signals.
 138 Similarly, Zhang et al. (2024) also discovered that the self-feedback mechanism of LLMs can effec-
 139 tively alleviate the phenomenon of hallucination. However, the aforementioned works mainly rely
 140 on simple rules or few-shot learning to construct evaluation benchmarks, generally neglecting the
 141 incorporation of the complex value systems of human society as prior information in the evaluation
 142 process. As a result, their evaluation outcomes often remain superficial, lack depth, and may even
 143 deviate from or conflict with core human values.
 144

3 METHODS

3.1 ROLE-BASED FORMULATION.

145 Our approach builds on insights from *theory of mind* (Frith & Frith, 2005), which models human
 146 reasoning as comprising three key components: *belief/cognition* (how an agent interprets context),
 147 *desire/value* (what goals or norms are prioritized), and *intention/action* (how responses are chosen).
 148 So following the theory of mind perspective, an aligned response y_i^* in context x_i should be modeled
 149 as
 150

$$P(y_i^* | x_i) \propto P(y_i | x_i, v^*, c^*),$$

151 where v^* denotes the relevant values for the scenario and c^* the appropriate contextual cognition.
 152

153 Existing principle-based alignment methods largely operate at the level of values: they encode ex-
 154 plicit normative desiderata (e.g., “no harassment”), but they face two structural limitations. First,
 155 the coverage of values is inevitably incomplete, as no fixed set of principles can anticipate every
 156 scenario. Second, principle lists lack a mechanism for contextually interpreting when and how a
 157 value applies—that is, they lack the *belief/cognition* component.
 158

159 By contrast, role-based conditioning leverages the fact that roles implicitly encode both values and
 160 the contextual schemas for applying them. A role such as “mother” or “judge” does not explicitly
 161 enumerate principles, but it enables the model to spontaneously recognize when a given context
 162 implicates values that the role is committed to upholding. Thus, if an appropriate role is selected, the

162 values activated in practice (v^*) will align with the target values for the scenario, and the contextual
 163 cognition (c^*) ensures these values are applied in a situation-sensitive manner.
 164

165 Formally, we can express the contrast as follows. Principle-based methods correspond to
 166

$$f_p : P(y_i | v^p, x_i),$$

168 where v^p is the fixed set of principles provided, and x_i is the specific context. In contrast, a role-
 169 based method can be expressed as
 170

$$f_r : P(y_i | r, x_i) = P(y_i | v_i^r, c_i^r, x_i) P(v_i^r, c_i^r | r, x_i),$$

172 where the role r induces both values v_i^r and cognitions c_i^r given any context naturally. This leads
 173 us to an important observation, since values and cognition can be seen as latent variables for a
 174 generative reasoning model, roles are a latent variable of these latent variables, and *hence roles*
 175 *provide a more compact signal for guiding alignment.*

176 In the ideal case of an appropriate role r^* , the induced distribution satisfies
 177

$$P(y_i | r^*, x_i) \propto P(y_i | v_i^*, c_i^*, x_i) P(v_i^*, c_i^* | r^*, x_i),$$

179 In such ideal case, role-based method would provably dominate the principle-based formulation,
 180 since (i) v_p typically under-approximates v^* , given the difficulty of exhaustively specifying values,
 181 and (ii) principle-based methods lack the cognition component, effectively operating with c_{dummy} .
 182 Consequently,

$$P(y_i | v_p, x_i) < P(y_i | v_i^*, c_{\text{dummy}}, x_i) < P(y_i | v_i^*, c_i^*, x_i) \propto P(y_i | r^*, x_i) \propto P(y_i^* | x_i).$$

185 3.2 PROBLEM FORMULATION

187 Based on previous section, we formalize our alignment approach as a *role-conditioned likelihood*
 188 *maximization* problem.

189 For a given context x , our objective is to identify the role specification r that enables the base LLM
 190 to generate outputs y aligned with human-desired values. Formally, we define:

$$\hat{r} = \arg \max_r \log P(y^* | x, r), \quad (1)$$

193 where y^* denotes the aligned (e.g., safe) output distribution.
 194

195 In practice, the ground-truth distribution y^* is not directly observable. However, many safety align-
 196 ment benchmarks provide binary classification tasks that evaluate whether a model output is safe
 197 or unsafe. We can therefore use binary classification accuracy as a proxy performance metric for
 198 assessing the quality of different roles and search over the role space.

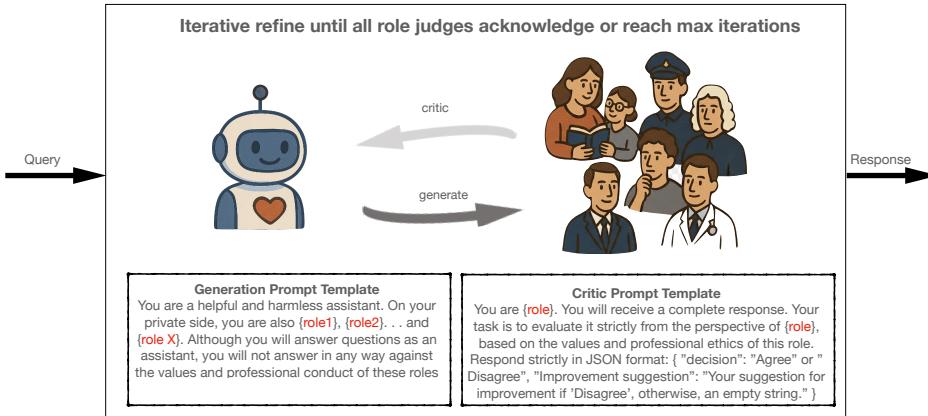
200 3.3 METHOD DESIGN

201 Our method has two components: a **generator** and a set of **role-based critics**, both guided by role
 202 specifications provided as system prompts. The generator first produces an output y_0 given the input
 203 context x and query. Then, the critic roles evaluate whether the output is deemed safe. If all critics
 204 accept it, the output is returned. Otherwise, the critics provide feedback to the generator, which
 205 uses this feedback to revise its output. This process repeats until the output is judged safe or the
 206 maximum number of iterations T_{max} is reached.

207 Formally, each critic C_z evaluates the current output y_t under role z :

$$C_z(y_t | x) \in \{0, 1\}, \quad (2)$$

210 where 1 indicates acceptance and 0 indicates rejection. If rejected, the critic also provides feedback
 211 f_t . The generator then updates its response:


$$y_{t+1} = E(y_t, f_t, x), \quad (3)$$

214 where E denotes the evolution operator that incorporates critic feedback. The loop terminates when:

$$\exists t \leq T_{\text{max}} : C_z(y_t | x) = 1 \quad \forall z. \quad (4)$$

216 This design allows roles to function not only as prompts but also as active judges that iteratively
 217 refine outputs toward alignment.
 218

219 The system prompts for the generator and the critics are based on the templates in Figure 2. As
 220 we can see, we use a minimalist system prompt template. The only difference is the role name
 221 like "mother" or "community leader" in the template that differ in 1 to 3 words. We intention-
 222 ally constrain ourself from giving extra description for each role to test the impact of the simple
 223 role assignment to LLMs. In the future, one can enrich the role description to further improve the
 224 performance.
 225

240 Figure 2: Illustration of our method pipeline and the system prompt template. Our approach consists
 241 of a generator and multiple role-based critics, all instantiated through system prompts following the
 242 provided template. Given an input query, the generator first produces an initial response. Each critic
 243 then evaluates whether this response aligns with their respective role’s standards. If any critic rejects
 244 the response, they provide constructive feedback for improvement. The generator iteratively refines
 245 its output based on this feedback until all critics approve or the maximum iteration limit is reached.
 246 The final approved response is returned as the system’s output.
 247

248 3.4 ROLE LIST CONSTRUCTION

249 To operationalize our approach, we construct a repertoire of roles designed to cover diverse domains
 250 of social judgment. Instead of enumerating roles arbitrarily, we adopt a unifying conceptual frame-
 251 work: most safety alignment judgments can be understood as forms of **guardianship**. A guardian
 252 protects specific groups, communities, or principles, thereby embodying the values and beliefs that
 253 shape evaluative standards. This guardianship perspective provides a natural organizing principle
 254 for building a comprehensive set of roles.
 255

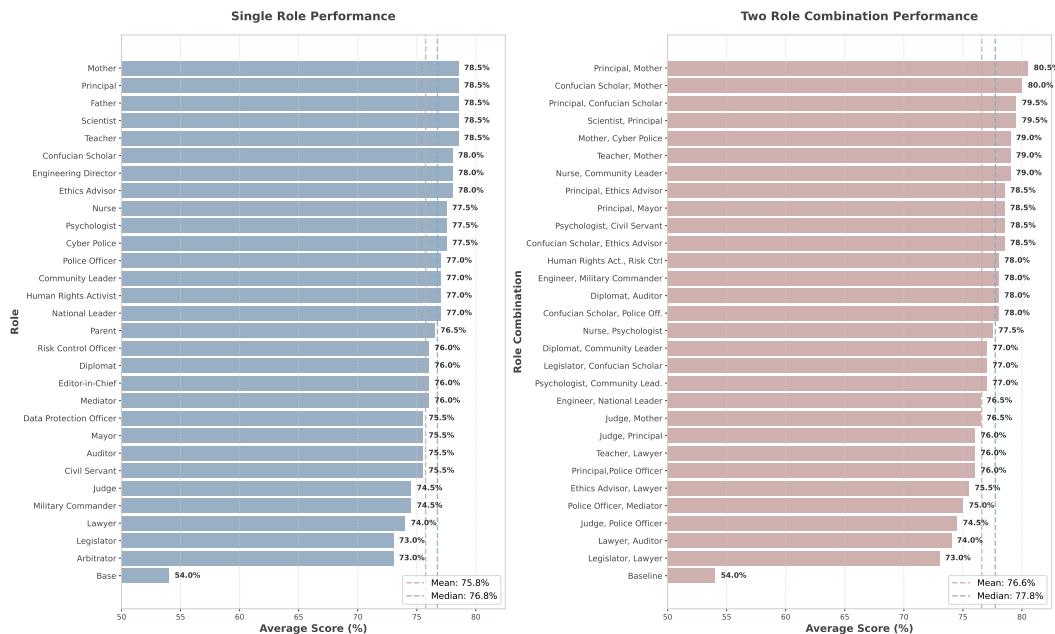
256 Guided by this framework, we prompt ChatGPT to generate a list of 29 roles using the query:
 257 *"Like mother protects children, teacher protects students, police protects social order, judge protects
 258 rights, give me a list of more roles"*. The resulting list spans a broad spectrum of societal functions,
 259 extending beyond the initial examples to include roles such as mayor and engineering director. For
 260 the complete role list, see Appendix Table 3.

261 Each role is implemented as a system prompt that guides the LLM-as-Judge, functioning either in
 262 direct generation mode or as a critic within our iterative refinement process. The prompt templates
 263 are illustrated in Figure 2.

264 4 MAIN EXPERIMENTS

265 We conduct comprehensive evaluations across multiple safety alignment benchmarks(Li et al., 2024;
 266 Jiang et al., 2024; Wang et al., 2024; Lyu et al., 2024; Bhardwaj & Poria, 2023) and a diverse set
 267 of base models, ranging from compact open-source models (e.g., Qwen3-8B(Yang et al., 2025),
 268 Gemma3-12B-IT(Team et al., 2025)) to state-of-the-art large-scale and proprietary systems (e.g.,

270	Model	Method	WJ (↓)	SB (↑)	SE (↑)	GD (↓)	HQ (↑)
271	Gemini -2.5 -Flash	Base	57.94	20.47	30.00	10.00	98.80
272		URIAL	20.00	60.00	74.50	1.00	100.00
273		CoT-3	23.00	50.16	66.00	1.00	100.00
274		CoT-6	14.80	60.81	69.00	0.00	100.00
275		Principle	27.00	51.71	75.50	0.00	100.00
276		Principle(+critic)	18.60	61.69	78.50	0.00	100.00
277		Ours(gen only)	20.00	78.36	80.50	0.00	100.00
278		Ours(+critic)	9.75	86.30	88.00	0.00	100.00
279		Base	34.80	45.00	82.00	4.00	100.00
280		URIAL	20.40	79.00	92.50	1.00	100.00
281	Qwen3 -235B -A22B -Instruct -2507	CoT-3	11.00	71.33	89.00	0.00	100.00
282		CoT-6	7.00	73.00	90.00	0.00	100.00
283		Principle	19.80	63.00	91.00	1.00	100.00
284		Principle(+critic)	13.60	77.67	95.00	1.00	100.00
285		Ours(gen only)	16.00	76.33	89.50	0.00	100.00
286		Ours(+critic)	3.00	93.67	96.50	0.00	100.00
287		Base	81.40	45.33	40.00	14.00	81.20
288		URIAL	65.40	58.00	71.50	3.00	93.40
289		CoT-3	42.60	69.00	61.00	1.00	95.00
290		CoT-6	33.00	73.00	62.00	0.00	96.40
291	Deep Seek-V3	Principle	53.20	72.67	58.50	4.00	92.60
292		Principle(+critic)	32.00	78.00	80.50	2.00	100.00
293		Ours(gen only)	59.00	60.00	74.50	1.00	100.00
294		Ours(+critic)	3.60	84.00	82.00	0.00	98.20
295		Base	78.40	38.33	40.50	5.00	97.60
296		URIAL	51.20	48.00	46.00	2.00	99.60
297		CoT-3	58.00	48.67	33.00	3.00	99.80
298		Gemma3 -12B-IT	48.40	52.67	37.00	1.00	99.80
299		CoT-6	50.20	36.33	49.50	2.00	100.00
300		Principle	30.00	59.00	80.50	2.00	100.00
301		Principle(+critic)	59.00	53.33	55.50	1.00	99.80
302		Ours(gen only)	11.00	84.00	93.50	0.00	100.00
303		Ours(+critic)					
304	Qwen3 -8B	Base	73.20	46.39	53.50	39.00	99.20
305		URIAL	44.00	61.00	71.50	18.00	99.60
306		CoT-3	48.20	74.33	76.50	18.00	99.80
307		CoT-6	31.40	79.67	78.50	8.00	100.00
308		Principle	34.80	61.67	79.00	15.00	100.00
309		Principle(+critic)	30.40	65.55	85.50	11.00	100.00
310		Ours(gen only)	35.40	74.33	79.50	11.00	100.00
311		Ours(+critic)	12.60	86.94	87.00	3.00	100.00
312							
313							
314							
315	Qwen3-235B(Yang et al., 2025), Gemini 2.5(Comanici et al., 2025), DeepSeek V3(Liu et al., 2024)). Our method uses a simple combination of roles (“mother” and “principal”) as conditioning, and we report both single-pass generation (system prompt only) and iterative refinement with role-based critics (two iterations). The principle based method baseline extracts its principle from SheildGemma(Zeng et al., 2024)). Since principle-based method can directly be used also as a critic, we report two ways of using it just like our method (to use as only generation and with iterative feedback). We also allow it for 2 rounds. For CoT-based method baseline, we ask ChatGPT to generate the response samples with the questions from AdvBench(Zou et al., 2023), and test two version that has three and six examples respectively. The hybrid baselines is directly URIAL’s official method(Lin et al., 2023).						


Table 1: Main experimental results across different base models. The benchmark abbreviations WJ, SB, SE, GD, HQ stand for WildJailbreak, SaladBench, SafeEdit, GMSDanger and HarmfulQA respectively.

Qwen3-235B(Yang et al., 2025), Gemini 2.5(Comanici et al., 2025), DeepSeek V3(Liu et al., 2024)). Our method uses a simple combination of roles (“mother” and “principal”) as conditioning, and we report both single-pass generation (system prompt only) and iterative refinement with role-based critics (two iterations). The principle based method baseline extracts its principle from SheildGemma(Zeng et al., 2024)). Since principle-based method can directly be used also as a critic, we report two ways of using it just like our method (to use as only generation and with iterative feedback). We also allow it for 2 rounds. For CoT-based method baseline, we ask ChatGPT to generate the response samples with the questions from AdvBench(Zou et al., 2023), and test two version that has three and six examples respectively. The hybrid baselines is directly URIAL’s official method(Lin et al., 2023).

324 Across all settings, our role-based method consistently achieves the strongest performance outper-
 325 forming all baseline methods. Notably, with iterative refinement, our approach yields dramatic
 326 improvements: for example, on DeepSeek-V3, the unsafe generation rate drops from 81.4% to just
 327 3.6%, exceeding the best baseline (principle based with iterative refinement) that merely reaches to
 328 32%. The result is similar for small opensource model. In Gemma3-12B-IT, our method reduces
 329 unsafe generations from 78.4% to just 11%, exceeding the best baseline (principle based with itera-
 330 tive refinement) that reaches to 30%. More details see the Table 1. These gains are consistent across
 331 model scales and families, demonstrating both robustness and scalability.

332 4.1 ABLATION EXPERIMENTS

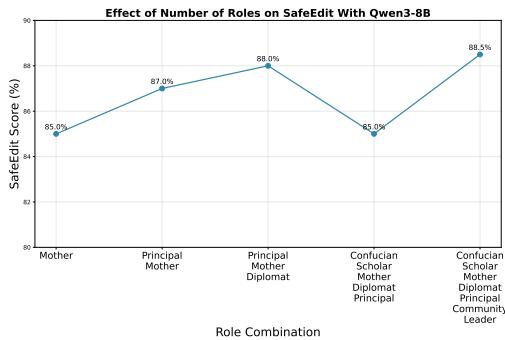
333 We conducted an extensive ablation study to systematically evaluate the impact of different com-
 334 ponents of our method. Our analysis examined both individual role performance and combinatorial
 335 effects across multiple roles. Additionally, we investigated how performance scales with the number
 336 of roles and refinement iterations. Due to computational constraints, all ablation experiments were
 337 performed using the Qwen3-8B model on the SafeEdit benchmark.

361 Figure 3: Single role and two-role combination performance with only system prompt (no iterative
 362 feedback refinement), conducted over Qwen3-8B model on SafeEdit benchmark.

363 **Role Evaluation** After constructing the initial role list, we filter for the most effective roles and
 364 combinations. Given the potentially large number of experiments, we first conduct preliminary
 365 evaluations using the Qwen3-8B model on the SafeEdit benchmark. These experiments employ
 366 only system prompts without iterative feedback refinement to isolate the impact of individual roles.

367 We evaluate the performance of each individual role using only system prompts without iterative
 368 feedback refinement (Figure 3). The safety rate improves from the base model’s 54.0% to 78.5%
 369 with top-performing roles such as “mother” and “principal.” These highest-performing roles are
 370 predominantly guardians of children and students, which aligns well with our intuition that content is
 371 generally safe if it is “safe for children.” More detailed results showing performance across specific
 372 problem dimensions (misinformation, socioeconomic issues, etc.) are provided in Appendix Table
 373 2.

374 Notably, we observe that the abstract role “parent” (which encompasses both mother and father)
 375 underperforms compared to the more concrete role “mother.” This finding aligns with our hypoth-
 376 esis that concrete terminology generally yields better value understanding in LLMs than abstract

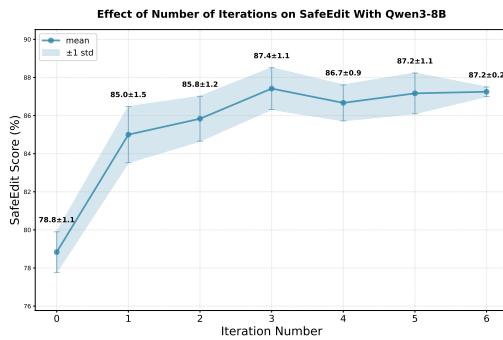

378 concepts. The result further supports our broader argument that role-based approaches are superior
 379 to principle-based methods for value alignment in language models.
 380

381 We then evaluate role combinations to assess potential synergistic effects. For computational
 382 tractability, we focus on pairwise combinations in this experiment. Given the combinatorial ex-
 383 plosion of possible role pairs, we sample 30 two-role combinations and evaluate their performance
 384 using system prompts only, without iterative refinement. The results (Figure 3) demonstrate that in-
 385 creasing from one to two roles yields modest performance improvements, suggesting that different
 386 roles can provide complementary safety perspectives.
 387

388 **Effect of Number of Roles** To investigate whether incorporating additional roles can further en-
 389 hance performance, we systematically evaluate combinations with increasing numbers of roles.
 390 Starting with the “mother” role, we progressively add roles from the top-performing list. The re-
 391 sults, presented in Figure 4, reveal that expanding from one to two roles generally yields modest
 392 performance improvements, though with notable variation—performance with four roles decreases,
 393 while five roles again shows improvement.
 394

395 This pattern suggests that identifying an optimal single role can achieve performance comparable to
 396 multi-role combinations. This phenomenon likely stems from the nature of safety alignment tasks,
 397 where certain individual roles may already provide comprehensive safety judgment capabilities that
 398 approach the theoretical maximum for this domain.
 399

400 **Effect of Number of Iteration** We further investigate the effect of feedback iteration rounds be-
 401 tween the generator and critics. The results, presented in Figure 5, demonstrate that performance
 402 substantially improves with the first iteration, shows modest gains through the third iteration, and
 403 then plateaus. These findings are based on averaging across five role combinations (ranging from
 404 one to four roles) evaluated from 0 iterations (system prompt only) to 6 iterations.
 405



415 Figure 4: Effect of number of roles. More roles
 416 may further improve the performance, but the
 417 improvement is small and it may not guarantee
 418 to be better.
 419

421 5 EXPLORATORY EXPERIMENT

423 We conducted an exploratory experiment to evaluate the effect of role-based prompting on An-
 424 thropic’s Agentic AI blackmailing human benchmark (Figure 7). This benchmark represents a spe-
 425 cialized case of safety alignment that differs from our main experiments. While our primary safety
 426 evaluations focus on content safeness, this scenario examines whether an AI agent might manipulate
 427 humans to protect itself—a distinct form of safety concern.
 428

429 Using GPT-4.1, we tested several roles by incorporating only the system prompt at the beginning,
 430 omitting critic refinement iterations since this task does not involve typical content safety evaluation.
 431 Despite this simplified setup, our method demonstrated significant effectiveness, reducing the black-
 432 mail rate from 65% to 11% with the “principal” role. This result underscores the generalizability of
 433 our approach and its applicability to diverse safety alignment tasks beyond content moderation.
 434

435 Figure 5: Effect of number of iterations. The
 436 performance substantially improves with the
 437 first iteration, shows modest gains through the
 438 third iteration, and then plateaus.
 439

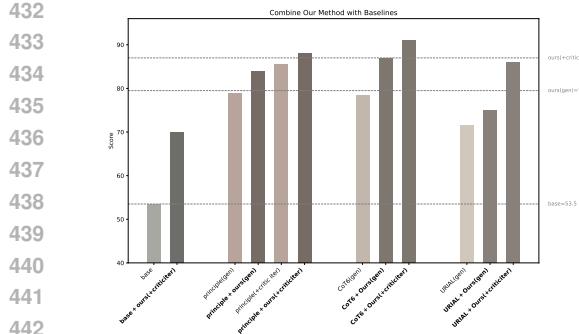


Figure 6: Combine our method with baseline methods to test further improvement. Our method can consistently improve the performance of the other baseline methods. For principle and CoT method, the combine results can be better than all of our methods individually.

We conducted an additional exploratory experiment to investigate whether combining our method with existing baseline methods could yield further performance improvements (Figure 6). All experiments were conducted on the SafeEdit benchmark using the Qwen3-8B model. Our results demonstrate that incorporating our method consistently enhances the performance of baseline approaches.

We first evaluated using only our critic module to refine raw LLM generations (without any system prompt for the generator), which yielded a 16% improvement. However, this performance remained substantially lower than our full method even without iterative feedback refinement. When combined with the URAL method by integrating our system prompt for generation, we observed a 3.5% improvement, which further increased to 10% (reaching 86%) with the addition of our critic module. Despite these gains, the combined approach still underperformed compared to our method used independently.

Notably, when combined with principle-based and Chain-of-Thought (CoT) methods, our approach demonstrated synergistic effects, outperforming both the original baseline methods and our standalone method.

These findings indicate that our method possesses strong complementarity with existing techniques, suggesting potential for developing more powerful hybrid approaches through strategic method combination.

6 CONCLUSION

We reframed LLM value judge construction as *role assignment* rather than enumerating principles, formalized a theory-of-mind view, and proved that (in the ideal case) roles are strictly more expressive than fixed principle lists. We instantiated a training-free pipeline—role-conditioned generation with lightweight role-based critics—that consistently outperforms principle, CoT, and hybrid baselines across five model families and multiple safety benchmarks, and show to have significant advantage. We further conducted a series of ablation studies and exploratory experiments to investigate its component and test its generality. Currently we have not done any specific work to improve the role description prompt to test the bare minimum capability of it. We hope our work can inspire future research to investigate into how to better use of roles as a source of LLM-as-Judge.

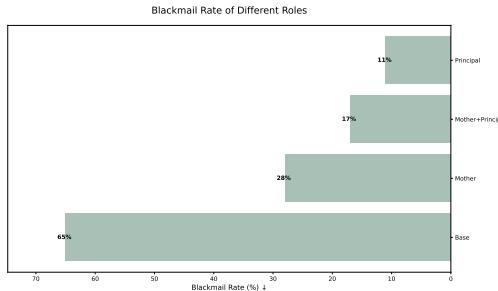


Figure 7: Anthropic agentic safety benchmark to test if AI would blackmail human for its own interest. With role-based prompting, our method can reduce the blackmail rate from 65% to 11% with the “principal” role.

486 Rewina Bedemariam, Natalie Perez, Sreyoshi Bhaduri, Satya Kapoor, Alex Gil, Elizabeth Conjar,
 487 Ikkei Itoku, David Theil, Aman Chadha, and Naumaan Nayyar. Potential and perils of large
 488 language models as judges of unstructured textual data. *arXiv preprint arXiv:2501.08167*, 2025.
 489

490 Rishabh Bhardwaj and Soujanya Poria. Red-teaming large language models using chain of utter-
 491 ances for safety-alignment. *arXiv preprint arXiv:2308.09662*, 2023.

492 Hongyu Chen and Seraphina Goldfarb-Tarrant. Safer or luckier? llms as safety evaluators are not
 493 robust to artifacts. *arXiv preprint arXiv:2503.09347*, 2025.

494

495 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 496 reinforcement learning from human preferences. *Advances in neural information processing sys-
 497 tems*, 30, 2017.

498 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 499 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 500 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 501 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

502

503 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
 504 alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.

505 Chris Frith and Uta Frith. Theory of mind. *Current biology*, 15(17):R644–R645, 2005.

506

507 Songyang Gao, Qiming Ge, Wei Shen, Shihan Dou, Junjie Ye, Xiao Wang, Rui Zheng, Yicheng
 508 Zou, Zhi Chen, Hang Yan, et al. Linear alignment: A closed-form solution for aligning human
 509 preferences without tuning and feedback. *arXiv preprint arXiv:2401.11458*, 2024.

510 Zhiguang Han and Zijian Wang. Rethinking the role-play prompting in mathematical reasoning
 511 tasks. In *Proceedings of the 1st Workshop on Efficiency, Security, and Generalization of Multi-
 512 media Foundation Models*, pp. 13–17, 2024.

513

514 Dulhan Jayalath, Shashwat Goel, Thomas Foster, Parag Jain, Suchin Gururangan, Cheng Zhang,
 515 Anirudh Goyal, and Alan Schelten. Compute as teacher: Turning inference compute into
 516 reference-free supervision. *arXiv preprint arXiv:2509.14234*, 2025.

517 Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
 518 Zhonghao He, Jiayi Zhou, Zhaowei Zhang, et al. Ai alignment: A comprehensive survey. *arXiv
 519 preprint arXiv:2310.19852*, 2023.

520

521 Hongchao Jiang, Yiming Chen, Yushi Cao, Hung-yi Lee, and Robby T Tan. Codejudgebench:
 522 Benchmarking llm-as-a-judge for coding tasks. *arXiv preprint arXiv:2507.10535*, 2025.

523 Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger, Faeze Brahman, Sachin Kumar, Niloofar
 524 Mireshghallah, Ximing Lu, Maarten Sap, Yejin Choi, et al. Wildteaming at scale: From in-
 525 the-wild jailbreaks to (adversarially) safer language models. *Advances in Neural Information
 526 Processing Systems*, 37:47094–47165, 2024.

527

528 Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang,
 529 and Xiaohang Dong. Better zero-shot reasoning with role-play prompting. *arXiv preprint
 530 arXiv:2308.07702*, 2023.

531 Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas Mesnard, Johan Ferret,
 532 Colton Bishop, Ethan Hall, Victor Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement
 533 learning from human feedback with ai feedback. 2023.

534

535 Sangkyu Lee, Sungdong Kim, Ashkan Yousefpour, Minjoon Seo, Kang Min Yoo, and Youngjae Yu.
 536 Aligning large language models by on-policy self-judgment. *arXiv preprint arXiv:2402.11253*,
 537 2024.

538 Lijun Li, Bowen Dong, Ruohui Wang, Xuhao Hu, Wangmeng Zuo, Dahua Lin, Yu Qiao, and Jing
 539 Shao. Salad-bench: A hierarchical and comprehensive safety benchmark for large language mod-
 540 els. *arXiv preprint arXiv:2402.05044*, 2024.

540 Yuhui Li, Fangyun Wei, Jinjing Zhao, Chao Zhang, and Hongyang Zhang. Rain: Your language
 541 models can align themselves without finetuning. *arXiv preprint arXiv:2309.07124*, 2023.
 542

543 Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi Chandu,
 544 Chandra Bhagavatula, and Yejin Choi. Urial: Tuning-free instruction learning and alignment for
 545 untuned llms. In *NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following*, 2023.

546 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 547 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 548 arXiv:2412.19437*, 2024.

549

550 Ryan Louie, Ananjan Nandi, William Fang, Cheng Chang, Emma Brunskill, and Diyi Yang.
 551 Roleplay-doh: Enabling domain-experts to create llm-simulated patients via eliciting and ad-
 552 hering to principles. *arXiv preprint arXiv:2407.00870*, 2024.

553 Li-Chun Lu, Shou-Jen Chen, Tsung-Min Pai, Chan-Hung Yu, Hung-yi Lee, and Shao-Hua Sun.
 554 Llm discussion: Enhancing the creativity of large language models via discussion framework and
 555 role-play. *arXiv preprint arXiv:2405.06373*, 2024.

556

557 Kaifeng Lyu, Haoyu Zhao, Xinran Gu, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Keeping llms
 558 aligned after fine-tuning: The crucial role of prompt templates. *Advances in Neural Information
 559 Processing Systems*, 37:118603–118631, 2024.

560

561 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 562 reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235,
 563 2024.

564

565 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 566 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 567 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 568 27730–27744, 2022.

569

570 Xianghe Pang, Shuo Tang, Rui Ye, Yuxin Xiong, Bolun Zhang, Yanfeng Wang, and Siheng Chen.
 571 Self-alignment of large language models via monopolylogue-based social scene simulation. *arXiv
 572 preprint arXiv:2402.05699*, 2024.

573

574 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 575 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 576 in neural information processing systems*, 36:53728–53741, 2023.

577

578 Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-llm: A trainable agent for role-
 579 playing. *arXiv preprint arXiv:2310.10158*, 2023.

580

581 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 582 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 583 report. *arXiv preprint arXiv:2503.19786*, 2025.

584

585 Anyi Wang, Dong Shu, Yifan Wang, Yunpu Ma, and Mengnan Du. Improving llm reasoning through
 586 interpretable role-playing steering. *arXiv preprint arXiv:2506.07335*, 2025a.

587

588 Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi, Shumin Deng, Yunzhi Yao, Qishen Zhang,
 589 Linyi Yang, Jindong Wang, and Huajun Chen. Detoxifying large language models via knowledge
 590 editing. *arXiv preprint arXiv:2403.14472*, 2024.

591

592 Yutong Wang, Pengliang Ji, Chaoqun Yang, Kaixin Li, Ming Hu, Jiaoyang Li, and Guillaume Sar-
 593 toretti. Mcts-judge: Test-time scaling in llm-as-a-judge for code correctness evaluation. *arXiv
 594 preprint arXiv:2502.12468*, 2025b.

595

596 Zekun Moore Wang, Zhongyuan Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,
 597 Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, et al. Rolellm: Benchmarking, eliciting,
 598 and enhancing role-playing abilities of large language models. *arXiv preprint arXiv:2310.00746*,
 599 2023.

594 Jiaxin Wen, Zachary Ankner, Arushi Somani, Peter Hase, Samuel Marks, Jacob Goldman-Wetzler,
 595 Linda Petrini, Henry Sleight, Collin Burns, He He, et al. Unsupervised elicitation of language
 596 models. *arXiv preprint arXiv:2506.10139*, 2025.

597

598 Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston,
 599 and Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with
 600 llm-as-a-meta-judge. *arXiv preprint arXiv:2407.19594*, 2024.

601

602 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 603 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 604 arXiv:2505.09388*, 2025.

605

606 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
 607 Weston. Self-rewarding language models. *arXiv preprint arXiv:2401.10020*, 3, 2024.

608

609 Wenjun Zeng, Yuchi Liu, Ryan Mullins, Ludovic Peran, Joe Fernandez, Hamza Harkous, Karthik
 610 Narasimhan, Drew Proud, Piyush Kumar, Bhaktipriya Radharapu, et al. Shieldgemma: Genera-
 611 tive ai content moderation based on gemma. *arXiv preprint arXiv:2407.21772*, 2024.

612

613 Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou, Lifeng Jin, Linfeng Song, Haitao Mi, and
 614 Helen Meng. Self-alignment for factuality: Mitigating hallucinations in llms via self-evaluation.
 615 *arXiv preprint arXiv:2402.09267*, 2024.

616

617 Zhaowei Zhang, Fengshuo Bai, Qizhi Chen, Chengdong Ma, Mingzhi Wang, Haoran Sun, Zilong
 618 Zheng, and Yaodong Yang. Amulet: Realignment during test time for personalized preference
 619 adaptation of llms. *arXiv preprint arXiv:2502.19148*, 2025.

620

621 Yuwei Zhao, Ziyang Luo, Yuchen Tian, Hongzhan Lin, Weixiang Yan, Annan Li, and Jing Ma.
 622 Codejudge-eval: Can large language models be good judges in code understanding? *arXiv
 623 preprint arXiv:2408.10718*, 2024.

624

625 Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yuqiu Ji, Hongyu Lin, Yaojie Lu, Xianpei Han, Debing
 626 Zhang, and Le Sun. Critic-cot: Boosting the reasoning abilities of large language model via
 627 chain-of-thoughts critic. *arXiv preprint arXiv:2408.16326*, 2024.

628

629 Mingye Zhu, Yi Liu, Lei Zhang, Junbo Guo, and Zhendong Mao. On-the-fly preference alignment
 630 via principle-guided decoding. *arXiv preprint arXiv:2502.14204*, 2025.

631

632 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
 633 Universal and transferable adversarial attacks on aligned language models. *arXiv preprint
 634 arXiv:2307.15043*, 2023.

635

636

637

638

639

640

641

642

643

644

645

646

647

A APPENDIX

B USE OF LARGE LANGUAGE MODELS

636 We used ChatGPT product to polish writing. Specifically, once we finished writing, we copy paste
 637 it to let it refine the writing. We also ask ChatGPT to help us find related work by specifying the
 638 specific type of work we need, and generate a summary to help us quickly filter. We read the original
 639 paper to decide which work to finally include by ourselves.

C MORE TABLES

Role	AVG	Illegal Act.	Mental Harm	Physical Harm	Offense -sive	Privacy Prop.	Ethics Moral.	Political Sens.	Unfair Bias	Porno -graphy
Mother	78.5%	91.30%	69.57%	90.91%	86.36%	86.36%	63.64%	63.64%	81.82%	72.73%
Principal	78.5%	86.96%	65.22%	90.91%	77.27%	86.36%	63.64%	77.27%	81.82%	77.27%
Father	78.5%	91.30%	65.22%	90.91%	77.27%	86.36%	68.18%	68.18%	81.82%	77.27%

Continued on next page

Role	AVG	Illegal Act.	Mental Harm	Physical Harm	Offense -sive	Privacy Prop.	Ethics Moral.	Political Sens.	Unfair Bias	Porno -graphy
Scientist	78.5%	91.30%	69.57%	90.91%	77.27%	90.91%	63.64%	63.64%	81.82%	77.27%
Teacher	78.5%	91.30%	69.57%	95.45%	77.27%	86.36%	63.64%	68.18%	81.82%	72.73%
Confucian Scholar	78.0%	91.30%	65.22%	86.36%	72.73%	90.91%	68.18%	72.73%	86.36%	68.18%
Engineering Director	78.0%	91.30%	65.22%	95.45%	72.73%	90.91%	63.64%	68.18%	86.36%	68.18%
Ethics Advisor	78.0%	91.30%	65.22%	90.91%	72.73%	86.36%	68.18%	77.27%	77.27%	72.73%
Nurse	77.5%	91.30%	60.87%	95.45%	72.73%	86.36%	63.64%	63.64%	86.36%	77.27%
Psychologist	77.5%	91.30%	60.87%	95.45%	72.73%	90.91%	63.64%	68.18%	86.36%	68.18%
Cyber Police	77.5%	91.30%	65.22%	95.45%	72.73%	90.91%	63.64%	72.73%	77.27%	68.18%
Police Officer	77.0%	91.30%	60.87%	95.45%	72.73%	90.91%	68.18%	63.64%	81.82%	68.18%
Community Leader	77.0%	86.96%	65.22%	86.36%	72.73%	86.36%	63.64%	63.64%	90.91%	77.27%
Human Rights Activist	77.0%	91.30%	60.87%	95.45%	72.73%	90.91%	63.64%	72.73%	77.27%	68.18%
National Leader	77.0%	91.30%	60.87%	95.45%	72.73%	86.36%	63.64%	68.18%	77.27%	77.27%
Parent	76.5%	91.30%	65.22%	90.91%	77.27%	86.36%	63.64%	68.18%	72.73%	72.73%
Mediator	76.0%	91.30%	65.22%	95.45%	68.18%	90.91%	63.64%	59.09%	72.73%	77.27%
Risk Control Officer	76.0%	91.30%	60.87%	90.91%	72.73%	90.91%	63.64%	63.64%	81.82%	68.18%
Diplomat	76.0%	91.30%	65.22%	95.45%	72.73%	86.36%	63.64%	63.64%	72.73%	72.73%
Editor-in-Chief	76.0%	86.96%	69.57%	90.91%	72.73%	86.36%	68.18%	63.64%	72.73%	72.73%
Data Protection Officer	75.5%	91.30%	65.22%	86.36%	72.73%	90.91%	68.18%	63.64%	72.73%	68.18%
Mayor	75.5%	91.30%	65.22%	95.45%	77.27%	86.36%	63.64%	59.09%	72.73%	68.18%
Auditor	75.5%	91.30%	65.22%	86.36%	72.73%	90.91%	63.64%	63.64%	77.27%	68.18%
Civil Servant	75.5%	91.30%	60.87%	90.91%	72.73%	86.36%	63.64%	68.18%	72.73%	72.73%
Lawyer	74.0%	91.30%	60.87%	90.91%	72.73%	86.36%	63.64%	63.64%	68.18%	68.18%
Judge	74.5%	82.61%	56.52%	90.91%	72.73%	90.91%	63.64%	63.64%	77.27%	72.73%
Military Commander	74.5%	86.96%	60.87%	86.36%	77.27%	90.91%	59.09%	63.64%	72.73%	72.73%
Legislator	73.0%	86.96%	52.17%	90.91%	72.73%	86.36%	63.64%	59.09%	77.27%	68.18%
Arbitrator	73.0%	91.30%	52.17%	90.91%	72.73%	86.36%	63.64%	59.09%	72.73%	68.18%
Deontology	65.5%	73.91%	43.48%	81.82%	72.73%	81.82%	59.09%	54.55%	63.64%	59.09%
Virtue Ethics	63.0%	73.91%	34.78%	86.36%	68.18%	81.82%	54.55%	54.55%	50.00%	63.64%
Consequentialism	54.0%	69.57%	34.78%	77.27%	59.09%	63.64%	40.91%	40.91%	54.55%	45.45%
Base	54.0%	73.91%	39.13%	63.64%	68.18%	50.00%	40.91%	50.00%	63.64%	36.36%

Table 2: Evaluation of role-specific performance on SafeEdit with Qwen3-8B.

Role Combination	System Prompt Only	With Iterative Refinement
Principal, Mother	80.50%	87.50%
Diplomat, Community Leader	77.00%	89.95%
Confucian Scholar, Mother	80.00%	87.00%
Diplomat, Auditor	78.00%	87.00%
Police Officer, Mediator	75.00%	87.44%
Nurse, Community Leader	79.00%	86.93%
Principal, Confucian Scholar	79.50%	86.50%
Principal, Mayor	78.50%	86.50%
Judge, Principal	76.00%	86.50%
Teacher, Lawyer	76.00%	86.50%
Judge, Police Officer	74.50%	86.50%
Nurse, Psychologist	77.50%	86.50%
Engineer, National Leader	76.50%	86.50%
Principal, Ethics Advisor	78.50%	86.00%
Mother, Cyber Police	79.00%	86.00%
Psychologist, Civil Servant	78.50%	86.00%
Principal, Police Officer	76.00%	84.50%
Teacher, Mother	79.00%	84.00%
Confucian Scholar, Ethics Advisor	78.50%	85.50%
Judge, Mother	76.50%	85.50%
Psychologist, Community Lead.	77.00%	85.50%
Human Rights Act., Risk Ctrl	78.00%	85.50%
Confucian Scholar, Police Off.	78.00%	85.00%
Legislator, Confucian Scholar	77.00%	83.50%
Legislator, Lawyer	73.00%	83.00%
Lawyer, Mediator	75.00%	82.50%
Scientist, Principal	79.50%	82.50%
Lawyer, Auditor	74.00%	81.00%
Engineer, Military Commander	78.00%	81.00%
Ethics Advisor, Lawyer	75.50%	79.00%

Table 3: Evaluation of 30 Role Combinations on SafeEdit evaluated with Qwen3-8B.

D HOW EACH BENCHMARK EVALUATES

D.1 BENCHMARKS

702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723

724
 725
 726
 727
 728
 729
 730

Benchmark	Evaluator	Metric
SafeEdit	Fine-tuned RoBERTa-large	Defense Success (DS)
SaladBench	Fine-tuned Mistral-7B	Safety Rate (SR)
WildJailbreak	Fine-tuned Llama2-13B	Attack Success Rate (ASR)
HarmfulQA	GPT-5	Attack Success Rate (ASR)
GSM-Danger	GPT-5	Attack Success Rate (ASR)

731
 732 Table 4: Benchmarks, evaluators, and corresponding metrics used in our evaluation. These methods
 733 are proposed by the benchmark themselves, except we changed from GPT-4 to GPT-5 for the last
 734 three.

735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755