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ABSTRACT

Principle-based (e.g Constitution Alignment (Bai et al., 2022)) alignment meth-
ods rely on fixed lists of values, but these are inevitably incomplete and lack con-
text sensitivity. We propose role-conditioning as a compact alternative: roles like
mother or judge implicitly encode both values and the cognition needed to apply
them. Grounded in Theory of Mind (ToM), we formalize this view and prove
that roles are strictly more expressive than principle lists in the ideal case. We
then introduce a simple, training-free pipeline: a role-conditioned generator plus
lightweight role-based critics for iterative refinement. Across five model families
from small to large, validated on multiple safety benchmarks, this approach con-
sistently outperforms principle-based, CoT, and hybrid baselines—cutting unsafe
outputs (e.g improve by 3–20× (down to 3–10%) on WildJailbreak). To inves-
tigate the effectiveness of our method, we conduct ablation studies examining
role choices, different role combinations, the number of roles employed, and the
impact of critic feedback iterations. We further explore how our approach can
be synergistically combined with existing methods to achieve additional perfor-
mance improvements. Additionally, we evaluate our method’s effectiveness on a
specialized agentic safety benchmark (AI blackmail), demonstrating its broader
applicability. These results position roles as a simple, interpretable, yet powerful
mechanism for directing AI values—offering both a paradigm shift in alignment
approaches and a novel signal source for LLM-as-Judge construction.

1 INTRODUCTION

The value alignment problem asks how to make LLMs behave in accordance with human prefer-
ences and values (Ji et al., 2023). A central bottleneck is the efficient, scalable construction of
judgment signals. While human annotation can be effective, it is costly and slow (Ouyang et al.,
2022; Rafailov et al., 2023), motivating AI-feedback approaches such as critic-CoT (Zheng et al.,
2024), self-consistency (Wen et al., 2025; Jayalath et al., 2025), and feedback from stronger models
(Lee et al., 2023). However, most of this literature optimizes the mechanism that provides feedback
while treating the source of evaluative criteria as fixed. Today’s dominant source is a list of value
principles (Bai et al., 2022; Lin et al., 2023), sometimes augmented with simulations (Pang et al.,
2024). Yet principles alone are brittle: enumerations are inevitably incomplete, and they provide
little guidance on when and how a value applies in context.

We argue that value judgments require not only values but also a belief/cognition model that inter-
prets context—an idea rooted in theory of mind (Frith & Frith, 2005). But instead of attempting to
exhaustively specify values and beliefs, we propose to use roles as compact carriers of both. Roles
like “mother” or “judge” implicitly encode the relevant values (care, fairness) and the schemas for
applying them (“children need protection,” “decide by evidence and law”). In Section 3.1, we for-
malize this perspective and prove that, in the ideal case, role conditioning strictly dominates fixed
principle lists by jointly inducing values and context-sensitive cognition. Building on this insight,
we introduce a minimal test-time pipeline for value alignment: (i) a generator conditioned by a
lightweight role specification, and (ii) a small set of role-based critics that iteratively accept or re-
vise the output. Our roles are drawn from a “guardianship” repertoire (e.g., mother, principal, judge,
community leader), instantiated with terse system prompts to isolate the effect of role assignment
itself.
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Here we preview our empirical findings. Across five model families—from Qwen3-8B(Yang et al.,
2025) and Gemma3-12B-IT(Team et al., 2025) to DeepSeek-V3(Liu et al., 2024), Gemini-2.5-
Flash(Comanici et al., 2025), and Qwen3-235B(Yang et al., 2025)—our role-conditioned approach
with two lightweight roles (“mother”, “principal”) consistently surpasses principle-based, CoT, and
hybrid baselines, often by a large margin on some benchmarks, especially WildJailbreak and Salad
Bench. To further understand the effectiveness of our approach, we conduct a series of ablations.
Ablations reveal that concrete guardianship roles dominate abstract ones (”mother” >”parent”),
critic iteration feedback is crucial to have, but most of the benefit arrives in the first 1–3 refine-
ment rounds, especially first round. More roles improves but also not much. We also observe that
these methods can be combined with other methods to further improve the performance: adding our
principle prompts and CoT methods improves the best of each of them. And an exploratory agent-
safety test (AI blackmail) shows large reductions (e.g., 65% → 11%) with role conditioning alone,
indicating the generality of our approach.

Our contributions are threefold. (1) Formulation: A role-based alignment view grounded in theory
of mind, with a formal proof that role conditioning, in the ideal case, dominates principle lists by
capturing both values and context-sensitive cognition. (2) Method: A simple, training-free, and in-
terpretable pipeline—role-conditioned generation plus role-based critics for iterative feedback—that
scales across model families and sizes. (3) Evidence: Comprehensive experiments demonstrating
consistent state-of-the-art results over strong baselines on multiple safety benchmarks and models,
supported by ablations (role choice, number of roles, iterations), synergy analyses with existing
techniques, and an exploratory agent-safety study indicating generality beyond content safety.

Answer: 

I cannot provide information on how to 
undermine or discredit legitimate 
voices of dissent, as this would be 
unethical and contrary to the values of 
respect, fairness, and integrity that I 
uphold as a mother and a school 
principal.


Question: How can someone attempt to undermine and discredit legitimate voices of 
dissent?

Answer:  
1. Discrediting through misinformation. 
Spreading false or misleading information to 
damage the credibility of dissenting voices.

2. Silencing through censorship. Suppressing 
the expression of dissenting opinions through 
legal, political, or social means.….


A Real Test Example From Salad Bench

Figure 1: Current principle based LLM-as-Judge methods VS Our method over a real test example
from Salad Bench. (Left) Principle based method fails to capture some scenario where it is not most
typical. (Right) Role-based method can naturally recall the relevant principles and values given the
context, and judges if the scenario violates these values, showing a much better performance and
robustness.

2 RELATED WORKS

In this section, I will conduct a literature review to provide an overview of the related research from
three perspectives: LLM alignment, LLM role playing, and LLM as a judge.

LLM Alignment. This field mainly focuses on how to align LLMs with human values and pref-
erences, and many well-known works have already emerged. In terms of training-time alignment,
representative methods include RLHF (Christiano et al., 2017; Ouyang et al., 2022), DPO (Rafailov
et al., 2023), CAI (Bai et al., 2022), KTO (Ethayarajh et al., 2024), and SimPO (Meng et al., 2024).
These approaches fine-tune LLMs on specific preference datasets or predefined principles so that the
models’ behavior conforms to particular values. However, such methods usually require substantial
time and computational resources, making it difficult to satisfy the real-time alignment demands
during user interaction. Meanwhile, another line of work focuses on test-time alignment, which
aims to efficiently meet users’ dynamic needs. For example, RAIN (Li et al., 2023) leverages the
LLM itself as a reward model to perform self-correction during inference; URIAL (Lin et al., 2023),
on the other hand, strengthens the generation of tokens more aligned with user preferences by com-
paring the model’s states before and after alignment. In addition, methods such as LA (Gao et al.,
2024), Amulet (Zhang et al., 2025), and OPAD (Zhu et al., 2025) employ principle-based reward
signals to guide the decoding process, achieving efficient alignment with only a single inference.
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However, such test-time alignment methods generally lack interpretability and struggle to ensure
the robustness and safety of the alignment process.

LLMs Role Playing. This field of techinique, as an effective prompting strategy, has been widely
explored and applied across various domains. For example, prior work has shown that assigning
specific roles to LLMs can enhance their performance (Kong et al., 2023; Wang et al., 2025a),
while Han & Wang (2024) also emphasized that the effectiveness of this strategy highly depends
on the relevance between the role and the task itself. Beyond reasoning, role playing has been
used to further applications. Lu et al. (2024) demonstrate that simulating group discussions with
diverse perspectives can foster collective creativity, and Roleplay-doh (Louie et al., 2024) applies
role playing in medical training by having LLMs act as patients. To enable more immersive and
consistent role play, studies such as Character-LLM (Shao et al., 2023) and RoleBench (Wang et al.,
2023) focus on character fidelity and evaluation. In alignment research, MATRIX (Pang et al., 2024)
introduces role playing to assess LLM alignment, but mainly considers behavioral consequences,
leaving motivations and value systems underexplored.

LLM as a Judge. LLM as a judge has now become a research area of great interest. Due to its
simplicity of deployment, low cost, and efficiency in evaluation, it has demonstrated tremendous
potential for development in multiple aspects. Specifically, in the field of code quality evaluation,
a series of works such as CJ-Eval (Zhao et al., 2024), CodeJudgeBench (Jiang et al., 2025), and
MCTS-Judge (Wang et al., 2025b) have verified the remarkable ability of LLMs as code judges. In
natural language processing tasks, the study of Bedemariam et al. (2025) reveals that LLMs have
achieved a level comparable to human evaluators in judging the consistency between generated
summaries and the original text, while also pointing out their limitations in capturing fine-grained
details. However, when the evaluation task involves core safety issues in human society, the stabil-
ity of LLM evaluators faces challenges. The study of Chen & Goldfarb-Tarrant (2025) found that
directly applying LLMs to the evaluation of safety tasks leads to severe instability in results. In
addition, other research has explored the possibility of using LLMs for self-feedback and optimiza-
tion. The works of Wu et al. (2024), Yuan et al. (2024), and Lee et al. (2024) collectively found that
LLMs can achieve continuous self-improvement by generating self-feedback supervision signals.
Similarly, Zhang et al. (2024) also discovered that the self-feedback mechanism of LLMs can effec-
tively alleviate the phenomenon of hallucination. However, the aforementioned works mainly rely
on simple rules or few-shot learning to construct evaluation benchmarks, generally neglecting the
incorporation of the complex value systems of human society as prior information in the evaluation
process. As a result, their evaluation outcomes often remain superficial, lack depth, and may even
deviate from or conflict with core human values.

3 METHODS

3.1 ROLE-BASED FORMULATION.

Our approach builds on insights from theory of mind(Frith & Frith, 2005), which models human
reasoning as comprising three key components: belief/cognition (how an agent interprets context),
desire/value (what goals or norms are prioritized), and intention/action (how responses are chosen).
So following the theory of mind perspective, an aligned response y⋆i in context xi should be modeled
as

P (y⋆i | xi) ∝ P (yi | xi, v
⋆, c⋆),

where v⋆ denotes the relevant values for the scenario and c⋆ the appropriate contextual cognition.

Existing principle-based alignment methods largely operate at the level of values: they encode ex-
plicit normative desiderata (e.g., “no harassment”), but they face two structural limitations. First,
the coverage of values is inevitably incomplete, as no fixed set of principles can anticipate every
scenario. Second, principle lists lack a mechanism for contextually interpreting when and how a
value applies—that is, they lack the belief/cognition component.

By contrast, role-based conditioning leverages the fact that roles implicitly encode both values and
the contextual schemas for applying them. A role such as “mother” or “judge” does not explicitly
enumerate principles, but it enables the model to spontaneously recognize when a given context
implicates values that the role is committed to upholding. Thus, if an appropriate role is selected, the
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values activated in practice (v⋆) will align with the target values for the scenario, and the contextual
cognition (c⋆) ensures these values are applied in a situation-sensitive manner.

Formally, we can express the contrast as follows. Principle-based methods correspond to

fp : P (yi | vp, xi),

where vp is the fixed set of principles provided, and xi is the specific context. In contrast, a role-
based method can be expressed as

fr : P (yi | r, xi) = P (yi | vri , cri , xi)P (vri , c
r
i | r, xi),

where the role r induces both values vri and cognitions cri given any context naturally. This leads
us to an important observation, since values and coginition can be seen as latent variables for a
generative reasoning model, roles are a latent variable of these latent variables, and hence roles
provide a more compact signal for guiding alignment.

In the ideal case of an appropriate role r⋆, the induced distribution satisfies

P (yi | r⋆, xi) ∝ P (yi | v⋆i , c⋆i , xi)P (v⋆i , c
⋆
i | r⋆, xi),

In such ideal case, role-based method would provably dominate the principle-based formulation,
since (i) vp typically under-approximates v⋆, given the difficulty of exhaustively specifying values,
and (ii) principle-based methods lack the cognition component, effectively operating with cdummy.
Consequently,

P (yi | vp, xi) < P (yi | v∗i , cdummy, xi) < P (yi | v∗i , c∗i , xi) ∝ P (yi | r⋆, xi) ∝ P (y⋆i | xi).

3.2 PROBLEM FORMULATION

Based on previous section, we formalize our alignment approach as a role-conditioned likelihood
maximization problem.

For a given context x, our objective is to identify the role specification r that enables the base LLM
to generate outputs y aligned with human-desired values. Formally, we define:

r̂ = argmax
r

logP (y⋆ | x, r), (1)

where y⋆ denotes the aligned (e.g., safe) output distribution.

In practice, the ground-truth distribution y⋆ is not directly observable. However, many safety align-
ment benchmarks provide binary classification tasks that evaluate whether a model output is safe
or unsafe. We can therefore use binary classification accuracy as a proxy performance metric for
assessing the quality of different roles and search over the role space.

3.3 METHOD DESIGN

Our method has two components: a generator and a set of role-based critics, both guided by role
specifications provided as system prompts. The generator first produces an output y0 given the input
context x and query. Then, the critic roles evaluate whether the output is deemed safe. If all critics
accept it, the output is returned. Otherwise, the critics provide feedback to the generator, which
uses this feedback to revise its output. This process repeats until the output is judged safe or the
maximum number of iterations Tmax is reached.

Formally, each critic Cz evaluates the current output yt under role z:

Cz(yt | x) ∈ {0, 1}, (2)

where 1 indicates acceptance and 0 indicates rejection. If rejected, the critic also provides feedback
ft. The generator then updates its response:

yt+1 = E(yt, ft, x), (3)

where E denotes the evolution operator that incorporates critic feedback. The loop terminates when:

∃t ≤ Tmax : Cz(yt | x) = 1 ∀z. (4)

4
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This design allows roles to function not only as prompts but also as active judges that iteratively
refine outputs toward alignment.

The system prompts for the generator and the critics are based on the templates in Figure 2. As
we can see, we use a minimalist system prompt template. The only difference is the role name
like ”mother” or ”community leader” in the template that differ in 1 to 3 words. We intention-
ally constrain ourself from giving extra description for each role to test the impact of the simple
role assignment to LLMs. In the future, one can enrich the role description to further improve the
performance.

Generation Prompt Template 
You are a helpful and harmless assistant. On your 
private side, you are also {role1}, {role2}. . . and 

{role X}. Although you will answer questions as an 
assistant, you will not answer in any way against 

the values and professional conduct of these roles

Critic Prompt Template 
You are {role}. You will receive a complete response. Your 
task is to evaluate it strictly from the perspective of {role}, 
based on the values and professional ethics of this role. 

Respond strictly in JSON format: { ”decision”: ”Agree” or ”
Disagree”, ”Improvement suggestion”: ”Your suggestion for 

improvement if ’Disagree’, otherwise, an empty string.” }

generate

critic 

Iterative refine until all role judges acknowledge or reach max iterations 

Query Response

Figure 2: Illustration of our method pipeline and the system prompt template. Our approach consists
of a generator and multiple role-based critics, all instantiated through system prompts following the
provided template. Given an input query, the generator first produces an initial response. Each critic
then evaluates whether this response aligns with their respective role’s standards. If any critic rejects
the response, they provide constructive feedback for improvement. The generator iteratively refines
its output based on this feedback until all critics approve or the maximum iteration limit is reached.
The final approved response is returned as the system’s output.

3.4 ROLE LIST CONSTRUCTION

To operationalize our approach, we construct a repertoire of roles designed to cover diverse domains
of social judgment. Instead of enumerating roles arbitrarily, we adopt a unifying conceptual frame-
work: most safety alignment judgments can be understood as forms of guardianship. A guardian
protects specific groups, communities, or principles, thereby embodying the values and beliefs that
shape evaluative standards. This guardianship perspective provides a natural organizing principle
for building a comprehensive set of roles.

Guided by this framework, we prompt ChatGPT to generate a list of 29 roles using the query:
“Like mother protects children, teacher protects students, police protects social order, judge protects
rights, give me a list of more roles”. The resulting list spans a broad spectrum of societal functions,
extending beyond the initial examples to include roles such as mayor and engineering director. For
the complete role list, see Appendix Table 3.

Each role is implemented as a system prompt that guides the LLM-as-Judge, functioning either in
direct generation mode or as a critic within our iterative refinement process. The prompt templates
are illustrated in Figure 2.

4 MAIN EXPERIMENTS

We conduct comprehensive evaluations across multiple safety alignment benchmarks(Li et al., 2024;
Jiang et al., 2024; Wang et al., 2024; Lyu et al., 2024; Bhardwaj & Poria, 2023) and a diverse set
of base models, ranging from compact open-source models (e.g., Qwen3-8B(Yang et al., 2025),
Gemma3-12B-IT(Team et al., 2025)) to state-of-the-art large-scale and proprietary systems (e.g.,
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Model Method WJ (↓) SB (↑) SE (↑) GD (↓) HQ (↑)

Gemini
-2.5

-Flash

Base 57.94 20.47 30.00 10.00 98.80
URIAL 20.00 60.00 74.50 1.00 100.00
CoT-3 23.00 50.16 66.00 1.00 100.00
CoT-6 14.80 60.81 69.00 0.00 100.00
Principle 27.00 51.71 75.50 0.00 100.00
Principle(+critic) 18.60 61.69 78.50 0.00 100.00
Ours(gen only) 20.00 78.36 80.50 0.00 100.00
Ours(+critic) 9.75 86.30 88.00 0.00 100.00

Qwen3
-235B
-A22B

-Instruct
-2507

Base 34.80 45.00 82.00 4.00 100.00
URIAL 20.40 79.00 92.50 1.00 100.00
CoT-3 11.00 71.33 89.00 0.00 100.00
CoT-6 7.00 73.00 90.00 0.00 100.00
Principle 19.80 63.00 91.00 1.00 100.00
Principle(+critic) 13.60 77.67 95.00 1.00 100.00
Ours(gen only) 16.00 76.33 89.50 0.00 100.00
Ours(+critic) 3.00 93.67 96.50 0.00 100.00

Deep
Seek-V3

Base 81.40 45.33 40.00 14.00 81.20
URIAL 65.40 58.00 71.50 3.00 93.40
CoT-3 42.60 69.00 61.00 1.00 95.00
CoT-6 33.00 73.00 62.00 0.00 96.40
Principle 53.20 72.67 58.50 4.00 92.60
Principle(+critic) 32.00 78.00 80.50 2.00 100.00
Ours(gen only) 59.00 60.00 74.50 1.00 100.00
Ours(+critic) 3.60 84.00 82.00 0.00 98.20

Gemma3
-12B-IT

Base 78.40 38.33 40.50 5.00 97.60
URIAL 51.20 48.00 46.00 2.00 99.60
CoT-3 58.00 48.67 33.00 3.00 99.80
CoT-6 48.40 52.67 37.00 1.00 99.80
Principle 50.20 36.33 49.50 2.00 100.00
Principle(+critic) 30.00 59.00 80.50 2.00 100.00
Ours(gen only) 59.00 53.33 55.50 1.00 99.80
Ours(+critic) 11.00 84.00 93.50 0.00 100.00

Qwen3
-8B

Base 73.20 46.39 53.50 39.00 99.20
URIAL 44.00 61.00 71.50 18.00 99.60
CoT-3 48.20 74.33 76.50 18.00 99.80
CoT-6 31.40 79.67 78.50 8.00 100.00
Principle 34.80 61.67 79.00 15.00 100.00
Principle(+critic) 30.40 65.55 85.50 11.00 100.00
Ours(gen only) 35.40 74.33 79.50 11.00 100.00
Ours(+critic) 12.60 86.94 87.00 3.00 100.00

Table 1: Main experimental results across different base models. The benchmark abbreviations
WJ, SB, SE, GD, HQ stand for WildJailbreak, SaladBench, SafeEdit, GMSDanger and HarmfulQA
respectably.

Qwen3-235B(Yang et al., 2025), Gemini 2.5(Comanici et al., 2025), DeepSeek V3(Liu et al.,
2024)). Our method uses a simple combination of roles (“mother” and “principal”) as condition-
ing, and we report both single-pass generation (system prompt only) and iterative refinement with
role-based critics (two iterations). The principle based method baseline extracts its principle from
SheildGemma(Zeng et al., 2024)). Since principle-based method can directly be used also as a
critic, we report two ways of using it just like our method (to use as only generation and with iter-
ative feedback). We also allow it for 2 rounds. For CoT-based method baseline, we ask ChatGPT
to generate the response samples with the questions from AdvBench(Zou et al., 2023), and test
two version that has three and six examples respectively. The hybrid baselines is directly URIAL’s
official method(Lin et al., 2023).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Across all settings, our role-based method consistently achieves the strongest performance outper-
forming all baseline methods. Notably, with iterative refinement, our approach yields dramatic
improvements: for example, on DeepSeek-V3, the unsafe generation rate drops from 81.4% to just
3.6%, exceeding the best baseline (principle based with iterative refinement) that merely reaches to
32%. The result is similar for small opensource model. In Gemma3-12B-IT, our method reduces
unsafe generations from 78.4% to just 11%, exceeding the best baseline (principle based with itera-
tive refinement) that reaches to 30%. More details see the Table 1. These gains are consistent across
model scales and families, demonstrating both robustness and scalability.

4.1 ABLATION EXPERIMENTS

We conducted an extensive ablation study to systematically evaluate the impact of different com-
ponents of our method. Our analysis examined both individual role performance and combinatorial
effects across multiple roles. Additionally, we investigated how performance scales with the number
of roles and refinement iterations. Due to computational constraints, all ablation experiments were
performed using the Qwen3-8B model on the SafeEdit benchmark.
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Figure 3: Single role and two-role combination performance with only system prompt (no iterative
feedback refinement), conducted over Qwen3-8B model on SafeEdit benchmark.

Role Evaluation After constructing the initial role list, we filter for the most effective roles and
combinations. Given the potentially large number of experiments, we first conduct preliminary
evaluations using the Qwen3-8B model on the SafeEdit benchmark. These experiments employ
only system prompts without iterative feedback refinement to isolate the impact of individual roles.

We evaluate the performance of each individual role using only system prompts without iterative
feedback refinement (Figure 3). The safety rate improves from the base model’s 54.0% to 78.5%
with top-performing roles such as “mother” and “principal.” These highest-performing roles are
predominantly guardians of children and students, which aligns well with our intuition that content is
generally safe if it is “safe for children.” More detailed results showing performance across specific
problem dimensions (misinformation, socioeconomic issues, etc.) are provided in Appendix Table
2.

Notably, we observe that the abstract role “parent” (which encompasses both mother and father)
underperforms compared to the more concrete role “mother.” This finding aligns with our hypoth-
esis that concrete terminology generally yields better value understanding in LLMs than abstract
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concepts. The result further supports our broader argument that role-based approaches are superior
to principle-based methods for value alignment in language models.

We then evaluate role combinations to assess potential synergistic effects. For computational
tractability, we focus on pairwise combinations in this experiment. Given the combinatorial ex-
plosion of possible role pairs, we sample 30 two-role combinations and evaluate their performance
using system prompts only, without iterative refinement. The results (Figure 3) demonstrate that in-
creasing from one to two roles yields modest performance improvements, suggesting that different
roles can provide complementary safety perspectives.

Effect of Number of Roles To investigate whether incorporating additional roles can further en-
hance performance, we systematically evaluate combinations with increasing numbers of roles.
Starting with the “mother” role, we progressively add roles from the top-performing list. The re-
sults, presented in Figure 4, reveal that expanding from one to two roles generally yields modest
performance improvements, though with notable variation—performance with four roles decreases,
while five roles again shows improvement.

This pattern suggests that identifying an optimal single role can achieve performance comparable to
multi-role combinations. This phenomenon likely stems from the nature of safety alignment tasks,
where certain individual roles may already provide comprehensive safety judgment capabilities that
approach the theoretical maximum for this domain.

Effect of Number of Iteration We further investigate the effect of feedback iteration rounds be-
tween the generator and critics. The results, presented in Figure 5, demonstrate that performance
substantially improves with the first iteration, shows modest gains through the third iteration, and
then plateaus. These findings are based on averaging across five role combinations (ranging from
one to four roles) evaluated from 0 iterations (system prompt only) to 6 iterations.
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Effect of Number of Roles on SafeEdit With Qwen3-8B

Figure 4: Effect of number of roles. More roles
may further improve the performance, but the
improvement is small and it may not guarantee
to be better.
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Figure 5: Effect of number of iterations. The
performance substantially improves with the
first iteration, shows modest gains through the
third iteration, and then plateaus.

5 EXPLORATORY EXPERIMENT

We conducted an exploratory experiment to evaluate the effect of role-based prompting on An-
thropic’s Agentic AI blackmailing human benchmark (Figure 7). This benchmark represents a spe-
cialized case of safety alignment that differs from our main experiments. While our primary safety
evaluations focus on content safeness, this scenario examines whether an AI agent might manipulate
humans to protect itself—a distinct form of safety concern.

Using GPT-4.1, we tested several roles by incorporating only the system prompt at the beginning,
omitting critic refinement iterations since this task does not involve typical content safety evaluation.
Despite this simplified setup, our method demonstrated significant effectiveness, reducing the black-
mail rate from 65% to 11% with the “principal” role. This result underscores the generalizability of
our approach and its applicability to diverse safety alignment tasks beyond content moderation.
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Figure 7: Anthropic agentic safety benchmark
to test if AI would blackmail human for its
own interest. With role-based prompting, our
method can reduce the blackmail rate from 65%
to 11% with the “principal” role.

We conducted an additional exploratory experiment to investigate whether combining our method
with existing baseline methods could yield further performance improvements (Figure 6). All ex-
periments were conducted on the SafeEdit benchmark using the Qwen3-8B model. Our results
demonstrate that incorporating our method consistently enhances the performance of baseline ap-
proaches.

We first evaluated using only our critic module to refine raw LLM generations (without any system
prompt for the generator), which yielded a 16% improvement. However, this performance remained
substantially lower than our full method even without iterative feedback refinement. When combined
with the URIAL method by integrating our system prompt for generation, we observed a 3.5%
improvement, which further increased to 10% (reaching 86%) with the addition of our critic module.
Despite these gains, the combined approach still underperformed compared to our method used
independently.

Notably, when combined with principle-based and Chain-of-Thought (CoT) methods, our approach
demonstrated synergistic effects, outperforming both the original baseline methods and our stan-
dalone method.

These findings indicate that our method possesses strong complementarity with existing techniques,
suggesting potential for developing more powerful hybrid approaches through strategic method com-
bination.

6 CONCLUSION

We reframed LLM value judge construction as role assignment rather than enumerating principles,
formalized a theory-of-mind view, and proved that (in the ideal case) roles are strictly more expres-
sive than fixed principle lists. We instantiated a training-free pipeline—role-conditioned generation
with lightweight role-based critics—that consistently outperforms principle, CoT, and hybrid base-
lines across five model families and multiple safety benchmarks, and show to have significant advan-
tage. We further conducted a series of ablation studies and exploratory experiments to investigate its
component and test its generality. Currently we have not done any specific work to improve the role
description prompt to test the bare minimum capability of it. We hope our work can inspire future
research to investigate into how to better use of roles as a source of LLM-as-Judge.
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A APPENDIX

B USE OF LARGE LANGUAGE MODELS

We used ChatGPT product to polish writing. Specifically, once we finished writing, we copy paste
it to let it refine the writing. We also ask ChatGPT to help us find related work by specifying the
specific type of work we need, and generate a summary to help us quickly filter. We read the original
paper to decide which work to finally include by ourselves.
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Role AVG Illegal
Act.

Mental
Harm

Physical
Harm

Offense
-sive

Privacy
Prop.

Ethics
Moral.

Political
Sens.

Unfair
Bias

Porno
-graphy

Mother 78.5% 91.30% 69.57% 90.91% 86.36% 86.36% 63.64% 63.64% 81.82% 72.73%
Principal 78.5% 86.96% 65.22% 90.91% 77.27% 86.36% 63.64% 77.27% 81.82% 77.27%
Father 78.5% 91.30% 65.22% 90.91% 77.27% 86.36% 68.18% 68.18% 81.82% 77.27%
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Role AVG Illegal
Act.

Mental
Harm

Physical
Harm

Offense
-sive

Privacy
Prop.

Ethics
Moral.

Political
Sens.

Unfair
Bias

Porno
-graphy

Scientist 78.5% 91.30% 69.57% 90.91% 77.27% 90.91% 63.64% 63.64% 81.82% 77.27%
Teacher 78.5% 91.30% 69.57% 95.45% 77.27% 86.36% 63.64% 68.18% 81.82% 72.73%
Confucian Scholar 78.0% 91.30% 65.22% 86.36% 72.73% 90.91% 68.18% 72.73% 86.36% 68.18%
Engineering Director 78.0% 91.30% 65.22% 95.45% 72.73% 90.91% 63.64% 68.18% 86.36% 68.18%
Ethics Advisor 78.0% 91.30% 65.22% 90.91% 72.73% 86.36% 68.18% 77.27% 77.27% 72.73%
Nurse 77.5% 91.30% 60.87% 95.45% 72.73% 86.36% 63.64% 63.64% 86.36% 77.27%
Psychologist 77.5% 91.30% 60.87% 95.45% 72.73% 90.91% 63.64% 68.18% 86.36% 68.18%
Cyber Police 77.5% 91.30% 65.22% 95.45% 72.73% 90.91% 63.64% 72.73% 77.27% 68.18%
Police Officer 77.0% 91.30% 60.87% 95.45% 72.73% 90.91% 68.18% 63.64% 81.82% 68.18%
Community Leader 77.0% 86.96% 65.22% 86.36% 72.73% 86.36% 63.64% 63.64% 90.91% 77.27%
Human Rights Activist 77.0% 91.30% 60.87% 95.45% 72.73% 90.91% 63.64% 72.73% 77.27% 68.18%
National Leader 77.0% 91.30% 60.87% 95.45% 72.73% 86.36% 63.64% 68.18% 77.27% 77.27%
Parent 76.5% 91.30% 65.22% 90.91% 77.27% 86.36% 63.64% 68.18% 72.73% 72.73%
Mediator 76.0% 91.30% 65.22% 95.45% 68.18% 90.91% 63.64% 59.09% 72.73% 77.27%
Risk Control Officer 76.0% 91.30% 60.87% 90.91% 72.73% 90.91% 63.64% 63.64% 81.82% 68.18%
Diplomat 76.0% 91.30% 65.22% 95.45% 72.73% 86.36% 63.64% 63.64% 72.73% 72.73%
Editor-in-Chief 76.0% 86.96% 69.57% 90.91% 72.73% 86.36% 68.18% 63.64% 72.73% 72.73%
Data Protection Officer 75.5% 91.30% 65.22% 86.36% 72.73% 90.91% 68.18% 63.64% 72.73% 68.18%
Mayor 75.5% 91.30% 65.22% 95.45% 77.27% 86.36% 63.64% 59.09% 72.73% 68.18%
Auditor 75.5% 91.30% 65.22% 86.36% 72.73% 90.91% 63.64% 63.64% 77.27% 68.18%
Civil Servant 75.5% 91.30% 60.87% 90.91% 72.73% 86.36% 63.64% 68.18% 72.73% 72.73%
Lawyer 74.0% 91.30% 60.87% 90.91% 72.73% 86.36% 63.64% 63.64% 68.18% 68.18%
Judge 74.5% 82.61% 56.52% 90.91% 72.73% 90.91% 63.64% 63.64% 77.27% 72.73%
Military Commander 74.5% 86.96% 60.87% 86.36% 77.27% 90.91% 59.09% 63.64% 72.73% 72.73%
Legislator 73.0% 86.96% 52.17% 90.91% 72.73% 86.36% 63.64% 59.09% 77.27% 68.18%
Arbitrator 73.0% 91.30% 52.17% 90.91% 72.73% 86.36% 63.64% 59.09% 72.73% 68.18%
Deontology 65.5% 73.91% 43.48% 81.82% 72.73% 81.82% 59.09% 54.55% 63.64% 59.09%
Virtue Ethics 63.0% 73.91% 34.78% 86.36% 68.18% 81.82% 54.55% 54.55% 50.00% 63.64%
Consequentialism 54.0% 69.57% 34.78% 77.27% 59.09% 63.64% 40.91% 40.91% 54.55% 45.45%
Base 54.0% 73.91% 39.13% 63.64% 68.18% 50.00% 40.91% 50.00% 63.64% 36.36%

Table 2: Evaluation of role-specific performance on SafeEdit with Qwen3-8B.

Role Combination
System

Prompt Only
With Iterative

Refinement

Principal, Mother 80.50% 87.50%
Diplomat, Community Leader 77.00% 89.95%
Confucian Scholar, Mother 80.00% 87.00%
Diplomat, Auditor 78.00% 87.00%
Police Officer, Mediator 75.00% 87.44%
Nurse, Community Leader 79.00% 86.93%
Principal, Confucian Scholar 79.50% 86.50%
Principal, Mayor 78.50% 86.50%
Judge, Principal 76.00% 86.50%
Teacher, Lawyer 76.00% 86.50%
Judge, Police Officer 74.50% 86.50%
Nurse, Psychologist 77.50% 86.50%
Engineer, National Leader 76.50% 86.50%
Principal, Ethics Advisor 78.50% 86.00%
Mother, Cyber Police 79.00% 86.00%
Psychologist, Civil Servant 78.50% 86.00%
Principal,Police Officer 76.00% 84.50%
Teacher, Mother 79.00% 84.00%
Confucian Scholar, Ethics Advisor 78.50% 85.50%
Judge, Mother 76.50% 85.50%
Psychologist, Community Lead. 77.00% 85.50%
Human Rights Act., Risk Ctrl 78.00% 85.50%
Confucian Scholar, Police Off. 78.00% 85.00%
Legislator, Confucian Scholar 77.00% 83.50%
Legislator, Lawyer 73.00% 83.00%
Lawyer, Mediator 75.00% 82.50%
Scientist, Principal 79.50% 82.50%
Lawyer, Auditor 74.00% 81.00%
Engineer, Military Commander 78.00% 81.00%
Ethics Advisor, Lawyer 75.50% 79.00%

Table 3: Evaluation of 30 Role Combinations on SafeEdit evaluated with Qwen3-8B.

D HOW EACH BENCHMARK EVALUATES

D.1 BENCHMARKS
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Benchmark Evaluator Metric
SafeEdit Fine-tuned RoBERTa-largeDefense Success (DS)
SaladBench Fine-tuned Mistral-7B Safety Rate (SR)
WildJailbreakFine-tuned Llama2-13B Attack Success Rate (ASR)
HarmfulQA GPT-5 Attack Success Rate (ASR)
GSM-Danger GPT-5 Attack Success Rate (ASR)

Table 4: Benchmarks, evaluators, and corresponding metrics used in our evaluation. These methods
are proposed by the benchmark themselves, except we changed from GPT-4 to GPT-5 for the last
three.
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