
Conformal Sparsification for Bandwidth-Efficient
Edge-Cloud Speculative Decoding

Payel Bhattacharjee∗ Fengwei Tian∗ Meiyu Zhong∗ Guangyi Zhang†

Osvaldo Simeone‡ Ravi Tandon§

Abstract

Edge–cloud speculative decoding (SD) accelerates inference by having a cloud-
based large language model (LLM) that verifies draft tokens generated by a
resource-constrained small language model (SLM) at the edge. A central bottleneck
is the limited bandwidth of the edge–cloud link, which necessitates efficient com-
pression of draft token distributions. We first derive an information-theoretic bound
that decomposes the token resampling rate into contributions from SLM–LLM
distribution mismatch and from quantization distortion. Guided by this analysis, we
propose the Sparse Quantize-and-Sample SD (SQS-SD) framework, which exploits
distributional sparsity through structured sparsification and lattice-based quantiza-
tion. Within this framework, K-SQS applies fixed top-K truncation, while C-SQS
adaptively adjusts the retained token set via online conformal prediction to ensure
bounded deviation from the dense distribution. Empirical results confirm that
both approaches improve end-to-end latency and resampling rate in complimentary
operating regimes.

1 Introduction

As edge–cloud deployment of large language models (LLMs) continues to grow, efficient inference has
become a critical challenge. Techniques such as model quantization and knowledge distillation [16]
are commonly employed to reduce model size and computational cost. However, these approaches
often degrade performance by discarding fine-grained statistical information captured by larger
models. A promising alternative is speculative decoding (SD) [12], where a small language model
(SLM) generates multiple draft tokens that are then verified in parallel by a large LLM. This
collaboration between a fast draft model and an accurate verifier boosts token throughput and lowers
latency compared to standard autoregressive decoding.

In this paper, we focus on enabling bandwidth-efficient edge–cloud SD. Specifically, we assume
a SLM runs on an edge device while a more powerful LLM runs on a cloud server in tandem. A
central challenge in this setup is the limited communication bandwidth between edge and cloud,
which makes it imperative to compress the information (such as token probability distributions) sent
over the uplink. Recent studies emphasize the importance of minimizing edge–cloud communication:

∗Equal Contribution. Department of Electrical and Computer Engineering; University of Arizona; Tucson,
AZ, USA. {payelb,fengtian,meiyuzhong}@arizona.edu

†College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
zhangguangyi@zju.edu.cn

‡Department of Engineering; King’s College London; London, UK; osvaldo.simeone@kcl.ac.uk
§Department of Electrical and Computer Engineering; University of Arizona; Tucson, AZ, USA.

tandonr@arizona.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: AI and ML for
Next-Generation Wireless Communications and Networking (AI4NextG).

1
2
3
4
5

V

15 30 45 60

1
2
3
4
5

V

15304560

1
2
3
4
5

V

25 50

Figure 1: Illustration of sparse quantize-and-sample (SQS) framework for edge-cloud speculative
decoding for efficient LLM inference. The edge device adaptively sparsifies and quantizes the SLM’s
next-token distribution with an updated threshold with a principled online update rule based on online
conformal prediction.

for example, reference [8] proposed a hybrid local–cloud inference scheme with selective offloading
of tokens; the work in [14] exploits uncertainty estimation to skip unnecessary uplink transmissions;
and [15] explored token-level sparsification via an attention-based thresholding mechanism to reduce
transmissions. Quantization is a key component of the SD pipeline for reducing communication. In
the quantize-and-sample (QS) strategy introduced in [22], the edge first quantizes the SLM’s token
probability distribution and then samples from the quantized distribution, ensuring alignment with
the cloud LLM’s output while also reducing the uplink payload.

QS alleviates the distribution mismatch, but communication bottlenecks can still persist due to the
high dimensionality of token distributions. Importantly, prior work has shown that SLM next-token
distributions are inherently sparse, with most of the probability mass concentrated in a small top-K
subset of the vocabulary [6, 9, 13], while the long tail of low-probability tokens contributes negligibly.
This sparsity – often exacerbated by “attention sinks” in Transformer models [19] – motivates the
development of sparse extensions to the QS approach. Motivated by these observations, we propose
sparse QS (SQS) SD, which extends the QS framework to exploit distribution sparsity.

Main Contributions: Our contributions can be summarized as follows:

• Information-theoretical analysis: We start by deriving an information-theoretic performance
bound on the performance of SQS that decomposes the expected token rejection and resampling
rate into contributions from the SLM–LLM distribution mismatch and from quantization distortion.
This analysis, based on [20], offers insight into the trade-offs introduced by sparsification.

• K-SQS: We first present and analyze a basic SQS variant using top-K truncation, which allocates
bits to high-probability tokens, improving quantization resolution and reducing uplink cost.

• Conformal SQS (C-SQS): By fixing the cardinality at K, K-SQS cannot adapt to variability in
next-token distributions across contexts. In practice, the SLM distribution may have widely dif-
fering effective supports, making this approach inefficient. We therefore introduce a theoretically
grounded alternative, conformal QS (C-SQS), which adaptively sets the truncation threshold per
token using online conformal prediction [7]. This yields a data-dependent sparsity level, guided
by our theoretical bound, that ensures bounded deviation from the full (dense) QS distribution.

• Experimental validation: We conduct extensive experiments demonstrating that SQS and C-SQS
significantly reduce required bandwidth and end-to-end latency with negligible loss in accuracy.
Our results validate the effectiveness of structured sparsification and provide quantitative guidance
for navigating the latency–accuracy trade-off in edge–cloud LLM inference.

2 Sparsify-Quantize-and-Sample (SQS) Speculative Decoding
This section reviews edge-cloud speculative decoding (SD) and the quantize-and-sample (QS) method
from [22]. We then extend QS with sparsification, introducing sparse QS (SQS) to further reduce
bandwidth. We present an information-theoretic analysis of SQS performance, forming the basis for
protocol design in the following sections. Finally, we introduce a simple instantiation of SQS based
on top-k selection.

Speculative Decoding: Edge-cloud SD accelerates LLM inference by parallel verification of the
tokens generated by a small draft model (SLM) at the edge via a larger target model (LLM) at the

2

cloud [12]. SD operates in batches. At each batch t, the SLM takes the current prefix of accepted
tokens to generate Lt new tokens in an autoregressive manner. The n-th generated token, denoted as
X̂t

n is sampled from the SLM distribution qtn, where V is the size of the vocabulary V = {1, ..., V }.
The notation qtn(·) is an abbreviation for the conditional distribution q(·|Ct

n), where Ct
n represents

the context of all previously generated tokens, including all prior batches. A similar notation will be
used for the LLM distribution.

The draft token sequence {X̂t
1, . . . , X̂

t
Lt} and the associated distributions {qt1, . . . , qtLt} are conveyed

to the cloud, which uses them via the target LLM for parallel verification. Specifically, to verify the
n-th token X̂t

n in the batch, the target LLM computes its corresponding conditional distribution ptn
and accepts it if the inequality qtn(X̂

t
n) ≤ ptn(X̂

t
n) holds, and otherwise rejects it with probability (1−

ptn(X̂
t
n)/q

t
n(X̂

t
n)). Denoting T t as the number of accepted tokens {Xt

n = X̂t
n}T

t

n=1, with T t ≤ Lt,
the cloud samples a new token Xt

T t+1 from the adjusted distribution p̄tT t+1(·) ∝ (max(0, ptT t+1(x)−
qtT t+1(x))) if T t < Lt and from distribution ptn(·) if T t = Lt. This procedure is repeated across
batches t = 1, 2, . . . producing a sequence of T =

∑
t(T

t + 1) verified tokens {Xt
n}Tn=1. These

tokens follow the same distribution as those generated autoregressively by the cloud [12].

Quantize-and-Sample Speculative Decoding: In edge–cloud SD with a bandwidth-limited uplink
channel from edge to cloud, the edge must compresses the edge-based SLM distribution qtn into
a quantized form q̂tn prior to communicating them to the cloud. QS, introduced in [22], generates
the draft tokens {X̂t

1, . . . , X̂
t
Lt} using the quantized distributions {q̂t1, . . . , q̂tLt}. This has the key

advantage that the resulting accepted tokens {Xt
n}Tn=1 preserve the same distribution as for LLM-

generated tokens, thus maintaining the key guarantee of SD.

Sparsify-Quantize-and-Sample Speculative Decoding: While QS reduces the communication
bandwidth via quantization, further gains can be achieved by exploiting the inherent sparsity of
draft token distributions. In fact, prior works [6, 9, 13] have shown that next-token probabilities are
typically skewed, with most of the mass concentrated in a small subset. Building on this observation,
we extend QS to allow for a preliminary sparsification step. We refer to the resulting family of
procedures as SQS.

Specifically, as shown in Fig 1, the SLM probability distribution qtn is first sparsified into a distribution
q̃tn with support set X t

n ⊆ V encompassing Kt
n ≤ V terms, and then quantized into a distribution q̂tn.

By the properties of QS, the resulting protocol also guarantees that the accepted tokens have the same
distribution as for the LLM in the cloud.

We adopt with sparse lattice quantization (SLQ) [18, 17], which maps the retained Kt
n probabilities

onto a structured lattice within the probability simplex. SLQ is characterized by a resolution parameter
ℓtn, with a smaller ℓtn achieves coarser quantization at reduced bit cost.

With any SQS protocol, the number of bits required to represent the quantized vector q̂tn are given by

btn(K
t
n, ℓ

t
n) = b̃tn(K

t
n) + b̂tn(K

t
n, ℓ

t
n), (1)

where the first term, b̃tn(K
t
n), represents the number of bits required to describe the subset X t

n, and
the second term, b̂tn(K

t
n, ℓ

t
n), is the number of bits needed to describe the non-zero elements in vector

q̂tn. The term b̃tn(K
t
n) depends on the specific SQS scheme, while the second term is given by [18, 17]

b̂tn(K
t
n, ℓ

t
n) = log2

(
ℓtn +Kt

n − 1

Kt
n − 1

)
. (2)

Information-Theoretic Analysis of SQS: Building on the theoretical guarantees in [20], the
following result establishes an upper bound on the average number of rejected tokens Nrej. As in
[20], the number of rejected tokens, Nrej, represents here the number of tokens that are sampled at
the edge and then rejected and resampled at the cloud. Note that there is at most one rejected and
resampled token per batch. Appendix A.2 provides further discussion on this definition.

The bound presented below isolates two separate contributions to the average number of rejected
(and resampled) tokens: (i) the intrinsic statistical mismatch between the SLM draft distribution and
the LLM target distribution [20], and (ii) the distortion introduced by sparsification and quantization.
We denote as TV(p, q) as the total variation distance between p and q. For the proof of this result
(Theorem 1), we refer the readers to the Appendix A.2.

3

Theorem 1. Consider a sequence of T tokens {Xt}Tt=1 generated by using an SQS protocol, with
corresponding per-token subsets Xn of cardinality Kn(Xn) and resolution parameters ℓn for the
tokens n = 1, ..., T . The expected number of rejected tokens can be upper bounded as

E[Nrej] ≤
T∑

n=1

E{Xt}n−1
t=1 ∼p

[
TV

(
qn(· | {Xt}n−1

t=1), pn(· | {Xt}n−1
t=1)

)]
︸ ︷︷ ︸

SLM-LLM discrepancy

+

T∑
n=1

(
αn(Xn) +

Kn(Xn)

4ℓn

)
,︸ ︷︷ ︸

SLQ-based distortion
(3)

where the expectation E{Xt}n−1
t=1 ∼p[·] is with respect to tokens generated from the LLM model, and

the notation
αn(Xn) =

∑

x/∈X t
n

E{Xt}n−1
t=1 ∼p[q(x | {Xt}n−1

t=1)] (4)

represents the average total probability in the subset of dropped tokens (i.e., tokens not selected
during sparsification).

Top-K Sparsify-Quantize-and-Sample Speculative Decoding: In the next we propose a novel
instantiation of SQS. We start here with a simple approach, referred to as K-SQS, in which the subset
X t

n defining the support of the quantized distribution is selected by following the standard top-K
selection rule for a fixed value of the hyperparameter K. Accordingly, the subset X t

n encompasses
the K terms x ∈ V in the vocabulary with the largest probabilities qtn(x) under the SLM. For K-SQS,
the overhead for representing the subset X t

n is given by

b̃tn(K) = log2

(
V

K

)
, (5)

since there are
(
V
K

)
possible subsets of dimension K. A performance analysis for K-SQS follows

directly from the general result in Theorem 1. In particular, the SLQ-based distortion term in the
upper bound (Theorem 1) is characterized by a fixed value Kn(Xn) = K, while the value of the
probability αn(Xn) varies across index n, as the total mass in the dropped tokens changes across
token generation.

3 Conformal Sparsify-Quantize-and-Sample Speculative Decoding

Motivation for Adaptive Sparsification: By fixing the cardinality at K, K-SQS cannot adapt to
variability in next-token distributions across contexts. In practice, the distribution qtn may have widely
differing effective supports across indices t and n [11, 10], making this approach inefficient. For
example, after the prompt “The capital of France is,” the continuation is highly predictable
(“Paris”), allowing aggressive sparsification—i.e., a small cardinality Kt

n for subset X t
n—without

quality loss. In contrast, a context such as “She opened the box and found” admits more
uncertainty in the next-token prediction, requiring a larger support set X t

n with larger cardinality Kt
n.

Adaptive Thresholding: To overcome this limitation, this section introduces an adaptive
thresholding strategy based on online conformal prediction [7, 1, 21]. In this scheme, referred to as
conformal SQS (C-SQS), the support set is determined as

X t
n(β

t
n) = {x ∈ V : qtn(x) ≥ βt

n}, (6)

where the sequence of thresholds βt
n is designed to control the average number of rejected tokens via

the upper bound (1).

Specifically, the key idea behind C-SQS is to vary the threshold βt
n in (6) in such a way so as to ensure

that the term
∑T

n=1 αn(Xn) in the upper bound (1) does not grow too quickly with the number of
tokens T . This design goal is motivated by the result in Theorem 1, which suggests that controlling
this term provides a way to limit the number of rejections. We specifically aim at guaranteeing an
upper bound of the form:

1

T

T∑

n=1

αn(Xn) ≤ α+
C

T
, (7)

where α ∈ (0, 1) is a target value, C is some arbitrary fixed positive constant, and index n runs over
the accepted tokens. The requirement (7) ensures that the term in the upper bound (1) that is negatively

4

affected by sparsification, namely
∑T

n=1 αn(Xn), is asymptotically no larger than a target value α.
The choice of hyperparameter α dictates the degree to which we wish C-SQS to be aggressive in
sparsification. A larger α allows for a larger growth of the distortion due to sparsification, which in
turn makes it possible to reduce the second term in the SLQ-based distortion in (1). The fixed value of
K used in K-SQS in contrast, carries no operational significance in terms of the final performance of
the algorithm, the hyperparameter α thus relates directly to the protocol’s performance via Theorem
1, controlling the trade-off between sparsification distortion and bandwidth reduction.

In order to ensure (7), SQS adopts an update rule based on online conformal prediction [2], whereby
the threshold is updated during token generation as follows:

βt
n+1 = βt

n − η ·


∑

x/∈X t
n

qtn(x)− α


 , (8)

where η is the learning rate. The sum
∑

x/∈X t
n
qtn(x) corresponds to the mass of the SLM distribution

that is not contained in the support set X t
n. When averaged over the accepted tokens, this quantity

yields the term
∑T ′

n=1 αn(Xn), where T ′ is the total number of tokens accepted so far. Intuitively, if
the probability

∑
x/∈X t

n
qtn(x) exceeds the target value α, then the retained support of the distribution

is too small and one needs to decrease the threshold. Conversely, one can increase the threshold.

Since the average in the upper bound (1) is only over tokens generated from the LLM, as summarized
in Algorithm 1, SQS implements a check-pointing and backtracking strategy, whereby the update (8)
is first applied at the edge for all tokens for each batch. Once feedback is received from the cloud,
the value of the threshold is returned to the value of the last accepted token, and a further iteration is
done for the new, (T t + 1)-th token.

Algorithm 1 Conformal Sparse Quantize-and-Sample Speculative Decoding (C-SQS)

1: Input: Initial context, vocabulary V , target deviation α, learning rate η, initial threshold β1
1 ,

per-batch number of tokens Lt, resolution parameters ℓtn
2: for each batch t = 1, 2, . . . do
3: Set n← 1
4: for each token n = 1, ..., Lt do
5: Compute next-token SLM distribution qtn(·)
6: Evaluate support X t

n(β
t
n) and cardinality |X t

n(β
t
n)|

7: Apply SLQ to q̃tn to obtain quantized SLM distribution q̂tn and sample Xt
n ∼ q̂tn

8: Apply threshold update (8)
9: end for

10: Transmit {q̂tn,X t
n(β

t
n), X

t
n}L

t

l=1 to the cloud.
11: Receive T t (number of accepted tokens) and new token Xt

T t+1 from the cloud

12: Apply the update (8) on the new token as βt
T t+1 = βt

T t − η ·
(∑

x/∈XTt
n

qT
t

n (x)− α
)

13: Initialize next batch with βt+1
1 ← βt

T t+1
14: end for

Communication Overhead: Since C-SQS varies the support Kt
n along the generated tokens, the

edge must communicate to the cloud both the size of the subset and the specific subset. This yields
the number of bitsb̃tn(K

t
n) =

⌈
log2

(|V |
Kt

n

)⌉
+ ⌈log2 |V |⌉ ,where the second term, log2 |V | represents

the additional overhead required to communicate the value Kt
n.

Theoretical Guarantee: The following theorem, as proved in Appendix A.3, justifies the use of the
update rule (8).

Theorem 2. For any learning rate η > 0, C-SQS satisfies the requirement (7) as

1

T

T∑

n=1

αn(Xn) ≤ α+
|β1

1 |+ 1 + ηα

ηT
. (9)

5

Figure 2: Latency (average total time in seconds) and resampling rate for K-SQS and C-SQS across
different temperatures (T). K-SQS shows increasing latency and higher variability in resampling
rate with increase in T , while C-SQS maintains more stable performance, achieving a better trade-off
between latency and resampling efficiency in higher-uncertainty regimes.

4 Experiments and Discussion

Evaluation Setup and Objectives: We have conducted text completion experiments on the One
Billion Word Benchmark (LM1B) dataset [3]. We have used GPT-Neo-125M [4] as the edge SLM,
and GPT-Neo-1.3B [5] as the cloud LLM. For evaluating and comparing K-SQS and C-SQS, we
analyze two key performance metrics: (a) the average end-to-end latency (average total time),
consisting of the SLM computation time, uplink communication time, and cloud LLM verification
time as detailed in [22]; and (b) average resampling rate, i.e., the ratio between the average number
of rejected and resampled tokens, Nrej and the total number of batches. We vary the sampling
temperature of the SLM and LLM between [0, 1], while setting the quantization resolution ℓ and
the per-batch uplink budget B (in bits) as B = 5000 and ℓ = 100. For each batch t, the number of
generated tokens is selected as Lt = max{L ∈ N0 :

∑L
n=1 b

t
n(K

t
n, ℓ) ≤ B }. This condition is

enforced in a sequential way, stopping token generation when the bit budget is exhausted. For C-SQS,
we have used a fixed learning rate η = 0.001 and deviation parameter α = 0.0005.

Results: Figure 2 shows the average latency and resampling rate for K-SQS and C-SQS across
different temperatures T . At low temperatures, the draft distribution is sharply peaked, so the target
token typically falls within the top-K set for a fixed K. In this regime, K-SQS yields fewer rejections
and resampling than C-SQS, provided K is chosen appropriately. This in turn yields a lower latency
for K-SQS as compared to C-SQS.

As the temperature increases, however, the SLM distribution becomes more diffuse, spreading
probability mass over a wider set of tokens. This expansion of the support set happens selectively,
only at the tokens for which the SLM distribution is less sharp. In this setting, C-SQS adaptively
expands its support, making it more likely to include the target token and thereby reducing its latency
and resampling rate. This conclusion is also reflected in the latency performance. Overall, we observe
a clear crossover: K-SQS performs better at low temperatures, while C-SQS is more effective at
higher temperatures. In Appendix A.4 we provide additional experimental results implementing an
ablation study on K-SQS and C-SQS.

Concluding Remarks: In summary, this work demonstrates that efficient compression is critical
for overcoming the bandwidth bottleneck in edge–cloud SD. By deriving an information-theoretic
characterization of resampling rate and introducing the SQS-SD framework, we show how structured
sparsification and quantization can effectively reduce communication costs while preserving accuracy.
Both K-SQS and C-SQS significantly reduce latency, and resampling rate, with K-SQS proving
more effective in low-uncertainty regimes (lower temperatures), while C-SQS achieves the most
favorable balance under high-uncertainty regimes (higher temperatures). These results highlight the
potential of distribution-aware compression to make edge–cloud LLM inference both practical and
scalable.

Acknowledgment: This work was supported by US NSF under Grants CCF-2100013, CNS-2209951,
CNS-2317192; by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific
Computing under Award DE-SC-ERKJ422; and by NIH under Award R01-CA261457-01A1. The

6

work of O. Simeone was supported by the Open Fellowships of the EPSRC (EP/W024101/1) and by
the EPSRC project EP/X011852/1.

References
[1] Anastasios Angelopoulos, Emmanuel Candes, and Ryan J Tibshirani. Conformal pid control for

time series prediction. Advances in neural information processing systems, 36:23047–23074,
2023.

[2] Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. Theoretical foundations
of conformal prediction. arXiv preprint arXiv:2411.11824, 2024.

[3] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and
Tony Robinson. One billion word benchmark for measuring progress in statistical language
modeling. arXiv preprint arXiv:1312.3005, 2013.

[4] EleutherAI. Eleutherai/gpt-neo-125m, 2024. Accessed: 011-2024.

[5] EleutherAI. Eleutherai/gpt-neo-1.3b, 2024. Accessed: 011-2024.

[6] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv
preprint arXiv:1805.04833, 2018.

[7] Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift.
Advances in Neural Information Processing Systems, 34:1660–1672, 2021.

[8] Zixu Hao, Huiqiang Jiang, Shiqi Jiang, Ju Ren, and Ting Cao. Hybrid slm and llm for edge-
cloud collaborative inference. In Proceedings of the Workshop on Edge and Mobile Foundation
Models, pages 36–41, 2024.

[9] John Hewitt, Christopher D Manning, and Percy Liang. Truncation sampling as language model
desmoothing. arXiv preprint arXiv:2210.15191, 2022.

[10] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[11] Mingyu Jin, Kai Mei, Wujiang Xu, Mingjie Sun, Ruixiang Tang, Mengnan Du, Zirui Liu, and
Yongfeng Zhang. Massive values in self-attention modules are the key to contextual knowledge
understanding. arXiv preprint arXiv:2502.01563, 2025.

[12] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274–19286.
PMLR, 2023.

[13] Georgy Noarov, Soham Mallick, Tao Wang, Sunay Joshi, Yan Sun, Yangxinyu Xie, Mengxin
Yu, and Edgar Dobriban. Foundations of top-k decoding for language models. arXiv preprint
arXiv:2505.19371, 2025.

[14] Seungeun Oh, Jinhyuk Kim, Jihong Park, Seung-Woo Ko, Tony QS Quek, and Seong-Lyun Kim.
Uncertainty-aware hybrid inference with on-device small and remote large language models.
arXiv preprint arXiv:2412.12687, 2024.

[15] Jihoon Park, Seungeun Oh, and Seong-Lyun Kim. Energy-efficient wireless llm inference via
uncertainty and importance-aware speculative decoding, 2025.

[16] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and
quantization. arXiv preprint arXiv:1802.05668, 2018.

[17] Noel Teku, Sudarshan Adiga, and Ravi Tandon. Communicating classification results over noisy
channels. In ICC 2024-IEEE International Conference on Communications, pages 2131–2136.
IEEE, 2024.

[18] Noel Teku, Sudarshan Adiga, and Ravi Tandon. Latency-distortion tradeoffs in communicating
classification results over noisy channels. IEEE Transactions on Communications, 2024.

7

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[20] Ming Yin, Minshuo Chen, Kaixuan Huang, and Mengdi Wang. A theoretical perspective
for speculative decoding algorithm. Advances in Neural Information Processing Systems,
37:128082–128117, 2024.

[21] Matteo Zecchin and Osvaldo Simeone. Localized adaptive risk control. Advances in Neural
Information Processing Systems, 37:8165–8192, 2024.

[22] Guangyi Zhang, Yunlong Cai, Guanding Yu, Petar Popovski, and Osvaldo Simeone. Quantize-
sample-and-verify: Llm acceleration via adaptive edge-cloud speculative decoding. arXiv
preprint arXiv:2507.00605, 2025.

A Appendix

A.1 Sparse Lattice-based Quantization

Sparse lattice–based quantization (SLQ) [18] projects the top-K probability vector onto a structured
lattice within the simplex, enabling more efficient representation and finer control over quantization
error for a given bit budget. Let us consider a resource-constrained edge device running a SLM that
produces a probability distribution q over a vocabulary V . If α denotes the cumulative probability
mass of the least likely tokens, sparse token analysis identifies the subset of most likely tokens S ⊆ V
that accounts for the top (1−α) probability mass. Let |S| = K be the number of such top tokens. The
sparse lattice-based quantization technique [18] represents this K-dimensional probability vector as a
point on a discrete lattice within the K-dimensional probability simplex {q̂ ∈ QK |∑K

i=1 q̂[i] = 1}.
Given the original SLM distribution q, the lattice-quantized distribution over the top-K tokens is
denoted q̂ and defined as:

Q̂ℓ =

{
[q̂[1], q̂[2], . . . , q̂[K]] ∈ QK

∣∣∣∣∣ q̂[i] =
b[i]

ℓ
,

K∑

i=1

b[i] = ℓ

}
,

where ℓ, b[i] are positive integers and ℓ is the lattice resolution parameter, and b[i] are integer counts
corresponding to each token probability. The overall procedure is shown in Algorithm 2.

A.2 Proof of Theorem 1

<latexit sha1_base64="iek6wXmRxQwwKxIGRZYMLq8XkZg=">AAAB6nicbZC7TsMwFIZPyq2UW4GRxaJCYqoSBmCjEgwMDEXQi9SGynGd1qrtRLaDVEV9BBYGUGHlZVjZeBuctgO0/JKlT/9/jnzOCWLOtHHdbye3tLyyupZfL2xsbm3vFHf36jpKFKE1EvFINQOsKWeS1gwznDZjRbEIOG0Eg8ssbzxSpVkk780wpr7APclCRrCx1t3Ng9cpltyyOxFaBG8GpYvPcaa3aqf41e5GJBFUGsKx1i3PjY2fYmUY4XRUaCeaxpgMcI+2LEosqPbTyagjdGSdLgojZZ80aOL+7kix0HooAlspsOnr+Swz/8taiQnP/ZTJODFUkulHYcKRiVC2N+oyRYnhQwuYKGZnRaSPFSbGXqdgj+DNr7wI9ZOyd1o+vXVLlSuYKg8HcAjH4MEZVOAaqlADAj14ghd4dbjz7Iyd92lpzpn17MMfOR8/AZqSGw==</latexit>

L1

<latexit sha1_base64="oyMK7F4AA0poDwApfqt1s6VFYhk=">AAAB73icbVA9SwNBEN3zM8avqKXNYhCswl2KaBnRwjKC+YDkCHt7c8mSvb1zd04IIX/CxkIRW/+Onf/GTXKFJj4YeLw3w8y8IJXCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZZJMc2jyRCa6EzADUihookAJnVQDiwMJ7WB0M/PbT6CNSNQDjlPwYzZQIhKcoZU615xDihD2S2W34s5BV4mXkzLJ0eiXvnphwrMYFHLJjOl6bor+hGkUXMK02MsMpIyP2AC6lioWg/En83un9NwqIY0SbUshnau/JyYsNmYcB7YzZjg0y95M/M/rZhhd+ROh0gxB8cWiKJMUEzp7noZCA0c5toRxLeytlA+ZZhxtREUbgrf88ippVSterVK7r5brt3kcBXJKzsgF8cglqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPys4/u</latexit>

Accepted

<latexit sha1_base64="lN+hYJCbugw8Jeiy1v5q//UmTNA=">AAAB6nicbVC7SgNBFL0bXzG+YmwEmyFBsAq7FtEyYArLiOYByRJmJ7PJkNmZZWZWCEs+wcZCEVvxL/wDKzv/xsmj0MQDFw7n3Mu99wQxZ9q47reTWVvf2NzKbud2dvf2D/KHhaaWiSK0QSSXqh1gTTkTtGGY4bQdK4qjgNNWMLqa+q17qjST4s6MY+pHeCBYyAg2VroVPa+XL7lldwa0SrwFKVWPPz8KtfdivZf/6vYlSSIqDOFY647nxsZPsTKMcDrJdRNNY0xGeEA7lgocUe2ns1Mn6NQqfRRKZUsYNFN/T6Q40nocBbYzwmaol72p+J/XSUx46adMxImhgswXhQlHRqLp36jPFCWGjy3BRDF7KyJDrDAxNp2cDcFbfnmVNM/LXqVcubFp1GCOLJxAEc7AgwuowjXUoQEEBvAAT/DscOfReXFe560ZZzFzBH/gvP0AB+uQng==</latexit>n1

<latexit sha1_base64="J4QPPYrb/UVX7iUKCq07Z2miQuw=">AAAB8HicdVBNS8NAEN3Ur1q/qh69LBbBU0hbaeutoAePVeyHtKFsNpN26W4SdjdCKf0VXjwo4tWf481/4zaNoKIPBh7vzTAzz4s5U9pxPqzcyura+kZ+s7C1vbO7V9w/6KgokRTaNOKR7HlEAWchtDXTHHqxBCI8Dl1vcrHwu/cgFYvCWz2NwRVkFLKAUaKNdHcDioiYgz8slhy7flZtVCrYsZ0UKalW6+e4nCkllKE1LL4P/IgmAkJNOVGqX3Zi7c6I1IxymBcGiYKY0AkZQd/QkAhQ7iw9eI5PjOLjIJKmQo1T9fvEjAilpsIznYLosfrtLcS/vH6ig4Y7Y2GcaAjpclGQcKwjvPge+0wC1XxqCKGSmVsxHRNJqDYZFUwIX5/i/0mnYpdrdu26UmpeZnHk0RE6RqeojOqoia5QC7URRQI9oCf0bEnr0XqxXpetOSubOUQ/YL19AilNkKw=</latexit>

Resampled

<latexit sha1_base64="BwB6hEiuXreyuTjdH9nEjX+X9FI=">AAAB8nicdVDLSsNAFJ34rPVVdelmsCiuQpJKW3cFXbisYh/QljKZ3LRjJw9mJkIJ/Qw3LhRx69e482+cphFU9MDA4Zx7mXuOG3MmlWV9GEvLK6tr64WN4ubW9s5uaW+/LaNEUGjRiEei6xIJnIXQUkxx6MYCSOBy6LiTi7nfuQchWRTeqmkMg4CMQuYzSpSWejdwB1SBh/snw1LZMmtnlbrjYMu0MmSkUqmdYztXyihHc1h673sRTQIIFeVEyp5txWqQEqEY5TAr9hMJMaETMoKepiEJQA7S7OQZPtaKh/1I6BcqnKnfN1ISSDkNXD0ZEDWWv725+JfXS5RfH6QsjBMFIV185CccqwjP82OPCZ2YTzUhVDB9K6ZjIohuQciiLuErKf6ftB3TrprVa6fcuMzrKKBDdIROkY1qqIGuUBO1EEURekBP6NlQxqPxYrwuRpeMfOcA/YDx9gm6/pDr</latexit>

Rejected &

<latexit sha1_base64="oyMK7F4AA0poDwApfqt1s6VFYhk=">AAAB73icbVA9SwNBEN3zM8avqKXNYhCswl2KaBnRwjKC+YDkCHt7c8mSvb1zd04IIX/CxkIRW/+Onf/GTXKFJj4YeLw3w8y8IJXCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZZJMc2jyRCa6EzADUihookAJnVQDiwMJ7WB0M/PbT6CNSNQDjlPwYzZQIhKcoZU615xDihD2S2W34s5BV4mXkzLJ0eiXvnphwrMYFHLJjOl6bor+hGkUXMK02MsMpIyP2AC6lioWg/En83un9NwqIY0SbUshnau/JyYsNmYcB7YzZjg0y95M/M/rZhhd+ROh0gxB8cWiKJMUEzp7noZCA0c5toRxLeytlA+ZZhxtREUbgrf88ippVSterVK7r5brt3kcBXJKzsgF8cglqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPys4/u</latexit>

Accepted

<latexit sha1_base64="J4QPPYrb/UVX7iUKCq07Z2miQuw=">AAAB8HicdVBNS8NAEN3Ur1q/qh69LBbBU0hbaeutoAePVeyHtKFsNpN26W4SdjdCKf0VXjwo4tWf481/4zaNoKIPBh7vzTAzz4s5U9pxPqzcyura+kZ+s7C1vbO7V9w/6KgokRTaNOKR7HlEAWchtDXTHHqxBCI8Dl1vcrHwu/cgFYvCWz2NwRVkFLKAUaKNdHcDioiYgz8slhy7flZtVCrYsZ0UKalW6+e4nCkllKE1LL4P/IgmAkJNOVGqX3Zi7c6I1IxymBcGiYKY0AkZQd/QkAhQ7iw9eI5PjOLjIJKmQo1T9fvEjAilpsIznYLosfrtLcS/vH6ig4Y7Y2GcaAjpclGQcKwjvPge+0wC1XxqCKGSmVsxHRNJqDYZFUwIX5/i/0mnYpdrdu26UmpeZnHk0RE6RqeojOqoia5QC7URRQI9oCf0bEnr0XqxXpetOSubOUQ/YL19AilNkKw=</latexit>

Resampled

<latexit sha1_base64="BwB6hEiuXreyuTjdH9nEjX+X9FI=">AAAB8nicdVDLSsNAFJ34rPVVdelmsCiuQpJKW3cFXbisYh/QljKZ3LRjJw9mJkIJ/Qw3LhRx69e482+cphFU9MDA4Zx7mXuOG3MmlWV9GEvLK6tr64WN4ubW9s5uaW+/LaNEUGjRiEei6xIJnIXQUkxx6MYCSOBy6LiTi7nfuQchWRTeqmkMg4CMQuYzSpSWejdwB1SBh/snw1LZMmtnlbrjYMu0MmSkUqmdYztXyihHc1h673sRTQIIFeVEyp5txWqQEqEY5TAr9hMJMaETMoKepiEJQA7S7OQZPtaKh/1I6BcqnKnfN1ISSDkNXD0ZEDWWv725+JfXS5RfH6QsjBMFIV185CccqwjP82OPCZ2YTzUhVDB9K6ZjIohuQciiLuErKf6ftB3TrprVa6fcuMzrKKBDdIROkY1qqIGuUBO1EEURekBP6NlQxqPxYrwuRpeMfOcA/YDx9gm6/pDr</latexit>

Rejected &

<latexit sha1_base64="kREgggE4y6BMj4+WsQlQmy4ZLBA=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl2QaBm0sbCIaD4gOcPeZi5Zsrd37O4JIeQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZuK7+9s7u3Xzg4bOg4VQzrLBaxagVUo+AS64Ybga1EIY0Cgc1geD31m0+oNI/lgxkl6Ee0L3nIGTVWur99LHcLRbfkzkCWiZeRImSodQtfnV7M0gilYYJq3fbcxPhjqgxnAif5TqoxoWxI+9i2VNIItT+enTohp1bpkTBWtqQhM/X3xJhGWo+iwHZG1Az0ojcV//PaqQkv/TGXSWpQsvmiMBXExGT6N+lxhcyIkSWUKW5vJWxAFWXGppO3IXiLLy+TRrnkVUqVu/Ni9SqLIwfHcAJn4MEFVOEGalAHBn14hld4c4Tz4rw7H/PWFSebOYI/cD5/AMwqjX8=</latexit>

L2

<latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2
<latexit sha1_base64="oyMK7F4AA0poDwApfqt1s6VFYhk=">AAAB73icbVA9SwNBEN3zM8avqKXNYhCswl2KaBnRwjKC+YDkCHt7c8mSvb1zd04IIX/CxkIRW/+Onf/GTXKFJj4YeLw3w8y8IJXCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZZJMc2jyRCa6EzADUihookAJnVQDiwMJ7WB0M/PbT6CNSNQDjlPwYzZQIhKcoZU615xDihD2S2W34s5BV4mXkzLJ0eiXvnphwrMYFHLJjOl6bor+hGkUXMK02MsMpIyP2AC6lioWg/En83un9NwqIY0SbUshnau/JyYsNmYcB7YzZjg0y95M/M/rZhhd+ROh0gxB8cWiKJMUEzp7noZCA0c5toRxLeytlA+ZZhxtREUbgrf88ippVSterVK7r5brt3kcBXJKzsgF8cglqZM70iBNwokkz+SVvDmPzovz7nwsWtecfOaE/IHz+QPys4/u</latexit>

Accepted

<latexit sha1_base64="J4QPPYrb/UVX7iUKCq07Z2miQuw=">AAAB8HicdVBNS8NAEN3Ur1q/qh69LBbBU0hbaeutoAePVeyHtKFsNpN26W4SdjdCKf0VXjwo4tWf481/4zaNoKIPBh7vzTAzz4s5U9pxPqzcyura+kZ+s7C1vbO7V9w/6KgokRTaNOKR7HlEAWchtDXTHHqxBCI8Dl1vcrHwu/cgFYvCWz2NwRVkFLKAUaKNdHcDioiYgz8slhy7flZtVCrYsZ0UKalW6+e4nCkllKE1LL4P/IgmAkJNOVGqX3Zi7c6I1IxymBcGiYKY0AkZQd/QkAhQ7iw9eI5PjOLjIJKmQo1T9fvEjAilpsIznYLosfrtLcS/vH6ig4Y7Y2GcaAjpclGQcKwjvPge+0wC1XxqCKGSmVsxHRNJqDYZFUwIX5/i/0mnYpdrdu26UmpeZnHk0RE6RqeojOqoia5QC7URRQI9oCf0bEnr0XqxXpetOSubOUQ/YL19AilNkKw=</latexit>

Resampled

<latexit sha1_base64="BwB6hEiuXreyuTjdH9nEjX+X9FI=">AAAB8nicdVDLSsNAFJ34rPVVdelmsCiuQpJKW3cFXbisYh/QljKZ3LRjJw9mJkIJ/Qw3LhRx69e482+cphFU9MDA4Zx7mXuOG3MmlWV9GEvLK6tr64WN4ubW9s5uaW+/LaNEUGjRiEei6xIJnIXQUkxx6MYCSOBy6LiTi7nfuQchWRTeqmkMg4CMQuYzSpSWejdwB1SBh/snw1LZMmtnlbrjYMu0MmSkUqmdYztXyihHc1h673sRTQIIFeVEyp5txWqQEqEY5TAr9hMJMaETMoKepiEJQA7S7OQZPtaKh/1I6BcqnKnfN1ISSDkNXD0ZEDWWv725+JfXS5RfH6QsjBMFIV185CccqwjP82OPCZ2YTzUhVDB9K6ZjIohuQciiLuErKf6ftB3TrprVa6fcuMzrKKBDdIROkY1qqIGuUBO1EEURekBP6NlQxqPxYrwuRpeMfOcA/YDx9gm6/pDr</latexit>

Rejected &

<latexit sha1_base64="2NsyafvlDclIvGV9TscTgPIYb5Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5UomXQxsIigvmA5Ax7m71kye7esbsnhCN/wcZCEVv/kJ3/xr3kCk18MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHyT+e0nqjSL5IOZxNQXeChZyAg2mXT3eF7qlytu1Z0BLRMvJxXI0eiXv3qDiCSCSkM41rrrubHxU6wMI5xOS71E0xiTMR7SrqUSC6r9dHbrFJ1YZYDCSNmSBs3U3xMpFlpPRGA7BTYjvehl4n9eNzHhlZ8yGSeGSjJfFCYcmQhlj6MBU5QYPrEEE8XsrYiMsMLE2HiyELzFl5dJ66zq1aq1+4tK/TqPowhHcAyn4MEl1OEWGtAEAiN4hld4c4Tz4rw7H/PWgpPPHMIfOJ8/AqqNlA==</latexit>

L3

<latexit sha1_base64="nUohYtOw+leP4fV8XsIH1r9GXYg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6l/3zfrniVt05yF/i5aQCORr98mdvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JilQEJY2VLGjJXf05kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb/8l7TOql6tWru7qNSv8ziKcATHcAoeXEIdbqEBTWAwhCd4gVdHOM/Om/O+aC04+cwh/ILz8Q0DDo2j</latexit>n3

<latexit sha1_base64="j+2kB4KqOPRhH5pRs+4adwjpZ4M=">AAACC3icbVA9SwNBEN2L3/EramlzGIRYJNyJRBshaGMhomA+IInH3maSrNnbO3bnxHCkt/Gv2FgoYusfsPPfuIkpNPHBwOO9GWbm+ZHgGh3ny0rNzM7NLywupZdXVtfWMxubFR3GikGZhSJUNZ9qEFxCGTkKqEUKaOALqPq906FfvQOleSivsR9BM6AdyducUTSSl9m58JIGwj0mCm7zGOJgcNzQceBh7vwG89LDPS+TdQrOCPY0ccckS8a49DKfjVbI4gAkMkG1rrtOhM2EKuRMwCDdiDVElPVoB+qGShqAbiajXwb2rlFadjtUpiTaI/X3REIDrfuBbzoDil096Q3F/7x6jO2jZsJlFCNI9rOoHQsbQ3sYjN3iChiKviGUKW5utVmXKsrQxJc2IbiTL0+Tyn7BLRaKVwfZ0sk4jkWyTXZIjrjkkJTIGbkkZcLIA3kiL+TVerSerTfr/ac1ZY1ntsgfWB/fPL6bKw==</latexit>

Nrej-tot =
∑

t

(Lt → nt)

<latexit sha1_base64="5njHwsUIR840ZlKZKH0w8oqL1jQ=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUlcVHFVdONKKtgHtKFMJjft2MkkzEyEEgpu/BU3LhRx60+482+ctllo64GBwzn3cuccP+FMacf5tgpLyyura8X10sbm1vaOvbvXVHEqKTRozGPZ9okCzgQ0NNMc2okEEvkcWv7wauK3HkAqFos7PUrAi0hfsJBRoo3Usw9u0sgHieMQS7gHqiHAOh6CUBc9u+xUnCnwInFzUkY56j37qxvENI1AaMqJUh3XSbSXEakZ5TAudVMFCaFD0oeOoYJEoLxsmmGMj40S4DCW5gmNp+rvjYxESo0i30xGRA/UvDcR//M6qQ7PvYyJJNUg6OxQmHKTEk8KwQGTJjYfGUKoZOavmA6IJKYKqUqmBHc+8iJpnlbcaqV6e1quXeZ1FNEhOkInyEVnqIauUR01EEWP6Bm9ojfryXqx3q2P2WjBynf20R9Ynz90fZdq</latexit>

Number of rejected tokens:

<latexit sha1_base64="EJDPaTDWir1LryO9fVRJH3PTiig=">AAACEXicbVC7SgNBFJ2Nrxhfq5Y2g0FIFXZTqFgFbawkgnlAEsLs7N1kzMzsMjMrhCW/YOOv2FgoYmtn5984eRSaeGDg3HPu5c49QcKZNp737eRWVtfWN/Kbha3tnd09d/+goeNUUajTmMeqFRANnEmoG2Y4tBIFRAQcmsHwauI3H0BpFss7M0qgK0hfsohRYqzUc0s3qQhA4TjCCu6BGggxkaEtNBEJt5WJhyD1Rc8temVvCrxM/DkpojlqPferE8Y0FSAN5UTrtu8lppsRZRjlMC50Ug0JoUPSh7alkgjQ3Wx60RifWCXEUazskwZP1d8TGRFaj0RgOwUxA73oTcT/vHZqovNuxmSSGpB0tihKub0ST+LBIVM2BD6yhFDF7F8xHRBFbDBKF2wI/uLJy6RRKfun5dPbSrF6OY8jj47QMSohH52hKrpGNVRHFD2iZ/SK3pwn58V5dz5mrTlnPnOI/sD5/AECz50m</latexit>

Number of rejected and resampled tokens:

Figure 3: Illustration of the definition of rejected and resampled tokens, Nrej, and of the total number
of rejected tokens.

As illustrated in Fig. 3, the number of rejected-and-resampled tokens by the LLM, Nrej, corresponds
to the number of times in which the target LLM invalidates a draft proposal and resamples the rejected
token. By contrast, the total number of rejected tokens (Ntot-rej in Fig. 3) corresponds to the total
number of SLM generated tokens that were rejected by the target LLM, including all tokens following
the resampled token. Computing the expected number of total rejected tokens is non-trivial, since of
the rejected tokens do not follow the LLM distribution. For this reason, following [20], we focus on
bounding the expected value of rejected and resampled tokens.

8

Algorithm 2 Sparse-Lattice–Based Quantization

1: Input: Prompt x, vocabulary V , lattice resolution ℓ, top-K size K
2: Output: Sparse-lattice-based quantized probability vector q̂
3: Probability Vector Generation: Generate probability distribution q over V from the SLM given

prompt x
4: Top-K Selection: Identify the subset S ⊆ V of K tokens with highest probabilities. Extract

q = [q[1], q[2], . . . , q[K]].
5: Lattice-Based Quantization:
6: Compute b′[i]← ⌊ℓ · q[i] + 1

2⌋, for i = 1, . . . ,K

7: ℓ′ ←∑K
i=1 b

′[i]
8: if ℓ′ ̸= ℓ then
9: ζ[i]← b′[i]− ℓ · q[i], for i = 1, . . . ,K

10: Sort indices by increasing ζ[i].
11: if ℓ′ − ℓ > 0 then
12: Decrease the |ℓ′ − ℓ| largest ζ[i] in b′[i] by 1
13: else
14: Increase the |ℓ′ − ℓ| smallest ζ[i] in b′[i] by 1
15: end if
16: end if
17: q̂[i]← b′[i]/ℓ, for i = 1, . . . ,K
18: Compute lexicographic index to represent b = [b′[1], . . . , b′[K]]
19: Return: Output q̂

To start, we define a sequence of random variables Rn ∈ {0, 1}, where Rn = 1 indicates that the
n-th token is rejected. The total number of rejections is given by

Nrej =

T∑

n=1

Rn. (10)

Given verified tokens {Xt}n−1
t=1 , we compute

P(Reject at n | {Xt}n−1
t=1). (11)

Let X̃ ∼ q̂n(· | {Xt}n−1
t=1) be the candidate draft token. By the law of total probability,

P(Reject at n | {Xt}n−1
t=1) =

∑

X̃

P(Reject at n | X̃, {Xt}n−1
t=1) q̂n(X̃ | {Xt}n−1

t=1). (12)

By the rejection design of SD, we have

P(Reject at n | X̃, {Xt}n−1
t=1) = 1−min

{
1,

pn(X̃ | {Xt}n−1
t=1)

q̂n(X̃ | {Xt}n−1
t=1)

}
. (13)

Thus, the probability P(Reject at n | {Xt}n−1
t=1) can be written as

∑

X̃

max{0, q̂n(X̃ | {Xt}n−1
t=1)− pn(X̃ | {Xt}n−1

t=1)} = TV
(
q̂n(· | {Xt}n−1

t=1), pn(· | {Xt}n−1
t=1)

)
.

(14)

By the law of total expectation, we arrive at

E[Nrej] =

T∑

n=1

E[Rn] =

T∑

n=1

E{Xt}n−1
t=1 ∼q

[
TV
(
q̂n(· | {Xt}n−1

t=1), pn(· | {Xt}n−1
t=1)

)]
. (15)

9

Therefore, the expected number of rejections satisfies

E[Nrej] =

T∑

n=1

E{Xt}n−1
t=1 ∼p

[
TV
(
q̂n(· | {Xt}n−1

t=1), pn(· | {Xt}n−1
t=1)

)]

(a)

≤
T∑

n=1

E{Xt}n−1
t=1 ∼p

[
TV
(
q̂n(· | {Xt}n−1

t=1), qn(· | {Xt}n−1
t=1)

)]

+

T∑

n=1

E{Xt}n−1
t=1 ∼p

[
TV
(
qn(· | {Xt}n−1

t=1), pn(· | {Xt}n−1
t=1)

)]
, (16)

where inequality (a) holds due to the triangle inequality.

Inspired by [18], we can also bound the sparse lattice-based quantization (SLQ) term∑T
n=1 E{Xt}n−1

t=1 ∼p

[
TV
(
q̂n(· | {Xt}n−1

t=1), qn(· | {Xt}n−1
t=1)

)]
. To simply the notation, we denote

q(· | {Xt}n−1
t=1) as q.

Given the inequality
∑

i∈k q[i] ≥ 1− α, α ∈ [0, 1], we have
∑

i/∈k q[i] ≤ α. Let S =
∑

i∈k q[i].
We define q̄ as the normalized probability vector over the K entries, where

q̄[i] =

{
q[i]
S , i ∈ k,

0, otherwise.
(17)

We upper bound TV(q, q̄) as follows:

TV(q, q̄) =
1

2

∑

i

|q[i]− q̄[i]|

=
1

2

(∑

i∈k

∣∣∣∣q[i]−
q[i]

S

∣∣∣∣+
∑

i/∈k

|q[i]− q̄[i]|
)

(a)
=

1

2

(∑

i∈k

q[i]

∣∣∣∣1−
1

S

∣∣∣∣+
∑

i/∈k

q[i]

)

=
1

2

(∑

i∈k

q[i]
|S − 1|

S
+
∑

i/∈k

q[i]

)

(b)
=

1

2

(∑

i∈k

q[i]
1− S

S
+
∑

i/∈k

q[i]

)
, (18)

where (a) follows from q̄[i] = 0 for all i /∈ k, and (b) follows from S ≥ 0.

Following similar steps, we have

TV(q, q̄)
(a)
=

1

2

(∑

i∈k

q[i]

S
−
∑

i∈k

q[i] +
∑

i/∈k

q[i]

)
=

1

2

(∑
i∈k q[i]

S
−
∑

i∈k

q[i] +
∑

i/∈k

q[i]

)

(b)
=

1

2

(
1−

∑

i∈k

q[i] +
∑

i/∈k

q[i]

)

(c)
= 1−

∑

i∈k

q[i]
(d)

≤ α, (19)

where (a) follows from 0 ≤ S ≤ 1, (b) from S =
∑

i∈k q[i], (c) from
∑

i∈k q[i] +
∑

i/∈k q[i] = 1,
and (d) from

∑
i/∈k q[i] ≤ α.

From [18], the distortion due to LQ can be upper bounded as

TV(q̄, q̂) ≤ k

4ℓ
, (20)

10

where l is a positive integer that can be set by users. Therefore TV(m, q̂) can be upper bound by
α+ k

4ℓ .

A.3 Proof of Theorem 2

Recall the threshold update rule introduced in Section 3 via equation (8):

βt
n+1 = βt

n − η ·


∑

x/∈X t
n

qtn(x)− α


 , (21)

where βt
n+1 is the threshold used for token n in batch t, αt

n(X t
n) =

∑
x/∈XTt

n
qT

t

n (x) is the dropped
probability mass due to sparsification at step n, α ∈ (0, 1) is the target deviation, and η > 0
is the learning rate. The pre-batch threshold initialization follows Algorithm 1. Let the total

number of accepted tokens across all batches be T =
T∑
t
Lt. Throughout this section, the index

t = 0, 1, . . . , T − 1 enumerates the T accepted tokens in chronological order.
Lemma 1. Let V denote the vocabulary, and consider any sparsification strategy. The total proba-
bility mass outside the sparsified token set X t

n can be expressed in terms of the total variation (TV)
distance between the true distribution qt and the sparsified distribution q̃t:

∑

x/∈X t
n

qt(x) = TV
(
qt, q̃t

)
. (22)

Proof. We start with the definition of TV(qt, q̃t):

TV(qt, q̃t) =
1

2

∑

x∈V
|qt(x)− q̃t(x)| = 1

2

∑

x∈X t
n

|qt(x)− qt(x)∑
x∈X t

n
qt(x)

|+ 1

2

∑

x/∈X t
n

qt(x)

=
1

2

∑

x∈X t
n

qt(x)

(
1∑

x∈X t
n
qt(x)

− 1

)
+

1

2

∑

x/∈X t
n

qt(x)

=
1

2


1−

∑

x∈X t
n

qt(x) +
∑

x/∈X t
n

qt(x)


 =

∑

x/∈X t
n

qt(x) (23)

This completes the proof of Lemma 1. Using this lemma, we can re-write the update rule of 8 as
presented in Lemma 2. We next prove the following result which uses the new alternative form of the
threshold update rule.
Lemma 2. Given the Lemma 1 and assume the threshold is updated at each accepted token as

βt+1 = βt − η
(
TV(q̃t, qt) − α

)
, η > 0, α ∈ (0, 1). (24)

Then the cumulative sparsification distortion satisfies the identity

T−1∑

t=0

TV(q̃t, qt) = αT +
|β0 − βT |

η
. (25)

This follows via an algebraic telescoping sum. Any asymptotic statement such as
1
T

∑T−1
t=0 TV(q̃t, qt)→ α requires a separate argument showing that |β0 − βT | is O(1); this will be

established by bounding the iterates {βt}.
Lemma 3 (Step-size envelope). Since 0 ≤ TV(q̃n, qn) ≤ 1, each update satisfies the inequalities

− η(1− α) ≤ βn+1 − βn ≤ ηα. (26)

11

Thus, every step moves β by at most η in either direction.
Lemma 4 (Universal bound on β). The sequence (βn) is uniformly bounded:

− η(1− α) ≤ βn ≤ 1 + ηα, ∀n ≥ 0. (27)

Proof. If βn < 0, then thresholding keeps the full support and hence TV(q̃n, qn) = 0. The update
becomes βn+1 = βn + ηα > βn, so β is forced upward. By Lemma 3, the largest one-step overshoot
below 0 is −η(1− α).

If βn > 1, then thresholding discards all but the top outcome, so TV(q̃n, qn) = 1. Since α < 1, we
obtain βn+1 = βn − η(1− α) < βn, so β is forced downward. By Lemma 3, the largest one-step
overshoot is 1 + ηα. Combining the two cases yields the stated bound.

Plugging Lemma 4 into Lemma 2 gives

T∑

n=1

TV(q̃n, qn) ≤ αT +
|β0|+ 1 + η

η
, (28)

and hence
1

T

T∑

n=1

TV(q̃n, qn) ≤ α + O(T−1), (29)

as desired. Furthermore, if η = c T−1/2 and α = d T−1/2 with c, d > 0, then

T∑

n=1

TV(q̃n, qn) = O(
√
T),

1

T

T∑

n=1

TV(q̃n, qn) = α+O(T−1/2). (30)

This completes the proof.

A.4 Additional Experimental Results

In this part of the Appendix, we present an ablation study that investigates the effects of the parameters
K and β for the K-SQS and C-SQS methods, respectively, while varying the temperature T . We
also report results demonstrating that C-SQS without adaptivity (i.e., learning rate η = 0) exhibits
higher latency and re-sampling rates compared to the adaptive version (η > 0), thereby highlighting
the benefits of adaptive parameter updates for β.

A.4.1 Impact of Hyperparameters K and β

First we have analyzed the effect of the parameters K and β over varying temperature for K-SQS
and C-SQS methods. Figure 4 shows the latency performance for K-SQS and C-SQS across varying
temperature settings. Both schemes demonstrate consistent performance trends, with latency generally
increasing as the temperature and consequently the sampling uncertainty-rises.

For K-SQS, performance is highly dependent on the choice of the K-value: smaller K values yield
lower latency but may reduce stability, while larger K values improve robustness at the cost of
increased computation. In contrast, C-SQS leverages adaptive threshold tuning through the parameter
β, enabling dynamic control over resampling and thereby achieving smoother latency–accuracy
trade-offs.

Collectively, these findings indicate that K-SQS and C-SQS are complementary: K-SQS performs
optimally in low-uncertainty regimes with well-chosen K, whereas C-SQS excels under higher-
uncertainty conditions due to its adaptive thresholding mechanism.

12

Figure 4: Latency for K-SQS and C-SQS methods versys K and β, respectively, across varying
temperature settings.

A.4.2 Benefits of Adaptivity in C-SQSC-SQS vs T with (￼) and without (￼) adaptivityη ≠ 0 η = 0

Figure 5: Latency and resampling rate as a function of temperature for C-SQS with and without
adaptivity.

Figure 5 presents the relationship between temperature and (a) latency, and (b) resampling rate,
across different initial threshold (β) values, comparing adaptive (η > 0) and non-adaptive (η = 0)
configurations of C-SQS. It is observed that incorporating adaptivity during β-updates significantly
improves efficiency. Notably, for smaller β values that represent more conservative acceptance
thresholds, the adaptive variant consistently yields lower latency and reduced resampling rates
relative to the non-adaptive baseline. This indicates that adapting the threshold β enables C-SQS to
better regulate resampling behavior, effectively balancing stability and responsiveness under varying
uncertainty (temperature) conditions.

A.4.3 K-SQS vs C-SQS

In Figure 6, we compare the performance of K-SQS and C-SQS under varying temperature (T)
values, illustrating their latency and resampling characteristics. As temperature increases, indicating
higher sampling uncertainty, both methods show a general rise in latency and resampling rate due to
more frequent token rejections. For K-SQS, performance is highly influenced by the selection of the
K-value: smaller K values yield faster but less stable performance, while larger K values improve
reliability at the cost of increased latency.

13

KSQS vs CSQS over varying Temperature (T)

Figure 6: Latency and resampling rate of K-SQS and C-SQS across varying temperature (T) settings.

In contrast, C-SQS leverages its adaptive threshold β, allowing it to dynamically adjust to temperature
changes and maintain a more balanced latency, accuracy trade-off. Overall, these results highlight
that K-SQS is preferable in low-uncertainty regimes (lower temperature regimes), whereas C-SQS
demonstrates greater robustness and efficiency in higher-uncertainty conditions due to its adaptive
mechanism.

14

	Introduction
	Sparsify-Quantize-and-Sample (SQS) Speculative Decoding
	Conformal Sparsify-Quantize-and-Sample Speculative Decoding
	Experiments and Discussion
	Appendix
	Sparse Lattice-based Quantization
	Proof of Theorem 1
	Proof of Theorem 2
	Additional Experimental Results
	Impact of Hyperparameters K and
	Benefits of Adaptivity in C-SQS
	K-SQS vs C-SQS

