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ABSTRACT

Large Multimodal Models (LMMs) have shown significant visual reasoning ca-
pabilities by connecting a visual encoder and a large language model. LMMs
typically take in a fixed and large amount of visual tokens, such as the penultimate
layer features in the CLIP visual encoder, as the prefix content. Recent LMMs
incorporate more complex visual inputs, such as high-resolution images and videos,
which further increases the number of visual tokens significantly. However, due to
the inherent design of the Transformer architecture, the computational costs of these
models tend to increase quadratically with the number of input tokens. To tackle
this problem, we explore a token reduction mechanism that identifies significant
spatial redundancy among visual tokens. In response, we propose PruMerge, a
novel adaptive visual token reduction strategy that significantly reduces the number
of visual tokens without compromising the performance of LMMs. Specifically,
to metric the importance of each token, we exploit the sparsity observed in the
visual encoder, characterized by the sparse distribution of attention scores between
the class token and visual tokens. This sparsity enables us to dynamically select
the most crucial visual tokens to retain. Subsequently, we cluster the selected
(unpruned) tokens based on their key similarity and merge them with the unpruned
tokens, effectively supplementing and enhancing their informational content. Em-
pirically, when applied to LLaVA-1.5 [Liu et al., 2023a] and Video-LLaVA [Lin
et al., 2024], our approach can reduce the number of visual tokens by 4 times, and
achieve comparable or better performance across diverse visual question-answering
and reasoning tasks.

1 INTRODUCTION

Large Language Models (LLMs) [OpenAI, 2023b, Team et al., 2023, Jiang et al., 2023, Touvron et al.,
2023] have shown strong reasoning abilities. LLMs are usually high-capacity Transformers [Vaswani
et al., 2017] pretrained with a large-scale text corpus. Large Multimodal Models (LMMs), inherit
LLMs for text generation, while also leveraging a visual encoder such as CLIP-ViT [Radford et al.,
2021] to embed image patches into visual tokens as the prefix visual context.

LMMs need substantial computation for inference. The LLM is the primary factor for the high
computation cost, since the visual encoder is usually quite small relative to the LLM. For example,
the commonly used CLIP visual encoder, ViT-L, only has 0.3B parameters, while the corresponding
LLM such as LLaMA [Touvron et al., 2023] or Vicuna [Vicuna, 2023] can have 7B or 13B parameters.
As a result, reducing the LLM’s inference cost is the key to achieving low LMM inference cost.

Prior works [Chu et al., 2023; 2024, Yuan et al., 2023a] mainly focus on replacing the LLM backbone
with a smaller language model with less parameters, such as Phi-2 [Javaheripi et al., 2023]. However,
such approaches sacrifice the reasoning abilities of LLMs, leading to a large performance gap on
visual question-answering and reasoning tasks such as VQAv2 and MM-Bench [Chu et al., 2024]. A
similar approach is to apply quantization for LLMs [Liu et al., 2023b, Yuan et al., 2024].

However, the cost of LLMs comes from not only its large number of parameters, but also the length
of the input context due to the quadratic complexity of the Transformer’s attention operation. The
context length in LMMs is especially important, where a fixed amount of visual tokens serves as
the prefixed tokens. For example, in LLaVA-1.5, 576 visual tokens are appended, and in Video-
LLaVA [Lin et al., 2024] that number is even higher, leading to high training and inference costs.
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(a) Main idea of PurMerge. (b) PruMerged Token Visualization.

Figure 1: (a) We prune and merge visual tokens produced by the vision encoder, while keeping
all other procedures of the LMM the same. By reducing the number of visual tokens, PruMerge,
significantly reduces the computation cost for text generation in LMMs (around 4-10 times in FLOPs
for LMM prefill), while can maintain comparable performance. (b) A visualization of the selected
tokens. PruMerge can adaptively select visual tokens based on the information density of the visual
input, enabling the LLM to perceive visual input effectively and efficiently. More attentive tokens are
sampled in complex images such as ones with text, while fewer are sampled on simpler images. The
attentive tokens are usually located at the regions with dense information.

Thus, an intriguing question is: Can we reduce the number of prefix visual tokens while maintaining
comparable performance?

In our study, we find that many visual tokens are redundant, similar to findings in previous related
work [Bolya et al., 2023, Liu et al., 2022], and most of the visual tokens can be pruned with little
sacrifice in performance. In particular, the similarity (i.e., attention scores in the visual encoder’s
self-attention module) between the class token and spatial patches are sparse, indicating that only a
small number of visual tokens are related to key visual information in the visual samples. Motivated
by this, we use this sparse similarity to adaptively select important visual tokens, as shown in Fig.1b.
Specifically, we leverage the Interquartile Range (IQR) [Boukerche et al., 2020] scoring function
in outlier detection to prune unimportant visual tokens. Moreover, we merge the visual tokens
using k-nearest neighbor and update the selected important visual tokens via weighted averaging,
which further enhances performance. Finally, we design PruMerge+, which samples visual tokens
spatial-uniformly to complement the unpruned tokens. PruMerge+ not only minimizes performance
degradation but also ensures substantial token reduction, maintaining a more comprehensive and
representative selection of visual tokens.

Empirically, PruMerge can effectively and adaptively reduce the visual tokens in each image in
LLaVA-1.5 [Liu et al., 2023a], where with just 5.5% of visual tokens, which is around 32 tokens for
an image on average, LLaVA-PruMerge can maintain comparable performance with that of retaining
all 576 tokens across diverse benchmarks. Furthermore, PruMerge showcases its versatility across
various modalities, including video. By integrating PruMerge with Video-LLaVA [Lin et al., 2024]
during the inference phase alone (i.e., no need for additional training) we not only expedite processing
within video-LLMs but also enhance their performance across multiple benchmarks.

2 RELATED WORK

2.1 EFFICIENT LARGE MULTIMODAL MODELS (LMMS)

Large Language Models (LLMs) such as GPT-4 [OpenAI, 2023b], LLaMA [Touvron et al., 2023],
Mistral [Jiang et al., 2023], and Gemini [Team et al., 2023] have demonstrated strong question
answering and reasoning capabilities over text. Large Multimodal Models (LMMs) [Liu et al., 2023b,
Zhu et al., 2023, Yin et al., 2023, Zhang et al., 2024] extend these reasoning capabilities to images,
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where given an image and an associated question, a vision encoder and an LLM are leveraged to
generate text responses in a chat format. More recent works extend whole-image understanding
into region-level understanding [Cai et al., 2024, Zhang et al., 2023b, Peng et al., 2023, Chen et al.,
2023], video understanding [Lin et al., 2024, Zhang et al., 2023a] and 3D scene understanding [Hong
et al., 2023]. Such works typically feed the visual tokens directly into the LLM as prefix tokens, via
either an MLP [Liu et al., 2023a], Qformer [Dai et al., 2023, Zhu et al., 2023], or resampler [Alayrac
et al., 2022]. The number of visual tokens can be prohibitively long, especially when the images
are high-resolution [Liu et al., 2024, OpenAI, 2023a]. In this paper, we reduce the number of visual
tokens with a novel adaptive prune and merge procedure.

While LMMs have made significant advances, their large-scale training and deployment incur signifi-
cant computational costs, requiring efficient parallel device implementations. Google’s Gemini [Team
et al., 2023] is a pioneer in efficient LMMs, achieving state-of-the-art performance on multimodal
benchmarks and introducing mobile-scale LMMs suitable for low-memory devices, although it is
not open-source. Open-source alternatives like LLaVA-1.5 [Liu et al., 2023a] employ advanced
compression techniques such as 4/8 bit quantization [Dettmers et al., 2022, Shang et al., 2024].
MobileVLM [Chu et al., 2023] and its improved version, MobileVLM-v2 [Chu et al., 2024], focus
on compact architecture designs and training optimizations for mobile use.

In most cases, LMM efficiency is enhanced by reducing the size of the backbone of the LMM, but no
work has considered the efficiency of the LMM from the perspective of the number of visual tokens.

2.2 TOKEN REDUCTION

The quadratic complexity of Transformers [Vaswani et al., 2017] poses a significant challenge in
scaling input sequence length. Various approaches try to address this issue. Sparse attention methods,
e.g., Linformer [Wang et al., 2020] and ReFormer [Kitaev et al., 2020], reduce complexity by limiting
attention operations to specific regions rather than the full context. Token reduction can also accelerate
Transformers [Haurum et al., 2023]. Methods like [Liu et al., 2022, Yin et al., 2022, Liang et al., 2022,
Bolya et al., 2023, Fayyaz et al., 2022] focus on reducing the number of tokens within the internal
transformer structure, thereby decreasing computational load. For instance, token merging [Bolya
et al., 2023] employs full attention but progressively reduces tokens in each transformer block by
selecting the most representative tokens through bipartite matching. However, these uni-modal token
reduction methods are not directly applicable to LMMs. One of the main inefficiencies in LMMs
stems from their use of numerous prefix visual tokens as a fixed context budget [Liu et al., 2023b,
Zhu et al., 2023] (analyzed further in Sec. 4.2), not from the internal structure of Transformers. We
discuss the unsuitability of existing uni-modal token reduction methods for LMM acceleration in
Sec. 3.5. In our study, we introduce a plug-and-play token reduction method specifically designed for
LMMs. Our approach, based on visual token similarities, achieves comparable performance while
using less than one-fourth of the original tokens. The core of our method is a sparsity-based selection
mechanism that identifies “anchor” tokens via sparse attention scores within the modality encoder,
and is the most crucial design element of PruMerge. In parallel to our work, Shi et al. [2024]
proposes CrossGet, a graph-matching-based algorithm for token matching. While both approaches
aim to reduce tokens in multimodal contexts, they differ significantly in their methodologies. Beyond
the token selection module, our token merging module also differs from CrossGet’s graph soft
matching. Our k-nearest neighbors clustering approach has a time complexity of O(n), which is
more computationally efficient compared to CrossGet’s O(n2) complexity, thus enhancing scalability
and efficiency.

3 METHOD: TOKEN PRU-MERGING

In this section, we first review the basic implementation of large mutilmodal models (LMMs), with
a particular focus on the visual encoder component (i.e., Vision Transformer). We highlight the
direct correlation between the number of visual tokens and the efficiency of LMMs (Sec. 3.1). Next,
we present a plug-and-play token reduction method specifically designed for LMMs, called token
PruMerge. Our method features two key components: (1) Adaptive Important Token Selection
(AITS) via Outlier Detection which adaptively determines the optimal number of visual tokens to
retain based on the unique characteristics of the image (Sec. 3.2); and (2) Token Supplement (TS)
via Similar Key Clustering, which facilitates efficient processing without compromising the model’s
performance by maintaining the integrity and richness of the visual information (Sec. 3.3).
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3.1 PRELIMINARIES

Vision Transformers (ViTs) [Dosovitskiy et al., 2020] are the most widely used vision encoder for
LMMs, in which the input image is converted into a sequence of representative tokens by the ViT,
and then fed into an LLM for understanding [Liu et al., 2024, Zhu et al., 2023, Hong et al., 2023,
Zhang et al., 2024]. An input image is divided into a grid of patches and each patch is projected
into a token embedding by the ViT. In addition to the patch tokens, a class token (i.e., [CLS] token)
is computed to aggregate global image information for classification. A ViT consists of a set of
transformer blocks, which in turn consist of several essential components: a multi-head self-attention
(MSA) layer, a feed-forward neural network (FFN), skip connections, and layer normalization [Ba
et al., 2016]. These components work together to improve the model’s capability to understand visual
data [Han et al., 2022]. In the self-attention layer, an input token is projected into three distinct
vectors: query q, key k, and value v, using three linear transformation matrices Wq, Wk, and
Wv. These vectors, corresponding to different inputs, are assembled into matrices Q, K, and V,
respectively. The self-attention computes the relevance of each item to other items:

Y = Self-Attention(Q,K,V) = A ·V (3.1)

where attention matrix A = softmax
(

Q·KT
√
dk

)
and dk is the dimension of q and k. In the last layer

of the ViT, the [CLS] token is used for classification. Similarly, the attention between [CLS] token
and other visual tokens is computed by the attention mechanism:

acls = softmax
(
qcls ·KT

√
dk

)
. (3.2)

The MSA framework allows for simultaneous attention on multiple positions, offering diverse
representation subspaces. This is achieved by employing distinct query, key, and value matrices for
different heads, which project the input vectors into different representation subspaces. After the
self-attention layers is the feed-forward network (FFN), which consists of two linear transformation
layers separated by a nonlinear activation function:

FFN(X) = W2σ(W1X) (3.3)

where W1 and W2 are the matrices of the linear transformation layers, and σ denotes the nonlinear
activation function. The general forward pass of ViT is illustrated in the left part of Figure 2.

Large Multimodal Models (LMMs). Following the forward pass through a Vision Transformer
(ViT), a set of visual tokens is generated. These tokens are then processed by the input projector
ΘX→T, which maps the encoded visual features from FX into the text feature space T. The aligned
features and the text prompts PT are then fed into the LLM backbone [Zhang et al., 2024]. The
overall architecture of an LMM is depicted in Figure 1.

Importantly, the computational cost with these models increases quadratically with the number of
input tokens to the LLM [Tay et al., 2022]. Mathematically, if there are N tokens in the input, the self-
attention mechanism computes a N ×N matrix of attention scores, where each entry in this matrix
represents the attention score between a pair of tokens. However, there is an increasing demand for
processing high-resolution images and videos, which increases the number of visual tokens, further
exacerbating computation costs. The reduction of visual tokens presents a promising approach to
improving the efficiency of LMMs by reducing the escalating computational requirements.

3.2 ADAPTIVE IMPORTANT TOKEN SELECTION VIA OUTLIER DETECTION

The most straightforward solution to improve the efficiency of visual token utilization in LMMs is to
prune redundant visual tokens [Liu et al., 2022, Yin et al., 2022, Liang et al., 2022]. To realize token
pruning, we need to address a pivotal question: How do we determine the importance of each visual
token?

As discussed in Sec. 3.1, LMMs typically leverage an extensive stack of visual tokens to represent
the visual information. On the other hand, self-/weakly-supervised learning paradigms, such as
CLIP [Radford et al., 2021] simplify this complexity by representing an entire image with a single
[cls] token, regarded as the most information-condensed token. To balance those two extreme
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Figure 2: PruMergehas 3 steps: (1) Sample important tokens according to the similarities between
the class tokens and spatial visual tokens via an outlier detection algorithm (see Sec.3.2); (2) Cluster
the visual tokens via k-nearest neighbor; and (3) Adjust the sampled visual tokens via weighted
averaging for each cluster (see Sec.3.3). Here m denotes the visual token compression ratio.
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(a) Distribution of attention values. (b) Image & Tokens Visualizations

Figure 3: (a) Distribution of attention scores (in CLIP-ViT’s penultimate layer) between the [cls]
token and visual tokens. The y-axis shows logarithmic values. Notably, most spatial visual tokens have
near-zero attention values with the class token. (b) Visualizations of PruMerge and PruMerge+.

paradigms, we investigate the Key-Query attention between [cls] token and visual tokens, i.e.,
acls in Equation 3.2. Observing the distribution patterns of attention between the [cls] token and
visual tokens unveils a sparse landscape, as depicted in Figure 3a. This sparse distribution underpins
our methodology for identifying crucial visual tokens. By employing outlier detection algorithms, we
aim to adaptively select visual tokens that best represent an image’s features effectively.

Interquartile Range (IQR) Method for outlier detection. To identify outliers within class attention
values, we adopt the Interquartile Range (IQR) method [Boukerche et al., 2020], a statistical technique
known for its robustness in outlier detection. Its essence lies in its capability to establish a boundary
or “fence” that delineates the normal range of data. This is achieved by calculating the IQR (the
difference between the third quartile Q3 and the first quartile Q1) and subsequently defining the outer
limits of the normal range as 1.5 times the IQR above Q3 and below Q1. Specifically, the computation
is as follows: the “lower fence” is set at 1.5 × IQR below Q1, and the “upper fence” is set at 1.5
× IQR above Q3. Any attention values residing outside these fences are classified as outliers. In
practice, only the “upper fence” is activated since the attention score is positive. Through this method,
we can adaptively identify and select the visual tokens for each image that exhibit outlier attention
values, i.e., those playing a significant role in representing the image within the LMM context. Note
that we use the class attention value from the penultimate layer for this calculation.

As shown in Figure 1b, the sampled visual tokens demonstrate two behaviors: (1) The number of
attentive tokens are proportional to the complexity of the image. Simpler images such as “Billboard
among blue sky” owns fewer tokens while images with rich information such as a screen with dense
texts own more tokens. (2) The sampled tokens are typically spatially aligned with important content.
Such visualizations align with our visual token sampling design. These trends are also observed at
the benchmark level; in Table 4, the average token numbers on various benchmarks differ.

3.3 TOKEN SUPPLEMENT VIA SIMILAR KEY CLUSTERING

Following the selection of informative visual tokens, we next optimize the utilization of the remaining
tokens. While pruned tokens may initially seem extraneous, they hold potential value for the
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Algorithm 1 Token PruMerge and PruMerge+ algorithms for reducing the number of visual tokens.

Require: Key and Query matrices of ViT’s penultimate layer, K = {k1, · · ·kn} and Q =
{q1, · · ·qn}. The penultimate layer’s output tokens, Y = {y1, · · ·yn}. n is the number
of input visual tokens.

Ensure: Refine Y to m (adaptive) visual tokens Y′ = {y′
1, · · ·y′

m}, in which m ≪ n.
1: Token PruMerge:
2: Calculate attention between visual token and class token a[cls] using Equation 3.2.
3: Use the outlier detection algorithm IQR to adaptively select m important visual tokens’ indices

{i1, · · · , im} based on a[cls] (see Sec. 3.2).
4: (Optional for PruMerge+, see Sec. 3.4) Calculate the outlier ratio ro = m

n .
5: (Optional for PruMerge+) Spatial-uniformly sample visual tokens with ro, and get

{i1+m, · · · , i2m}.
6: (Optional for PruMerge+) Update the selected tokens’ index with {i1, · · · , im, im+1, · · · , i2m}.
7: for p = {i1, · · · , im} do (see Sec. 3.3)
8: Calculate the distance between selected token yp and other visual tokens, y{1,··· ,n}/p;
9: Use yp as cluster center and find the k most similar tokens, with indices {j1, · · · , jk}p;

10: Update cluster center token with weighted sum: y′
p =

∑k
q=1 a[jq] · yjq ;

11: end for
12: Output a refined stack of visual tokens Y′ = {y′

1, · · ·y′
m}.

perception capabilities of the LLM backbone. This potential arises particularly in cases where an
image contains large object parts that dominate the scene. In such scenarios, overly aggressive
pruning could inadvertently diminish the model’s ability to represent the image comprehensively.

To address this, we devise a token merging method aimed at enhancing the representational capacity
of the selected unpruned tokens. This method involves the strategic fusion of currently pruned tokens,
as depicted in Figure 2. To choose the pruned tokens to merge, we need a way to measure similarity
between visual tokens. Here we leverage the self-attention mechanism in ViTs. Since the key vector
of each patch token already contains information summarized in the self-attention module [Vaswani
et al., 2017], the final layer’s key vector serves as the representation. And then we use the dot product
between keys to calculate which tokens have similar visual information [Bolya et al., 2023]:

Sim(yi,yj) = ki · kT
j , (3.4)

which yields KKT (i, j) for tokens i, j in vectorized form for the set of all tokens 1, 2, · · · , n, where
n is the number of input visual tokens.

With the similarities between visual tokens established, we simply find the k-nearest neighbors for
each unpruned token, which act as the cluster centers. The integration of pruned tokens into these
clusters is guided by their respective class attentions a[i], enabling a refined representation of each
unpruned token through a weighted sum. This procedure is outlined in Algorithm 1.

3.4 PRUMERGE+: BRIDGING THE EFFICIENCY-PERFORMANCE GAP

While PruMerge achieves a remarkable reduction in the number of visual tokens—over tenfold
compared to the original setup—the process is not without drawbacks. Specifically, the compression
technique, though efficient, introduces a marginal performance discrepancy between the original
LLaVA model and its PruMerge-optimized counterpart, LLaVA-PruMerge. To address this, we
introduce PruMerge+, a refined version that strikes an optimal balance between token reduction and
model performance.

PruMerge+ enhances our original method by maintaining the ability to significantly reduce visual
token count—by an average of fourfold—with minimal performance degradation. This improvement
is detailed in Algorithm 1, building upon the token selection strategies outlined in Section 3.2. A new
aspect of PruMerge+ lies in its enhanced token selection process. Beyond merely focusing on the
previously identified important tokens, PruMerge+ extends its reach to encompass additional visual
tokens from areas initially deemed less critical. This is achieved through a spatially uniform sampling
of visual tokens, guided by a predetermined ratio informed by the distribution of outlier tokens. This
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Table 1: Comparison with large multimodal models on six benchmarks. Our PruMerge and
PruMerge+ can adaptively reduce visual tokens, which use only (respectively) 5.5% and 25.0% vi-
sual tokens on average (on 6 tasks) and achieves competitive performance to the original LLaVA-1.5.

Method LLM Res. PT IT VQAv2 SQAI VQAT POPE MME MMB

BLIP-2 Vicuna-13B 224 129M - 41.0 61 42.5 85.3 1293.8 -
InstructBLIP Vicuna-7B 224 129M 1.2M - 60.5 50.1 - - 36
InstructBLIP Vicuna-13B 224 129M 1.2M - 63.1 50.7 78.9 1212.8 -
Shikra Vicuna-13B 224 600K 5.5M 77.4 - - - - 58.8
IDEFICS-9B LLaMA-7B 224 353M 1M 50.9 - 25.9 - - 48.2
IDEFICS-80B LLaMA-65B 224 353M 1M 60.0 - 30.9 - - 54.5
Qwen-VL Qwen-7B 448 1.4B 50M 78.8 67.1 63.8 - - 38.2
Qwen-VL-Chat Qwen-7B 448 1.4B 50M 78.2 68.2 61.5 - 1487.5 60.6
LLaVA-1.5 Vicuna-7B 336 558K 665K 78.5 66.8 58.2 85.9 1510.7 64.3
LLaVA-1.5 + PruMerge Vicuna-7B 336 558K 665K 72.0 68.5 56.0 76.3 1350.3 60.9
LLaVA-1.5 + PruMerge+ Vicuna-7B 336 558K 665K 76.8 68.3 57.1 84.0 1462.4 64.9
LLaVA-1.5 Vicuna-13B 336 558K 665K 80.0 71.6 61.3 85.9 1531.3 67.7
LLaVA-1.5 + PruMerge Vicuna-13B 336 558K 665K 72.8 71.0 58.4 78.5 1428.2 62.3
LLaVA-1.5 + PruMerge+ Vicuna-13B 336 558K 665K 77.8 71.0 58.6 84.4 1485.5 65.7

methodology ensures a more comprehensive and representative selection of visual tokens, as depicted
in Figure 3b, thereby minimizing performance losses while still achieving substantial token reduction.

3.5 DISCUSSION: DISTINCTION FROM EXISTING UNI-MODAL TOKEN REDUCTION METHODS

Uni-Modal token reduction methods [Liu et al., 2022, Yin et al., 2022, Liang et al., 2022, Bolya
et al., 2023, Fayyaz et al., 2022, Haurum et al., 2023] primarily focus on accelerating ViT computation
speed by progressively reducing token numbers across transformer blocks, thereby lowering the
internal ViT computational cost. Our approach, however, differs in its primary objective. Rather than
targeting ViT efficiency, we aim to enhance the overall efficiency of LMMs, where the ViT is just
one component with relatively light computational cost, as shown in Fig. 1. This design offers two
key advantages: First, while ViTs typically rely on a single class token to represent the input image,
which enables them to maintain performance despite a reduction in intermediate tokens, LMMs
usually require a large stack of visual tokens. This ensures a comprehensive representation of the
visual content, preserving the model’s ability to capture nuanced details. Thus, using previous token
reduction methods to obtain one refined class token to represent the visual input is not consistent with
the literature of LMMs. Second, considering that the bulk of computational demand within LMMs is
attributed to the LLM component rather than the ViT, our approach focuses not only on the reduction
of tokens but also on maximizing the informational content of the pruned visual tokens. This strategy
addresses the computational challenges inherent in LMMs with minimal compromise in the quality
of the visual representation. Indeed, experiments comparing PruMergewith implementations of
uni-modal token reduction methods in LMMs demonstrate significantly better performance for our
method (see Sec. 4.4.4).

4 EXPERIMENTS

We first show the empirical performance of our approach when applied to LLaVA-1.5 in Sec 4.1. We
then analyze the efficiency improvement by using our PruMerge on LMM in Sec 4.2. To show the
generalization ablity, we conduct a series of experiments in Sec. 4.3. Finally, we demonstrate the
effectiveness of each component in our model in Sec 4.4.

4.1 MAIN RESULTS

We apply our method to LLaVA-1.5 [Liu et al., 2023a], a recent state-of-the-art LMM. We further
finetune LLaVA-1.5 using LoRA [Hu et al., 2022] for 1 epoch using the LLaVA-1.5 instruction
fine-tuning data [Liu et al., 2023a] with our reduced visual tokens.

We evaluate on diverse visual question-answering and reasoning benchmarks including VQAv2 [Goyal
et al., 2017], ScienceQA [Lu et al., 2022], TextVQA [Singh et al., 2019], POPE hallucination
bench [Li et al., 2023b], MME [Fu et al., 2023], and MMBench [Liu et al., 2023c]. As shown in
Table 1, our approach achieves comparable performance with LLaVA-1.5 despite using only a small
fraction of the visual tokens, and performing better than previous works such as BLIP2 [Li et al.,
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Table 2: Computation Cost Analysis. The development device is Tesla V100 GPU, and time estimated
by the roofline model represents the theoretical performance that the hardware can achieve.

Method LLM Quantization FLOPs Prefill Total Storing
Backbone (TB) Time (ms) Memory (GB) Activation (GB)

LLaVA-1.5 Vicuna-7B FP16 9.3 88.6 23.3 4.60
LLaVA-1.5 w/ PruMerge Vicuna-7B FP16 0.91 15.3 13.7 0.28
LLaVA-1.5 Vicuna-7B INT4 2.3 151.6 5.9 1.20
LLaVA-1.5 w/ PruMerge Vicuna-7B INT4 0.28 14.9 3.5 0.07
LLaVA-1.5 Vicuna-13B FP16 18.2 170.5 41.6 7.30
LLaVA-1.5 w/ PruMerge Vicuna-13B FP16 1.80 29.5 26.6 0.44
LLaVA-1.5 Vicuna-13B INT4 4.6 294.9 10.5 1.80
LLaVA-1.5 w/ PruMerge Vicuna-13B INT4 0.45 29.0 6.8 0.11

2023a] and InstructBLIP [Dai et al., 2023]. Specifically, in POPE and ScienceQA, our approach even
shows better performance than LLaVA-1.5. Note that due to the adaptive nature of PruMerge (see
Sec. 3.2), the token numbers for various tasks are different (see 4.4.1), and thus we use the average
number on numbers of 6 tasks (i.e., 32) for simplicity.

4.2 EFFICIENCY ANALYSIS

To elucidate the computational efficiency afforded by PruMerge, we utilize the roofline-based LLM-
Viewer analysis developed in [Yuan et al., 2024]. Our investigation is grounded in a theoretical
scenario tailored to highlight the impact of PruMerge on processing efficiency within LMMs.
Consider a typical scenario where an image of dimensions 336 × 336 pixels is processed using
a CLIP-ViT model, resulting in 576 visual tokens. Accompanying this image is a text prompt,
assumed to contain 40 tokens for the sake of this analysis. Through the application of PruMerge,
we achieve a dramatic reduction in the number of visual tokens, decreasing the original count by
approximately 14.4 times in MME/TextVQA to match the token count of the text prompt (576/14.4 ≈
40). The implications of this reduction are significant, as demonstrated in Table 2, which outlines the
computational cost associated with the LMM prefill process. Notably, PruMerge not only enhances
the speed of the LLM prefill process by reducing the required floating-point operations (FLOPs) but
also contributes to a reduction in computational memory demands.

It is important to emphasize that the benefits of PruMerge extend beyond mere efficiency gains. Our
token reduction strategy can complement other LLM acceleration techniques, such as quantization
and factorization [Yuan et al., 2023b]. This orthogonal relationship underscores the versatile potential
of PruMerge to contribute to a broader spectrum of efficiency-enhancing strategies.

4.3 GENERALIZATION ON VIDEO-LLM

To assess the generalization capabilities of PruMerge and PruMerge+ across different modalities,
we next extend our approach to Video-LLaVA [Lin et al., 2024]. Video-LLaVA is one of the most
popular open-soruced Video-LLMs. We seamlessly integrate both algorithms into Video-LLaVA
without the need for additional training, enabling us to bypass re-training on video datasets during
inference. The outcome of this integration is shown in Table 3. Video-LLaVA samples 8 frames from
a video clip and extracts 8×16×16 = 2048 visual tokens using a visual encoder for LLM perception,
which is 4 times of visual token than LLaAV-1.5 [Liu et al., 2023a]. Our Algorthms PruMerge and
PruMerge+ can adaptively select important 256 (12.5% on average) and 256 (25.0% on average)
important visual tokens, respectively. The results demonstrate that our algorithms not only reduce
the number of visual tokens in Video-LLaVA but also is able to enhance its performance. This
finding is noteworthy as it suggests a significant redundancy in the visual tokens used by video-LLMs.
Exploring ways to further capitalize on this redundancy could shape future research directions.

4.4 ABLATION STUDY

4.4.1 TOKEN SAMPLING STRATEGY ANALYSIS

Here we show how our approach performs better than the vanilla visual token sampling strategy,
including sequential sampling and spatial sampling.
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Table 3: Comparison of different LVMs on video reasoning benchmarks. Like Video-LLaVA,
ChatGPT-Assistant (version ‘gpt-3.5-turbo’) is employed to evaluate performance. We directly add
PruMerge and PruMerge+ to Video-LLaVA during inference (without training our own model).

Methods LLM size MSVD-QA MSRVT-QA ActivityNet-QA
Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM 1B 32.2 - 16.8 - 24.7 -
VideoChat 7B 56.3 2.8 45.0 2.5 - 2.2
LLaMA-Adapter 7B 54.9 3.1 43.8 2.7 34.2 2.7
Video-LLaMA 7B 51.6 2.5 29.6 1.8 12.4 1.1
Video-ChatGPT 7B 64.9 3.3 49.3 2.8 35.2 2.7
Video-LLaVA 7B 70.7 3.9 59.2 3.5 45.3 3.3
Video-LLaVA + PruMerge 7B 71.1 3.9 58.4 3.5 48.3 3.4
Video-LLaVA + PruMerge+ 7B 71.1 3.9 59.3 3.6 47.7 3.4

Table 4: Token Sampling Strategy Anal-
ysis on Different Tasks.

Approach #Visual Tokens Performance
Task: VQAT

LLaVA-PruMerge 40 54.00
Sequential 40 42.72

Spatial 5× 8 = 40 46.85
8× 5 = 40 47.42

Task: MME
LLaVA-PruMerge 40 1250.07
Sequential 40 703.60

Spatial 5× 8 = 40 1180.23
8× 5 = 40 1142.32

Task: POPE
LLaVA-PruMerge 35 76.2
Sequential 35 11.7

Spatial
5× 7 = 35 69.8
7× 5 = 35 71.1
6× 6 = 36 67.9

Task: SQAI

LLaVA-PruMerge 16 68.07
Sequential 16 64.20
Spatial 4× 4 = 16 66.29

Table 5: Ablation Studies for Adaptive Important Token
Selection (AITS, Sec. 3.2) and Token Supplement (TS,
Sec. 3.3). With these modules, the downstream perfor-
mance can be progressively improved.

Method LLM SQAI VQAT POPE MME

LLaVA-1.5 Vicuna-7B 66.8 58.2 85.9 1510.7
LLaVA-1.5 w. AITS Vicuna-7B 66.5 54.8 75.7 1221.6
LLaVA-1.5 w. AITS & TS Vicuna-7B 68.5 56.0 76.3 1350.3

Table 6: Ablation on training free and fine-tuning for our
approach. With fine-tuning, the performance of LLaVA-
PruMerge can be further enhanced.

Method LLM SQAI VQAT POPE MME

LLaVA-1.5 Vicuna-7B 66.8 58.2 85.9 1510.7
LLaVA-PruMerge w.o. LoRA-FT Vicuna-7B 68.0 54.0 76.2 1250.1
LLaVA-PruMerge w. LoRA-FT Vicuna-7B 68.5 56.0 76.3 1350.3

(a) Original Image (b) PruMerge (c) Sequential (40)

(d) Spatial 𝟔 × 𝟔 = 𝟑𝟔 (e) Spatial 𝟓 × 𝟖 = 𝟒𝟎 (f) Spatial 𝟖 × 𝟓 = 𝟒𝟎

Figure 4: Different token sampling strategies.

LLaVA-PruMerge: Our approach dynamically sam-
ples key visual tokens (see Sec. 3.2), which re-
sults in 40 visual tokens per image on average for
TextVQA/MME, 35 tokens for POPE, and 16 tokens
for SQA. The visualization is shown in Figure 4 (b).

Sequential sampling: We sample N tokens in the
flatted visual tokens; e.g., the first 40 tokens are sam-
pled for an apples-to-apples comparison, Fig. 4 (c).

Spatial sampling: The sampled N tokens are evenly
distributed across the image, Fig. 4 (d-h). We study
diverse settings, including 6 × 6 (36 tokens), 5 × 8
(40 tokens), 8 × 5 (40 tokens), 5 × 7 (35 tokens), 7
× 5 (35 tokens), and 4 × 4 (16 tokens).

Note that all the experiments are done via a training-free manner. As shown in Table 4, our approach
is consistently better than sequential sampling and spatial sampling across all downstream tasks,
which demonstrates the effectiveness of the sampling mechanism of LLaVA-PruMerge. Importantly,
we observe that LLaVA-PruMerge shows much better performance on TextVQA [Singh et al., 2019].
Such Optical Character Recognition (OCR) task requires detailed information about the text, which
demonstrates that LLaVA-PruMerge extracts the key information in the images with enough details.
This quantitative result aligns with the visualization of LLaVA-PruMerge attentive tokens in Figure 1b,
where more attentive tokens are distributed on the foreground text in the images.

4.4.2 EFFECTIVENESS OF EACH MODULE IN PRUMERGE

Here, we study the effectiveness of each module in our design based on LLaVA-1.5. Note that
we maintain the same amount of visual tokens (6.9%, 40 tokens) across all settings. As shown
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Table 7: Comparison with SoTA token reduction methods. Ratio denotes the proportion of remaining
tokens. CrossGet results are directly from its paper.

Method Ratio VQAv2 SQAI VQAT POPE MME MMB

LLaVA-1.5 100% 78.5 66.8 58.2 85.9 1510.7 64.3
LLaVA-1.5 + ToMe 25% 66.0 62.7 56.0 51.0 1385.2 56.9
LLaVA-1.5 + ATS 25% 66.7 63.0 55.1 57.4 1313.2 54.9
LLaVA-1.5 + EViT 25% 65.5 64.1 54.2 60.1 1299.3 56.2
LLaVA-1.5 + PruMerge+ 25% 76.8 68.3 57.1 84.0 1462.4 64.9
LLaVA-1.5 + CrossGet⋆ 50% 77.3 66.7 54.9 83.9 1510.2 64.7
LLaVA-1.5 + PruMerge+⋆ 50% 77.6 68.5 57.6 85.1 1507.1 64.9

in Table 5, after progressively adding the proposed modules, including Adaptive Important Token
Selection (AITS) and Token Supplement (TS), the downstream performance can be further enhanced.

4.4.3 TRAINING ANALYSIS: TRAINING-FREE V.S. FINE-TUNING

Finally, LLaVA-PruMerge can be conducted in either a training-free or fine-tuning manner. With
fine-tuning, the large language model can adapt to the new structure of visual tokens, which could
further enhance the performance on vision-language tasks. As shown in Table 6, with fine-tuning,
our approach does bring better performance for diverse tasks, including ScienceQA [Lu et al., 2022],
TextVQA [Singh et al., 2019], POPE [Li et al., 2023b], and MME [Fu et al., 2023].

4.4.4 COMPARISON TO TOKEN REDUCTION METHODS

To evaluate the effectiveness of our approach, we compare PruMerge+ with SoTA token reduction
methods in the context of Large Multimodal Models. We utilize the token reduction benchmarking
framework from Haurum et al. [2023] to implement and compare these methods. Based on the uni-
modal token reduction benchmark, ToMe [Bolya et al., 2023], ATS [Fayyaz et al., 2022], and EViT
[Liang et al., 2022] are recognized as top performers in uni-modal token reduction. We also include
CrossGet [Shi et al., 2024], a concurrent multimodal token reduction method, for comparison. Table
7 clearly demonstrates that PruMerge+ significantly outperforms these unimodal token reduction
methods on multimodal tasks, supporting our assertion about its superior effectiveness in managing
the complexities of multimodal contexts. Notably, PruMerge+ outperforms CrossGet [Shi et al.,
2024], a concurrent multimodal token reduction method, under the same reduction ratio.

Advantages over uni-modal token merging methods: The superior performance of PruMerge+
on multimodal tasks can be attributed to several key factors: (1) Sparsity-based selection:
PruMerge leverages the sparsity observed in multimodal encoders (Visual-LLM and Video-LLM),
particularly in how attention scores distribute sparsely in the final layer. This pattern is less pro-
nounced in unimodal token reduced models where token relevance may not distribute in the same
way. (2) Efficiency in LMMs: Considering that the bulk of computational demand within LMMs is
attributed to the LLM backbone rather than the modality encoder, our approach focuses not only on
the reduction of tokens but also on maximizing the informational content of the pruned visual tokens.
In contrast, unimodal token merging methods focus on the modality encoder’s internal efficiency. This
strategy addresses the computational challenges inherent in LMMs with minimal compromise in the
quality of the visual representation. (3) Accumulation phenomenon: PruMerge capitalizes on the
accumulation of sparsity across layers, a characteristic more specific to multimodal models. Unimodal
token reduction methods that reduce tokens gradually cannot leverage this sparsity effectively.

5 CONCLUSION

In this paper, we improve the efficiency of Large Multimodal Models (LMMs) from the perspective
of reducing the quantity of visual tokens. By leveraging the spatial redundancy in visual tokens, we
proposed a plug-and-play token reduction module that employs the similarity between the class token
and spatial tokens as a key criterion for pruning and merging visual tokens. Our approach, applied
to LLaVA-1.5, demonstrated that by utilizing only 6.9% of visual tokens on average, the pruned
tokens can maintain comparable performance across a wide range of visual question-answering and
reasoning tasks. Notably, our work highlights the potential for significant computational savings
without sacrificing the reasoning capabilities of LMMs. We hope our work inspires further exploration
into the interplay between efficiency and performance in LMMs.
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6 REPRODUCIBILITY STATEMENT

We have provided the code of PruMerge and PruMerge+ algorithms as supplementary material.
The code has been anonymized. Additionally, we intend to publicly release the code, data, pretrained
models, and any other resources necessary for the community to fully reproduce our work.
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A APPENDIX

A.1 SOCIETAL IMPACTS

In this study, we propose a technique that improves the efficiency of Large Multimodal Models
(LMMs), making them more accessible. This approach helps to democratize LMMs by lowering
deployment costs and hardware barriers, facilitating their use in edge computing. However, it does
not mitigate the potential misuse of LMMs by malicious actors.
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