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Abstract

The stochastic heavy ball method (SHB), also known as stochastic gradient descent (SGD)
with Polyak’s momentum, is widely used in training neural networks. However, despite the
remarkable success of such algorithm in practice, its theoretical characterization remains
limited. In this paper, we focus on neural networks with two and three layers and provide
a rigorous understanding of the properties of the solutions found by SHB: (i) stability
after dropping out part of the neurons, (ii) connectivity along a low-loss path, and (iii)
convergence to the global optimum. To achieve this goal, we take a mean-field view and
relate the SHB dynamics to a certain partial differential equation in the limit of large network
widths. This mean-field perspective has inspired a recent line of work focusing on SGD while,
in contrast, our paper considers an algorithm with momentum. More specifically, after
proving existence and uniqueness of the limit differential equations, we show convergence to
the global optimum and give a quantitative bound between the mean-field limit and the SHB
dynamics of a finite-width network. Armed with this last bound, we are able to establish
the dropout-stability and connectivity of SHB solutions.

1 Introduction

Neural networks are one of the most popular modeling tools in machine learning tasks. In practice, they
can be effectively trained by gradient-based methods, and are usually overparameterized. However, despite
the empirical success of various training algorithms, it is still not well understood why such algorithms have
good convergence properties, given that the optimization landscape is known to be highly non-convex and to
contain spurious local minima (Auer et al., 1996; Safran & Shamir, 2018; Yun et al., 2019). A popular line
of work starting from (Mei et al., 2018; Chizat & Bach, 2018; Rotskoff & Vanden-Eijnden, 2018; Sirignano
& Spiliopoulos, 2020a) has proposed a new regime to analyze the behavior of stochastic gradient descent
(SGD), namely, the mean-field regime. The idea is that, as the number of neurons of the network grows, the
SGD training dynamics converges to the solution of a certain Wasserstein gradient flow. This perspective
has facilitated the study of architectures with multiple layers (Araújo et al., 2019; Lu et al., 2020; Nguyen &
Pham, 2020; Fang et al., 2021), and it has provided a path to rigorously understand a number of properties,
including convergence towards a global optimum (Mei et al., 2018; Chizat & Bach, 2018; Javanmard et al.,
2020; Pham & Nguyen, 2021a), dropout-stability and connectivity (Shevchenko & Mondelli, 2020), and
implicit bias (Williams et al., 2019; Chizat & Bach, 2020; Shevchenko et al., 2022).

Optimization with momentum, e.g., the heavy ball method (Polyak, 1964) or Adam (Kingma & Ba, 2015), is
widely used in practice (Sutskever et al., 2013). However, all the aforementioned works consider the vanilla
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SGD algorithm and, in general, the theoretical understanding of algorithms with momentum has lagged
behind. To address this gap, the recent paper by Krichene et al. (2020) defines a mean-field limit for the
stochastic heavy ball (SHB) method – also known as SGD with Polyak’s momentum – in a two-layer setup.
In particular, the convergence to the mean-field limit is proved, as well as that the solution of the mean-field
equation approaches a global optimum in the large time limit. However, Krichene et al. (2020) leave as
an open problem finding a quantitative bound between the infinite-width limit and the finite-width neural
network, and the analysis is restricted to two-layer networks.

In this paper, we define a mean-field limit for the heavy ball method applied to two-layer and three-layer
networks. We show global convergence in the three-layer setting, and give quantitative bounds for networks
with finite widths. This last result opens the way to providing a rigorous understanding of effects commonly
observed in practice, such as the connectivity of solutions via low-loss paths (Goodfellow & Vinyals, 2015;
Garipov et al., 2018; Draxler et al., 2018; Entezari et al., 2022). More specifically, our main contributions
can be summarized as follows:

1. We show existence and uniqueness of the mean-field differential equations capturing the SHB training
for two-layer and three-layer networks (Theorem 4.1).

2. We give non-asymptotic convergence results of the SHB dynamics of a finite-width neural network to
the corresponding mean-field limit (Theorem 5.1 for two layers, and Theorem 5.2 for three layers).
Our bounds are dimension-free in the sense that the layer widths are not required to scale with the
input dimension.

3. We discuss how SHB solutions can be connected via a simple piece-wise linear path, along which
the increase in loss vanishes as the width of the network grows (Section 6). This is a consequence
of the stability against dropout displayed by the parameters found by SHB, which in turn follows
from Theorems 5.1-5.2.

4. Finally, by exploiting a universal approximation property enjoyed by the activation function, we
prove a global convergence result for three-layer networks, under certain assumptions on the mode
of convergence of the dynamics (Theorem 7.2).

Organization of the paper. After discussing the related work in Section 2, the details concerning the
network architecture and SHB training are presented in Section 3. In Section 4, we define the mean-field
limit for both two-layer and three-layer networks, and we show that such limits exist and are unique. Next, in
Section 5, we prove our quantitative convergence bounds between the discrete SHB dynamics and the mean-
field limit. As an application of these bounds, we discuss the dropout-stability and connectivity displayed
by the SHB solutions in Section 6. In Section 7, we prove global convergence for the three-layer mean-field
differential equation. In Section 8, we show the results of some numerical experiments that illustrate the
dropout stability of the SHB solution. Finally, we discuss future directions in Section 9.

2 Related work

Mean-field analysis for two-layer networks. A quantitative convergence result of the SGD dynamics
towards a mean-field limit was presented in (Mei et al., 2018). This bound was refined to be independent
of the input dimension in (Mei et al., 2019), which also considers a setting where both layers are trained.
Our approach extends this line of work to the heavy-ball method. Because of the presence of momentum, in
this case the mean-field limit is described by a second-order differential equation (instead of the first-order
one capturing the SGD dynamics). The mean-field limit for heavy-ball methods was first considered in
(Krichene et al., 2020), which deals with a setting regularized by noise and does not provide quantitative
bounds. The recent work by Schuh (2022) gives non-asymptotic guarantees, but the argument crucially
relies on the presence of additive Gaussian noise. Global optimality of SGD was proved by Chizat & Bach
(2018) in the noiseless setting, using the homogeneity of the activation and under an additional convergence
assumption. This assumption is not needed in the noisy case, as the mean-field dynamics is a Wasserstein
gradient flow for a strongly convex free-energy functional (Mei et al., 2019). Convergence rates have been
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obtained by exploiting displacement convexity (Javanmard et al., 2020) or via the log-Sobolev constant of
the stationary measure (Chizat, 2022; Nitanda et al., 2022). For heavy ball methods, although the limiting
dynamics does not yield a gradient flow structure, the rate of convergence has been studied in the noisy case
(Hu et al., 2019; Kazeykina et al., 2020; Schuh, 2022). For a noiseless dynamics, the explicit characterization
of the convergence rate is an open problem.

Mean-field analysis for multi-layers networks. The case of neural networks with more than two layers
presents additional challenges in regards to defining and characterizing a mean-field limit. Here, we follow
the “neuronal embedding” framework (Nguyen & Pham, 2020; Pham & Nguyen, 2021a) to define a mean-
field limit for the heavy ball method in a three-layer setting. The key idea is to introduce a certain fixed
product probability space at initialization, and regard the weights as deterministic functions which evolve
during training over this fixed probability space. Other approaches have been proposed as well: Sirignano &
Spiliopoulos (2020a) give asymptotic results for three-layer networks, which require taking the large-width
limits in a specific sequential order; Fang et al. (2021) focus on the dynamics of the features, rather than
on that of the weights; Araújo et al. (2019) consider neural networks with more than four layers, with un-
trained first and last layer, and their result depends on the degeneracy phenomenon of middle layers under
i.i.d. initialization. This degeneracy consists in the fact that all the weights in the middle layers (except
the second and second-to-last) remain i.i.d., hence the corresponding neurons compute the same function.
Pham & Nguyen (2021a) show global optimality of the mean-field dynamics in the noiseless case in the large
time limit, under a convergence assumption in the same spirit of Chizat & Bach (2018). While the global
convergence in Chizat & Bach (2018) crucially relies on the homogeneity of the activation, Pham & Nguyen
(2021a) exploit a universal approximation property, similarly to Lu et al. (2020). For deeper networks,
a key technical hurdle is due to the degeneracy phenomenon mentioned above, which prevents universal
approximation. To address this issue, Nguyen & Pham (2020) employ a different initialization, and Lu et al.
(2020); Fang et al. (2021) use skip connections.

For multi-layer networks, it is also possible to define a mean-field limit beyond the parameterization con-
sidered in the aforementioned works, see Hajjar et al. (2021); Chen et al. (2022). In particular, Hajjar
et al. (2021) consider the regime of so called integrable parameterizations, which is a modification of the
maximum-update parameterization proposed by Yang & Hu (2021). Furthermore, Chen et al. (2022) provide
a convergence result for three-layer networks, where the first layer is random and fixed.

Additional related work on optimization with momentum. A recent line of work has considered
training neural networks in the neural tangent kernel (NTK) regime (or lazy regime) (Jacot et al., 2018;
Chizat et al., 2019). Here, the weights of the neural networks stay close to their initialization, so that the
network is well approximated by its linearization and the convergence is related to the smallest eigenvalue
of the NTK, see e.g. (Du et al., 2019; Allen-Zhu et al., 2019; Montanari & Zhong, 2020; Bombari et al.,
2022) and references therein. This type of analysis has been adapted to the heavy ball method by Wang
et al. (2021) and to other adaptive methods by Wu et al. (2019). However, we remark that, unlike in the
mean-field regime, neural networks are unable to perform feature learning in the NTK regime (Yang & Hu,
2021). Beyond the training of neural networks, momentum-based stochastic gradient descent algorithms and
their continuous variants have been widely studied in optimization: the continuous limit of these methods
is studied in (Su et al., 2014; Wibisono et al., 2016; Shi et al., 2021), and such dynamics are known to be
closely related to sampling methods such as MCMC (Ma et al., 2021).

3 Problem setup

3.1 Network architecture

We consider neural networks with two and three layers. In the two-layer case, the network has n neurons
and input x ∈ RD:

H1(x, j; W ) = w1(j)T x, j ∈ [n],

f(x; W ) = 1
n

n∑
j=1

w2(j)σ(H1(x, j; W )). (1)
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Here, we use the short-hand [n] := {1, . . . , n} and, for j ∈ [n], the parameters of the j-th neuron are denoted
by θ(j) = (w1(j), w2(j)), with w1(j) ∈ RD and w2(j) ∈ R. In the three-layer case, the network has n1 and
n2 neurons in the first and second hidden layer, respectively:

H1(x, j1; W ) = w1(j1)T x, j1 ∈ [n1],

H2(x, j2; W ) = 1
n1

n1∑
j1=1

w2(j1, j2)σ1(H1(x, j1; W )), j1 ∈ [n1], j2 ∈ [n2],

f(x; W ) = 1
n2

n2∑
j2=1

w3(j2)σ2(H2(x, j2; W )).

(2)

Here, x ∈ RD, w1(j1) ∈ RD, w2(j1, j2) ∈ R and w3(j2) ∈ R. In both cases, we use W to denote the collection
of all parameters: in two-layer case W ∈ Rn(D+1), and in three-layer case W ∈ Rn1D+n2n1+n2 .

3.2 Training algorithm

Our training data z = (x, y) is generated i.i.d. from a distribution D. The neural network is trained to
minimize the population risk function R(W ) = Ez[R(y, f(x; W ))] via the following one-pass stochastic
heavy ball (SHB) method:

W (k + 1) = W (k) + β(W (k) − W (k − 1)) − η∇̂W R(y(k), f(x(k); W (k))), (3)

where we use ∇̂W R(y(k), f(x(k); W )) to denote the scaled gradient, and the scaling factors for each pa-
rameter are specified below. This is a one-pass method in the sense that, at each step, we sample a new
data point z(k) independent from the previous ones.The requirements on the loss function R(y, ŷ) are con-
tained in (A1) (see Assumption 3.1) and (B1) (see Assumption 3.3) for networks with two and three layers,
respectively. In particular, we require R(y, ŷ) to be differentiable with respect to its second argument and
to have a bounded derivative. We also remark that, for the convergence to the mean field limit (Theorem
5.1 and 5.2), the convexity of the loss is not required. In contrast, to obtain the global convergence result of
Theorem 7.2, we need to additionally assume that R(y, ŷ) is convex in the second argument, as mentioned
in the statement of the theorem.

Let γ be a constant which does not depend on the network width or on the step size of gradient descent.
Then, in order to define a continuous-time ODE for the heavy ball method, we pick β = (1−γε) and η = ε2,
so the one-pass SHB method can be equivalently written as follows:

W (k + 1) = W (k) + r(k),
r(k) = (1 − γε)(W (k) − W (k − 1)) − ε2∇̂W R(y(k), f(x(k); W (k))). (4)

A similar formulation is common in the literature, see for example (Shi et al., 2021, Eq. 1.2)1. The
corresponding continuous ODE, also studied in (Krichene et al., 2020, equation 6), is given by

∂tW (t) = r(t), ∂tr(t) = −γr(t) − ∇̂W R(W (t)), (5)

where we recall that ∇̂W R(W (t)) denotes the scaled gradient. We remark that there are different ways
to derive a continuous dynamics from (3), and (4) is obtained by applying the Euler scheme based on the
second-order Taylor expansion. The corresponding ODE (5) is denoted as the low-resolution ODE by Shi
et al. (2021). It is an interesting and challenging task to analyze other types of ODEs associated to the SHB
method, for example the high-resolution ODE proposed by Shi et al. (2021). We leave this to future works.
We also remark that a similar formulation of the continuous counterpart of heavy ball methods with fixed
momentum is considered in (Kovachki & Stuart, 2021; Kunin et al., 2021).

1Note that in (Shi et al., 2021, Eq. 1.2), β = 1−γϵ
1+γϵ

, while here we let β = 1 − γε. The two choices are basically the same
when ε is small.
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We conclude this part by discussing the scaling factors for the gradient in (4). In the two-layer case, we have

∇̂W R(y, f(x; W )) =
(
(∆W

1 (x, j; W ))j∈[n], (∆W
2 (x, j; W ))j∈[n]

)
, (6)

where

∆W
2 (x, j; W ) := n∂w2(j)R(y, f(x; W )) = ∂2R(y, f(x; W ))σ(H1(x, j; W )),

∆W
1 (x, j; W ) := n∇w1(j)R(y, f(x; W )) = ∂2R(y, f(x; W ))w2(j)σ′(H1(x, j; W ))x.

(7)

In the three-layer case, we have

∇̂W R(y, f(x; W )) =
(
(∆W

1 (x, j1; W ))j1∈[n1], (∆W
2 (x, j1, j2; W ))j1∈[n1],j2∈[n2], (∆W

3 (x, j2; W ))j2∈[n2]
)
, (8)

where

∆W
3 (x, j2; W ) := n2∂w3(j2)R(y, f(x; W )) = ∂2R(y, f(x; W ))σ2(H2(x, j2; W )),

∆H
2 (x, j2; W ) := n2∂H2(x,j2;W )R(y, f(x; W )) = ∂2R(y, f(x; W ))w3(j2)σ′

2(H2(x, j2; W )),
∆W

2 (x, j1, j2; W ) := n1n2∂w2(j1,j2)R(y, f(x; W )) = ∆H
2 (x, j2; W )σ1(H1(x, j1; W )),

∆H
1 (x, j1; W ) := n1∂H1(x,j1;W )R(y, f(x; W )) = 1

n2

n2∑
j2=1

∆H
2 (x, j2; W )w2(j1, j2)σ′

1(H1(x, j1; W )),

∆W
1 (x, j1; W ) := n1∇w1(j1)R(y, f(x; W )) = ∆H

1 (x, j1; W )x.

(9)

One can interpret this as indicating that in the two-layer case, the scaling factor is n. In the three-layer
case, the scaling factor is n2 for the third layer, n1 × n2 for the second layer, and n1 for the first layer. This
choice of the scaling factors ensures that each component of the gradients is of order 1 (i.e., independent of
the layer widths n, n1, n2). In the following sections, we will use w1(t, j) or w1(k, j) to represent the weights
at time t or time step k. The same notation also applies to w2, w3.

3.3 Assumptions

Our assumptions are rather standard in the mean-field literature and appear e.g. in (Mei et al., 2018; 2019;
Nguyen & Pham, 2020; Pham & Nguyen, 2021a). We write such assumptions separately for networks with
two and three layers.
Assumption 3.1. We make the following assumptions for the training of a two-layer network:

(A1) (Boundedness) There exists a universal constant K > 0 such that ∥σ∥∞, ∥σ′∥∞, ∥σ′′∥∞ ≤ K. The
data distribution D is such that, almost surely, |y|, ∥x∥2 ≤ K. Furthermore, |∂2R(y, f(x; W ))| is
K-Lipschitz continuous in f(x; W ) and K-bounded for any W .

(A2) (Initialization of weights) At initialization, w1(0, j), w2(0, j) i.i.d.∼ ρ0, where ρ0 is such that w1(0, j)
is K2-sub-Gaussian, and |w2(0, j)| ≤ K almost surely.

(A3) (Initialization of momentum) We assume that r(0) = 0.

In order to state the assumption for a three-layer neural network, we first define the notion of i.i.d. initial-
ization.
Definition 3.2. We say that the three-layer neural network (2) has i.i.d. initialization from ρ1

0 × ρ2
0 × ρ3

0, if:

w1(0, j1) i.i.d.∼ ρ1
0, w2(0, j1, j2) i.i.d.∼ ρ2

0, w3(0, j2) i.i.d.∼ ρ3
0, j1 ∈ [n1], j2 ∈ [n2]. (10)

In short, i.i.d. initialization means both cross-layer and in-layer independence.
Assumption 3.3. We make the following assumptions for the training of a three-layer network:
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(B1) (Boundedness) There exists a universal constant K > 0 such that ∥σ1∥∞, ∥σ′
1∥∞, ∥σ′′

1 ∥∞, ∥σ2∥∞,
∥σ′

2∥∞, ∥σ′′
2 ∥∞ ≤ K. The data distribution D is such that |y|, ∥x∥2 ≤ K almost surely. Furthermore,

σ′
2(x) ̸= 0 for all x, |∂2R(y, f(x; W ))| is K-Lipschitz continuous with respect to the second argument

and K-bounded for any W .

(B2) (Initialization of weights) w1(0, j1), w2(0, j1, j2), w3(0, j2) have an i.i.d. initialization from ρ1
0 ×ρ2

0 ×
ρ3

0. Furthermore, w1(0, j1) is K2-sub-Gaussian, and |w2(0, j1, j2)|, |w3(0, j2)| ≤ K almost surely.

(B3) (Initialization of momentum) We assume that r(0) = 0.

In the initialization of two-layer networks, ρ0 is not required to be a product measure, that is,
w1(0, j), w2(0, j) are not required to be independent from each other. In other words, we do not assume
cross-layer independence, but only in-layer independence. However, in the three-layer case, we need to as-
sume both cross-layer independence and in-layer independence, and it turns out later that the cross-layer
independence is critical for proving our global convergence result.

The requirements above hold e.g. for tanh or sigmoid activation function, and logistic or Huber loss. The
assumption that ∂2R(y, f(x; W )) is K-bounded does not hold for the square loss. However, we expect the
same results proved in this paper to hold also for the square loss, provided that the assumptions are modified
as in Mei et al. (2019) (for the two-layer case) and in Nguyen & Pham (2020) (for the three-layer case). In
fact, it suffices that ∂2R(y, f(x; W )) is bounded with high probability, and then the arguments are similar.

Finally, we remark that the boundedness of the initialization w2(0, j) and w2(0, j1, j2), w3(0, j2) is purely
to simplify the proof, which can be generalized to a K2-sub-Gaussian initialization. In particular, one can
bound the sub-Gaussian norm of the weights, and then the absolute value of the weights will also be bounded
with high probability.

4 Derivation of the mean-field limit

Two-layer networks. The idea is that the output of the network can be viewed as an expectation over the
empirical distribution of the weights, that is:

f(x; W ) = 1
n

n∑
j=1

w2(j)σ1(w1(j)T x) = Eθ∼ρ̂θ
σ⋆(x; θ),

where W = {θ(j) : j ∈ [n]} and θ(j) = (w1(j), w2(j)). Furthermore, we define σ⋆(x; θ(j)) =
w2(j)σ(w1(j)T x) and ρ̂θ = 1

n

∑n
j=1 δθ(j). Thus, the evolution of the parameters θ(t) according to (5)

can be viewed as the evolution of ρ̂θ(t) according to a certain distributional dynamics induced by (5).

Since we assume i.i.d. initialization, as the number of neurons n −→ ∞, we expect that ρ̂θ(0) −→ ρ0. In this
limit, the distributional dynamics induced by (5), can be described by a certain ODE, with initial condition
ρ0. Let

f(x; ρ) := Eθ∼ρσ⋆(x; θ), R(z; ρ) := R(y, f(x; ρ)), R(ρ) := EzR(y, f(x; ρ)),

Ψ̂(z, θ; ρ) := δR(z, ρ)
δρ

(θ), Ψ(θ; ρ) := δR(ρ)
δρ

(θ) = EzΨ̂(z, θ; ρ).
(11)

Here, f(·; ρ) : RD → R; R(·; ρ) : RD+1 → R, R(·) : P2(RD+1) → R, where P2(RD+1) denotes the space of
probability measures on RD+1 with finite second moment; Ψ̂(·, ·; ρ) : RD+1 ×RD+1 → R; Ψ(·; ρ) : RD+1 → R.

Then, we define the mean-field ODE associated to the heavy ball method as

dθ(t) = r(t)dt, dr(t) =
(
−γr(t) − ∇θΨ(θ(t); ρθ(t))

)
dt. (12)

Three-layer networks. Among the various approaches to define a mean-field limit for multi-layer networks,
we follow the “neuronal embedding” framework proposed in (Nguyen & Pham, 2020; Pham & Nguyen, 2021a)
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to capture the dynamics of SGD training. We briefly summarize the key ideas, and then discuss how to
obtain the mean-field limit for the stochastic heavy ball method.

Consider a three-layer neural network of the form (2) with weights w1(0, j1), w2(0, j1, j2), w3(0, j2) obtained
via an i.i.d. initialization from ρ1 × ρ2 × ρ3, according to Definition 3.2. Then, in (Pham & Nguyen, 2021a,
Proposition 7), it is proved that there exists a product probability space (Ω1 × Ω2, F1 × F2,P1 × P2) and
functions w1(0, ·) : Ω1 −→ RD, w2(0, ·, ·) : Ω1 × Ω2 −→ R, w3(0, ·) : Ω2 −→ R such that, for any n1, n2,

{w1(0, C1(j1)), w2(0, C1(j1), C2(j2)), w3(0, C2(j2)), for j1 ∈ [n1], j2 ∈ [n2]}
d= {w1(0, j1), w2(0, j1, j2), w3(0, j2), for j1 ∈ [n1], j2 ∈ [n2]},

where d= denotes equality in distribution, C1(j1) i.i.d.∼ P1, C2(j2) i.i.d.∼ P2, for j1 ∈ [n1], j2 ∈ [n2] . Here,
the tuple {(Ω1 × Ω2, F1 × F2,P1 × P2), w1(0, ·), w2(0, ·, ·), w3(0, ·)} is called a neuronal embedding. With a
slight abuse of notation, we use w1, w2, w3 to denote also the functions w1(0, ·), w2(0, ·, ·), w3(0, ·). In later
sections, we refer to the functions when we write w1(0, c1), w2(0, c1, c2), w3(0, c2), while we refer to the
weights of the neural network when we write w1(0, j1), w2(0, j1, j2), w3(0, j2).

At this point, we are ready to define the mean-field ODE for the heavy ball method. This ODE tracks the
functions w1(0, ·), w2(0, ·, ·), w3(0, ·):

dw3(t, c2) = r3(t, c2) dt, dr3(t, c2) = (−γr3(t, c2) − Ez∆W
3 (z, c2; W (t))) dt,

dw2(t, c1, c2) = r2(t, c1, c2) dt, dr2(t, c1, c2) = (−γr2(t, c1, c2) − Ez∆W
2 (z, c1, c2; W (t)))dt,

dw1(t, c1) = r1(t, c1) dt, dr1(t, c1) = (−γr1(t, c1) − Ez∆W
1 (z, c1; W (t))) dt,

(13)

where c1 ∈ Ω1, c2 ∈ Ω2 are dummy variables and W (t) refers to the collection of weights (w1(t), w2(t), w3(t)).
The output of the neural network under the mean-field limit (13) is described via the following forward pass:

H1(x, c1; W (t)) = w1(t, c1)T x, c1 ∈ Ω1,

H2(x, c2; W (t)) = EC1∼P1w2(t, C1, c2)σ1(H1(x, C1; W (t))), c2 ∈ Ω2,

f(x; W (t)) = EC2∼P2w3(t, C2)σ2(H2(x, C2; W (t))).
(14)

Furthermore, the quantities ∆W
3 , ∆W

2 , ∆W
1 appearing in (13) are described via the backward pass:

∆W
3 (z, c2; W (t)) := ∂2R(y; f(x; W (t)))σ2(H2(x, c2; W (t))),

∆H
2 (z, c2; W (t)) := ∂2R(y; f(x; W (t)))w3(t, c2)σ′

2(H2(x, c2; W (t))),
∆W

2 (z, c1, c2; W (t)) := ∆H
2 (z, c2; W (t))σ1(H1(x, c1; W (t))),

∆H
1 (z, c1; W (t)) := EC2∆H

2 (x, C2; W (t))w2(t, c1, C2)σ′
1(H1(x, c1; W (t))),

∆W
1 (z, c1; W (t)) := ∆H

1 (x, c1; W (t))x.

(15)

For convenience, we will also use the lighter notation H1(t, x, c1), H2(t, x, c2), ∆W
3 (t, z, c2), ∆H

2 (t, z, c2),
∆W

2 (t, z, c1, c2), ∆H
1 (t, z, c1), ∆W

1 (t, z, c1) to denote the quantities H1(x, c1; W (t)), H2(x, c1; W (t)),
∆W

3 (z, c2; W (t)), ∆H
2 (z, c2; W (t)), ∆W

2 (z, c1, c2; W (t)), ∆H
1 (z, c1; W (t)), ∆W

1 (z, c1; W (t)), respectively.

We note that the neuronal embedding framework can recover the distributional dynamics for two-layer
networks as a special case (see (Nguyen & Pham, 2020, Corollary 22) for more details). It is also possible
to define the mean-field limit for three-layer neural networks directly as a distributional dynamics (Araújo
et al., 2019; Sirignano & Spiliopoulos, 2020a), although this approach may require additional assumptions
(namely, first and last layer not trained, see Araújo et al. (2019)).

At this point, we are ready to prove the existence and uniqueness of the mean-field differential equations.
Theorem 4.1. For any t < ∞, we have: (i) Under Assumption 3.1, there exists a unique solution of the
mean-field PDE (12).
(ii) Under Assumption 3.3, there exists a unique solution of the mean-field ODE (13).

7



Published in Transactions on Machine Learning Research (02/2023)

The proof of Theorem 4.1 follows from the analysis of a Picard type of iteration (Sznitman, 1991), and it
is deferred to Appendix B. We note that Krichene et al. (2020) consider a mean-field limit for two-layer
networks in which an additional Brownian motion is applied to the momentum term. This extra noise term
– together with the additional assumption (A5) (see p. 8 of Krichene et al. (2020)) – allows them to prove
the existence and uniqueness of the mean-field limit for any t ∈ [0, ∞]. This includes the existence and
uniqueness of the limiting point (for t = ∞). In contrast, Theorem 4.1 proves the existence and uniqueness
of the solution for any finite t, and we do not have guarantees on the limiting point.

5 Convergence to the mean-field limit

5.1 Two-layer networks

We recall that the mean-field ODE is defined in (12), and the SHB dynamics can be expressed as

θSHB(k + 1, j) = θSHB(k, j) + (1 − γε)(θSHB(k, j) − θSHB(k − 1, j)) − ε2∇θΨ̂(z(k), θSHB(k, j); ρθ
SHB(k)),

(16)

where θSHB(k, j) denotes the parameter associated to the j-th neuron at step k, Ψ̂ is defined in (11),
and ρθ

SHB(k) = 1
n

∑n
j=1 δθSHB(k,j) denotes the empirical distribution of the parameters {θSHB(k, j)}j∈[n].

We couple the mean-field ODE (12) and the SHB dynamics (16), in the sense that they share the same
initialization: θ(0) ∼ ρθ(0) and θSHB(0, j) i.i.d.∼ ρθ(0). Let us define the following distance metric that
measures the difference between the mean-field dynamics and the SHB dynamics:

DT (θ, θSHB) = max
j∈[n]

sup
t∈[0,T ]

∥θSHB(⌊t/ε⌋, j) − θ(t)∥2. (17)

Theorem 5.1. Let Assumption 3.1 hold. Consider the mean-field ODE (12), the SHB dynamics (16) and
the distance metric (17). Then, with probability at least 1 − exp(−δ2),

DT (θ, θSHB) ≤ K(γ, T )
((√

log n + δ
)

√
n

+
√

ε(
√

D + log n + δ)
)

, (18)

where K(γ, T ) is a constant depending only on γ, T .

We remark that the RHS of (18) is also an upper bound on supt∈[0,T ] W2(ρθ(t), ρθ
SHB(⌊t/ε⌋)), which follows

directly from the definition of the Wasserstein W2 distance.

Theorem 5.1 gives a quantitative characterization of the approximation error between the mean-field limit
and the stochastic heavy ball dynamics. In particular, it shows that this approximation error scales roughly
as
√

log n/n +
√

ε(D + log n), i.e., it vanishes as the number of neurons n grows large and the step size
ε = o(1/

√
D + log n). We remark that the bound in (18) is dimension-free in the sense that n does not

need to scale with the input dimension D. This is aligned with the bound provided for SGD by Mei et al.
(2019) which is also dimension-free.Note that the order of the upper bound O( 1√

n
) is tight due to large

deviation theory. This implies that it is not possible to improve the corresponding dropout stability and
connectivity guarantees (see Section 6), in terms of the number of neurons/input dimension. This means
that the behavior of SGD and SHB is similar, as both algorithms are optimal in this regard. The constant
K(γ, T ) scales rather poorly in T , i.e., K(γ, T ) = O(eeT ). This is a common shortcoming for “propagation
of chaos”-type arguments: for example, in Mei et al. (2018; 2019), the scaling of the bound in T is O(eT ).
An interesting open problem is to improve such dependence, e.g., by using ideas from Schuh (2022).

To the best of our knowledge, Theorem 5.1 provides the first consistency guarantee of the mean-field limit
(12). In the noisy case, a similar (although non-quantitative) guarantee is proved by Krichene et al. (2020).
The injection of noise in the dynamics often simplifies the analysis and it allows to prove stronger results
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(e.g., existence and uniqueness of the limit). However, the noiseless dynamics is particularly interesting,
since Brownian noise is typically not added in practice while training.

At the technical level, in order to deal with the second order dynamics arising from the heavy ball method,
we exploit a second order Gronwall’s lemma (cf. Lemma F.3) and use the Euler scheme to discretize the
continuous dynamics. The detailed proof is provided in Appendix C.

5.2 Three-layer networks

We recall that the mean-field ODE is defined in (13), and the SHB dynamics can be expressed as

wSHB
3 (k + 1, j2) = wSHB

3 (0, j2) + (1 − γε)(wSHB
3 (k, j2) − wSHB

3 (k − 1, j2)) − ε2∆W
3 (z(k), j2; W SHB(k)),

wSHB
2 (k + 1, j1, j2) = wSHB

2 (0, j1, j2) + (1 − γε)(wSHB
2 (k, j1, j2) − wSHB

2 (k − 1, j1, j2))
− ε2∆W

2 (z(k), j1, j2; W SHB(k)),
wSHB

1 (k + 1, j1) = wSHB
1 (0, j1) + (1 − γε)(wSHB

1 (k, j1) − wSHB
1 (k − 1, j1)) − ε2∆W

1 (z(k), j1; W SHB(k)),
(19)

where W SHB(k) =
(
(wSHB

1 (k, j1))j1∈[n1], (wSHB
2 (k, j1, j2))j1∈[n1],j2∈[n2], (wSHB

3 (k, j2))j2∈[n2]
)
, z(k) is the

data point sampled at time step k, and ∆W
1 , ∆W

2 , ∆W
3 are defined in (9).

Before stating our result, let us discuss how to couple the SHB dynamics (19) and the mean-field ODE (13).
First, sample a finite neural network w.r.t. the neuronal embedding, i.e., C1(j1) i.i.d.∼ P1, C2(j2) i.i.d.∼ P2,
for j1 ∈ [n1], j2 ∈ [n2] and w1(0, ·), w2(0, ·, ·), w3(0, ·). Given w1(0, ·), w2(0, ·, ·), w3(0, ·), let the mean-field
ODE (13) evolve, thus obtaining w1(t, ·), w2(t, ·, ·), w3(t, ·). Next, initialize the weights corresponding to
the SHB evolution according to the initialization of the mean-field ODE, i.e., wSHB

1 (0, j1) = w1(0, C1(j1)),
wSHB

2 (0, j1, j2) = w2(0, C1(j1), C2(j2)) and wSHB
3 (0, j2) = w3(0, C2(j2)), and let them evolve according to

SHB dynamics (19), thus obtaining wSHB
1 (k, j1), wSHB

2 (k, j1, j2), wSHB
3 (k, j2). Finally, we define the following

distance metric that measures the difference between the mean-field and the SHB dynamics:

DT (W , W SHB) = max
j1∈[n1],j2∈[n2]

sup
t∈[0,T ]

max{∥w1(t, C1(j1)) − wSHB
1 (⌊t/ε⌋, j1)∥2,

|w2(t, C1(j1), C2(j2)) − wSHB
2 (⌊t/ε⌋, j1, j2)|,

|w3(t, C2(j2)) − wSHB
3 (⌊t/ε⌋, j2)|}.

(20)

Theorem 5.2. Let Assumption 3.3 hold. Consider the coupled the SHB dynamics (19) and mean-field ODE
(13), and the distance metric (20). Then, with probability at least 1 − exp(−δ2),

DT (W , W SHB) ≤ K(γ, T )
((√

log nmax + δ
)

√
nmin

+
√

ε(
√

D + log n1n2 + δ)
)

, (21)

where nmax = max{n1, n2}, nmin = min{n1, n2}, and K(γ, T ) is a constant depending only on γ, T .

For three layers, Theorem 5.2 gives that the approximation error scales roughly as
√

log nmax/nmin +√
ε(D + log n1n2), i.e., it vanishes as long as n1, n2 both grow large, with nmax = o(enmin) and ε =

o(1/
√

D + log n1n2). As in the two-layer case, the bound is dimension-free (in the sense that n1, n2 do
not need to scale with D), and K(γ, T ) = O(eeT ). We remark that the scaling of the bound in T is also a
shortcoming of the existing analysis for SGD in (Pham & Nguyen, 2021a). The detailed proof is provided
in Appendix D.

6 Consequences of the mean-field analysis: Dropout stability and connectivity

The mean-field perspective put forward in this paper leads to a precise characterization of the SHB train-
ing dynamics. In particular, Theorems 5.1-5.2 offer a provable justification to two remarkable properties
exhibited by solutions obtained via gradient-based methods, namely, dropout-stability and connectivity. The

9
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fact that solutions (often resulting from algorithms that use momentum) can be connected via simple paths
with low loss was empirically observed in (Garipov et al., 2018; Draxler et al., 2018), and this property was
related to dropout-stability by Kuditipudi et al. (2019). In (Shevchenko & Mondelli, 2020), it was shown
that SGD solutions enjoy dropout-stability and connectivity and, by combining this analysis with Theorems
5.1-5.2, similarly strong guarantees can be obtained for heavy ball methods. We will keep the discussion at
an informal level, as the details are similar to those in (Shevchenko & Mondelli, 2020).

Let’s start with the two-layer case. Given a non-empty set A ⊂ [n], we say that W is ϵD-dropout stable if

|R(W ) − Rdrop(W ; A)| ≤ ϵD, (22)

where Rdrop(W ; A) is obtained by replacing the two-layer network f(x; W ) defined in (1) with the dropout
network

f(x; WA) = 1
|A|

∑
j∈A

w2(j)σ(w1(j)T x), (23)

where WA = (w1(j), w2(j))j∈A and |A| denotes the cardinality of the set A. Similarly, in the three-layer
case, given two non-empty sets A1 ⊂ [n1], A2 ⊂ [n2], the dropout network is given by

H2(x, j2; WA1,A2) = 1
|A1|

∑
j1∈A1

w2(j1, j2)σ1(w1(j1)T x),

f(x; WA1,A2) = 1
|A2|

∑
j2∈A2

w3(j2)σ2(H2(x, j2; WA1,A2)),
(24)

and ϵD-dropout stability is defined analogously. Furthermore, we say that two solutions W and W ′ are
ϵC-connected if there exists a continuous path in parameter space that starts at W , ends at W ′ and along
which the population risk is upper bounded by max{R(W ), R(W ′)} + ϵC .

At this point, the quantitative convergence result to the mean-field limit provided by Theorem 5.1 and
5.2 leads to a quantitative bound on the dropout stability and connectivity of the solutions found by the
stochastic heavy ball method. We remark that proving only the consistency of the mean-field limit, as done
in (Krichene et al., 2020, Theorem 1), does not suffice to obtain such guarantees on the structure of the
SHB solution. In particular, for two-layer networks, after k ≤ ⌊T/ε⌋ steps of the iteration (16), the resulting
parameters are ϵD-dropout stable and ϵC-connected, where

ϵD ≤ K(γ, T )


(√

log |A| + δ
)

√
|A|

+
√

ε(
√

D + log n + δ)

 ,

ϵC ≤ K(γ, T )
((√

log n + δ
)

√
n

+
√

ε(
√

D + log n + δ)
)

,

(25)

with probability at least 1−exp(−δ2). Here K(γ, T ) is a universal constant depending only on γ, T as before.
Similarly, for three-layer networks, after k ≤ ⌊T/ε⌋ steps of the iteration (19), the resulting parameters are
ϵD-dropout stable and ϵC-connected, where

ϵD = K(γ, T )
((√

log Amax + δ
)

√
Amin

+
√

ε(
√

D + log n1n2 + δ)
)

,

ϵC = K(γ, T )
((√

log nmax + δ
)

√
nmin

+
√

ε(
√

D + log n1n2 + δ)
)

,

(26)

with probability at least 1 − exp(−δ2). Here, Amax = max{|A1|, |A2|}, Amin = min{|A1|, |A2|}, nmax =
max{n1, n2} and nmin = min{n1, n2}. We remark that the path connecting the two solutions can be
explicitly constructed as in (Kuditipudi et al., 2019; Shevchenko & Mondelli, 2020). More specifically, this
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path is piece-wise linear, and the number of linear segments is a fixed constant. We also note that the
bounds for multi-layer networks in (Shevchenko & Mondelli, 2020) exhibit a linear dependence on the input
dimension D. In contrast, our bounds (25)-(26) are dimension-free.

Finally, let us highlight that our mean-field viewpoint can shed light on the thought-provoking conjecture in
(Entezari et al., 2022), where it is empirically observed that, after a suitable permutation, the solutions of
the optimization algorithm enjoy linear connectivity. In fact, Theorems 5.1 and 5.2 show that, by running
the corresponding SHB training algorithm multiple times, all the resulting solutions satisfy (18) and (21),
respectively. This implies that, after a permutation of the neurons, the distance between such solutions
can also be upper bounded by the RHS of (18) and (21), hence the linear connectivity is an immediate
consequence of this closeness among the solutions.

7 Global convergence of the mean-field ODE for three-layer networks

In order to show the global convergence result, we first need to make some extra assumptions.
Assumption 7.1. We make the following additional assumptions for the training of a three-layer neural
network:

(C1) (Universal approximation property of the activation) σ1 exhibits a universal approximation property,
that is: {σ1(⟨w, ·⟩) : w ∈ RD} has dense span in L2(Dx), where Dx denotes the x-marginal of the
data distribution D.

(C2) (Full support at initialization) ρ1
0 has full support.

(C3) (Mode of convergence) The mean-field ODE (13) converges to the limit(
w1(∞, c1), w2(∞, c1, c2), w3(∞, c2)

)
. Formally, we have that

EC1,C2 [(1 + |w3(∞, C2)|) · |w3(∞, C2)| · |w2(∞, C1, C2)| · ∥w1(t, C1) − w1(∞, C1)∥2] t−→∞−−−−→ 0,

EC1,C2 [(1 + |w3(∞, C2)|) · |w3(∞, C2)| · |w2(t, C1, C2) − w2(∞, C1, C2)|] t−→∞−−−−→ 0,

EC2 [(1 + |w3(∞, C2)|) · |w3(t, C2) − w3(∞, C2)|] t−→∞−−−−→ 0,

ess sup
C1

EC2 [|Ez∆W
2 (t, z, C1, C2)|] t−→∞−−−−→ 0,

Pr [w3(∞, C2) ̸= 0] > 0.

The universal approximation property is the key assumption to obtain a global convergence result. This
requirement is mild, since most activation functions used in practice are universal approximators. The
assumption on full support is also mild, since widely used initialized schemes (e.g., He’s or LeCun’s initial-
ization) employ a Gaussian distribution, which indeed has full support. The assumption on the mode of
convergence is purely technical, and it is an open question whether it can be relaxed.More specifically, part
(C3) is needed because of the lack of entropic and moment regularization, which makes it difficult to charac-
terize the limiting points of the noiseless mean-field dynamics. We note that the uniform convergence of the
gradient (the fourth assumption in (C3)) could be replaced by Morse-Sard type of regularity assumptions
(see (Nguyen & Pham, 2020, Section 8)). We remark that these requirements also appear in Pham & Nguyen
(2021a), with the exception of Pr [w3(∞, C2) ̸= 0] > 0, which is needed to handle the heavy ball dynamics.
Theorem 7.2. Let Assumptions 3.3 and 7.1 hold, and assume further that R(y, f(x; W )) is convex in
f(x; W ). Let W (t) be the solution of the mean-field ODE (13). Then, we have that

lim
t−→∞

EzR(y, f(x; W (t))) = inf
ŷ:RD−→R

EzR(y, ŷ(x)). (27)

The detailed proof is deferred to Appendix E, and we provide here a sketch. First, we show a degeneracy prop-
erty for the mean-field ODE, i.e., there exist deterministic functions w∗

1(·, ·) : R≥0 × RD −→ RD, w∗
2(·, ·, ·, ·) :

11
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(a) Two-layer networks (b) Three-layer networks

Figure 1: Dropout error plotted as a function of the network width. The log-log plot is close to be linear,
matching the behavior of our theoretical predictions of Section 6.

R≥0 × RD × R × R −→ R, w∗
3(·, ·) : R≥0 × R −→ R such that

w1(t, C1) = w∗
1(t, w1(0, C1)),

w2(t, C1, C2) = w∗
2(t, w1(0, C1), w2(0, C1, C2), w3(0, C2)),

w3(t, C2) = w∗
3(t, w3(0, C2)).

Next, we show that, for any finite t, w∗
1(·, ·) is continuous in both arguments and w1(t, C1) has full support.

Finally, the convergence to the global minimum is obtained by combining the argument that w1(t, C1) is full
support for all finite t with the assumption on the mode of convergence.

Theorem 7.2 is rather different from the global convergence result for the heavy ball method presented in
(Krichene et al., 2020). In fact, Krichene et al. (2020) consider a noisy dynamics, and show the convergence
of the mean-field ODE to the global minimum of a certain free energy, which represents an entropic regular-
ization of the loss function. In this setup, the convergence is guaranteed by the noise term in the dynamics
and by the regularization term in the free energy functional. In contrast, we consider a noiseless dynamics
and do not prove its convergence. Instead, we show that, when the mean-field ODE converges, it must do so
towards the global minimum of the un-regularized loss function. At the technical level, our proof strategy
is an adaptation to the heavy ball case of the argument for SGD in (Pham & Nguyen, 2021a), which also
crucially relies on the universal approximation property of the activation function. A similar idea was first
proposed in (Lu et al., 2020), and it also appears e.g. in (Fang et al., 2021). However, our contribution is
the first to tackle the case of optimization with momentum.

8 Numerical results

Experimental setup. We train a two-layer and a three-layer fully connected neural network in the mean-
field regime on the MNIST dataset. The training algorithm is stochastic gradient descent with momentum,
and we evaluate the dropout stability of the learnt models. For the two-layer network, we take the width
n = 100 × 2k, where k ∈ {1, . . . , 7}; for the three-layer network, we take n1 = n2 = n and use the same grid
for n. We use the PyTorch default initialization, pick the learning rate ε to be 0.05 and the momentum to
be 0.9 (which implies that γ = 2). We rescale the learning rate, so that the scaling of the gradient does not
depend on n, as required by our theory. The batch size is 100 and we train for 25 epochs, which means that
the neural network is trained for 15000 steps (each epoch contain 600 steps and there are 25 epochs). For
each model, we perform 10 i.i.d. experiments and report their average. We compute the population loss for
both the original network and the dropout network, obtained by randomly dropping out half of the neurons.
For each experiment, we take 10 random dropout networks and report the average population loss.
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Experimental results. In Figure 1, we plot the log of the dropout error defined in (22) as a function
of the number of neurons in each layer. Different curves correspond to different numbers of trained epochs.
Two remarks are in order. First, the dependence of the dropout error on the time of the dynamics is rather
mild (and, hence, our bounds on the constant K(γ, T ) appear to be pessimistic). Second, the dropout error
scales as an inverse polynomial in the width, in agreement with (25)-(26).

9 Discussion and future direction

In this paper, we consider neural networks with two and three layers, and analyze the dynamics of stochastic
gradient descent with momentum – also known as the stochastic heavy ball method (SHB) – from a mean-
field viewpoint. After showing the existence and uniqueness of the mean-field limit, we provide a quantitative
convergence result of the discrete SHB dynamics of a finite-width neural network to the corresponding limit
differential equation, thus solving a problem raised by Krichene et al. (2020). Then, we exploit the power of
our mean-field perspective by (i) proving that the solutions found by SHB enjoy desirable properties, such
as dropout stability and connectivity, and (ii) showing a global convergence result for three-layer networks.

At the technical level, our proof strategies build on the work by Mei et al. (2019) and Pham & Nguyen (2021a)
for neural networks with two and three layers, respectively. However, these papers focus on vanilla SGD,
and dealing with SHB requires a number of delicate technical results. In particular, (i) we establish several
boundedness and smoothness properties of the mean-field dynamics, (ii) we track various new quantities
and exploit a second-order Gronwall lemma (Pachpatte’s inequality) to bound them, (iii) we perform a
discretization of the particle dynamics which is different from the SGD case, and (iv) we prove a key
measurability property for the second-order dynamics, which characterizes the dependency between layers
during training. Our strategy is tailored to the stochastic heavy ball method, but similar ideas could
potentially be applied also to Nesterov’s accelerated method, due to the similarity in the continuous limit.
The study of other popular training algorithms (e.g., Adam) most likely requires an entirely different technical
analysis, whose investigation is left as an interesting open problem.

Let us conclude by discussing some extensions and future directions.

Beyond three layers and fully connected networks. While it should be possible to extend our analysis
of SGD with momentum to feed-forward networks with more than three layers, it remains unclear how to
obtain global convergence guarantees in a more general setup. In fact, this is an open problem even for the
case of optimization without momentum, see (Nguyen & Pham, 2020, Section 5). We also note that, although
we only consider fully connected networks, our analysis could be generalized to other architectures, such as
convolutional neural networks (CNNs) or ResNets, by slightly modifying the assumption. In particular, for
CNNs, if we replace inner products by convolutions and let n or n1, n2 be the number of filters in each layer,
our analysis can be directly applied. For ResNets, the presence of the skip connection modifies the backward
path, and the mean-field limit would need to reflect this modification.

“Central limit theorem”-type of results. Theorems 5.1-5.2 belong to a “law of large numbers”-type
of results, in the sense that they show how close is the SHB dynamics to the mean-field limit. A parallel
line of work has studied the distribution of the perturbation of the finite-width neural network around its
mean-field limit, see (Chen et al., 2020; Sirignano & Spiliopoulos, 2020b) for two-layer networks, and (Pham
& Nguyen, 2021b) for multi-layer ones. However, all the existing results concern the vanilla SGD algorithm,
and understanding how momentum can affect such a distribution is an interesting future direction.

Convergence of noisy dynamics. In this work, we consider a noiseless dynamics, and the global con-
vergence result for three-layer networks follows from the universality of the activation function. In contrast,
in the noisy case, the mean-field limit for a two-layer network is an under-damped mean-field Langevin
dynamics, whose convergence follows from the convexity of a related free-energy functional (Krichene et al.,
2020). In a multi-layer setup, the free energy is not convex, which makes it challenging to obtain global
convergence.

Comparison between SGD and heavy ball methods. Motivated by the observation that, in practice,
adding momentum helps to generalize better (Sutskever et al., 2013), an exciting avenue for future research
is to exploit the structure of the mean-field limit to draw insights concerning the solution found by heavy
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ball methods. While the recent work by Jelassi & Li (2022) theoretically proved the improvements in
generalization error provided by momentum under certain settings, we are not aware about whether such
results hold in the mean-field training regime. A key difficulty here is that, for the noiseless dynamics, global
convergence is not guaranteed in general, let alone an explicit characterization of the stationary solution. To
circumvent this issue, one option may be to consider a suitably regularized noisy dynamics, which admits
a stationary solution in a Gibbs form, in the limit of vanishingly small noise and regularization. Finally,
heavy ball methods are known to enjoy faster rates of convergence in the convex setting. Thus, establishing
a convergence rate for the mean-field dynamics is an exciting avenue for future research.
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Organization of the appendix. In Appendix A, we provide some a-priori estimates that will be useful
in the following arguments. In Appendix B, we prove Theorem 4.1, namely, the existence and uniqueness
of the mean-field limit for two-layer and three-layer networks, respectively. In Appendix C and D, we prove
Theorems 5.1 and 5.2, which show the convergence of the SHB dynamics to the corresponding mean-field
limit for two-layer and three-layer networks. Finally in Appendix E, we prove Theorem 7.2, which is the
global convergence result in the three-layer setup.

A A-priori estimates

A.1 Two-layer networks

Lemma A.1. Assume that (A1) - (A3) hold, and let f(x; ρ), Ψ(θ; ρ), ∇θΨ(θ; ρ) be defined in (11). Then,
for any fixed T , there exist universal constants K, K2(γ, T ), where the latter depends only on γ, T , such that
the following results hold.

1. (Boundedness) We have that, for any θ, ρ,

f(x; ρ) ≤ KEρ|w2|,
|Ψ(θ; ρ)| ≤ K|w2|, (28)

∥∇θΨ(θ; ρ)∥2 ≤ K(1 + |w2|).

2. (Boundedness for mean-field ODE) We have that, for any t ≤ T , w2(t) as governed by (12) satisfies

|w2(t)| ≤ K2(γ, T ). (29)

3. (Lipschitz continuity):

|Ψ(θ; ρ) − Ψ(θ′; ρ′)| ≤ K(1 + |w2|) (|w2 − w′
2| + ∥w1 − w′

1∥2 + W2(ρ, ρ′)) , (30)
∥∇θΨ(θ; ρ) − ∇θΨ(θ′; ρ′)∥2 ≤ K(1 + |w2|) (|w2 − w′

2| + ∥w1 − w′
1∥2 + W2(ρ, ρ′)) . (31)

Proof. 1. By the definition and assumption (A1), we have that

|f(x; ρ)| = |Eρw2σ(wT
1 x)| ≤ KEρ|w2|,

|Ψ(θ; ρ)| ≤ |Ez

[
∂2R(y, f(x; ρ))σ(wT

1 x)
]

| · |w2| ≤ K|w2|,
|∇w2Ψ(θ; ρ)| = |Ez

[
∂2R(y, f(x; ρ))σ(wT

1 x)
]

| ≤ K,

∥∇w1Ψ(θ; ρ)∥2 = ∥Ez

[
∂2R(y, f(x; ρ))w2σ′(wT

1 x)x
]

∥2 ≤ K|w2|.
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2. By writing down the integral form of the ODE, we have

|w2(t)| ≤ |w2(0)| + γ

∫ T

0
(|w2(s)| + |w2(0)|) ds +

∫ T

0

∫ s

0
|∇w2Ψ(θ(u); ρ(u))| du ds

≤ (K + KT + KT 2) + γ

∫ T

0
|w2(s)| ds

≤ (K + KT + KT 2)eγT .

By setting K2(γ, T ) := (K + KT + KT 2)eγT , the proof of (29) is complete.

3. For the Lipschitz continuity argument, we have

Ψ(θ; ρ) = Ez

[
∂2R(y, f(x; ρ))w2σ(wT

1 x)
]

,

∇θΨ(θ; ρ) =
(
Ez

[
∂2R(y, f(x; ρ))w2σ′(wT

1 x)x
]

Ez

[
∂2R(y, f(x; ρ))σ(wT

1 x)
] )

.

Thus,

|Ψ(θ; ρ) − Ψ(θ′; ρ′)| ≤ K|w2|∥w1 − w′
1∥ + K|w2 − w′

2| + K|w2||Eθ∼ρσ(x; θ) − Eθ∼ρ′σ(x; θ)|. (32)

We define the Bounded Lipschitz (BL) divergence as follows:

dBL(ρ, ρ′) = sup{|Eθ∼ρf(θ) − Eθ∼ρ′f(θ)| : |f | ≤ 1, ∥f∥Lip ≤ 1}.

We have the following relationship between the BL-divergence and the Wasserstein distance (see for
example (Chizat & Bach, 2018, Appendix A) for more details):

dBL(ρ, ρ′) ≤ W2(ρ, ρ′).

Hence,

|Eρσ(x; θ) − Eρ′σ(x; θ)| ≤ KdBL(ρ, ρ′) ≤ KW2(ρ, ρ′),

which implies that the RHS of (32) is upper bounded by

K|w2|(∥w1 − w′
1∥2 + W2(ρ, ρ′)) + K|w2 − w′

2| ≤ K(1 + |w2|) (|w2 − w′
2| + ∥w1 − w′

1∥2 + W2(ρ, ρ′))

This concludes the proof of (30). The Lipschitz continuity of ∇θΨ(θ; ρ) follows from the same
argument.

A.2 Three-layer networks

Lemma A.2. Assume that (B1)-(B2) hold, and let H2, f, ∆W
1 , ∆W

2 , ∆W
3 , ∆H

1 , ∆H
2 be defined in (14) and

(15). Then, for any fixed T , and given a neuronal embedding

{(Ω1 × Ω2, F1 × F2,P1 × P2), w1(0, ·), w2(0, ·, ·), w3(0, ·)} ,

there exists a universal constant K and universal constants K3,2(γ, T ), K3,3(γ, T ) only depending on γ, T
such that the following results hold.

1. (Boundedness) We have that, for any W , z, for any t ∈ [0, T ] and for any c1 ∈ Ω1, c2 ∈ Ω2,

• |f(x; W (t))| ≤ K ess supC2 |w3(t, C2)|
• H2(x, c2; W (t))| ≤ K ess supC1,C2 |w2(t, C1, C2)|
• |∆W

3 (z, c2; W (t))| ≤ K
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• |∆H
2 (z, c2; W (t))| ≤ K ess supC2 |w3(t, C2)|

• |∆W
2 (z, c1, c2; W (t))| ≤ K

(
ess supC1,C2 |w2(t, C1, C2)|

)
ess supC2 |w3(t, C2)|

• |∆H
1 (x, c1; W (t))| ≤ K ess sup

C2

|w3(t, C2)| ess sup
C1,C2

|w2(t, C1, C2)|

• ∥∆W
1 (x, c1; W (t))∥2 ≤ K ess supC2 |w3(t, C2)| ess supC1,C2 |w2(t, C1, C2)|

2. (Boundedness for mean-field ODE) We have that, for any t ≤ T ,

ess sup
C2

|w3(t, C2)| ≤ K3,3(γ, T ), ess sup
C1,C2

|w2(t, C1, C2)| ≤ K3,2(γ, T ). (33)

3. (Lipschitz continuity) We have that, for any t ≤ T ,

• |H1(x, c1; W (t)) − H1(x, c1; W̃ (t))| ≤ K∥w1(t, c1) − w̃1(t, c1)∥2

• |H2(x, c2; W (t)) − H2(x, c2; W̃ (t))|
≤ K ess sup

C1

(|w2(t, C1, c2)|∥w1(t, C1) − w̃1(t, C1)∥2 + |w2(t, C1, c2) − w̃2(t, C1, c2)|)

• |f(x; W (t)) − f(x; W̃ (t))|
≤ K ess sup

C1,C2

(|w3(t, C2)| · |w2(t, C1, C2)| · ∥w1(t, c1) − w̃1(t, c1)∥2

+ |w3(t, c2)| · |w2(t, c1, c2) − w̃2(t, c1, c2)| + |w3(t, c2) − w̃3(t, c2)|)
• |∆W

3 (z, c2; W (t)) − ∆W
3 (z, c2; W̃ (t))|

≤ K
(
|H2(x, c2; W (t)) − H2(x, c2; W̃ (t))| + |f(x; W (t)) − f(x; W̃ (t))|

)
• |∆H

2 (z, c2; W (t)) − ∆H
2 (z, c2; W̃ (t))|

≤ K|w3(t, c2)| · |H2(x, c2; W (t)) − H2(x, c2; W̃ (t))| + K|w3(t, c2) − w̃3(t, c2)|
+ K|w3(t, c2)| · |f(x; W (t)) − f(x; W̃ (t))|

• |∆W
2 (z, c1, c2; W (t)) − ∆W

2 (z, c1, c2; W̃ (t))|
≤ K|∆H

2 (x, c2; W (t)) − ∆H
2 (z, c2; W̃ (t))|

+ K|∆H
2 (z, c2; W (t))| · ∥w1(t, c1) − w̃1(t, c1)∥2

• ∥∆W
1 (z, c1; W (t)) − ∆W

1 (z, c1; W̃ (t))∥2

≤ K|EC2

[
∆H

2 (z, C2; W (t))w2(t, c1, C2)
]

| · ∥w1(t, c1) − w̃1(t, c1)∥2

+ K|EC2

[
∆H

2 (z, C2; W̃ (t))w̃2(t, c1, C2) − ∆H
2 (z, C2; W (t))w2(t, c1, C2)

]
|.

Proof. 1. By the definition and assumption (B1), we have

• |f(x; W (t))| = |EC2w3(t, C2)σ2(H2(t, x, C2))|
≤ K|EC2w3(t, C2)| ≤ ess sup

C2

|w3(t, C2)|

• |H2(x, c2; W (t))| = |EC1w2(t, C1, c2)σ1(H1(t, x, C1))|
≤ ess sup

C1,C2

|w2(t, C1, C2)σ1(H1(x, C1; W (t)))|

≤ K ess sup
C1,C2

|w2(t, C1, C2)|

• |∆W
3 (x, c2; W (t))| = |∂2R(y; f(x; W (t)))σ2(H2(x, c2; W (t)))| ≤ K

• |∆H
2 (x, c2; W (t))| = |∂2R(y; f(x; W (t)))w3(t, c2)σ′

2(H2(x, c2; W (t)))|
≤ ess sup

C2

|w3(t, C2)σ′
2(H2(x, C2; W (t)))| ≤ K ess sup

C2

|w3(t, C2)|

• |∆W
2 (x, c1, c2; W (t))| = |∆H

2 (x, c2; W (t))σ2(H1(x, c1; W (t)))|
≤ K ess sup

C2

|∆H
2 (x, C2; W (t))| ≤ K ess sup

C2

|w3(t, C2)|
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• |∆H
1 (x, c1; W (t))| = |EC2∆H

2 (x, C2; W (t))w2(t, c1, C2)σ′
1(H1(x, c1; W (t)))|

≤ ess sup
C2

|∆H
2 (x, C2; W (t))| ess sup

C1,C2

|w2(t, C1, C2)| ess sup
C1

|σ′
1(H1(x, C1; W (t)))|

≤ K ess sup
C2

|w3(t, C2)| ess sup
C1,C2

|w2(t, C1, C2)|

• ∥∆W
1 (x, c1; W (t))∥2 = ∥∆H

1 (x, c1; W (t))x∥2 ≤ ess sup
C1

|∆H
1 (x, C1; W (t))|∥x∥2

≤ K ess sup
C2

|w3(t, C2)| ess sup
C1,C2

|w2(t, C1, C2)|

2. We have that, for any t ≤ T ,

|w3(t, c2)| ≤ |w3(0, c2)| + γ

∫ t

0
(|w3(0, c2)| + |w3(s, c2)|) ds

+
∫ t

0

∫ s

0
|Ex∆W

3 (u, x, c2)| du ds

≤ K + KγT + KT 2 + γ

∫ t

0
|w3(s, c2)| ds

≤ (K + KγT + KT 2)eγT := K3,3(γ, T ),

which readily gives the first claim. Next, we write

|w2(t, c1, c2)| ≤ |w2(0, c1, c2)| + γ

∫ t

0
(|w2(0, c1, c2)| + |w2(s, c1, c2)|) ds

+
∫ t

0

∫ s

0
|Ex∆W

2 (x, c1, c2; W (u))| du ds

≤ K + KγT + γ

∫ t

0
|w2(s, c1, c2)| ds + K3,3(γ, T )T 2,

which by Gronwall’s lemma, implies that

ess sup
C1,C2

|w2(t, C1, C2)| ≤ (K + KγT + K3,3(γ, T )T 2)eKT := K3,2(γ, T ).

3. For the Lipschitz continuity argument, we have

• |H1(x, c1; W (t)) − H1(x, c1; W̃ (t))| = |xT (w1(t, c1) − w̃1(t, c1))|
≤ K∥w1(t, c1) − w̃1(t, c1)∥2

• |H2(x, c2; W (t)) − H2(x, c2; W̃ (t))|
= |EC1w2(t, C1, c2)σ1(w1(t, C1)T x) − EC1w̃2(t, C1, c2)σ1(w̃1(t, C1)T x)|
≤ K ess sup

C1

(|w2(t, C1, c2)| ∥w1(t, C1) − w̃1(t, C1)∥2 + |w2(t, C1, c2) − w̃2(t, C1, c2)|)

• |f(x; W (t)) − f(x; W̃ (t))|
≤ |EC2w3(t, C2)σ2(H2(x, C2; W (t))) − EC2w̃3(t, C2)σ2(H2(x, C2; W̃ (t)))|
≤ K ess sup

C1,C2

(|w3(t, C2)| · |w2(t, C1, C2)| · ∥w1(t, C1) − w̃1(t, C1)∥2

+ |w3(t, C2)| · |w2(t, C1, C2) − w̃2(t, C1, C2)| + |w3(t, C2) − w̃3(t, C2)|)
• |∆W

3 (z, c2; W (t)) − ∆W
3 (z, c2; W̃ (t))|

= |∂2R(y, f(x, W (t)))
· σ2(H2(x, c2; W (t))) − ∂2R(y, f(x, W̃ (t)))σ2(H2(x, c2; W̃ (t)))|

≤ K
(
|H2(x, c2; W (t)) − H2(x, c2; W̃ (t))| + |f(x; W (t)) − f(x; W̃ (t))|

)
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• |∆H
2 (z, c2; W (t)) − ∆H

2 (z, c2; W̃ (t))|
= |∂2R(y, f(x, W (t)))w3(t, c2)σ′

2(H2(x, c2; W (t)))
− ∂2R(y, f(x, W̃ (t)))w̃3(t, c2)σ′

2(H2(x, c2; W̃ (t)))|
≤ K|w3(t, c2)| · |H2(x, c2; W (t)) − H2(x, c2; W̃ (t))| + K|w3(t, c2) − w̃3(t, c2)|

+ K|w3(t, c2)| · |f(x; W (t)) − f(x; W̃ (t))|
• |∆W

2 (z, c1, c2; W (t)) − ∆W
2 (z, c1, c2; W̃ (t))|

= |∆H
2 (z, c2; W (t))σ1(w1(t, c1)T x) − ∆H

2 (z, c2; W̃ (t))σ1(w̃1(t, c1)T x)|
≤ K|∆H

2 (x, c2; W (t)) − ∆H
2 (z, c2; W̃ (t))|

+ K|∆H
2 (z, c2; W (t))| · ∥w1(t, c1) − w̃1(t, c1)∥2

• ∥∆W
1 (z, c1; W (t)) − ∆W

1 (z, c1; W̃ (t))∥2

≤ K|EC2∆H
2 (z, C2; W (t))w2(t, c1, C2)σ′

1(w1(t, c1)T x)
− EC2∆H

2 (z, C2; W̃ (t))w2(t, c1, C2)σ′
1(w̃1(t, c1)T x)|

≤ K|EC2

[
∆H

2 (z, C2; W (t))w2(t, c1, C2)
]

| · ∥w1(t, c1) − w̃1(t, c1)∥2

+ K|EC2

[
∆H

2 (z, C2; W̃ (t))w̃2(t, c1, C2) − ∆H
2 (z, C2; W (t))w2(t, c1, C2)

]
|.

B Existence and uniqueness of the mean-field limit

B.1 Two-layer networks

In this section, we prove the existence and uniqueness of the mean-field limit for two-layer networks. We
recall the mean-field ODE again here:

dθ(t) = r(t)dt,

dr(t) =
(
−γr(t) − ∇θΨ(θ(t); ρθ(t))

)
dt. (34)

The proof follows from constructing a Picard type of iteration, similarly to (Sirignano & Spiliopoulos, 2020a,
Section 4), (Javanmard et al., 2020, Theorem C.4). Below is an adaptation of the strategy in (Sznitman,
1991, Theorem 1.1). We first write the integral form of the mean-field ODE:

θ(t) = θ(0) − γ

∫ t

0
(θ(s) − θ(0)) ds −

∫ t

0

∫ s

0
∇θΨ(θ(u); ρθ(u)) du ds, (35)

r(t) = r(0) − γ(θ(t) − θ(0)) −
∫ t

0
Ψ(θ(s); ρθ(s)) ds, (36)

where ρ(t) is the law of (θ(t), r(t)), and we use ρθ(t), ρr(t) to denote the θ and r marginals, respectively.
We define the space P2(RD × RD) to be the space of probability measures on RD × RD equipped with
Wasserstein metric W2, and we have ρ(t) ∈ P2(RD × RD). We define the space C

(
[0, T ], P2(RD × RD)

)
to

be the space of continuous maps ρ(·; T ) : [0, T ] → P2(RD ×RD). We omit T when there’s no confusion. The
space is equipped with the following metric: dT (ρ1, ρ2) = supt∈[0,T ] W2(ρ1(t), ρ2(t)).

Note that the space
(
P2(RD × RD), W2

)
is a complete space (Ambrosio et al., 2021, Theorem 8.7). Thus

for any fixed 0 < T < ∞, the space
(
C
(
[0, T ], P2(RD × RD)

)
× dT

)
is also complete.

Next, we define the operator HT (·, θ(0)) : C
(
[0, T ], P2(RD × RD)

)
→ C

(
[0, T ], P2(RD × RD)

)
as follows:

HT (ρ1; θ(0)) := ρ̃, ρ̃(t) := {Law(θ̃(t), r̃(t))}t≤T

θ̃(t) = θ(0) − γ

∫ t

0
(θ̃(s) − θ(0)) ds −

∫ t

0

∫ s

0
∇θΨ(θ̃(u); ρθ

1(u)) du ds, (37)
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where θ(0) denotes the parameters of the mean-field ODE (35) at initialization, which means that the
stochastic process we defined in (37) is coupled with the mean-field ODE.

Note that the ρθ
1(t) in (37) is no longer the law of θ̃(t), but the input distribution. We use HT (ρ(t)) to

denote HT (ρ; θ(0))(t), that is the distribution of the solution (37) at time t. We omit θ(0) when there is no
confusion. The definition of HT can be interpreted as follows: it maps ρ ∈ C

(
[0, T ], P2(RD × RD)

)
as input

to output the law of (θ(t), r(t)) which evolves according to the stochastic process induced by the probability
measure ρ(t).

It is easy to see that the fixed point of HT is the solution of the non-linear dynamics (35). Thus, our goal
is to show that there exist a T0 such that HT0 has unique fixed point, or equivalently that HT0 is a strict
contraction.
Proposition B.1. Under Assumptions (A1)-(A2), there exists a T0 only depending on K, γ and a
C(T0) ∈ (0, 1) such that, for all ρ1, ρ2 ∈ C

(
[0, T0], P2(RD × RD)

)
with the same initialization (θ1(0), r1(0)) =

(θ2(0), r2(0)), we have:

dT0(HT0 (ρ1) , HT0 (ρ2)) ≤ C(T0)dT0(ρ1, ρ2).

Proof. We first fix any 0 < T < ∞, and the space C
(
[0, T ], P2(RD × RD)

)
. Given ρ1, ρ2 ∈

C
(
[0, T ], P2(RD × RD)

)
, we define two dynamics as follows:

θ1(t) = θ1(0) − γ

∫ t

0
(θ1(s) − θ1(0)) ds −

∫ t

0

∫ s

0
∇θΨ(θ1(u); ρθ

1(u)) du ds,

θ2(t) = θ2(0) − γ

∫ t

0
(θ2(s) − θ2(0)) ds −

∫ t

0

∫ s

0
∇θΨ(θ2(u); ρθ

2(u)) du ds.

where θ1(t) =
(

w
(1)
1 , w

(1)
2

)
and θ2(t) =

(
w

(2)
1 , w

(2)
2

)
. We want to upper bound the difference between these

two dynamics, which will give us an upper bound on

dT (HT (ρ1) , HT (ρ2)).

For all t ∈ [0, T ], we have

∥θ1(t) − θ2(t)∥2 ≤ γ

∫ t

0
∥θ1(s) − θ2(s)∥2 ds

+
∫ t

0

∫ s

0
∥∇θΨ(θ1(u); ρθ

1(u)) − ∇θΨ(θ2(u); ρθ
2(u))∥2 du ds.

Now, by Lemma A.1, we have that

∥∇θΨ(θ1(t); ρθ
1(t)) − ∇θΨ(θ2(t); ρθ

2(t))∥2

≤K(1 + |w(1)
2 (t)|)

(
|w(1)

2 (t) − w
(2)
2 (t)| + ∥w

(1)
1 (t) − w

(2)
1 (t)∥2 + W2(ρθ

1(t), ρθ
2(t))

)
≤2K(1 + K2(γ, T ))

(
∥θ1(t) − θ2(t)∥2 + max

s∈[0,T ]
W2(ρθ

1(s), ρθ
2(s))

)
,

where θi(t) = (w(i)
1 (t), w

(i)
2 (t)), for i ∈ 1, 2. Thus, we have that:

∥θ1(t) − θ2(t)∥2 ≤ 2K(1 + K2(γ, T ))T 2 max
t∈[0,T ]

W2(ρθ
1(t), ρθ

2(t)) + γ

∫ t

0
∥θ1(s) − θ2(s)∥2 ds

+ 2K(1 + K2(γ, T ))
∫ t

0

∫ s

0
∥θ1(u) − θ2(u)∥2 du ds.
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Similarly for ∥r1(t) − r2(t)∥2, we have that:

∥r1(t) − r2(t)∥2 ≤ γ

∫ t

0
∥r1(s) − r2(s)∥2 ds +

∫ t

0
∥Ψ(θ1(s); ρθ

1(s)) − Ψ(θ2(s); ρθ
2(s))∥2 ds

≤ 2K(1 + K2(γ, T ))T max
t∈[0,T ]

W2(ρθ
1(t), ρθ

2(t)) + γ

∫ t

0
∥r1(s) − r2(s)∥2 ds

+ 2K(1 + K2(γ, T ))
∫ t

0
∥θ1(s) − θ2(s)∥2 ds.

Putting these two results together we have:∥∥∥∥(θ1(t)
r1(t)

)
−
(

θ2(t)
r2(t)

)∥∥∥∥
2

≤ ∥θ1(t) − θ2(t)∥2 + ∥r1(t) − r2(t)∥2

≤ 4K(1 + K2(γ, T ))T 2 max
t∈[0,T ]

W2(ρθ
1(t), ρθ

2(t))

+ γ

∫ t

0
(∥θ1(s) − θ2(s)∥2 + ∥r1(s) − r2(s)∥2) ds

+ 4K(1 + K2(γ, T ))
∫ t

0

∫ s

0
∥θ1(u) − θ2(u)∥2 du ds

≤ 4K(1 + K2(γ, T ))T 2 max
t∈[0,T ]

W2(ρθ
1(t), ρθ

2(t)) + 2γ

∫ t

0

∥∥∥∥(θ1(s)
r1(s)

)
−
(

θ2(s)
r2(s)

)∥∥∥∥
2

ds

+ 4K(1 + K2(γ, T ))
∫ t

0

∫ s

0

∥∥∥∥(θ1(u)
r1(u)

)
−
(

θ2(u)
r2(u)

)∥∥∥∥
2

du ds.

By Corollary F.4, we have that:∥∥∥∥(θ1(t)
r1(t)

)
−
(

θ2(t)
r2(t)

)∥∥∥∥
2

≤ 4K(1 + K2(γ, T ))T 2
(

1 + exp
(

4γ2 + 4K(1 + K2(γ, T ))T
2γ

))
max

t∈[0,T ]
W2(ρθ

1(t), ρθ
2(t)).

Thus, we have that ∥∥∥∥(θ1(t)
r1(t)

)
−
(

θ2(t)
r2(t)

)∥∥∥∥
2

≤ T 2K(γ, T ) max
t∈[0,T ]

W2(ρθ
1(t), ρθ

2(t)),

which implies that

max
t∈[0,T ]

W2(HT (ρ1(t)), HT (ρ2(t))) ≤ T 2K(γ, T ) max
t∈[0,T ]

W2(ρθ
1(t), ρθ

2(t)),

where we set K(γ, T ) = 4K(1 + K2(γ, T ))
(

1 + exp 4γ2+4K(1+K2(γ,T ))T
4γ

)
.

Let C(T ) = T 2K(γ, T ). Then, we could always find a T0 such that C(T0) < 1 since C(0) = 0 and C(T ) is
continuous in T , which finishes our proof.

By Banach’s fixed point theorem, there exist a T0 > 0 such that the mean-field ODE has a unique solution
in time interval [0, T0]. Now, we show the existence and uniqueness of the solution of the mean-field ODE
for any time period [0, T ].
Theorem B.2. Under Assumptions (A1)-(A2), for any T > 0, there exists a unique solution for the mean-
field ODE (12) in the interval [0, T ].

Proof. The idea is to separate the time interval [0, T ] into subintervals of length T0, that is, we consider the
intervals [0, T0], [T0, 2T0], ..., [⌊ T

T0
⌋T0, T ] . Note that the contraction property we proved in Proposition B.1

only depends on the length of the time interval, so the proof can be done recursively. That is:
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1. In the interval [0, T0], (12) with initialization (θ(0), r(0)) has a unique solution {ρ(t)}t∈[0,T0].

2. In the interval [T0, 2T0], we consider (12) with initial distribution ρ(T0), and it has a unique solution
{ρ(t)}t∈[T0,2T0].

3. Recursively do the above steps until the interval [⌊ T
T0

⌋T0, T ].

Thus we have that, for any T > 0, there exists a unique solution for (12) in the interval [0, T ].

B.2 Three-layer networks

In this section, we prove the existence and the uniqueness of the mean-field ODE (13). The integral form of
the mean-field ODE is given by

w3(t, c2) = w3(0, c2) − γ

∫ t

0
(w3(s, c2) − w3(0, c2)) ds −

∫ t

0

∫ s

0
Ez∆W

3 (u, x, c2) du ds, (38)

w2(t, c1, c2) = w2(0, c1, c2) − γ

∫ t

0
(w2(s, c1, c2) − w2(0, c1, c2)) ds −

∫ t

0

∫ s

0
Ez∆W

2 (u, z, c1, c2) du ds, (39)

w1(t, c1) = w1(0, c1) − γ

∫ t

0
(w1(s, c1) − w1(0, c1)) ds −

∫ t

0

∫ s

0
Ez∆W

1 (u, z, c1) du ds. (40)

In order to prove the existence and the uniqueness, we follow the same Picard’s iteration arguments as for
the two-layers case. We first define the following norm:

∥W ∥T = max ess sup
C1,C2

sup
t∈[0,T ]

{|w2(t, C1, C2)|, |w3(t, C2)|}. (41)

Next, we define the following metric for two sets of mean-field parameters:

DT (W , W ′) = max ess sup
C1,C2

sup
t∈[0,T ]

{
∥w′

1(t, C1) − w1(t, C1)∥2,

|w′
2(t, C1, C2) − w2(t, C1, C2)|, |w′

3(t, C2) − w3(t, C2)|
}

. (42)

Note that the metric we define above is not the metric induced by the norm, since in the definition of the
norm we only require the boundedness of w2 and w3.

We define the following functional space of the mean-field parameters:

WT (W (0)) = {{W̃ (t)}t∈[0,T ] : ∥W̃ ∥T < ∞, W̃ (0) = W (0)}, (43)

which means that all the W̃ ∈ WT (W (0)) have the same initialization W (0). By Lemma A.2, we know
that:

ess sup
C1,C2

|w2(t, C1, C2)| ≤ K3,2(γ, T ), ess sup
C1,C2

|w3(t, C2)| ≤ K3,3(γ, T ). (44)

It is easy to see that the space WT (W (0)) is complete w.r.t. the metric DT (W , W ′). Let us define the
operator HT : WT (W (0)) −→ WT (W (0)) as follows:

Input: {W (t)}t∈[0,T ]
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Output: {W̃ (t)}t∈[0,T ], such that:

w̃3(t, c2) = w3(0, c2) − γ

∫ t

0
(w3(s, c2) − w3(0, c2)) ds −

∫ t

0

∫ s

0
Ez∆W

3 (x, c2; W (u)) du ds (45)

w̃2(t, c1, c2) = w2(0, c1, c2) − γ

∫ t

0
(w2(s, c1, c2) − w2(0, c1, c2)) ds −

∫ t

0

∫ s

0
Ez∆W

2 (z, c1, c2; W (u)) du ds

(46)

w̃1(t, c1) = w1(0, c1) − γ

∫ t

0
(w1(s, c1) − w1(0, c1)) ds −

∫ t

0

∫ s

0
Ez∆W

1 (z, c1; W (u)) du ds. (47)

We aim to show the following proposition.
Proposition B.3. Under Assumptions (B1)-(B3), there exists a T0 only depending on K, γ and C(T0) ∈
(0, 1), such that, for all W 1, W 2 ∈ WT (W (0)), we have:

DT0(HT0(W 1), HT0(W 2)) ≤ C(T0)DT0(W 1, W 2). (48)

Proof of Proposition B.3. For simplicity of notation, we denote the output of HT (W 1) to be W̃ 1, which is
composed of w̃1

3, w̃1
2, w̃1

1. The output of HT (W 2) is denoted similarly.

By the definition of the mean-field ODE, we have that, for any t ≤ T ,

|w̃1
3(t, c2) − w̃2

3(t, c2)| ≤ γ

∫ t

0
|w1

3(s, c2) − w2
3(s, c2)| ds

+
∫ t

0

∫ s

0
Ez|∆W

3 (x, c2; W 1(u)) − ∆W
3 (x, c2; W 2(u))| du ds,

|w̃1
2(t, c1, c2) − w̃2

2(t, c1, c2)| ≤ γ

∫ t

0
|w1

2(s, c1, c2) − w2
2(s, c1, c2)| ds

+
∫ t

0

∫ s

0
Ez|∆W

2 (x, c1, c2; W 1(u)) − ∆W
2 (x, c1, c2; W 2(u))| du ds,

∥w̃1
1(t, c1) − w̃2

1(t, c1)∥2 ≤ γ

∫ t

0
∥w1

1(s, c1) − w2
1(s, c1)∥2 ds

+
∫ t

0

∫ s

0
Ez∥∆W

1 (x, c1; W 1(u)) − ∆W
1 (x, c1; W 2(u))∥2 du ds.

By Lemma A.2, we have that:

max{Ez|∆W
3 (x, c2; W 1(u)) − ∆W

3 (x, c2; W 2(u))|,
Ez|∆W

2 (x, c1, c2; W 1(u)) − ∆W
2 (x, c1, c2; W 2(u))|,

Ez∥∆W
1 (x, c1; W 1(u)) − ∆W

1 (x, c1; W 2(u))∥2} ≤ K(γ, T )Du(W 1, W 2).

Thus, we have:

Dt(W̃ 1, W̃ 2) ≤ γ

∫ t

0
Ds(W 1, W 2) ds + K(γ, T )

∫ t

0

∫ s

u=0
Du(W 1, W 2) du ds

≤ (γt + t2)K(γ, T )Dt(W 1, W 2),

which implies that

DT (W̃ 1, W̃ 2) ≤ (γT + T 2)K(γ, T )DT (W 1, W 2). (49)

Since (γT + T 2)K(γ, T ) = 0 when T = 0, and (γT + T 2)K(γ, T ) is continuous in T , we can pick a T0 such
that (γT0 + T 2

0 )K(γ, T0) < 1, which finishes the proof.
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Since WT (W (0)) is complete, by Banach’s fixed point theorem, there exists a unique fixed point for the
operator HT0 , which implies that the mean-field ODE (13) has a unique solution in [0, T0]. By following
the same argument of the proof of Theorem B.2 (separate the interval [0, T ] into sub-intervals of length T0
and successively apply Proposition B.3 to each of them), we readily obtain our main result concerning the
existence and uniqueness of (13) in [0, T ].
Theorem B.4. Under Assumptions (B1)-(B3), for any T > 0, there exists a unique solution for the mean-
field ODE (13) in the interval [0, T ].

C Convergence to the mean-field limit – Two-layer networks

In this section, we prove the convergence to the mean-field limit for two-layer neural networks (Theorem
5.1). Our proof’s structure is inspired from Mei et al. (2019). Before going into the arguments, we first recall
the definition of the mean-field ODE and the stochastic heavy ball method (SHB) for two-layer networks.
Then, we define two auxiliary dynamics: the particle dynamics (PD) and the heavy ball dynamics (HB).

First, recall the mean-field ODE as follows:

dθ(t) = r(t)dt,

dr(t) =
(
−γr(t) − ∇θΨ(θ(t); ρθ(t))

)
dt, (50)

and the corresponding integral form

θ(t) = θ(0) − γ

∫ t

0
(θ(s) − θ(0)) ds −

∫ t

0

∫ s

0
∇θΨ(θ(u); ρθ(t)) du ds. (51)

The SHB dynamics is as follows:

θSHB(k + 1, j) = θSHB(k, j) + (1 − γε)(θSHB(k, j) − θSHB(k − 1, j)) − ε2∇θΨ̂(z, θSHB(k, j);ρθ
SHB(k)),

∀j ∈ [n],
(52)

where ρθ
SHB(k) = 1

n

∑n
j=1 δθ(k,j) is the empirical distribution.

In order to describe the convergence to mean-field limit, we define the following particle dynamics (PD):

dθPD(t, j) = rPD(t, j)dt

drPD(t, j) =
(
−γrPD(t, j) − ∇θΨ(θPD(t, j); ρθ

PD(t))
)

dt, ∀j ∈ [n], (53)

where ρθ
PD(t) = 1

n

∑n
j=1 δθPD(t,j) is the empirical distribution at time t. Furthermore, the heavy ball (HB)

dynamics is defined as

θHB(k + 1, j) = θHB(k, j) + (1 − γε)(θHB(k, j) − θHB(k − 1, j)) − ε2∇θΨ(θHB(k, j); ρθ
HB(k)), ∀j ∈ [n].

(54)

We remark that (52), (53) and (54) have the same initialization, that is :

θPD(0, j) = θHB(0, j) = θSHB(0, j), ∀j ∈ [n].

Define the following distance metrics:

DT (θ, θPD) := max
j∈[n]

sup
t∈[0,T ]

∥∥θPD(t, j) − θ(t, j)
∥∥

2 , (55)

DT (θPD, θHB) := max
j∈[n]

sup
t∈[0,T ]

∥∥θHB(⌊t/ε⌋, j) − θPD(t, j)
∥∥

2 , (56)

DT,ε(θHB, θSHB) := max
j∈[n]

max
k∈⌊T/ε⌋

∥θHB(k, j) − θSHB(k, j)∥2. (57)
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C.1 Bound between mean-field ODE and particle dynamics

In this section, we bound the difference between the mean-field ODE defined in (51) and the particle dynamics
defined in (53), whose integral form is as follows:

θPD(t, j) = θPD(0, j) − γ

∫ t

0
(θPD(s, j) − θPD(0, j)) ds −

∫ t

0

∫ s

0
∇θΨ(θPD(u, j); ρθ

PD(u)) du ds.

Proposition C.1. Under Assumptions (A1) - (A3), we have that, with probability at least 1 − exp(−δ2),

DT (θ, θPD) ≤ K(γ, T )
(

δ +
√

log n√
n

)
, (58)

where K(γ, T ) is a constant depending only on γ, T .

Before proving Proposition C.1, we first prove the following lemma, which characterizes the Lipschitz conti-
nuity of the mean-field ODE.
Lemma C.2. Under Assumptions (A1) - (A3), there exists a universal constant K(γ, T ) depending only on
γ, T such that, for any t, τ > 0 such that t, t + τ < T ,

∥θ(t + τ) − θ(t)∥2 ≤ K(γ, T )τ,

W2(ρθ(t + τ), ρθ(t)) ≤ K(γ, T )τ.
(59)

The same holds for the particle dynamics θPD(t, j), ∀j ∈ [n].

Proof of Lemma C.2. We only prove the results for the mean-field ODE, and the proof for the particle
dynamics follows from the same arguments.

We first try to bound the increments ∥θ(t) − θ(0)∥2. By the definition of the mean-field dynamics, we have
that:

∥θ(t) − θ(0)∥2 ≤ γ

∫ t

0
∥θ(s) − θ(0)∥2 ds +

∫ t

0

∫ s

0
∥∇θΨ(θ(u); ρθ(u))∥2 du ds

≤ γ

∫ t

0
∥θ(s) − θ(0)∥2 ds + K1(γ, T ),

where in the last step we use that ∥∇θΨ(θ(u); ρθ(u))∥2 ≤ K1(γ, T ), which follows from Lemma A.1.

By Gronwall’s lemma, this implies that, for any t ≤ T ,

∥θ(t) − θ(0)∥2 ≤ K1(γ, T ) exp(γT ) := K2(γ, T ).

Next, by definition of the mean-field ODE, we have that:

∥θ(t + τ) − θ(t)∥2 ≤ γ

∫ t+τ

t

∥θ(s) − θ(0)∥2 ds +
∫ t+τ

t

∫ s

0
∥∇θΨ(θ(u); ρθ(u))∥2 du ds.

Thus,

∥θ(t + τ) − θ(t)∥2 ≤ K4(γ, T )τ,

where we use that fact that

∥θ(s) − θ(0)∥2 ≤ K3(γ, T ),∫ s

0
∥∇θ, Ψ(θ(u); ρθ(u))∥2 du ≤ K3(γ, T ).

27



Published in Transactions on Machine Learning Research (02/2023)

For the Lipschitz continuity of ρθ, we just note that by definition of the W2 distance, we have:

W2(ρθ(t + τ), ρθ(t)) ≤ E
[
∥θ(t + τ) − θ(t)∥2

2
]1/2

.

Now we are ready to prove Proposition C.1.

Proof of Proposition C.1. In order to bound the difference, we first define n i.i.d mean-field dynamics:

θ(t, j) = θ(0, j) − γ

∫ t

0
(θ(s, j) − θ(0, j)) ds −

∫ t

0

∫ s

0
∇θΨ(θ(u, j); ρθ(u, j)) du ds,

where ρθ(t, j) is the law of θ(t, j), and we coupled the n i.i.d dynamics with the particle dynamics at
initialization, that is, we let:

θ(0, j) = θPD(0, j), ∀j ∈ [n].

We also define the empirical distribution of θ(t, j), that is: ρ̂θ(t) = 1
n

∑n
j=1 δθ(t,j). Since the n mean-field

dynamics are i.i.d, we have that ρθ(t, j) = ρθ(t), ∀j ∈ [n], thus we use the notation of ρθ(t) to denote the
the law of θ(t, j) for each j ∈ [n].

By Lemma A.1 and Lemma C.2, we know that:

sup
t∈[T ]

max
j∈[n]

∥w2(t, j)∥2 ≤ K(γ, T ),

sup
t∈[T ]

max
j∈[n]

∥θ(t + τ, j) − θ(t, j)∥2 ≤ K(γ, T )τ.

We have that

∥θPD(t, j) − θ(t, j)∥2 ≤(1 + γt)∥θPD(0, j) − θ(0, j)∥2 + γ

∫ t

0
∥θPD(s, j) − θ(s, j)∥2 ds

+
∫ t

0

∫ s

0
∥∇θΨ(θPD(u, j); ρθ

PD(u)) − ∇θΨ(θ(u, j); ρθ(u))∥2 du ds,

and our goal is to bound:

sup
t∈[0,T ]

max
j∈[n]

∥θPD(t, j) − θ(t, j)∥2.

Now we aim to bound the quantity

sup
t∈[0,T ]

max
j∈[n]

∥∇θΨ(θPD(u, j); ρθ
PD(u, j)) − ∇θΨ(θ(u, j); ρθ(u))∥2.

An application of the triangle inequality gives

∥∇θΨ(θ(u, j); ρθ(u)) − ∇θΨ(θPD(u, j); ρθ
PD(u, j))∥2 ≤ ∥∇θΨ(θ(u, j); ρ̂θ(u)) − ∇θΨ(θ(u, j); ρθ(u))∥2 (60)

+ ∥∇θΨ(θ(u, j); ρ̂θ(u)) − ∇θΨ(θPD(u, j); ρθ
PD(u))∥2.

(61)

Recall by definition that

∇w1Ψ(θ(u, j); ρθ(u)) = Ez

[
∂2R(y, f(x; ρθ(u)))w2(u, j)σ′(w1(u, j)T x)x

]
,

∇w2Ψ(θ(u, j); ρθ(u)) = Ez

[
∂2R(y, f(x; ρθ(u)))σ(w1(u, j)T x)

]
.
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Similarly,

∇w1Ψ(θ(u, j); ρ̂θ(u)) = Ez

[
∂2R(y, f(x; ρ̂θ(u)))w2(u, j)σ′(w1(u, j)T x)x

]
,

∇w2Ψ(θ(u, j); ρ̂θ(u)) = Ez

[
∂2R(y, f(x; ρ̂θ(u)))σ(w1(u, j)T x)

]
.

For the term in (60) , we use concentration inequalities to give an upper bound. By the Lipschitz continuity
of ∂2R in Assumption 3.1, we have

∥∇θΨ(θ(u, j); ρ̂θ(u)) − ∇θΨ(θ(u, j); ρθ(u))∥2

≤ K

∥∥∥∥Ez

(
w2(u, j)σ′(w1(u, j)T x)x

σ(w1(u, j)T x)

)∥∥∥∥
2

|f(x; ρθ(u)) − f(x; ρ̂θ(u))|

≤ K1(γ, T )|f(x; ρθ(u)) − f(x; ρ̂θ(u))|.

For the term |f(x; ρ(u)) − f(x; ρ̂θ(u))|, we have

|f(x; ρθ(u)) − f(x; ρ̂θ(u))| =

∣∣∣∣∣∣ 1n
n∑

j=1
w2(u, j)σ(w1(u, j)T x) − Eρ(u)w2(u)σ(w1(u)T x)

∣∣∣∣∣∣ .
Note that, by Lemma A.1, we know that∣∣w2(u, j)σ(w1(u, j)T x) − Eρ(u)w2(u)σ(w1(u)T x)

∣∣ ≤ K2(γ, T ).

By Lemma F.1, we have that, with probability at least 1 − exp(−n(δ′)2),∣∣∣∣∣ 1n
n∑

i=1
w2(u, j)σ(w1(u, j)T x) − Eρ(u)w2(u)σ(w1(u)T x)

∣∣∣∣∣ ≤ K2(γ, T )
(

1√
n

+ δ′
)

.

By Lemma C.2, we know that
∣∣ 1

n

∑n
i=1 w2(u, j)σ(w1(u, j)T x) − Eρ(u)w2(u)σ(w1(u)T x)

∣∣ is K(γ, T )-Lipschitz
continuous in u. Thus, by taking a union bound over j ∈ [n] and t ∈

{
0, η, ..., ⌊ T

η ⌋η
}

, we have that, with
probability at least 1 − nT

η exp(−n(δ′)2),

max
j∈[n]

sup
t∈[0,T ]

∣∣∣∣∣ 1n
n∑

i=1
w2(u, j)σ(w1(u, j)T x) − Eρ(u)w2(u)σ(w1(u)T x)

∣∣∣∣∣ ≤ K3(γ, T )
(

1√
n

+ δ′ + η

)
.

Take η = 1√
n

, δ′ =

√
δ2+log

(
n

3
2 T

)
n . Then, with probability at least 1 − exp(−δ2),

max
j∈[n]

sup
t∈[0,T ]

∣∣∣∣∣ 1n
n∑

i=1
Eρ(u)w2(u)σ(w1(u)T x) − w2(u, j)σ(w1(u, j)T x)

∣∣∣∣∣ ≤ K4(γ, T )δ +
√

log n√
n

,

which implies that, for term (60),

max
j∈[n]

sup
t∈[0,T ]

∥∇θΨ(θ(u, j); ρ̂θ(u)) − ∇θΨ(θ(u, j); ρθ(u))∥2 ≤ K5(γ, T ))δ +
√

log n√
n

,

with probability 1 − exp(−δ2).

For the term in (61), we use the Lipschitz continuity of ∇θΨ. By Lemma A.1, we have that, for each j ∈ [n],

∥∇θΨ(θ(t, j); ρ̂θ(t)) − ∇θΨ(θPD(t, j); ρθ
PD(t))∥2 ≤ K6(γ, T )(Dt(θ, θPD) + W2(ρ̂θ(t), ρθ

PD(t))).
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Note that ρ̂θ(t), ρθ
PD(t) are discrete measures, thus we have:

W2(ρ̂θ(t), ρθ
PD(t)) ≤

 1
n

n∑
j=1

∥θ(t, j) − θPD(t, j)∥2
2

1/2

≤ Dt(θ, θPD).

Hence,

∥∇θΨ(θ(t, j); ρ̂θ(t)) − ∇θΨ(θPD(t, j); ρθ
PD(t))∥2 ≤ K7(γ, T )Dt(θ, θPD).

Combining the above results, we have that, with probability 1 − exp(−δ2),

Dt(θ, θP D) ≤ K8(γ, T )δ +
√

log n√
n

+ γ

∫ t

0
Ds(θ, θP D) ds + K8(γ, T )

∫ t

0

∫ s

0
Du(θ, θP D) du ds.

An application of Corollary F.4 concludes the proof.

C.2 Bound between particle dynamics and heavy ball dynamics

In this section, we bound the difference between the particle dynamics defined in (53) and the heavy ball
dynamics defined in (54). We recall that the distance we aim to bound is defined in (56). Note that the
heavy ball dynamics is a discretization of the particle dynamics. Thus we aim to bound the difference at
time point kε.
Proposition C.3. Under Assumptions (A1) - (A3), there exist a universal constant K(γ, T ) depending only
on γ, T , such that

DT (θPD, θHB) ≤ K(γ, T )ε. (62)

Proof of Proposition C.3. By the Taylor expansion, we have the following approximation for the particle
dynamics:

θPD((k + 1)ε, j) = θPD(kε, j) + rPD(kε, j)ε + 1
2∂tr

PD(kε, j)ε2 + O(ε3). (63)

Also by Taylor expansion we have:

rPD(kε, j)ε = θPD(kε, j) − θPD((k − 1)ε, j) + 1
2∂tr

PD(kε, j)ε2 + O(ε3). (64)

By plugging (61) into (63), we have that

θPD((k + 1)ε, j) = θPD(kε, j) + θPD(kε, j) − θPD((k − 1)ε, j) + ∂tr
PD(kε, j)ε2 + O(ε3)

= θPD(kε, j) + θPD(kε, j) − θPD((k − 1)ε, j) +
(
−γr(kε, j) − ∇θΨ(θPD(kε, j); ρθ

PD(kε))
)

ε2 + O(ε3)
= θPD(kε, j) + (1 − γε)(θPD(kε, j) − θPD((k − 1)ε, j)) − ∇θΨ(θPD(kε, j); ρθ

PD(kε))ε2 + O(ε3).

Now we get a discrete iteration equation for the particle dynamics, with an approximation error of at most
O(ε3). By accumulating the ∇θΨ(θPD(lε, j); ρθ

PD(lε)) term from l = 1, ..., k, we have

θPD(kε, j) = θPD(0, j) −
k−1∑
l=0

c
(k)
l (∇θΨ(θPD(lε, j); ρθ

PD(lε)) + O(ε)), (65)

where c
(k)
l = ε2∑k−1−l

i=0 (1 − γε)i = ε2 1−(1−γε)k

γε ≤ ε
γ .
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The heavy ball dynamics can be written in a similar fashion:

θHB(kε, j) = θHB(0, j) −
k−1∑
l=0

c
(k)
l ∇θΨ(θHB(lε, j); ρθ

HB(lε)). (66)

Thus, we have that

∥θPD(kε, j) − θHB(kε, j)∥2 ≤
k−1∑
l=0

c
(k)
l

(
∥∇θΨ(θPD(lε, j); ρθ

PD(lε)) − ∇θΨ(θHB(lε, j); ρθ
HB(lε))∥2 + O(ε)

)
.

(67)

By Lemma A.1, we have that

∥∇θΨ(θPD(lε, j); ρθ
PD(lε)) − ∇θΨ(θHB(lε, j); ρθ

HB(lε))∥2

≤ K1(γ, T )(∥θPD(lε, j) − θHB(lε, j)∥2 + W2(ρθ
PD(lε), ρθ

HB(lε))).

Since ρθ
PD(lε), ρθ

HB(lε)) are discrete distributions, we have that

W2(ρθ
PD(lε), ρθ

HB(lε))) ≤

 1
n

n∑
j=1

∥θPD(lε, j) − θHB(lε, j)∥2
2

1/2

≤ Dlε(θPD, θHB),

which implies that

∥∇θΨ(θPD(lε, j); ρθ
PD(lε)) − ∇θΨ(θHB(lε, j); ρθ

HB(lε))∥2 ≤ K2(γ, T )Dlε(θPD, θHB).

As a result, we have

Dkε(θPD, θHB) ≤ K2(γ, T ) ε

γ

k−1∑
l=1

(
Dlε(θPD, θHB) + O(ε)

)
.

Finally, an application of the discrete Gronwall’s lemma concludes the proof.

C.3 Bound between heavy ball dynamics and stochastic heavy ball dynamics

In this section, we bound the difference between the heavy ball dynamics defined in (54) and the stochastic
heavy ball dynamics defined in (52). We recall that the distance we aim to bound is defined in (57). The
manipulations of the previous section imply that the heavy ball dynamics can be written as

θHB(k, j) = θHB(0, j) −
k−1∑
l=1

c
(k)
l ∇θΨ(θHB(l, j); ρθ

HB(l)). (68)

Similarly, the stochastic heavy ball dynamics can be written as

θSHB(k, j) = θSHB(0, j) −
k−1∑
l=0

c
(k)
l ∇θΨ̂(z(l), θSHB(l, j); ρθ

SHB(l)). (69)

Proposition C.4. Under Assumptions (A1) - (A3), there exists a universal constant K(γ, T ) depending
only on γ, T , such that, with probability 1 − exp(−δ2),

DT,ε(θHB, θSHB) ≤ K(γ, T )
√

ε(
√

D + log n + δ). (70)
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Proof. By using (68) and (69), we have

∥∥θHB(k, j) − θSHB(k, j)
∥∥

2 ≤

∥∥∥∥∥
k−1∑
l=0

c
(k)
l (∇θΨ(θHB(l, j); ρθ

HB(l)) − ∇θΨ̂(z(l), θSHB(l, j); ρθ
SHB(l)))

∥∥∥∥∥
2

.

By triangle inequality, we have that∥∥∥∥∥
k−1∑
l=0

c
(k)
l (∇θΨ(θHB(l, j); ρθ

HB(l)) − ∇θΨ̂(z(l), θSHB(l, j); ρθ
SHB(l)))

∥∥∥∥∥
2

≤
k−1∑
l=0

c
(k)
l ∥∇θΨ̂(z(l), θSHB(l, j); ρθ

SHB(l)) − ∇θΨ̂(z(l), θHB(l, j); ρθ
HB(l))∥2 (71)

+
∥∥∥∥∥

k−1∑
l=0

c
(k)
l (∇θΨ̂(z(l), θHB(l, j); ρθ

HB(l)) − ∇θΨ(θHB(l, j); ρθ
HB(l)))

∥∥∥∥∥
2

. (72)

For the term in (71), by the Lipschitz continuity of ∇θΨ̂, we obtain

∥∇θΨ̂(z(l), θSHB(l, j); ρθ
SHB(l)) − ∇θΨ̂(z(l), θHB(l, j); ρθ

HB(l))∥2

≤ K1(γ, T )(Dlε,ε(θHB, θSHB) + W2(ρθ
HB(l), ρθ

SHB(l))).

Since ρθ
HB, ρθ

SHB are discrete distributions, we have that W2(ρθ
HB(l), ρθ

SHB(l)) ≤ Dlε,ε(θHB, θSHB). Thus,

∥∇θΨ̂(z(l), θSHB(l, j); ρθ
SHB(l)) − ∇θΨ̂(z(l), θHB(l, j); ρθ

HB(l))∥2 ≤ K2(γ, T )Dlε,ε(θHB, θSHB).

For the term in (72), note that, since the z(l)’s are sampled i.i.d. at each step by definition, we have

Ez(l)

[
∇θΨ̂(z(l), θHB(l, j); ρθ

HB(l))
]

= ∇θΨ(θHB(l, j); ρθ
HB(l)).

Thus,

∇θΨ̂(z(l), θHB(l, j); ρθ
HB(l)) − ∇θΨ(θHB(l, j); ρθ

HB(l))

is a martingale difference. By Lemma A.1, we have that, for all l ∈ {1, ..., ⌊T/ε⌋},

∥∇θΨ̂(z(l), θHB(l, j); ρθ
HB(l)) − ∇θΨ(θHB(l, j); ρθ

HB(l))∥2 ≤ K3(γ, T ).

Thus, an application of Lemma F.2 gives that, with probability at least 1 − exp(−δ2),

max
l∈{1,...,⌊T/ε⌋}

∥∇θΨ̂(z(l), θHB(l, j); ρθ
HB(l)) − ∇θΨ(θHB(l, j); ρθ

HB(l))∥2 ≤ K4(γ, T )
√

ε(
√

D + δ).

By taking a union bounds on j ∈ [n], we have that, with probability at least 1 − exp(−δ2),

max
j∈[n]

max
l∈{1,...,⌊T/ε⌋}

∥∇θΨ̂(z(l), θHB(l, j); ρθ
HB(l)) − ∇θΨ(θHB(l, j); ρθ

HB(l))∥2 ≤ K4(γ, T )
√

ε(
√

D + log n + δ).

By combining the above result, we conclude that

DT,ε(θHB, θSHB) ≤ K4(γ, T )
√

ε(
√

D + log n + δ) + K2(γ, T )
γ

ε

⌊ T
ε ⌋∑

l=0
Dlε,ε(θHB, θSHB). (73)

Finally, an application of the discrete Gronwall’s lemma concludes the proof.
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C.4 Proof of Theorem 5.1

Proof of Theorem 5.1. The proof follows from combining Proposition C.1, C.3, C.4, and the fact that:

DT (θ, θSHB) ≤ DT (θ, θPD) + DT (θPD, θHB) + DT,ε(θHB, θSHB).

D Convergence to the mean-field limit – Three-layer networks

In this section, we prove the convergence of the training dynamics to the mean-field limit for a three-layer
neural network. Our proof’s structure is inspired from Pham & Nguyen (2021a).

Before going into the proofs, let’s first recall the definition of the mean-field ODE and the SHB dynamics,
and then define two auxiliary dynamics, namely the HB dynamics and the particle dynamics. For the
convenience of further computation, we define these continuous dynamics in integral form. We define the
random variable corresponding to the stochastic heavy ball dynamics, the heavy ball dynamics, the particle
dynamics, and the mean-field ODE as W SHB, W HB, W PD, W respectively.

The mean-field ODE (13) in integral form is the following:

w3(t, c2) = w3(0, c2) − γ

∫ t

0
(w3(s, c2) − w3(0, c2)) ds −

∫ t

0

∫ s

0
Ez∆W

3 (z, c2; W (u)) du ds,

w2(t, c1, c2) = w2(0, c1, c2) − γ

∫ t

0
(w2(s, c1, c2) − w2(0, c1, c2)) ds −

∫ t

0

∫ s

0
Ez∆W

2 (z, c1, c2; W (u)) du ds,

w1(t, c1) = w1(0, c1) − γ

∫ t

0
(w1(s, c1) − w1(0, c1)) ds −

∫ t

0

∫ s

0
Ez∆W

1 (z, c1; W (u)) du ds.

(74)

The SHB dynamics is as follows:

wSHB
3 (k + 1, j2) = wSHB

3 (k, j2) + (1 − γε)(wSHB
3 (k, j2) − wSHB

3 (k − 1, j2)) − ε2∆W
3 (z(k), j2; W SHB(k)),

wSHB
2 (k + 1, j1, j2) = wSHB

2 (k, j1, j2) + (1 − γε)(wSHB
2 (k, j1, j2) − wSHB

2 (k − 1, j1, j2)),
− ε2∆W

2 (z(k), j1, j2; W SHB(k))
wSHB

1 (k + 1, j1) = wSHB
1 (k, j1) + (1 − γε)(wSHB

1 (k, j1) − wSHB
1 (k − 1, j1)) − ε2∆W

1 (z(k), j1; W SHB(k)),
(75)

where z(k) is the data point sampled at time step k.

We define the particle dynamics as a continuous dynamics without mean-field interaction:

wPD
3 (t, j2) = wPD

3 (0, j2) − γ

∫ t

0
(wPD

3 (s, j2) − wPD
3 (0, j2)) ds −

∫ t

0

∫ s

0
Ez∆W

3 (z, j2; W PD(u)) du ds,

wPD
2 (t, j1, j2) = wPD

2 (0, j1, j2) − γ

∫ t

0
(wPD

2 (s, j1, j2) − wPD
2 (0, j1, j2)) ds

−
∫ t

0

∫ s

0
Ez∆W

2 (z, j1, j2; W PD(u)) du ds,

wPD
1 (t, j1) = wPD

1 (0, j1) − γ

∫ t

0
(wPD

1 (s, j1) − wPD
1 (0, j1)) ds −

∫ t

0

∫ s

0
Ez∆W

1 (z, j1; W PD(u)) du ds.

(76)
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We define the HB dynamics by replacing the stochastic gradient in the SHB dynamics by the true gradient.
That is:

wHB
3 (k + 1, j2) = wHB

3 (k, j2) + (1 − γε)(wHB
3 (k, j2) − wHB

3 (k − 1, j2)) − ε2Ez∆W
3 (z, j2; W HB(k)),

wHB
2 (k + 1, j1, j2) = wHB

2 (k, j1, j2) + (1 − γε)(wHB
2 (k, j1, j2) − wHB

2 (k − 1, j1, j2))
− ε2Ez∆W

2 (z, j1, j2; W HB(k)),
wHB

1 (k + 1, j1) = wHB
1 (k, j1) + (1 − γε)(wHB

1 (k, j1) − wHB
1 (k − 1, j1)) − ε2Ez∆W

1 (z, j1; W HB(k)).

(77)

Note that the HB dynamics can be viewed as the discrete version of the PD dynamics.

In order to present our main theoretical results in this section, we first define a distance metric to quantify
the level of correspondence of these dynamics. We define the following distance metrics:

DT (W , W PD) = max sup
t∈[0,T ]

{
∥∥wPD

1 (t, j1) − w1(t, C1(j1))
∥∥

2 ,∣∣wPD
2 (t, j1, j2) − w2(t, C1(j1), C2(j2))

∣∣ ,∣∣wPD
3 (t, j2) − w3(t, C2(j2))

∣∣ : j1 ∈ [n1], j2 ∈ [n2]}

(78)

DT (W PD, W HB) = max sup
t∈[0,T ]

{
∥∥wHB

1 (⌊t/ε⌋, j1) − wPD
1 (t, j1)

∥∥
2 ,∣∣wHB

2 (⌊t/ε⌋, j1, j2) − wPD
2 (t, j1, j2)

∣∣ ,∣∣wHB
3 (⌊t/ε⌋, j2) − wPD

3 (t, j2)
∣∣ : j1 ∈ [n1], j2 ∈ [n2]}

(79)

DT,ε(W HB, W SHB) = max max
k∈⌊T/ε⌋

{∥wHB
1 (k, j1) − wSHB

1 (k, j1)∥2,

|wHB
2 (k, j1, j2) − wSHB

2 (k, j1, j2)|,
|wHB

3 (k, j2) − wSHB
3 (k, j2)| : j1 ∈ [n1], j2 ∈ [n2]}

(80)

We acknowledge the abuse in notation from reusing DT for multiple metrics, which is done to avoid prolif-
eration of notation. It is clear that:

DT (W , W SHB) ≤ DT (W , W PD) + DT (W PD, W HB) + DT,ε(W HB, W SHB), (81)

where DT (W , W SHB) is defined in (17).

In the following subsections, we bound the terms DT (W , W PD), DT (W PD, W HB) and DT,ε(W HB, W SHB).

D.1 Bound between mean-field ODE and particle dynamics

In this section, we bound the difference between the mean-field ODE defined in (74) and the particle dynamics
defined in (76). We recall that the distance we aim to bound is defined in (78).
Proposition D.1. Under Assumptions (B1)-(B3), we have that, with probability at least 1 − exp(−δ2),

DT (W , W PD) ≤ K(γ, T )
√

nmin

(√
log nmax + δ

)
, (82)

where K(γ, T ) is a universal constant depending only on γ, T , nmin = min{n1, n2} and nmax = max{n1, n2}.

In order to prove Proposition D.1, we need the following auxiliary lemma, which characterizes the Lipschitz
continuity of the mean-field ODE and of the particle dynamics.
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Lemma D.2. Under Assumptions (B1)-(B3), there exists a universal constant K(γ, T ) depending only on
γ, T such that, for any t, τ > 0 with t, t + τ ≤ T ,

ess sup
c2

|w3(t + τ, c2) − w3(t, c2)| ≤ K(γ, T )τ,

ess sup
c1,c2

|w2(t + τ, c1, c2) − w2(t, c1, c2)| ≤ K(γ, T )τ,

ess sup
c1

∥w1(t + τ, c1) − w1(t, c1)∥2 ≤ K(γ, T )τ.

(83)

The same holds for the particle dynamics wPD
1 (t, j1), wPD

2 (t, j1, j2), wPD
3 (t, j2).

Proof of Lemma D.2. We do the proof for w1(t, c1), and the same argument applies to w2(t, c1, c2), w3(t, c2).
First, we derive a bound on the increments up to time t, ∥w1(t, c1) − w1(0, c1)∥2. By the definition of the
mean-field ODE (74), we have that

w1(t, c1) − w1(0, c1) = −γ

∫ t

0
(w1(s, c1) − w1(0, c1)) ds −

∫ t

0

∫ s

0
Ez∆W

1 (z, c1; W (u)) du ds,

which implies that

∥w1(t, c1) − w1(0, c1)∥2 = γ

∫ t

0
∥w1(s, c1) − w1(0, c1)∥2 ds +

∫ t

0

∫ s

0
∥Ez∆W

1 (z, c1; W (u))∥2 du ds

≤ γ

∫ t

0
∥w1(s, c1) − w1(0, c1)∥2 ds + T 2K1(γ, T ),

where in the last step we use that, for some constant K1(γ, T ) depending only on γ, T ,
∥Ez ess supc1 supu∈[0,T ] ∆W

1 (z, c1; W (u))∥2 ≤ K1(γ, T ) by Lemma A.2. Thus, by Gronwall’s lemma, we
have that

sup
t∈[0,T ]

∥w1(t, c1) − w1(0, c1)∥2 ≤ eγT T 2K1(γ, T ) := K2(γ, T ). (84)

Now, by using again the definition of the mean-field ODE (74), we have that:

∥w1(t + τ, c1) − w1(t, c1)∥2 =
∥∥∥∥−γ

∫ t+τ

t

(w1(s, c1) − w1(0, c1)) ds −
∫ t+τ

t

∫ s

0
Ez∆W

1 (z, c1; W (u)) du ds

∥∥∥∥
2

≤ γ sup
t∈[0,T ]

∥w1(t, c1) − w1(0, c1)∥2τ + K1(γ, T )Tτ

≤ K2(γ, T )τ + K1(γ, T )Tτ,

where in the second line we use that ∥Ez ess supc1 supu∈[0,T ] ∆W
1 (z, c1; W (u))∥2 ≤ K1(γ, T ) by Lemma A.2,

and in the last passage we use (84). By setting K(γ, T ) = K2(γ, T ) + K1(γ, T )T , we obtain the desired
result and the proof is complete.

By the above Lemma D.2 and Lemma A.2, we immediately get the following corollary.
Corollary D.3. Under Assumptions (B1)-(B3), there exists a universal constant K(γ, T ) depending only
on γ, T such that, for any t, τ > 0 with t, t + τ ≤ T , the following functions

f(x; W (t)), H2(x, c2; W (t)), EC2

[
∆H

2 (z, C2; W (t))w2(t, c1, C2)
]

are K(γ, T )-Lipschitz continuous in t. The same holds for the particle dynamics, i.e., the functions

f(x; W (t)), H2(x, j2; W (t)), 1
n2

n2∑
j2=1

∆H
2 (z, j2; W (t))w2(t, j1, j2)

are K(γ, T )-Lipschitz continuous in t.
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Proof of Corollary D.3. We do the proof for f(x; W (t)), and the same argument applies to the other cases.
By Lemma A.2, we have that

|f(x; W (t + τ)) − f(x; W (t))| ≤ K ess sup
c1,c2

(|w3(t + τ, c2)| · |w2(t + τ, c1, c2)| · ∥w1(t + τ, c1) − w1(t, c1)∥2

+ |w3(t + τ, c2)| · |w2(t + τ, c1, c2) − w2(t, c1, c2)| + |w3(t + τ, c2) − w3(t, c2)|).

By Lemma D.2, we have that

max(∥w1(t + τ, c1) − w1(t, c1)∥2, |w2(t + τ, c1, c2) − w2(t, c1, c2)|, |w3(t + τ, c2) − w3(t, c2)|) ≤ K(γ, T )τ.

Furthermore, by Lemma A.2, we have that:

ess sup
c2

|w3(t + τ, c2)| ≤ sup
t∈[0,T ]

ess sup
c2

|w3(t, c2)| ≤ K3,3(γ, T ),

ess sup
c1,c2

|w2(t + τ, c1, c2)| ≤ sup
t∈[0,T ]

ess sup
c1,c2

|w2(t, c1, c2)| ≤ K3,2(γ, T ).

Thus, we conclude

|f(x; W (t + τ)) − f(x; W (t))| ≤ K(γ, T )τ,

which gives the desired result.

Now we are ready to prove Proposition D.1.

Proof of Proposition D.1. Let us recall that the quantity ∆W
3 is defined in (15). We start with computing

the difference in the term ∆W
3 :

|Ez∆W
3 (z, C2(j2); W (t)) − Ez∆W

3 (z, j2; W PD(t))|
≤Ez|∆W

3 (z, C2(j2); W (t)) − ∆W
3 (z, j2; W PD(t))|

=Ez|∂2R(y, f(x; W (t)))σ2(H2(x, C2(j2); W (t))) − ∂2R(y, f(x; W PD(t)))σ2(H2(x, j2; W PD(t)))|
≤KEz|f(x; W (t)) − f(x; W PD(t))| + K|H2(x, C2(j2); W (t)) − H2(x, j2; W PD(t))|,

(85)

where in the last inequality we use the boundedness and Lipschitz continuity of ∂2R and σ2 obtained from
Lemma A.2.

Similarly, for ∆W
1 , ∆W

2 , we have that

|Ez∆W
2 (z, C1(j1), C2(j2); W (t)) − Ez∆W

2 (z, j1, j2; W PD(t))|
≤Ez|∆W

2 (z, C1(j1), C2(j2); W (t)) − ∆W
2 (z, j1, j2; W PD(t))|

≤EzK|w3(t, C2(j2))| ·
(
|f(x; W (t)) − f(x; W PD(t))| + |H2(x, C2(j2); W (t)) − H2(x, j2; W PD(t))|

)
+ |w3(t, C2(j2))| · ∥w1(t, C1(j1)) − wPD

1 (t, j1)∥2 + K|w3(t, C2(j2)) − wPD
3 (t, j2)|

≤EzK3,3(γ, T )
(
|f(x; W (t)) − f(x; W PD(t))| + |H2(x, C2(j2); W (t)) − H2(x, j2; W PD(t))|

)
+ K3,3(γ, T )∥w1(t, C1(j1)) − wPD

1 (t, j1)∥2 + K|w3(t, C2(j2)) − wPD
3 (t, j2)|,

(86)

and that
|Ez∆W

1 (z, C1(j1); W (t)) − Ez∆W
1 (z, j1; W PD(t))|

≤K · Ez

∣∣∣∣∣∣EC2

[
∆H

2 (z, C2; W (t))w2(t, C1(j1), C2)
]

− 1
n2

n2∑
j2=1

∆H
2 (z, j2; W PD(t))wPD

2 (t, j1, j2)

∣∣∣∣∣∣


+ K · Ez

[
|EC2∆H

2 (z, C2; W (t))w2(t, C1(j1), C2)|
]

· ∥w1(t, C1(j1)) − wPD
1 (t, j1)∥2

≤K · Ez

∣∣∣∣∣∣EC2

[
∆H

2 (z, C2; W (t))w2(t, C1(j1), C2)
]

− 1
n2

n2∑
j2=1

∆H
2 (z, j2; W PD(t))wPD

2 (t, j1, j2)

∣∣∣∣∣∣


+ K(T, γ) · ∥w1(t, C1(j1)) − wPD
1 (t, j1)∥2.

(87)
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Here, we remark that the expectation EC2 [∆H
2 (·, C2; ·)w2(·, ·, C2)] for the mean-field ODE corresponds to the

average 1
n2

∑n2
j2=1 ∆H

2 (·, j2; ·)w2(·, ·, j2) for the particle dynamics.

Now, our goal is to upper bound the following quantities:

|f(x; W (t)) − f(x; W PD(t))|,
|H2(x, C2(j2); W (t)) − H2(x, j2; W PD(t))|,∣∣∣∣∣∣EC2

[
∆H

2 (z, C2; W (t))w2(t, C1(j1), C2)
]

− 1
n2

n2∑
j2=1

∆H
2 (z, j2; W PD(t))wPD

2 (t, j1, j2)

∣∣∣∣∣∣
To do so, we follow (Pham & Nguyen, 2021a, Appendix C.2, Proof of Theorem 14, Claim 2). Then, we have
that, for any δ1, δ2, δ3 > 0,

max
{

|f(x; W (t)) − f(x; W PD(t))|,

max
j2

|H2(x, C2(j2); W (t)) − H2(x, j2; W PD(t))|,

max
j1

∣∣∣∣EC2

[
∆H

2 (z, C2; W (t))w2(t, C1(j1), C2)
]

− 1
n2

n2∑
j2=1

∆H
2 (z, j2; W PD(t))wPD

2 (t, j1, j2)
∣∣∣∣
}

≤ K1(γ, T )
(
DT (W , W PD) + δ1 + δ2 + δ3

)
,

with probability at least

1 −
(

n2

δ1
exp

{
− n1δ2

1
K1(γ, T )

}
+ 1

δ2
exp

{
− n2δ2

2
K1(γ, T )

}
+ n1

δ3
exp

{
− n2δ2

3
K1(γ, T )

})
.

By Corollary D.3, we know that f(x; W (t)), H2(x, c2; W (t)),EC2

[
∆H

2 (z, C2; W (t))w2(t, c1, C2)
]

are
K(γ, T )-Lipschitz continuous, and the corresponding quantities for the particle dynamics are also K(γ, T )-
Lipschitz continuous. Thus, by taking a union bound on t ∈ {0, η, ..., ⌊T/η⌋}, we have

max sup
t∈[0,T ]

{
|f(x; W (t)) − f(x; W PD(t))|,

max
j2

|H2(x, C2(j2); W (t)) − H2(x, j2; W PD(t))|,

max
j1

∣∣∣∣EC2

[
∆H

2 (z, C2; W (t))w2(t, C1(j1), C2)
]

− 1
n2

n2∑
j2=1

∆H
2 (z, j2; W PD(t))wPD

2 (t, j1, j2)
∣∣∣∣
}

≤ K2(γ, T )
(
DT (W , W PD) + δ1 + δ2 + δ3 + η

)
,

with probability at least

1 − T

η

(
n2

δ1
exp

{
− n1δ2

1
K2(γ, T )

}
+ 1

δ2
exp

{
− n2δ2

2
K2(γ, T )

}
+ n1

δ3
exp

{
− n2δ2

3
K2(γ, T )

})
.

In particular, we pick

η = 1
√

nmax
, δ1 = K3(γ, T )

√
n1

(√
log nmax + δ

)
, δ2 = δ3 = K3(γ, T )

√
n2

(√
log nmax + δ

)
.
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Then,

max sup
t∈[0,T ]

{
|f(x; W (t)) − f(x; W PD(t))|,

max
j2

|H2(x, C2(j2); W (t)) − H2(x, j2; W PD(t))|,

max
j1

∣∣∣∣EC2

[
∆H

2 (z, C2; W (t))w2(t, C1(j1), C2)
]

− 1
n2

n2∑
j2=1

∆H
2 (z, j2; W PD(t))wPD

2 (t, j1, j2)
∣∣∣∣
}

≤ K4(γ, T )
(

DT (W , W PD) + K4(γ, T )
√

nmin

(√
log nmax + δ

))
(88)

with probability at least 1 − exp(−δ2).

Next, we combine (88) with (85), (86) and (87) to provide high-probability bounds on ∆W
3 , ∆W

2 , ∆W
1 . By

recalling the definition of the mean-field ODE (74) and the analogous definition of the particle dynamics
(76), we finally obtain that, for all t ≤ T , with probability at least 1 − exp(−δ2),

Dt(W , W PD) ≤ K(γ, T )
√

nmin

(√
log nmaxT + δ

)
+ γ

∫ t

0
Ds(W , W PD) ds +

∫ t

0

∫ s

0
Du(W , W PD) du ds.

An application of Corollary F.4 gives the desired result (82) and concludes the proof.

D.2 Bound between particle dynamics and heavy ball dynamics

In this part we bound the difference between the particle dynamics defined in (76) and the heavy ball
dynamics defined in (77). We recall that the distance we aim to bound is defined in (79).
Proposition D.4. Under Assumptions (B1)-(B3), there exists a universal constant K(γ, T ) depending only
on γ, T such that

DT (W PD, W HB) ≤ K(γ, T )ε. (89)

Proof of Proposition D.4. Note that the heavy ball dynamics is just a discretization of the particle dynamics,
so we first bound the difference at each time point kε. By a second order Taylor expansion, we have the
following approximation for the particle dynamics. We do the computation for w3 as a representative, and
the proofs for w1, w2 are the same.

We have that

wPD
3 ((k + 1)ε, j2) = wPD

3 (kε, j2) + ∂tw
PD
3 (kε, j2)ε + 1

2∂2
t wPD

3 (kε, j2)ε2 + O(ε3). (90)

Also by Taylor expansion, we have that

∂tw
PD
3 (kε, j2)ε = wPD

3 (kε, j2) − wPD
3 ((k − 1)ε, j2) + 1

2∂2
t wPD

3 (kε, j2)ε2 + O(ε3). (91)

By plugging (91) into (90), we obtain

wPD
3 ((k + 1)ε, j2) = wPD

3 (kε, j2) + wPD
3 (kε, j2) − wPD

3 ((k − 1)ε, j2) + ∂2
t wPD

3 kε, j2)ε2 + O(ε3)
= wPD

3 (kε, j2) + wPD
3 (kε, j2) − wPD

3 ((k − 1)ε, j2) + (−γ∂tw
PD
3 (ε, j2) − Ez∆W

3 (z, j2; W PD(kε)))ε2 + O(ε3)
= wPD

3 (kε, j2) + (1 − γε)(wPD
3 (kε, j2) − wPD

3 ((k − 1)ε, j2)) − Ez∆W
3 (z, j2; W PD(kε))ε2 + O(ε3),

where in the last step we use again (91).
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By unrolling the recursion, we can write the particle dynamics in the following form:

wPD
3 (kε, j2) = wPD

3 (0, j2) −
k−1∑
l=0

c
(k)
l Ez∆W

3 (z, j2; W PD(lε)) + O(ε),

where

c
(k)
l = ε2

k−1−l∑
i=0

(1 − γε)i = 1 − (1 − γε)k−l

γε
ε2 ≤ ε

γ
.

Similarly for w2, w1, we have:

wPD
2 (kε, j1, j2) = wPD

2 (0, j1, j2) −
k−1∑
l=0

c
(k)
l Ez∆W

2 (z, j1, j2; W PD(lε)) + O(ε),

wPD
1 (kε, j1) = wPD

1 (0, j1) −
k−1∑
l=0

c
(k)
l Ez∆W

1 (z, j1; W PD(lε)) + O(ε).

We can write analogous expressions for the heavy ball dynamics:

wHB
3 (k, j2) = wHB

3 (0, j2) −
k−1∑
l=0

c
(k)
l Ez∆W

3 (z, j2; W HB(l)),

wHB
2 (k, j1, j2) = wHB

2 (0, j1, j2) −
k−1∑
l=0

c
(k)
l Ez∆W

2 (z, j1, j2; W HB(l)),

wHB
1 (k, j1) = wHB

1 (0, j1) −
k−1∑
l=0

c
(k)
l Ez∆W

1 (z, j1; W HB(l)).

(92)

Let us define the following notation, for k ∈
{

1, ..., ⌊ T
ε ⌋
}

,

DT (W PD, W HB; k) = max{∥wHB
1 (k, j1) − wPD

1 (kε, j1)∥2,

|wHB
2 (k, j1, j2) − wPD

2 (kε, j1, j2)|,
|wHB

3 (k, j2) − wPD
3 (kε, j2)| : j1 ∈ [n1], j2 ∈ [n2]}}.

Recall that, by construction, wPD
3 (0, j2) = wHB

3 (0, j2), wPD
2 (0, j1, j2) = wHB

2 (0, j1, j2) and wPD
1 (0, j1) =

wHB
1 (0, j1) for all j1, j2. Thus, by computing the difference between wPD

1 , wPD
2 , wPD

3 and wHB
1 , wHB

2 , wHB
3 ,

we have that DT (W PD, W HB; k) satisfies the following induction inequality:

DT (W PD, W HB; k) ≤
k−1∑
l=0

c
(k)
l K1(γ, T )DT (W PD, W HB; l) + O(ε), (93)

where we have used the Lipschitz continuity of ∆W
3 , ∆W

2 and ∆W
1 obtained via Lemma A.2. Thus, by the

discrete Gronwall’s lemma, we obtain that, for any k ∈
{

1, ..., ⌊ T
ε ⌋
}

,

DT (W PD, W HB; k) ≤ K2(γ, T )ε

Finally, an application of Lemma D.2 gives that wPD
1 , wPD

2 , wPD
3 are K3(γ, T )-Lipschitz continuous in time.

Thus, for any t ≤ T ,
|wPD

3 (t, j2) − wHB
3 (⌊t/ε⌋, j2)| ≤ |wPD

3 (t, j2) − wPD
3 (⌊t/ε⌋ε, j2)| + |wPD

3 (⌊t/ε⌋ε, j2) − wHB
3 (⌊t/ε⌋, j2)|

≤ |wPD
3 (⌊t/ε⌋ε, j2) − wHB

3 (⌊t/ε⌋, j2)| + K3(γ, T )ε.

Similar results hold also for |wPD
2 (t, j1, j2)−wHB

2 (⌊t/ε⌋, j1, j2)| and |wPD
1 (t, j1)−wHB

1 (⌊t/ε⌋, j1)|. As a result,
we conclude that

DT (W PD, W HB) ≤ max
k∈{1,...,⌊ T

ε ⌋}
DT (W PD, W HB; k) + K3(γ, T )ε ≤ K(γ, T )ε,

which gives the desired result.
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D.3 Bound between heavy ball dynamics and stochastic heavy ball dynamics

In this part we bound the difference between the heavy ball dynamics defined in (77) and the stochastic
heavy ball dynamics defined in (75). We recall that the distance we aim to bound is defined in (80).
Proposition D.5. Under Assumptions (B1)-(B3), we have that, with probability at least 1 − exp(−δ2),

DT,ϵ(W HB, W SHB) ≤ K(γ, T )
√

ε(
√

D + log(n1n2) + δ), (94)
where K(γ, T ) is a universal constant depending only on γ, T .

Before proving Proposition D.5, we state and prove a result concerning the boundedness of the SHB dynamics.
Lemma D.6 (Boundedness of the SHB dynamics). Under Assumptions (B1)-(B3), we have that, for any
k ∈ ⌊ T

ε ⌋,

|wSHB
3 (k, j2)| ≤ K

(
1 + 1

γ

)
T,

|wSHB
2 (k, j1, j2)| ≤ K

(
1 + 1

γ

)(
1 + T 2

γ

)
,

where K is a universal constant.

Proof. By following passages analogous to those leading to (92), we have that the SHB dynamics can be
written as

wSHB
3 (k, j2) = wSHB

3 (0, j2) −
k−1∑
l=0

c
(k)
l ∆W

3 (z(l), j2; W SHB(l)),

wSHB
2 (k, j1, j2) = wSHB

2 (0, j1, j2) −
k−1∑
l=0

c
(k)
l ∆W

2 (z(l), j1, j2; W SHB(l)).

(95)

Recall that
∆W

3 (z(l), j2; W SHB(l)) = ∂2R(y(l), f(x(l); W SHB(l))) · σ2(H2(x(l), j2; W SHB(l))),
which implies that

|∆W
3 (z(l), j2; W SHB(l))| = |∂2R(y(l), f(x(l); W SHB(l))) · σ2(H2(x(l), j2; W SHB(l)))| ≤ K.

Thus, we have

|wSHB
3 (k, j2)| ≤ |wSHB

3 (0, j2)| +
k−1∑
l=0

c
(k)
l K ≤ K + kε

γ
K ≤ K

(
1 + 1

γ

)
T,

where in the last step we use that kε ≤ T .

For |wSHB
2 (k, j1, j2)|, we recall that

|∆W
2 (z(l), j1, j2; W SHB(l))|

=|∂2R(y(l), f(x(l); W SHB(l))) · wSHB
3 (l, j2) · σ′

2(H2(x(l), j2; W SHB(l)))σ1((wSHB
1 (l, j1))T x(l))|

≤K|wSHB
3 (l, j2)|.

Thus, we have

|wSHB
2 (k, j1, j2)| ≤ |wSHB

2 (0, j1, j2)| +
k−1∑
l=0

c
(k)
l |wSHB

3 (l, j2)|

≤ K + K

(
1 + 1

γ

)
T

kε

γ

≤ K

(
1 + 1

γ

)(
1 + T 2

γ

)
,

which gives the desired result.
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Proof of Proposition D.5. Throughout this argument, we fix ε and consider k ∈ ⌊ T
ε ⌋. Recall that the HB

and SHB dynamics can be written as in (92) and (95), respectively. Furthermore,

wSHB
1 (k, j1) = wSHB

1 (0, j1) −
k−1∑
l=0

c
(k)
l ∆W

1 (z(l), j1; W SHB(l)). (96)

Recall that, by construction, wHB
3 (0, j2) = wSHB

3 (0, j2), wHB
2 (0, j1, j2) = wSHB

2 (0, j1, j2) and wHB
1 (0, j1) =

wSHB
1 (0, j1) for all j1, j2. Thus, by computing the difference between the expressions in (92) and (95)-(96),

we have

|wHB
3 (k, j2) − wSHB

3 (k, j2)| =
∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆W

3 (z, j2; W HB(l))] − ∆W
3 (z(l), j2; W SHB(l))

)∣∣∣∣∣
≤

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆W

3 (z, j2; W HB(l))] − Ez[∆W
3 (z, j2; W SHB(l))]

)∣∣∣∣∣ (97)

+
∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆W

3 (z, j2; W SHB(l))] − ∆W
3 (z(l), j2; W SHB(l))

)∣∣∣∣∣ , (98)

|wHB
2 (k, j1, j2) − wSHB

2 (k, j1, j2)| =
∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆W

2 (z, j1, j2; W HB(l))] − ∆W
2 (z(l), j1, j2; W SHB(l))

)∣∣∣∣∣
≤

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆W

2 (z, j1, j2; W HB(l))] − Ez[∆W
2 (z, j1, j2; W SHB(l))]

)∣∣∣∣∣
(99)

+
∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆W

2 (z, j1, j2; W SHB(l))] − ∆W
2 (z(l), j1, j2; W SHB(l))

)∣∣∣∣∣ ,
(100)

∥wHB
1 (k, j1) − wSHB

1 (k, j1)∥2 =
∥∥∥∥∥

k−1∑
l=0

c
(k)
l

(
Ez[∆W

1 (z, j1; W HB(l))] − ∆W
1 (z(l), j1; W SHB(l))

)∥∥∥∥∥
2

≤

∥∥∥∥∥
k−1∑
l=0

c
(k)
l

(
Ez[∆W

1 (z, j1; W HB(l))] − Ez[∆W
1 (z, j1; W SHB(l))]

)∥∥∥∥∥
2

(101)

+
∥∥∥∥∥

k−1∑
l=0

c
(k)
l

(
Ez[∆W

1 (z, j1; W SHB(l))] − ∆W
1 (z(l), j1; W SHB(l))

)∥∥∥∥∥
2

. (102)

To bound (97), (99) and (101), we use the Lipschitz continuity of ∆W
3 , ∆W

2 and ∆W
1 , together with the fact

that c
(k)
l ≤ ε/γ. In particular,∣∣∣∣∣

k−1∑
l=0

c
(k)
l

(
Ez∆W

3 (z, j2; W HB(l)) − Ez∆W
3 (z, j2; W SHB(l))

)∣∣∣∣∣
≤ ε

γ

k−1∑
l=0

∣∣(Ez[∆W
3 (z, j2; W HB(l))] − Ez[∆W

3 (z, j2; W SHB(l))]
)∣∣

≤ K(γ, T ) ε

γ

k−1∑
l=0

Dlε,ε(W HB, W SHB).

(103)
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Similarly, we have

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez[∆W

2 (z, j1, j2; W HB(l))] − Ez[∆W
2 (z, j1, j2; W SHB(l))]

)∣∣∣∣∣ ≤ K(γ, T ) ε

γ

k−1∑
l=0

Dlε,ε(W HB, W SHB),∥∥∥∥∥
k−1∑
l=0

c
(k)
l

(
Ez∆W

1 (z, j1; W HB(l)) − Ez∆W
1 (z, j1; W SHB(l))

)∥∥∥∥∥
2

≤ K(γ, T ) ε

γ

k−1∑
l=0

Dlε,ε(W HB, W SHB).

(104)

To bound (102),(100) and (98), we first define the filtration F3(k) as the sigma-algebra generated by
({w3(0, j2)}j2∈[n2], z(0), ..., z(k)). We define the filtration F2(k), F1(k) in the same way. Let us recall that,
in a one-pass algorithm, we take i.i.d. samples at each step and, hence, we can write, for all l ∈

{
1, ..., ⌊ T

ε ⌋
}

,

Ez(l)
[
∆W

3 (z(l), j2; W SHB(l))
∣∣F3(l − 1)

]
= Ez∆W

3 (z, j2; W SHB(l)),
Ez(l)

[
∆W

2 (z(l), j1, j2; W SHB(l))
∣∣F2(l − 1)

]
= Ez∆W

2 (z, j1, j2; W SHB(l)),
Ez(l)

[
∆W

1 (z(l), j1; W SHB(l))
∣∣F1(l − 1)

]
= Ez∆W

1 (z, j1; W SHB(l)).

Clearly, we have that
{

∆W
3 (z(l), j2; W SHB(l)), l ∈

{
1, ..., ⌊ T

ε ⌋
}}

are mutually independent, which implies
that

∆W
3 (z(l), j2; W SHB(l)) − Ez∆W

3 (z, j2; W SHB(l))

is a martingale difference with respect to the filtration F3(l). Thus, {
∑k−1

l=0 c
(k)
l ∆W

3 (z(l), j2; W SHB(l)) −
Ez∆W

3 (z, j2; W SHB(l))|k ∈ ⌊ T
ε ⌋} is a martingale (same for ∆W

2 and ∆W
1 ). Next, we show that the martingale

differences are bounded, so that we can use martingale convergence results to bound these terms.

Combining Lemma D.6 with the same strategy of the a-priori estimations of Lemma A.2, we have the
following upper bounds:

|Ez∆W
3 (z, j2; W SHB(k)) − ∆W

3 (z(k), j2; W SHB(k))| ≤ K1,

|Ez∆W
2 (z, j1, j2; W SHB(k) − ∆W

2 (z(k), j1, j2; W SHB(k)| ≤ K1(γ, T ),
|Ez∆W

1 (z, j1; W SHB(k)) − ∆W
1 (z(k), j1; W SHB(k))| ≤ K1(γ, T ).

Thus, an application of Lemma F.2 gives

Pr
[

max
k∈⌊T/ε⌋

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez∆W

3 (z, j2; W SHB(l)) − ∆W
3 (z(l), j2; W SHB(l))

)∣∣∣∣∣ ≥ K
√

Tϵ(1 + δ3)
]

≤ exp(−δ2
3),

Pr
[

max
k∈⌊T/ε⌋

∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez∆W

2 (z, j1, j2; W SHB(l)) − ∆W
2 (z(l), j1, j2; W SHB(l))

)∣∣∣∣∣ ≥ K(γ, T )
√

Tϵ(1 + δ2)
]

≤ exp(−δ2
2),

Pr
[

max
k∈⌊T/ε⌋

∥∥∥∥∥
k−1∑
l=0

c
(k)
l

(
Ez∆W

1 (z, j1; W SHB(l)) − ∆W
1 (z(l), j1; W SHB(l))

)∥∥∥∥∥
2

≥ K(γ, T )
√

Tϵ(
√

D + δ1)
]

≤ exp(−δ2
1).
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By taking a union bound over j1, j2, we have that, with probability at least 1 − exp(−δ2),

max
j1,j2

max
k∈⌊T/ε⌋

{ ∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez∆W

3 (z, j2; W SHB(l)) − ∆W
3 (z(l), j2; W SHB(l))

)∣∣∣∣∣ ,∣∣∣∣∣
k−1∑
l=0

c
(k)
l

(
Ez∆W

2 (z, j1, j2; W SHB(l)) − ∆W
2 (z(l), j1, j2; W SHB(l))

)∣∣∣∣∣ ,∥∥∥∥∥
k−1∑
l=0

c
(k)
l

(
Ez∆W

1 (z, j1; W SHB(l)) − ∆W
1 (z(l), j1; W SHB(l))

)∥∥∥∥∥
2

}
≤ K(γ, T )

√
Tϵ(
√

D log(n1n2) + δ).

Combining the results, we conclude that, with probability at least 1 − exp(−δ2),

DT,ε(W HB, W SHB) ≤ K(γ, T )
√

Tϵ(
√

D log(n1n2) + δ) + K(γ, T ) ε

γ

k−1∑
l=0

Dlε,ε(W HB, W SHB).

An application of the discrete Gronwall’s lemma gives the desired result (94) and concludes the proof.

D.4 Proof of Theorem 5.2

Proof of Theorem 5.2. The proof follows from combining Proposition D.1, D.4, D.5 and the fact that:

DT (W , W SHB) ≤ DT (W , W PD) + DT (W PD, W HB) + DT,ε(W HB, W SHB).

E Global convergence of the mean-field ODE

In this section, we aim to prove the global convergence result through the recipe below:

1. We show the following degeneracy property for the mean-field ODE: there exist deterministic func-
tions w∗

1(·, ·) : R≥0 × RD −→ RD, w∗
2(·, ·, ·, ·) : R≥0 × RD × R × R −→ R, w∗

3(·, ·) : R≥0 × R −→ R such
that

w1(t, C1) = w∗
1(t, w1(0, C1)),

w2(t, C1, C2) = w∗
2(t, w1(0, C1), w2(0, C1, C2), w3(0, C2)),

w3(t, C2) = w∗
3(t, w3(0, C2)).

(105)

2. We show that (i) w∗
1(·, ·) is continuous in both arguments for any finite t, and that (ii) if w1(0, C1)

is full support, then w1(t, C1) is full support for any finite t.

3. Combining the argument that w1(t, C1) is full support for all finite t and the mode of convergence
assumption, we show that the mean-field ODE must converge to the global minimum.

We first show the degeneracy property of the mean-field ODE in the following lemma:
Lemma E.1. Under Assumptions (B1) - (B3), there exist deterministic functions w∗

1(·, ·) : R≥0 × RD −→
RD, w∗

2(·, ·, ·, ·) : R≥0 × RD × R × R −→ R, w∗
3(·, ·) : R≥0 × R −→ R such that

w1(t, C1) = w∗
1(t, w1(0, C1)),

w2(t, C1, C2) = w∗
2(t, w1(0, C1), w2(0, C1, C2), w3(0, C2)),

w3(t, C2) = w∗
3(t, w3(0, C2)).
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Proof of Lemma E.1. We follow the proof in (Pham & Nguyen, 2021a, Appendix D.2). To shorten
the notations, we make the following definition: we define the sigma-algebras generated by
w1(0, C1)), (w1(0, C1), w2(0, C1, C2), w3(0, C2)) , w3(0, C2) as S1, S123, S3 respectively. The lemma is equiva-
lent to prove that w1(t, C1), w2(t, C1, C2), w3(t, C2) are S1, S123, S3-measurable, respectively.

In order to prove the measurability result, we define a reduced dynamics as follows:

wRD
3 (t, c2) = wRD

3 (0, c2) − γ

∫ t

0
(wRD

3 (s, c2) − wRD
3 (0, c2)) ds −

∫ t

0

∫ s

0
E
[
∆W

3 (z, C2; W (u))|S3
]

du ds,

wRD
2 (t, c1, c2) = wRD

2 (0, c1, c2) − γ

∫ t

0
(wRD

2 (s, c1, c2) − wRD
2 (0, c1, c2)) ds

−
∫ t

0

∫ s

0
E
[
∆W

2 (z, C1, C2; W (u))|S123
]

du ds,

wRD
1 (t, c1) = wRD

1 (0, c1) − γ

∫ t

0
(wRD

1 (s, c1) − wRD
1 (0, c1)) ds −

∫ t

0

∫ s

0
E
[
∆W

1 (z, C1; W (u))|S1
]

du ds.

Note the reduced dynamics wRD
1 , wRD

2 , wRD
3 is clearly S1, S123, S3-measurable. Furthermore, the re-

duced dynamics is not self-contained, in the sense that the gradient terms E
[
∆W

3 (z, C2; W (t))|S3
]
,

E
[
∆W

2 (z, C1, C2; W (t))|S123
]

and E
[
∆W

1 (z, C1; W (t))|S1
]

are induced by the mean-field ODE W (t).

In order to state the next result, we define the following metric:

DT (W , W ′) = max
{

sup
t∈[0,T ]

ess sup
c1

∥w1(t, c1) − w′
1(t, c1)∥2,

sup
t∈[0,T ]

ess sup
c1,c2

|w2(t, c1, c2) − w′
2(t, c1, c2)|,

sup
t∈[0,T ]

ess sup
c2

|w3(t, c2) − w′
3(t, c2)|

}
.

Next, we aim to show that the reduced dynamics is equivalent to the mean-field ODE, i.e., for any T > 0,

DT (W , W RD) = 0.

The key step is to prove that

ess sup sup
t∈[0,T ]

|E
[
∆W

3 (z, C2; W (t))|S3
]

− Ez∆W
3 (z, C2; W (t))| ≤ K(γ, T )DT (W , W RD), (106)

ess sup sup
t∈[0,T ]

|E
[
∆W

2 (z, C1, C2; W (t))|S123
]

− Ez∆W
2 (z, C1, C2; W (t))| ≤ K(γ, T )DT (W , W RD), (107)

ess sup sup
t∈[0,T ]

∥E
[
∆W

1 (z, C1; W (t))|S1
]

− Ez∆W
1 (z, C1; W (t))∥2 ≤ K(γ, T )DT (W , W RD), (108)

where K(γ, T ) is a universal constant depending only on T, γ. Here, |E
[
∆W

3 (z, C2; W (t))|S3
]

−
Ez∆W

3 (z, C2; W (t))| is a random variable, and the ess sup in (106) is taken with respect to it. The same
remark applies to the ess sup in (107) and in (108), which are intended to be taken with respect to the
corresponding random variables.

We now prove that (106) holds. Note that

|E
[
∆W

3 (z, C2; W (t))|S3
]

− Ez∆W
3 (z, C2; W (t))| ≤ |E

[
∆W

3 (z, C2; W (t))|S3
]

− E
[
∆W

3 (z, C2; W RD(t))|S3
]

|
+ |E

[
∆W

3 (z, C2; W RD(t))|S3
]

− Ez∆W
3 (z, C2; W RD(t))|

+ |Ez∆W
3 (z, C2; W RD(t)) − Ez∆W

3 (z, C2; W (t))|.
(109)

Using the Lipschitz continuous property of ∆W
3 , we have that:

|E
[
∆W

3 (z, C2; W (t))|S3
]

− E
[
∆W

3 (z, C2; W RD(t))|S3
]

| ≤ K(γ, T )DT (W , W RD),
|∆W

3 (z, C2; W RD(t)) − ∆W
3 (z, C2; W (t))| ≤ K(γ, T )DT (W , W RD).

(110)
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By following the argument in (Pham & Nguyen, 2021a, Appendix D.2) (which does not depend on the
dynamics, but only on the structure of the gradient), we have that Ez∆W

3 (z, C2; W RD(t)) is S3-measurable,
i.e.,

|E
[
∆W

3 (z, C2; W RD(t))|S3
]

− Ez∆W
3 (z, C2; W RD(t))| = 0. (111)

By combining (109), (110) and (111), we obtain that (106) holds. The arguments giving (107) and (108) are
analogous.

From this, we can compute the difference between the reduced dynamics and the mean-field ODE as

DT (W , W RD) ≤ γ

∫ T

0
Ds(W , W RD) ds + K(γ, T )

∫ T

0

∫ s

0
Du(W , W RD) dv ds,

which, after applying Corollary F.4, gives that DT (W , W RD) = 0. This implies that W = W RD and,
hence, w1(t, C1), w2(t, C1, C2), w3(t, C2) are S1, S123, S3-measurable, respectively.

Next, we show the continuity of the function w∗
1(·, ·) : R≥0 × RD −→ RD in both arguments.

Lemma E.2. Under Assumptions (B1) - (B3), we have that, for all t ∈ [0, T ] and for all u1, u′
1 ∈ RD,

∥w∗
1(t, u1) − w∗

1(t′, u1)∥2 ≤ K(γ, T )|t − t′|, (112)
∥w∗

1(t, u1) − w∗
1(t, u′

1)∥2 ≤ K(γ, T )∥u1 − u′
1∥2. (113)

Proof. In order to prove the lemma, we first need to derive the dynamics that characterize the evolution of
the functions w∗

1(t, u1), w∗
2(t, u1, u2, u3), w∗

3(t, u3). This dynamics is induced by the mean-field ODE, whose
form we recall below:

w3(t, c2) = w3(0, c2) − γ

∫ t

0
(w3(s, c2) − w3(0, c2)) ds −

∫ t

0

∫ s

0
Ez∆W

3 (z, c2; W (v)) dv ds, (114)

w2(t, c1, c2) = w2(0, c1, c2) − γ

∫ t

0
(w2(s, c1, c2) − w2(0, c1, c2)) ds −

∫ t

0

∫ s

0
Ez∆W

2 (z, c1, c2; W (v)) dv ds,

(115)

w1(t, c1) = w1(0, c1) − γ

∫ t

0
(w1(s, c1) − w1(0, c1)) ds −

∫ t

0

∫ s

0
Ez∆W

1 (z, c1; W (v)) dv ds. (116)

Recall also that w3(t, c2) = w∗
3(t, w3(0, c2)). Thus, in order to get the dynamics of w∗

3(t, u3), we replace
w3(0, c2) by u3, w2(0, c1, c2) by u2, and w1(0, c1) by u1 into (114). By doing the same replacements into
(115) and (116) for w2(t, c1, c2) and w1(t, c1), respectively, we obtain

w∗
3(t, u3) = u3 − γ

∫ t

0
(w∗

3(s, u2) − u3) ds −
∫ t

0

∫ s

0
Ez∆W

3 (v, z, u3) dv ds,

w∗
2(t, u1, u2, u3) = u2 − γ

∫ t

0
(w∗

2(s, u1, u2, u3) − u2) ds −
∫ t

0

∫ s

0
Ez∆W

2 (v, z, u1, u2, u3) dv ds,

w∗
1(t, u1) = u1 − γ

∫ t

0
(w∗

1(s, u1) − u1) ds −
∫ t

0

∫ s

0
Ez∆W

1 (v, z, u1) dv ds,

where we have the following modified forward and backward paths:

H1(t, x, u1) = (w∗
1(t, u1))T x,

H2(t, x, u3) = Eu1∼ρ1
0,u2∼ρ2

0
w∗

2(t, u1, u2, u3)σ1(H1(t, x, u1)),
f(x; W (t)) = Eu3∼ρ3

0
w3(t, u3)H2(t, x, u3),

∆W
3 (t, z, u3) = ∂2R(y, f(x; W (t)))σ2(H2(t, x, u3)),

∆W
2 (t, z, u1, u2, u3) = ∂2R(y, f(x; W (t)))w3(t, u3)σ′

2(H2(t, x, u3))σ1(H1(t, x, u1)),
∆W

1 (t, z, u1) = Eu2,u3∂2R(y, f(x; W (t)))w3(t, u3)σ′
2(H2(t, x, u3))w2(t, u1, u2, u3)σ′

1(H1(t, x, u1))x.
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Thus, we have that

∥w∗
1(t, u1) − w∗

1(t, u′
1)∥2 ≤ (1 + γt)∥u1 − u′

1∥2 + γ

∫ t

0
∥w∗

1(s, u1) − w∗
1(s, u′

1)∥2 ds

+
∫ t

0

∫ s

0
∥Ez∆W

1 (v, z, u1) − Ez∆W
1 (v, z, u′

1)∥2 dv ds. (117)

An application of Lemma A.2 gives that

∥Ez∆W
1 (v, z, u1) − Ez∆W

1 (v, z, u′
1)∥2 ≤ K1(γ, T )(|w∗

2(v, u1, u2, u3) − w∗
2(v, u′

1, u2, u3)|
+ ∥w∗

1(v, u1) − w∗
1(v, u′

1)∥2).
(118)

Similarly for w∗
2 , we have that

|w∗
2(t, u1, u2, u3) − w∗

2(t, u′
1, u2, u3)| ≤ γ

∫ t

0
|w∗

2(s, u1, u2, u3) − w∗
2(s, u′

1, u2, u3)| ds

+
∫ t

0

∫ s

0
∥Ez∆W

2 (v, z, u1, u2, u3) − Ez∆W
2 (v, z, u′

1, u2, u3)∥2 dv ds,

(119)

and another application of Lemma A.2 gives that

∥Ez∆W
2 (v, z, u1, u2, u3) − Ez∆W

2 (v, z, u′
1, u2, u3)∥2 ≤ K2(γ, T )(|w∗

2(v, u1, u2, u3) − w∗
2(v, u′

1, u2, u3)|
+∥w∗

1(v, u1) − w∗
1(v, u′

1)∥2).
(120)

By combining (117), (118), (119) and (120), we obtain

|w∗
2(t,u1, u2, u3) − w∗

2(t, u′
1, u2, u3)| + ∥w∗

1(t, u1) − w∗
1(t, u′

1)∥2

≤(1 + γt)∥u1 − u′
1∥2 + γ

∫ t

0
(|w∗

2(s, u1, u2, u3) − w∗
2(s, u′

1, u2, u3)| + ∥w∗
1(s, u1) − w∗

1(s, u′
1)∥2) ds

+ K3(γ, T )
∫ t

0

∫ s

0
(|w∗

2(v, u1, u2, u3) − w∗
2(v, u′

1, u2, u3)| + ∥w∗
1(v, u1) − w∗

1(v, u′
1)∥2) dv ds.

Thus, by Corollary F.4, we have that:

|w∗
2(t, u1, u2, u3) − w∗

2(t, u′
1, u2, u3)| + ∥w∗

1(t, u1) − w∗
1(t, u′

1)∥2 ≤ K4(γ, T )∥u1 − u′
1∥2,

which implies that ∥w∗
1(t, u1) − w∗

1(t, u′
1)∥2 ≤ K4(γ, T )|u1 − u′

1|, and concludes the proof of (113). The
Lipschitz continuity (112) of w∗

1(t, u1) is already proved in Lemma D.2.

At this point, we show that, if w1(0, c1) : Ω −→ RD has full support, then w∗
1(t, u1) has full support.

Lemma E.3. Under Assumptions (B1)-(B3) and Assumption 7.1, we have that w∗
1(t, u1) has full support

for any t < ∞.

Proof. By the continuity argument in Lemma E.2, we have that

∥w∗
1(t, u1) − u1∥2 = ∥w∗

1(t, u1) − w∗
1(0, u1)∥2 ≤ K(γ, T )t, (121)

∥w∗
1(t, u1) − w∗

1(t, u′
1)∥2 ≤ K(γ, T )∥u1 − u′

1∥2. (122)

We want to show that, for any x ∈ RD, there exist a v such that w∗
1(t, v) = x. For any x ∈ RD, define a

map gx(t, v) = x − (w∗
1(t, v) − v). It is easy to see that if v a fixed point of gx(t, ·), then w∗

1(t, v) = x as

gx(t, v) = v ⇐⇒ x − (w∗
1(t, v) − v) = v ⇐⇒ w∗

1(t, v) = x.

By (121), we have that gx(t, ·) : RD −→ B(x, K(γ, T )t), where B(x, K(γ, T )t) is the closed ball centered
at x with radius K(γ, T )t. Now, if we restrict gx(t, v) on B(x, K(γ, T )t), we have that it is a map from
B(x, K(γ, T )t), which is a compact set, to itself. Furthermore, gx(t, v) is continuous in v, since w∗

1(t, v) is
continuous in v by (122). Thus, by the Brouwer fixed point theorem, we have that there exist a fixed point
v ∈ B(x, K(γ, T )t), which finishes the argument.

46



Published in Transactions on Machine Learning Research (02/2023)

Finally, we are ready to prove the main theorem. Our proof follows similar steps as that of (Pham & Nguyen,
2021a, Proof of Theorem 8).

Proof of Theorem 7.2. By Assumption 7.1, we have that

lim
t−→∞

ess sup
C1

EC2 [|Ez∆W
2 (z, C1, C2; W (t))|] = 0.

By the definition of ∆W
2 (t, z, C1, C2), we have

lim
t−→∞

ess sup
C1

EC2 [|Ez∆H
2 (z, C2; W (t))σ1(w1(t, C1)T x)|] = 0.

Recall from Lemma E.3 that, for all finite t, w1(t, C1) has full support. Hence, we have that, for u1 in a
dense subset of RD,

lim
t−→∞

EC2 [|Ez∆H
2 (z, C2; W (t))σ1(uT

1 x)|] = 0.

Our aim is to conclude that, for almost all x, we have that Ez [∂2R(y, f(x; W (∞)))|x] = 0. By definition of
the backward path, we have that

EC2 [
∣∣Ez∆H

2 (z, C2; W (t))σ1(uT
1 x)

∣∣−
∣∣Ez∆H

2 (z, C2; W (∞))σ1(uT
1 x)

∣∣]
≤EC2 [

∣∣(Ez∆H
2 (z, C2; W (t)) − Ez∆H

2 (z, C2; W (∞))
)
σ1(uT

1 x)
∣∣]

≤KEC2 [Ez

[∣∣∆H
2 (z, C2; W (t)) − ∆H

2 (z, C2; W (∞))
∣∣]]

≤KEC1,C2

[
(1 + |w3(∞, C2)|) ·

(
|w3(∞, C2) − w3(t, C2)| + |w3(∞, C2)| · |w2(∞, C1, C2) − w2(t, C1, C2)|

+ |w3(∞, C2)| · |w2(∞, C1, C2)| · ∥w1(∞, C1) − w1(t, C1)∥2
)]

.

By Assumption 7.1, the RHS of (123) converges to 0 as t → ∞. Hence, by taking the limit on both sides,
we have that, for u1 in a dense subset of RD,

EC2 [|Ez∆H
2 (z, C2; W (∞))σ1(uT

1 x)|] = lim
t−→∞

EC2 [|Ez∆H
2 (z, C2; W (t))σ1(uT

1 x)|] = 0,

which implies that, for almost all c2,∣∣Ez∆H
2 (z, C2; W (∞))σ1(uT

1 x)
∣∣ = 0.

By definition of ∆H
2 (z, C2; W (∞)) we have that, for almost all c2,

Ez

[
∂2R(y, f(x; W (∞)))w3(∞, c2)σ′

2(H2(x, c2; W (∞)))σ1(uT
1 x)

]
= 0. (123)

Note that Assumption (B1) gives that σ′
2 ̸= 0, and Assumption 7.1 that w3(∞, c2) ̸= 0 with probability > 0

(where the probability is intended over c2). Hence, we have that, with probability > 0 (over c2),

Ez

[
∂2R(y, f(x; W (∞)))σ′

2(H2(x, c2; W (∞)))σ1(uT
1 x)

]
= 0. (124)

Recall that σ1(uT
1 x) is a function of x, but ∂2R(y, f(x; W (∞))) depends on both y and x. Thus, we can

re-write (124) as

Ex

[
Ey

[
∂2R(y, f(x; W (∞)))|x

]
σ′

2(H2(x, c2; W (∞)))σ1(uT
1 x)

]
= 0. (125)

Now, we want to use the universal approximation property of σ1 to conclude that, for almost every x,

Ey

[
∂2R(y, f(x; W (∞)))|x

]
σ′

2(H2(x, c2; W (∞))) = 0. (126)
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The idea is that linear combinations of σ1(uT
1 x) can approximate any function in L2(Dx). Thus, if

Ey

[
∂2R(y, f(x; W (∞)))|x

]
σ′

2(H2(x, c2; W (∞))) is in L2(Dx), we have that there exist a sequence of in-
dex sets {Ik}k∈N, such that:

lim
k−→∞

Ex

∣∣∣∣∣Ey

[
∂2R(y, f(x; W (∞)))|x

]
σ′

2(H2(x, c2; W (∞))) −
∑

ik∈Ik

aik
σ1(uT

ik
x)
∣∣∣∣∣
2
 = 0.

To simplify the notation, we define:

g(x) = Ey

[
∂2R(y, f(x; W (∞)))|x

]
σ′

2(H2(x, c2; W (∞))),

hk(x) =
∑

ik∈Ik

aik
σ1(uT

ik
x).

From (125) and by linearity of expectation, we have that, for all k,

Ex [g(x)hk(x)] = 0.

Thus we have

0 = lim
k−→∞

Ex

[
|g(x) − hk(x)|2

]
= lim

k−→∞
Ex

[
|g(x)|2 + |hk(x)|2 − 2g(x)hk(x)

]
= lim

k−→∞
Ex

[
|g(x)|2 + |hk(x)|2

]
,

which implies that

Ex

[
|g(x)|2

]
= 0.

Hence, we have that

Ex

[∣∣Ey

[
∂2R(y, f(x; W (∞)))|x

]
σ′

2(H2(x, c2; W (∞)))
∣∣2] = 0,

which implies that (126) holds. Furthermore, to see that Ey

[
∂2R(y, f(x; W (∞)))|x

]
σ′

2(H2(x, c2; W (∞)))
is indeed in L2(Dx), it suffices to note that, by Assumption 3.3,

Ey

[
∂2R(y, f(x; W (∞)))|x

]
σ′

2(H2(x, c2; W (∞))) ≤ K2.

By Assumption 3.3, we also have that σ′
2(x) ̸= 0 for all x. Hence, (126) implies that, for almost every x,

Ey

[
∂2R(y, f(x; W (∞)))|x

]
= 0. (127)

Since the loss is convex in f(x; W (∞)), we have

Ez

[
R(y, f̃(x)) − R(y, f(x; W (∞)))

]
≥ Ex

[
Ey

[
∂2R(y, f(x; W (∞)))

∣∣x](f̃(x) − f(x; W (∞)))
]

= 0,

where the last passage follows from (127). Thus, we conclude that

EzR(y, f(x; W (∞))) = inf
f̃

Ez

[
R(y, f̃(x))

]
. (128)

Finally, we want to show that

lim
t−→∞

EzR(y, f(x; W (t))) = EzR(y, f(x; W (∞))). (129)
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To see this, we write

|EzR(y, f(x; W (t))) − EzR(y, f(x; W (∞)))|
≤KEz|f(x; W (t)) − f(x; W (∞))|
≤KEC1,C2

[
|w3(∞, C2) − w3(t, C2)| + |w3(∞, C2)| · |w2(∞, C1, C2) − w2(t, C1, C2)|

+ |w3(∞, C2)| · |w2(∞, C1, C2)| · ∥w1(∞, C1) − w1(t, C1)∥2
]
,

and use again Assumption 7.1. By combining (128) and (129), we obtain the desired result.

F Technical lemmas

Lemma F.1 (Corollary of McDiarmid inequality). (Mei et al., 2019, Lemma 30)

Let {Xi}i∈[n] ∈ Rd be a sequence of i.i.d random variables, with ∥Xi∥2 ≤ K and E[Xi] = 0, then we have:

Pr
(∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
2

≥ K(
√

1/n + z)
)

≤ exp (−nz2).

Lemma F.2 (Azuma-Hoeffding bound). (Mei et al., 2019, Lemma 31) Let (Xk)k≥0 be a martingale taking
values in RD with respect to the filtration (Fk), with X0 = 0. Assume that the martingale difference at time
k is Lk-subgaussian, which means the following holds almost surely for all λ ∈ RD:

E [exp{⟨λ, Xk − Xk−1⟩}|Fk−1] ≤ exp
{

L2
k∥λ∥2

2

}
.

Then, we have

Pr

max
k∈[n]

∥Xk∥2 ≥ 2

√√√√ n∑
k=1

L2
k

(√
D + δ

) ≤ exp{−δ2}.

Note that, if Lk ≤ L for all k, then

Pr
[
max
k∈[n]

∥Xk∥2 ≥ 2
√

nL2
(√

D + δ
)]

≤ exp{−δ2}.

Lemma F.3 (Pachpatte’s inequality). (Ames & Pachpatte, 1997, Chapter 1, Theorem 1.7.1)

Let u, f and g be non-negative continuous functions defined on [0, T ], for which the inequality

u(t) ≤ u0 +
∫ t

0
f(s)u(s) ds +

∫ t

0
f(s)

(∫ s

0
g(r)u(r) dr

)
ds

holds, where u0 is a non-negative constant. Then we have:

u(t) ≤ u0

[
1 +

∫ t

0
f(s) exp

(∫ s

0
(g(r) + f(r)) dr

)
ds

]
.

Corollary F.4 (Pachpatte’s inequality for constants). Let u be a non-negative continuous function defined
on [0, T ], and γ, K be positive real numbers. Assume the following inequality holds:

u(t) ≤ u0 + γ

∫ t

0
u(s) ds + K

∫ t

0

∫ s

0
u(r) dr ds.

Then, we have

u(t) ≤ u0

(
1 + γ2

γ2 + K
exp

(
γ2 + K

γ
t

))
≤ u0

(
1 + exp

(
γ2 + K

γ
t

))
.

49


	Introduction
	Related work
	Problem setup
	Network architecture
	Training algorithm
	Assumptions

	Derivation of the mean-field limit
	Convergence to the mean-field limit
	Two-layer networks
	Three-layer networks

	Consequences of the mean-field analysis: Dropout stability and connectivity
	Global convergence of the mean-field ODE for three-layer networks
	Numerical results
	Discussion and future direction
	A-priori estimates
	Two-layer networks
	Three-layer networks

	Existence and uniqueness of the mean-field limit
	Two-layer networks
	Three-layer networks

	Convergence to the mean-field limit – Two-layer networks
	Bound between mean-field ODE and particle dynamics
	Bound between particle dynamics and heavy ball dynamics
	Bound between heavy ball dynamics and stochastic heavy ball dynamics
	Proof of Theorem 5.1

	Convergence to the mean-field limit – Three-layer networks
	Bound between mean-field ODE and particle dynamics
	Bound between particle dynamics and heavy ball dynamics
	Bound between heavy ball dynamics and stochastic heavy ball dynamics
	Proof of Theorem 5.2

	Global convergence of the mean-field ODE
	Technical lemmas

