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Figure 1: FlowFeat is a versatile feature representation at pixel-level resolution. Embedding profiles
of plausible motion, FlowFeat stands out from existing techniques by offering excellent spatial
precision coupled with temporal consistency. Here, we visualise (using PCA with three principal
components) a comparison of FlowFeat with the feature maps of the state-of-the-art vision encoders.

Abstract

Dense and versatile image representations underpin the success of virtually all com-
puter vision applications. However, state-of-the-art networks, such as transformers,
produce low-resolution feature grids, which are suboptimal for dense prediction
tasks. To address this limitation, we present FlowFeat, a high-resolution and
multi-task feature representation. The key ingredient behind FlowFeat is a novel
distillation technique that embeds a distribution of plausible apparent motions, or
motion profiles. By leveraging optical flow networks and diverse video data, we
develop an effective self-supervised training framework that statistically approxi-
mates the apparent motion. With its remarkable level of spatial detail, FlowFeat
encodes a compelling degree of geometric and semantic cues while exhibiting high
temporal consistency. Empirically, FlowFeat significantly enhances the representa-
tional power of five state-of-the-art encoders and alternative upsampling strategies
across three dense tasks: video object segmentation, monocular depth estimation
and semantic segmentation. Training FlowFeat is computationally inexpensive and
robust to inaccurate flow estimation, remaining highly effective even when using
unsupervised flow networks. Our work takes a step forward towards reliable and
versatile dense image representations.

Project website: https://tum-vision.github.io/flowfeat.
Code and pre-trained models (Apache-2.0 License): https://github.com/tum-vision/flowfeat.
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1 Introduction

The feature maps of state-of-the-art self-supervised encoders (e.g. [9, 18]) have drastically downsam-
pled spatial resolutions (e.g. by a factor of 16), as illustrated in Fig. 1. While such downsampling
improves the computational efficiency of deep networks, it compromises on the accuracy of dense
prediction tasks, where spatial detail is crucial. Upsampling techniques, such as those based on
bilateral filters [15], can recover feature detail to an impressive degree. However, bilateral upsampling
incurs a tangible computational cost and struggles under challenging illumination scenarios (cf . Fig. 1,
third row). Alternatively, one could equip encoders with a lightweight decoder module, such as DPT
[41]. However, training such decoders without human annotation is highly non-trivial. Building on
this motivation, we present FlowFeat, a multi-task pixel-level image representation obtained in a
label-efficient (or even label-free) manner.

Different from much of the existing work on representation learning, FlowFeat derives from dense
motion patterns rather than the static appearance alone [3, 10, 18, 37]. While FlowFeat is a monocular
model operating on a single input image at test time, it uses unlabelled videos for training to embed
motion patterns into a pixel-level representation. Motion patterns are foundational to visual perception
[33]; they encode the compositional nature of visual scenes, encompassing both semantically and
geometrically meaningful phenomena. However, as Fig. 1 illustrates, video-based learning still fails
to provide representations that are dense, versatile and effective [5, 13, 21].

As a step forward, we synergise state-of-the-art optical flow networks and real-world video data.
On the one hand, modern optical flow networks produce dense motion estimates with outstanding
accuracy, even in challenging settings [45, 47, 52]. On the other hand, datasets of casual videos
provide a treasure trove of motion and scene diversity [23, 54]. Combining both ingredients in a
joint learning framework, FlowFeat requires no manual annotation. Optical flow networks train
predominantly on synthetically generated labels or even with self-supervision [35, 44]; video datasets
derive from real-world benchmarks and require minimal curation (e.g. montage filtering). The key
technical challenge is distilling the apparent motion in a fashion accommodating its stochastic nature.

FlowFeat addresses this challenge with a simple idea. We estimate the feature representation with
a distribution of linear transformations. Intuitively, for a given image and a flow estimate w.r.t. a
randomly sampled counterpart, FlowFeat is trained to admit a linear transformation approximating the
flow. Specifically, every training iteration estimates a lower bound of this transformation on-the-fly
using a least-squares formulation. The statistical nature of this lower-bound approximation (due to
sampling of the image pair) accommodates motion stochasticity and proves crucial for dealing with
inaccurate flow and occasional static scenes. Consequently, the distribution of linear transformations
allows FlowFeat to embed a distribution of plausible motion, or motion profiles [42].

Overall, our work presents two contributions. First, we develop an effective self-supervised training
framework that exploits the synergetic power of flow networks and large video datasets to embed
motion profiles. Our framework is efficient at training time and can run comfortably within academic
infrastructures. Second, we extensively evaluate the learned representation, FlowFeat, on three
diverse tasks of dense prediction: video object segmentation (VOS), monocular depth estimation
and semantic segmentation. Our analyses reveal a consistent benefit of FlowFeat across all tasks,
exhibiting a compelling degree of temporal consistency and spatial detail. Furthermore, FlowFeat has
appealing practical properties: (i) it is runtime- and label-efficient; (ii) it scales well with varying
input resolution without the need for model fine-tuning, and (iii) it facilitates simple post-processing
tasks, enhancing the quality of dense predictions without additional training.

2 Related Work

A substantial effort towards unsupervised feature representations has focused on learning from large
image sets [3, 11, 16]. This development spans multiple axes of pursuit, such as model efficiency
[9, 55], scalability [18, 37] and framework architecture [12]. Although pre-training from image sets
dominates the research landscape in unsupervised learning, there have been natural extensions of
image-based frameworks to learning from video data [5, 13, 48]. However, it remains challenging to
obtain spatio-temporal representations that are both dense (i.e. pixel-level) and temporally consistent
[2, 10, 51]. Central to learning spatio-temporal representations is the design of the pre-text task.
One prominent technique is cycle consistency [21, 27, 43, 51]. It constructs a temporal palindrome
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1 # compute optical flow
2 F = FlowNet(frame , frame_other)
3 # random crop transforms
4 tf1 , tf2 = random_crops ()
5 # two views of the first frame
6 v1 = crop(frame , tf1)
7 v2 = crop(frame , tf2)
8 u1 ,u2 = crop(F,tf1),crop(F,tf2)
9 # dense feature maps

10 x1 = dec_ema(encoder(v1))
11 x2 = dec(encoder(v2))
12 # Eq. 4: teacher optimal A
13 A∗ = lstsq(x1 , u1)
14 # student predicted flow
15 u2∗ = x2 @ A∗

16 # Eq. 7: flow loss w.r.t. dec
17 loss = flow_loss(u2∗, u2)
18 loss.backward ()
19 # EMA update
20 dec_ema.update_from(dec)

Figure 2: Embedding motion profiles: FlowFeat relies on the exponentially moving average (EMA)
teacher model and learns to reconstruct apparent motion with a distribution of linear transformations.
For a given frame It, we randomly sample its temporal counterpart It′ . A pre-trained network F
computes optical flow F(t→t′). We generate two overlapping random crops of frame It and feed
the resulting views v1 and v2 to the teacher and the student networks, respectively. Obtaining the
optimal linear transform A∗ on-the-fly with ridge regression in the teacher branch, we compute the
reconstruction loss w.r.t. the flow crop u2 to update the student parameters θ with gradient descent.

from a video sequence, ensuring consistency of a putative state in a forward and backward directions.
Contrastive learning underpins another broad category of the research effort [39]. The main ideas
are: constructing a reliable set of positive and negative samples [22]; combining learning on pixel,
frame, and video levels [50, 53]; or jointly representing a video clip with a limited set of contrastive
anchors [2]. Unlike these feature-based techniques, which have limited resolution, photometric-based
learning, such as colourisation, relies on natural radiance-based appearance [49]. Lai et al. [28]
leverage this technique in video-based learning, reconstructing the target frame from previous frames
observed in the CIELAB colour space.

Feature upsampling strategies, such as FeatUp [15] and LoftUp [20] are closely related to our work.
In contrast to bilateral upsampling [15, 26], FlowFeat is more computationally efficient and has
complementary properties to the low-resolution encoder features. Unlike contemporaneous work [20]
leveraging SAM [25], FlowFeat is label-efficient and can be trained in an unsupervised manner.

Representation learning by or with motion estimation is not new [17, 32, 38] and traces back to
the earlier works on trajectory clustering and motion-based segmentation [7, 14, 29, 56]. Training
FlowFeat is efficient, since it does not require pairwise sampling [32]; nor does it require object
discovery [19, 38]. Instead, FlowFeat learns directly from optical flow provided from off-the-shelf
networks with a distribution of linear transformations. This approach takes primary inspiration from
motion profiles, which model a distribution of velocities at a given pixel [42]. Embedding motion
profiles, FlowFeat enhances downstream accuracy of the baseline representation across diverse tasks.

3 Embedding Motion Profiles

Linear maps for optical flow. To obtain pixel-level features enhancing the low-resolution rep-
resentation of pre-trained encoders, we estimate apparent motion in real-world video sequences.
Off-the-shelf optical flow models exhibit exceptional generalisation, despite being trained on synthetic
scenes [47, 52] or even with self-supervision [44]. However, distilling motion estimates into a monoc-
ular model (in contrast to previous work [30]), is highly non-trivial due to motion stochasticity.1
Overcoming this issue, we train an image representation Hθ(I) = x such that for any temporally
neighbouring frame of I , there exists a linear operator on x which approximates the optical flow w.r.t.
that neighbour. Since we estimate the linear operator uniquely for each frame neighbour, the learned

1Naïvely approximating optical flow with a single linear layer unsurprisingly fails, as we verify in Sec. 4.4.
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representation x would embed statistical motion patterns for each input image I – an idea inspired
by motion profiles [42].

Given image It and its temporal neighbour It′ of resolution H ×W (=: N), we formulate the idea
above with the following flow reconstruction objective (where ∥ · ∥ denotes an “entry-wise” norm):

minθ,A EIt,It′

[
∥F(It, It′)−Hθ(It)A∥

]
, (1)

where F(It, It′) ∈ RN×2 is the optical flow from a pre-trained network [47, 52]; Hθ(It) ∈ RN×d

is our learned pixel-level feature representation and A ∈ Rd×2 is a linear operator. Note that since
Hθ and A are both unknown, Eq. (1) is an ill-posed problem due to scale ambiguity.2 Therefore, we
propose to compute the corresponding loss in two steps: (i) computing a lower-bound A∗ with a
surrogate teacher network, while keeping H fixed; (ii) computing the gradient w.r.t. θ of the original
network by swapping A∗ into Eq. (1) as the lower-bound linear approximation.

Student-teacher framework. Fig. 2 illustrates the framework and the corresponding training
algorithm. Leveraging the mean teacher as the training model [46], our network Hθ := Dθ ◦ E
comprises a fixed (pre-trained) encoder E and a trained lightweight decoder Dθ, which outputs a
dense feature representation of dimensionality d. The teacher model HEMA is equivalent to Hθ with
the exception of the decoder DEMA, which is an exponential moving average of Dθ.

To construct the training batch, we sample two frames, It and It′ , where It′ could be selected from
a temporal window around It. We first compute optical flow F(It, It′) ∈ RN×2 with a network
pre-trained on synthetic data [47, 52] or with self-supervision [44]. Generating two overlapping
random crops of the first frame It, we feed the corresponding views v1 and v2 to the teacher and
student models, respectively. Using the teacher output, we solve a least-squares problem:

A∗ = argminA ∥u1 −HEMA(v1)A∥2, (2)

where u1 is the crop of the optical flow corresponding to view v1. In practice, we solve Eq. (2)
with ridge regression, which yields stable solutions in the presence of inaccurate flow estimates and
improves training stability (cf . Sec. 4.4 for empirical results). Specifically, we solve

minA ∥u1 −HEMA(v1)A∥2 + γ∥A∥2, (3)

in each training iteration. Here, γ is a ridge hyperparameter fixed for all models. Setting x1 :=
HEMA(v1) to simplify the notation, the closed-form solution of Eq. (3) is naturally

A∗ = (xT
1 x1 + γI)−1xT

1 u1. (4)

Note that the first term has the feature dimensions, d × d, fixed to d = 128 in our experiments.
Therefore, computing Eq. (4) has a negligible computational cost. In contrast to previous work [32],
our framework remains computationally efficient regardless of the image resolution.

Fixing A∗, we now formulate the flow reconstruction loss w.r.t. the student parameters of Hθ as

LL1(u2, v2) = ∥u2 −Hθ(v2)A
∗∥1. (5)

The loss encourages the two overlapping crops of an input frame to admit the same linear mapping A∗

from the features to optical flow, thereby promoting grouping of pixels with similar motion patterns.
Note that for zero motion (i.e. static scenes) the solution is A∗ = 0, which yields zero gradient for the
reconstruction term, effectively discarding such training samples in the learning process. As we also
verify in the ablation study (cf . Tab. 3), ridge regularization and the robust L1 loss improve resilience
of the framework to inaccuracies in the estimated target flow u1 and u2, respectively.

Focal gradient matching. Motion boundaries in optical flow are well-known to reveal semantic
and geometric scene components. Therefore, we promote flow consistency at motion boundaries with
an auxiliary second-order term implementing focal gradient matching:

Lx
∇(u2, u

∗
2) = (1− e−∇xu2/σ)∥∇xu2 −∇xu

∗
2∥1, (6)

where u∗
2 := Hθ(v2)A

∗ and ∇x is the spatial gradient along the x-axis of the image plane. Equiva-
lently, we compute the gradient for the y-axis and the corresponding term Ly

∇.

2If A∗ and H∗ are the solutions, so are cA∗ and H∗/c for any c ̸= 0.
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Figure 3: Left: Focal gradient matching term L∇. The first row visualises the first three PCA
components of FlowFeat trained with and without the gradient term. Observe sharper feature
boundaries with the use of the gradient term. Additionally, we found benefit in modulating the
gradient difference with a hyperparameter σ, as defined in Eq. (6). The modulation with a lower
σ amplifies the effect of motion discontinuities (here, demonstrated for image gradients). Right:
Qualitative examples on VOS. FlowFeat reveals finer details of the semantic masks compared to
existing upsampling strategies, such as FeatUp [15].

Fig. 3 illustrates the effect of the gradient matching loss. As we also demonstrate empirically in
Sec. 4.4, the gradient loss results in sharper feature maps (see the top row in Fig. 3). Note that the
focal term in Eq. (6) enables modulation of the gradient loss at motion discontinuities. As the two
bottom rows in Fig. 3 demonstrate, the hyperparameter σ controls the degree of this modulation: a
lower value of σ results in sharper FlowFeat boundaries. However, a very low value of σ may amplify
the negative effect of inaccurate flow predictions, which can also exhibit flow discontinuities.

The total second-order flow reconstruction loss is simply a weighted sum:

Ltotal = L∇ + λLL1, (7)

where L∇ is the sum of Lx
∇ and Ly

∇, and λ is a trade-off hyperparameter kept fixed across all models.

4 Experiments

We probe FlowFeat on three diverse tasks: video object segmentation (VOS), semantic segmentation
and monocular depth prediction. Our goal is to demonstrate that FlowFeat offers substantial and
consistent benefits across these downstream tasks as well as across backbone models, regardless
of their pre-training strategy. Overall, we train FlowFeat on top of five backbone models: Masked
Autoencoder (MAE) [18] based on ViT-B16, DINO [9] based on ViT-B16 and ViT-S16, and DINO2
[37] based on ViT-B14 and ViT-S14. As the decoder architecture and the only trainable component
in FlowFeat, we use the DPT model [41], which is runtime-efficient (cf . Tab. 7, supp. material). The
flow distillation relies on SEA-RAFT [52] based on ResNet-34. However, our ablation experiments
in Sec. 4.4 with the older RAFT model [47] and unsupervised flow [44] show that this choice of
the flow estimator is not critical. Furthermore, Fig. 6 illustrates the resilience of the training to
inaccurate flow targets. We report the results for two FlowFeat variants. FlowFeat-YT trains on 3471
video sequences from YouTube-VOS (CC BY 4.0, [54]). For larger backbones, we train FlowFeat-K
on Kinetics-400 dataset (CC BY 4.0, [23]) containing 147646 videos.3 We compare our FlowFeat
variants to the corresponding encoder model, as well as FeatUp [15], pre-trained on COCO-Stuff

3We exclude videos containing a montage of multiple clips to ensure temporal coherence.
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Method Train Data Linear Probing Local KNN

JF Jm Fm JF Jm Fm

V-JEPA [5] VideoMix2M [5] 49.0 46.1 51.9 56.7 55.6 57.8

VideoMAE [48] Kinetics 43.3 40.9 45.8 55.1 54.6 55.6

MAE-B16 [18] ImageNet 40.8 38.5 43.1 44.3 42.8 45.8
+ FlowFeat-K + Kinetics 53.8 50.1 57.5 59.1 57.3 60.8

DINO-B16 [9] ImageNet 52.3 49.1 55.4 62.3 60.7 64.0
+ FlowFeat-YT + YT-VOS 55.5 52.5 58.5 64.0 62.7 65.3
+ FlowFeat-K + Kinetics 56.9 53.7 60.1 66.0 64.5 67.5

DINO-S16 [9] ImageNet 49.6 46.8 52.4 61.5 59.9 63.1
+ FeatUp [15] COCO-S 52.4 49.6 55.2 63.7 62.4 64.9
+ FlowFeat-YT + YT-VOS 54.1 51.1 57.0 63.7 62.0 65.5
+ FlowFeat-K + Kinetics 56.2 52.9 59.5 66.5 64.5 68.4

DINO2-B14 [37] LVD∗ 61.6 58.5 64.7 66.4 64.4 68.5
+ FlowFeat-YT + YT-VOS 65.7 62.2 69.2 69.0 66.9 71.2
+ FlowFeat-K + Kinetics 66.1 62.3 69.9 69.9 67.7 72.1

DINO2-S14 [37] LVD∗ 57.5 54.2 60.7 65.1 63.7 66.6
+ FeatUp [15] COCO-S 60.5 57.4 63.6 65.5 65.0 66.1
+ LoftUp [20] + SA1B [25] 63.0 59.6 66.4 66.0 64.7 67.4
+ FlowFeat-YT + YT-VOS 65.8 62.0 69.7 67.6 65.6 69.6
+ FlowFeat-K + Kinetics 64.6 61.0 68.2 68.5 66.1 70.9

Table 1: Video object seg-
mentation (VOS) with linear
probing and label propaga-
tion (local KNN) on DAVIS-
2017 (val). FlowFeat sig-
nificantly improves the VOS
accuracy of the baselines
across all tested scenarios. It
further outperforms previous
and concurrent upsampling
techniques (FeatUp [15] and
LoftUp [20]). Pre-training
FlowFeat on the larger Kinet-
ics datasets tends to produce a
stronger representation. LVD∗

refers to the distillation from
a model pre-trained on LVD
[37]. LoftUp [20] uses SAM,
trained with mask supervision
on SA1B [25].

(CC BY 4.0 / Flickr, [8]). Recall that FeatUp stacks multiple bilateral upsamplers and preserves
the feature dimensionality. For instance, FeatUp yields representations with dimensionality 384 for
ViT-S, whereas FlowFeat is more compact and has a fixed dimensionality of 128 across all variants.
This allows us to evaluate FlowFeat in a complementary fashion to the backbone encoding by jointly
fitting a high-resolution probe on FlowFeat and a low-resolution probe on the fixed encoder.

Implementation details (see also Appendix B). Training FlowFeat is computationally inexpensive.
To train one model, we use a single GPU with 46GB of memory. The training proceeds with mini-
batches of 128 images, input resolution 224 × 224 and AdamW optimiser [24, 31] with learning
rate 10−4 and no weight decay. For the hyperparameters, we empirically set λ = 0.1, σ = 0.1 and
γ = 1.0 and did not observe sensitivity to moderate deviations from these values. We train FlowFeat
for 500 epochs on YouTube-VOS and for 100 epochs on Kinetics. In wall-clock time with one A40
GPU, the training takes only 24 hours and 3 days for YouTube-VOS and Kinetics, respectively.

4.1 Video object segmentation

We evaluate FlowFeat on semi-supervised video object segmentation (VOS) using 30 validation
sequences from DAVIS-2017 (CC BY-SA 4.0, [40]). The task is to propagate the ground-truth
annotation defined in the first frame to the rest of the video. Therefore, performing well on this task
would indicate the capacity for temporal invariance as well as pixel-level semantic discrimination.

Previous evaluation protocols for VOS employ a variant of a localised k-nearest neighbour classifier
[2, 21, 28], referred to as local KNN in the following. This probing technique is known to be brittle,
exhibiting high volatility w.r.t. its hyperparameters [34]. For consistency with previous work, we stick
to the implementation of local KNN provided by Caron et al. [9]. However, we additionally evaluate
VOS with linear probing, as the more established and interpretable technique in representation
learning [11, 16]. Linear probing extends seamlessly to the VOS task. Specifically, for each video, we
train a linear classifier using the ground-truth segmentation provided for the first frame. We apply the
linear classifier to the remaining frames to obtain the segmentation result. For both probing strategies
– linear probing and local KNN – we compute the mean region similarity Jm, the mean contour-based
accuracy Fm and their mean JF . Tab. 1 reports the results. Across all pre-training methods and
metrics, FlowFeat achieves a consistent and substantial improvement in VOS accuracy. The benefit is
especially significant for MAE-B16, where FlowFeat improves the baseline by staggering 13.0% /
14.8% JF with linear probing / local KNN. However, FlowFeat also surpasses stronger baselines,
e.g. DINO2-B14 (+4.5% / +3.5% JF) and FeatUp (+3.8% / +2.8% JF for DINO-S16 and
+5.3% / +3.0% for DINO2-S14 JF). As illustrated in Fig. 3 (right), the improvement is especially
pronounced at the object boundaries. FeatUp enhances VOS accuracy for both baselines (DINO-S16
and DINO2-S14), but these improvements are more modest. FeatUp also struggles with inputs of
higher resolution, introducing static feature artefacts, see the supplemental videos and further analysis
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Table 2: Probing semantic segmentation and monocular depth. On COCO-Stuff 2017 (val),
FlowFeat advances the segmentation quality across all baselines as well. A lightweight refinement
using FlowFeat++ (numbers in parentheses) further boosts the accuracy without any parameter
training. On NYUv2 (val), FlowFeat significantly improves the depth accuracy across all pre-trained
encoders – in contrast to FeatUp, which struggles to improve upon its baselines.

Method Semantic Segmentation Depth Estimation

mIoU ↑ pAcc ↑ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑

MAE-B16 [18] 46.0 71.5 0.4534 83.68 96.98 99.28
+ FlowFeat-K 47.2 72.9 0.4400 84.43 97.18 99.35

DINO-B16 [9] 46.1 72.0 0.4287 86.15 97.61 99.47
+ FlowFeat-K 48.2 73.7 0.4176 86.87 97.71 99.50

FeatUp – DINO-S16 [15] (++) 41.6 (42.1) 69.5 (69.9) 0.4624 83.54 96.90 99.32
DINO-S16 [9] 39.6 67.5 0.4634 83.60 96.94 99.32
+ FlowFeat-YT (++) 44.7 (45.9) 71.4 (72.5) 0.4410 85.26 97.17 99.30
+ FlowFeat-K (++) 44.2 (45.4) 71.3 (72.3) 0.4422 84.81 97.19 99.37

DINO2-B14 [37] 58.1 78.0 0.3091 94.14 99.32 99.89
+ FlowFeat-K 60.4 79.8 0.2791 95.55 99.52 99.93

FeatUp – DINO2-S14[15] (++) 58.3 (58.5) 79.1 (79.2) 0.3207 93.29 99.18 99.86
DINO2-S14 [37] 56.2 77.3 0.3294 92.97 99.11 99.85
+ FlowFeat-YT (++) 58.0 (59.4) 78.7 (79.7) 0.3072 93.91 99.25 99.86
+ FlowFeat-K (++) 58.1 (59.6) 78.9 (79.9) 0.3061 94.12 99.31 99.88

in Tab. 6. Similarly, the contemporaneous work, LoftUp [20], achieved inferior accuracy despite the
implicit leverage of vast mask supervision via SAM [25]. Video-based models, such as V-JEPA [5]
and VideoMAE [48], are also remarkably ineffective.

Overall, the improvements on VOS metrics provide compelling evidence that FlowFeat encapsulates
a high degree of temporal invariance and feature detail, with complementary properties to the encoder
representation. Furthermore, the larger Kinetics dataset tends to produce a stronger variant of
FlowFeat. This observation indicates that FlowFeat has the promising capacity to scale with the
ever-increasing volume of real-world videos.

4.2 Semantic segmentation

We follow the setting of FeatUp [15] and use COCO-Stuff 2017 with C = 27 coarsely annotated
categories [8]. Since FlowFeat focuses on motion patterns rather than global semantic alignment, it
may lack consistent semantic structure across images; therefore, we employ attention probing [5] to
derive image-specific class prototypes. In more detail, we define C = 27 learnable queries attending
the FlowFeat representation with a single layer of cross-attention. We freeze the models and train
the probes on 256 × 256 centre crops using the cross-entropy loss. Additionally, we demonstrate
that FlowFeat can further boost the segmentation accuracy with a simple adaptation of a lightweight
post-processing technique. Concretely, we adapt the local mask refinement strategy (PAMR) [1], but
leverage FlowFeat instead of the image intensity to refine the segmentation result. Note that such a
refinement is not possible by the use of the probes alone due to their feed-forward nature. We refer to
this straightforward extension as FlowFeat++. Appendix B.2 provides further details.

Tab. 2 reports the mean pixel accuracy and the mean IoU. The results align with our observations
in VOS experiments: FlowFeat boosts the accuracy across all baseline models. Particularly notable
are the improvements w.r.t. smaller models. For example, FlowFeat surpasses DINO-S16 by 5.1%
and 4.6% with FlowFeat-YT and FlowFeat-K, respectively. Without the refinement, FlowFeat
performs competitively with FeatUp [15] based on DINO2-S14 and outperforms it for DINO-S16.
Furthermore, the FlowFeat-based refinement significantly enhances the segmentation quality. For
example, FlowFeat-K++ improves over FlowFeat-K by a notable margin of 1.5% mIoU. By contrast,
FeatUp does not profit from the refinement as much.

Fig. 5 visualises the segmentation results for the DINO2-S14 backbone, with and without the
refinement. Initial predictions of the probes are coarse and lack detail, especially around object
boundaries. Leveraging the high-resolution FlowFeat representation (visualised with PCA), the
refinement leads to sharper mask alignment with image boundaries.
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Input DINO2-S14 FlowFeat-K FlowFeat-K (PCA) FlowFeat-K++ Ground Truth

Figure 5: Semantic segmentation and post-hoc refinement (++) with FlowFeat. The segmentation
masks from FlowFeat exhibit a high level of boundary accuracy. The FlowFeat representation,
visualised with PCA, identifies prominent scene elements with a fine-grained detail. A lightweight
post-hoc refinement (FlowFeat-K++), based on PAMR [1], leverages the pairwise pixel similarity
embedded by FlowFeat (instead of image intensities) to improve the results further.

In summary, FlowFeat provides a significant boost also for downstream semantic tasks. The feature
representation offers a high degree of spatial detail and also lends itself well to lightweight post-
processing without the need for additional training.

4.3 Monocular depth estimation

Input →

DINO2-S14

FlowFeat (PCA)

FlowFeat

Ground Truth

Figure 4: Depth probing. FlowFeat
significantly improves depth estimates
for challenging elements, such as non-
Lambertian surfaces (e.g. left, the piano),
intricate structures (e.g. middle, the bicy-
cle), and under- and oversaturated image
areas (e.g. right, a bathroom).

We evaluate FlowFeat on a geometric task, monocular
depth estimation, using NYUv2 [36], following the evalu-
ation protocol of Banani et al. [4]. Similar to the VOS set-
ting, we compare FlowFeat against self-supervised back-
bones: MAE [18], DINO [9], and DINO2 [37]. As in
semantic segmentation, we use attention probing [5] to ex-
tract the depth-specific prototypes from FlowFeat. Specifi-
cally, we utilise the AdaBins [6] formulation that quantises
the depth into 256 bins. The depth value is a weighted
sum of the predicted distribution across the bins and the
corresponding depth value of the bin. Following Banani
et al. [4], we optimise the model using a weighted combi-
nation of the scale-invariant depth loss [6] and a gradient
loss. Appendix B provides further details on probe imple-
mentation and training.

Adhering to the setting of Banani et al. [4], we train the
probes on the NYUv2’s training set (24231 images) and
evaluate the models on 480 × 480 centre crops of the
1449 validation images [36]. As the standard depth met-
rics, we report the root-mean-squared error (RMSE) and
the inlier rates at three thresholds. Specifically, δi corre-
sponds to the fraction of depth predictions d satisfying
max(d/d∗, d∗/d) < 1.25i w.r.t. the ground-truth d∗.

Tab. 2 summarises the quantitative results. In line with
our observations on VOS and semantic segmentation,
FlowFeat achieves a notable boost across all baseline mod-
els. For example, FlowFeat-K reduces RMSE w.r.t. the
DINO-S16 model by 0.051 and increases the δ1 by 3.16%.
By contrast, we did not observe benefit from the high-
resolution FeatUp, which appears to be biased towards the
pre-training resolution of 224× 224. Notably, we did not
observe such a detrimental bias in FlowFeat.
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Table 3: Ablation study on DAVIS-2017 (val).
Following Sec. 4.1, we perform linear probing
on VOS in a set of ablation experiments. The ∆
reports the absolute difference in the correspond-
ing metric w.r.t. the baseline. The ridge regular-
isation in FlowFeat is crucial, but the choice of
the flow estimator is not instrumental.

Baseline: DINO2-S14 JF /∆ Jm /∆ Fm /∆

+Random DPT 58.7 55.2 62.2
+FlowFeat-YT 65.8 62.0 69.7

(a) naïve 56.7 −9.1 52.8 −9.2 60.5 −9.2
(b) γ = 0.001, cf . Eq. (4) 58.2 −7.6 54.9 −7.1 61.5 −8.2
(c) w/o L∇, cf . Eq. (6) 64.3 −1.5 61.0 −1.0 67.7 −2.0
(d) LL2 63.3 −2.4 59.8 −2.2 67.0 −2.7
(e) w/o LL1, cf . Eq. (5) 65.3 −0.5 61.6 −0.4 69.0 −0.7
(f) RAFT 65.2 −0.6 61.6 −0.4 68.8 −0.9
(g) SMURF (unsupervised) 64.1 −1.7 60.7 −1.3 67.5 −2.2
(h) temp. window × 2 65.5 −0.3 62.1 +0.1 68.9 −0.8
(i) next frame only 65.8 0.0 62.2 +0.2 69.4 −0.3

Input Target Flow Our Estimate FlowFeat (PCA)

Figure 6: Resilience to inaccurate flow targets.
Despite inaccurate and even artefact-prone predic-
tions from optical flow networks, FlowFeat learns
a reasonable flow approximation without compro-
mising the feature representation.

We visually inspect the results in Fig. 4 for the DINO2-S14 backbone. In contrast to the low-quality
depth estimates extracted from the frozen encoder, FlowFeat representation exhibits an impressive
degree of fine-grained detail. This is indeed noteworthy, considering that FlowFeat originates
from video data and was not trained for such static scenes. FlowFeat is also robust to under- and
oversaturated image areas (cf . Fig. 4, the rightmost column) and infers highly plausible depth where
the ground truth is not available due to surface specularity (cf . Fig. 4, the piano).

In summary, the results suggest that the motion profiles embedded by FlowFeat provide strong
geometric cues. FlowFeat not only enhances the depth awareness across all baselines, but also scales
compellingly with the increased amount of video data for pre-training: FlowFeat-K outperforms the
less data-intensive FlowFeat-YT across virtually all settings and metrics.

4.4 Ablation study

We conduct an ablation study of FlowFeat on the DAVIS-2017 (val) benchmark. The study follows
the evaluation protocol with linear probing from Sec. 4.1. Using ViT-S14 backbone pre-trained with
DINO2 [37], we train a number of FlowFeat configurations on YouTube-VOS [54]. Tab. 3 reports
the results. As a sanity check, we verify that a randomly initialised DPT decoder has virtually no
effect on the VOS accuracy (cf . Tab. 3 in grey). Similarly, (a) naïvely fitting optical flow with a
single linear layer (instead of a distribution) is futile. Next, (b) we verify the benefit of estimating the
optimal operator A∗ in Eq. (5) with ridge regression. To compare with the baseline setting of γ = 1
(cf . Eq. (4)), we trained the model with γ = 10−3. We found the training numerically unstable with
γ = 0. Thus, setting γ to 10−3 provides a reasonable approximation to removing the effect of L2-
regularisation on the linear operator A. In this case, the VOS accuracy drastically deteriorates across
all metrics, which justifies the crucial need for ridge regularization. (c) We train FlowFeat without
the second-order term, L∇ in Eq. (6). A drop in the downstream accuracy (e.g. −2.0% Fm) suggests
that FlowFeat exploits motion boundaries in its representation, in line with the established view that
motion boundaries are strong semantic cues. (d) Replacing the L1 reconstruction loss by L2 distance
in Eq. (5) reduces J&F from 65.8% to 63.4%, supporting the robustness of L1 in comparison to
L2. Next, (e) we explore a configuration without the L1 reconstruction term by setting λ := 0 in
Eq. (7). Surprisingly, the drop in accuracy is not substantial. This suggests that the training process
can succeed with the gradient loss alone. However, we observed that including the L1 reconstruction
term tends to improve the convergence speed consistently across all models. In the next experiments
(f,g), we replace SEA-RAFT [52] with the RAFT model [47] and the unsupervised SMURF [44],
respectively. The drop in the VOS accuracy is not significant, which demonstrates that obtaining
FlowFeat is not sensitive to a specific choice of the flow model. Fig. 6 further examines the training
resilience to inaccurate target flow. In both examples, the optical flow from the pre-trained network is
inaccurate (even artefact-prone), yet it has no visible effect on the quality of FlowFeat. Curiously, the
second example in Fig. 6 also reveals one limitation of FlowFeat: the apparent motion of the tail and
the head of the snake have opposite directions, which decouples their feature representation.
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Finally, (h,i) we test two strategies for sampling frame pairs from a video in Tab. 3. Our base
configuration uses a temporal window of 5 frames and can select frame t′ either from the past or
the future. We increase this temporal window to 9 (h), which leads to a slight deterioration of VOS
accuracy – presumably due to the more challenging estimation of optical flow. The setting (i) selects
the immediate next future frame as t′. Here, the VOS accuracy barely changes. This implies that
(i) FlowFeat does not simply overfit apparent motion (compare to (a)), and (ii) the motion samples
across the dataset, not just a temporal window, play a more critical role in embedding motion profiles.

Further study. Our further analysis, provided in the supplemental material, shows that: (1) FlowFeat
scales well with the input resolution, further improving the VOS accuracy when the input resolution is
doubled (cf . Tab. 6); (2) the accuracy gains from FlowFeat do not arise merely from higher resolution
of the feature map per se, but from its complementary motion-derived properties (cf . Tab. 5a); (3)
FlowFeat also scales effectively to larger transformer models (e.g. ViT-L) (cf . Tab. 5b).

5 Limitations

Application scope. FlowFeat relies on a pre-trained optical flow network and video data for training.
It assumes either brightness constancy in the video stream or availability of synthetic data for pre-
training the optical flow model. While these assumptions generally hold for standard RGB videos,
they may not apply in other domains, such as medical imaging (e.g. MRI, CT), thermal imaging or
low-light scenarios.

Model Person Wall Landscape Vegetation Ground

DINO-S16 69.3 46.5 43.9 65.5 33.3
+ FlowFeat -YT 75.6 50.0 50.8 69.9 37.0

DINO-B16 72.9 51.4 51.0 70.3 38.9
+ FlowFeat -K 77.8 52.9 53.1 71.7 39.6

DINOv2-S14 76.9 57.6 59.2 71.0 44.6
+ FlowFeat -YT 81.7 59.3 60.5 73.0 45.7

DINOv2-B14 77.0 59.2 59.6 70.3 44.9
+ FlowFeat -K 83.0 61.7 61.3 72.3 45.1

MAE-B16 72.2 50.8 52.7 66.9 36.1
+ FlowFeat -K 78.6 51.3 53.7 69.9 38.8

Table 4: Semantic segmentation accuracy on COCO-Stuff
(IoU, %). As expected from motion parallax, the gains
on (potentially) dynamic classes (e.g. “person”) are larger
compared to that of typical background categories (e.g. “veg-
etation”). Nevertheless, FlowFeat leads to a consistent seg-
mentation improvement across all categories.

Frozen backbone. Recall that train-
ing FlowFeat involves updating only
the decoder parameters, while keep-
ing the encoder parameters fixed.
Consequently, the encoder represen-
tation imposes an upper bound on
FlowFeat’s downstream accuracy, es-
pecially in terms of high-frequency
content. Although we have shown that
FlowFeat generalises across widely
used self-supervised encoders, such as
MAE [18], DINO [9], DINOv2 [37]
and across different model capacities,
FlowFeat may be less effective with
backbones that underrepresent high-
frequency details in their intermediate
feature maps.

Motion bias. Owing to its training
approach, FlowFeat tends to empha-
sise image regions with larger magnitudes of expected motion, typically corresponding to foreground
dynamic objects, relative to the static background areas. To quantitatively assess this behaviour, we
report per-category IoU scores on COCO-Stuff in Tab. 4, following the probing protocol described
in Sec. 4. We observe that the improvement on the “person” category is indeed more pronounced
than for static classes. Nevertheless, FlowFeat yields consistent accuracy gains across all categories,
regardless of whether they are static or dynamic in nature.

6 Conclusion

We presented FlowFeat, a pixel-dense and versatile representation embedding motion profiles. Our
experiments provide compelling evidence that FlowFeat enhances the representation power of pre-
trained encoders across all downstream tasks considered in our study. Specifically, FlowFeat possesses
temporal consistency and exhibits a remarkable level of spatial detail, encompassing semantic and
geometric cues without explicit supervision. More broadly, our work addresses motion stochasticity
in a principled fashion, revealing a powerful synergy between optical flow networks and large
video datasets. FlowFeat takes a significant step towards label-efficient and versatile models for
high-precision tasks, such as image-based 3D reconstruction, object-level segmentation and tracking.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that FlowFeat encompasses semantic and geometric cues, while
being spatially precise and temporally consistent. We extensively support these claims
empirically with five baselines on three corresponding probing tasks (semantic segmentation,
depth estimation and video object segmentation), as well as qualitatively analyse the feature
maps (cf . Fig. 1 and the supplemental material).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The snake example in Fig. 6, the corresponding discussion in Sec. 4.4 and
Sec. 5 highlight multiple limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work is predominantly empirical, although it includes some theoretical
aspects (e.g. ridge regression), which are widely well-understood.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Sec. 4 and Appendix B provide details of the training and probing settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The training data (YouTube-VOS and Kinetics-400) as well the evaluation
datasets (e.g. DAVIS-2017) are publicly available. We release the code and the pre-trained
models, and provide the corresponding URLs.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sec. 4 elaborates on the data splits, hyperparameters, and the optimiser used
for training. Appendix B further details the evaluation settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The errors bars are not included due to the limited computational budget.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments have been performed on one A40 GPU (cf . Sec. 4, “Imple-
mentation details”). Appendix C also performs a computational analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research has adhered to all aspects of the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This research has a foundational nature, since it does not aim at deployment-
level accuracy on any particular downstream task.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We do not perceive such risks in this research due to its foundational nature.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Asset owners/creators are credited with the corresponding citation. Most assets
used in this work (the datasets DAVIS-2017, YouTube-VOS and Kinetics-400) are publicly
available and include the license (CC BY-SA 4.0, CC BY 4.0, CC BY 4.0, respectively).
However, we have been unable to identify the license of the NYUv2 dataset, which is widely
used in our community.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We release the code and pre-trained models with detailed instructions upon
acceptance under Apache License 2.0.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The work did not use crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The work did not use crowdsourcing experiments or research with human
subjects.
Guidelines:

19

paperswithcode.com/datasets


• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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