
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IT’S ALL CONNECTED: A JOURNEY THROUGH TEST-
TIME MEMORIZATION, ATTENTIONAL BIAS, RETEN-
TION, AND ONLINE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces MIRAS, a unified framework that reconceives neural archi-
tectures (such as Transformers and modern linear RNNs) as associative-memory
modules governed by online optimization. In MIRAS, each module learns key-
value mappings via an attentional bias (the internal learning objective) and pre-
serves past information via a retention function (the memory regularizer). This
perspective provides a principled reinterpretation of “forgetting” mechanisms as
forms of regularization. Our framework reveals a critical limitation: virtually all
existing sequence models, including recent unification efforts, are constrained by
dot-product similarity or ℓ2 loss.MIRAS moves beyond this narrow focus, pro-
viding a generative framework that unlocks a richer design space informed by
principles from (robust) optimization and statistics. We introduce diverse alter-
natives—such as ℓp norms, Huber loss, KL-based losses, and f -divergence mea-
sures—leading to novel architectural designs with improved stability and robust-
ness. Utilizing this expanded space, we build three novel, attention-free, and par-
allelizable models (MONETA, MEMORA, YAAD) that combine expressive MLP
memories with these new mechanisms. Empirically, different MIRAS instanti-
ations trade off complementary strengths, illustrating the framework’s capacity
to navigate architectural design choices. Several variants achieve strong scaling,
larger effective context windows, and demonstrate results better than state-of-the-
art linear RNNs across various tasks, including language modeling, commonsense
reasoning, and challenging long-context recall.

1 INTRODUCTION

Designing efficient architectural backbones for sequence modeling is vital for strengthening foun-
dation models across diverse domains and data modalities such as language (Vaswani et al., 2017;
Team et al., 2024), computer vision (Dosovitskiy et al., 2020), computational biology (Wang et al.,
2024), and neuroscience (Behrouz et al., 2024a). Transformers (Vaswani et al., 2017) remain state
of the art thanks to their in-context learning and scalability (Kaplan et al., 2020), but their quadratic
time and space complexity limits use in long-context applications (Dalal et al., 2025; Liu et al.,
2024b; Li et al., 2024).

Recent work tackles Transformers’ long-context limits by creating efficient recurrent alterna-
tives (Schlag et al., 2021; Smith et al., 2022). Unlike the Transformer’s linearly growing KV cache,
these models compress context into fixed-size memory, requiring better memory management for
strong performance. To design more effective architectures, studies improves memory capabilities
through: (1) richer learning rules, from Hebbian (Hebb, 2005) to Delta (Schlag et al., 2021); (2) ad-
vanced forget gates, from LSTM (Schmidhuber & Hochreiter, 1997) to Mamba2 (Dao & Gu, 2024)
and Titan (Behrouz et al., 2024b); (3) more expressive memory, from vector memory in RetNet (Sun
et al., 2023) and LRU (Orvieto et al., 2023) to deep neural memory in TTT (Sun et al., 2024).

At the core of these advancements lies a critical question: “what is the underlying design frame-
work behind these sequence models, and how can these models be enhanced?”. Taking inspiration
from the broad definitions of associative memory and learning in neuropsychology literature (Okano
et al., 2000), several studies discuss connections between Transformers and (linear) Recurrent Neu-
ral Networks (RNNs) with associative memory (Hopfield, 1982; Ramsauer et al., 2021; Bietti et al.,
2023). These studies, however, either: (1) lack a universal explanation to fully illustrate the un-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

derlying learning algorithms, (2) are limited to a specific definition of associative memory and lack
generalizability, (3) are unable to describe standard, widely-used components such as forget gate.
In an effort to address these concerns, several works have tried to unify neural architecture designs.
Notably, Liu et al. (2024a) adopted an online learner viewpoint, similar to the (Learning-Retaining
Viewpoint) in our paper. Concurrently, Wang et al. (2025) adopted an online regression viewpoint,
which connects to the (FTRL Viewpoint) in our work.

While these frameworks successfully unify existing models, they remain constrained by the ℓ2 and
dot-product paradigms, effectively making them specific instances of our broader framework. MI-
RAS distinguishes itself in two critical ways: First, we provide a formal connection between these
two viewpoints (Theorem 2.2). Second, and crucially, MIRAS transcends the limitations of Eu-
clidean spaces. Unlike prior frameworks that merely catalog existing ℓ2-based methods, MIRAS
provides the generative capacity to design novel architectures with enhanced robustness and stabil-
ity, addressing the sensitivity to outliers inherent in ℓ2-based optimization.

Contributions. Inspired by the human cognitive phenomenon of attentional bias—the natural ten-
dency to prioritize certain stimuli—we re-examine the foundations of sequence modeling by con-
necting (online) optimization and associative memory. This perspective allows us to unify existing
architectures and unlock a principled design space. Our main contributions are as follows:

• A Unified Framework: We introduce MIRAS1, a comprehensive framework that reconceptualizes
sequence models (including Transformers and modern RNNs) as associative memory modules
governed by online optimization. MIRAS formally defines the core components of these models
as Attentional Bias (the internal learning objective) and Retention (the memory regularizer).

• Theoretical Reinterpretation and Critical Insights: Through the lens of MIRAS, we provide inter-
pretation of existing forgetting mechanisms (e.g., gates in LSTMs or Mamba2) as specific forms
of regularization within online optimization frameworks (e.g., FTRL). Crucially, our unification
reveals a significant limitation: virtually all existing successful architectures rely narrowly on ℓ2
loss or dot-product similarity for both bias and retention (See Table 5).

• Expansion of the Architectural Design Space: MIRAS provides a principled foundation for moving
beyond the ℓ2 paradigm. We leverage principles from robust optimization and statistics to propose
and explore novel, non-Euclidean attentional biases (e.g., Huber loss, ℓp norms) and retention
gates (e.g., KL-divergence, f-divergence), leading to architectures with improved stability and
robustness. We specifically derive eight of these variants in Section 4.

• Novel Attention-Free Architectures and Validation: Utilizing this expanded design space, we intro-
duce three novel, attention-free, and parallelizable architectures: MONETA, YAAD, and MEM-
ORA. These models combine expressive MLP-based memories with our novel optimization mech-
anisms. Empirically, we demonstrate that different MIRAS instantiations trade off complementary
strengths, achieving strong scaling laws and superior performance compared to state-of-the-art
Transformers and linear RNNs across language modeling, commonsense reasoning, and challeng-
ing long-context recall tasks.

2 ASSOCIATIVE MEMORY, ATTENTIONAL BIAS, AND RETENTION

Associative memory, a core component of human learning (Terry, 2017), has inspired numerous
artificial neural architectures (Hopfield, 1982; Schlag et al., 2021; Behrouz et al., 2024b). Broadly
speaking, associative memory is an operator that learns mappings between keys and values. To learn
these mappings effectively, the memory requires an objective function that measures the quality of
the learned associations and guides the learning process.

Definition 2.1 (Associative Memory and Attentional Bias). Given a set of keysK ⊆ Rdk and values
V ⊆ Rdv , associative memory is an operator M : K → V . Learning the mapping of associative
memory is based on an objective L, called Attentional Bias, that determines the type of memory and
its tendency to prioritize some events:

M∗ = argmin
M

L(M(K);V). (1)

1 “Miras” is the translation of “Legacy” in several languages including Persian, Arabic, and Turkish. We
choose this name since this framework provides clear steps for future design of sequence models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

When memory is parameterized by W , we useM(W,k). In this setting, the optimization in equa-
tion 1 is performed over W . This learning process can be viewed as a meta (in-context) learning task,
where the model learns how to store data into its parameters at test time (Sun et al., 2024).

2.1 THE OPTIMIZATION PERSPECTIVE: LEARNING AND RETAINING

Definition 2.1 translates the design of a sequence model into an optimization problem. In an online
setting, where key-value pairs (kt,vt) arrive sequentially, a straightforward approach to optimize
Equation 1 is to use gradient descent. Given a new pair, we update the memory parameters:

Wt = Wt−1 − ηt∇ℓ(Wt−1;kt,vt), (2)

where ℓ(Wt−1;kt,vt) := L(M(W ;kt),vt). This update can be interpreted as adjusting the mem-
ory based on a “momentary surprise” (Behrouz et al., 2024b), where the model prioritizes memoriz-
ing tokens that violate the expectations of the objective L. This update rule highlights a fundamen-
tal tension in sequence modeling: the need to learn from the latest information (adaptability) while
remaining stable enough to retain previously memorized context (stability). We can formalize this
tension by viewing the gradient descent update (2) through an optimization lens. Mathematically,
Equation 2 is equivalent to the solution of the following optimization problem:

Wt = argmin
W

⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩+
1

2ηt
∥W −Wt−1∥22 (3)

The first term locally approximates ℓ(W ;kt,vt) at the previous state Wt−1; minimizing it corre-
sponds to learning the new token. The second term is a quadratic penalty that regularizes deviations
from Wt−1; minimizing it corresponds to retaining past information and ensuring stability.

2.2 THE LEARNING-RETAINING VIEWPOINT

The formulation in equation 3 relies specifically on linear approximations and quadratic regular-
ization. However, we can generalize this concept by employing different approximations for the
attentional bias and alternative functions for retention. This generalization leads to:

Wt = arg min
W∈W

ℓ̃t(W ;kt,vt)︸ ︷︷ ︸
Attentional Bias

+ Rett (W,Wt−1)︸ ︷︷ ︸
Retention

. (Learning-Retaining Viewpoint)

Here, ℓ̃t(W ;kt,vt) is an approximation of ℓ(W ;kt,vt), driving the learning of new concepts.
Rett (W,Wt−1) is the retention function, regularizing changes in W to maintain stability and pre-
serve learned knowledge. This viewpoint has also been acknowledge by Liu et al. (2024a).

The retention function can be further decomposed into local and global components:

Rett (W,Wt−1) =
1

ηt
Dt (W,Wt−1)︸ ︷︷ ︸
Local Retention

+
1

αt
Gt (W)︸ ︷︷ ︸

Global Retention

.

The local retention Dt (W,Wt−1) is typically a premetric (e.g., ℓ2 distance, KL divergence) that
controls deviations from the immediate past state Wt−1. The coefficient ηt acts as a meta in-context
learning rate, balancing learning (larger ηt) against retention (smaller ηt). The global retention Gt

controls the overall complexity or size of the memory (e.g., weight decay).

Remark on “Forgetting” as Regularization. Within this viewpoint, mechanisms often termed
“forget gates” (Behrouz et al., 2024b; Yang et al., 2024a) are reinterpreted not as explicit erasure
mechanisms, but as specific implementations of the Retention function (regularization). The model
optimizes how much of the past state to retain by balancing the regularization penalty against the
learning objective. This interpretation is crucial as it provides a principled way to design novel retention
mechanisms derived from optimization theory (See Section 4), rather than relying on heuristic gating
structures. Therefore, we use the term Retention Gate throughout this work. This interpretation
aligns closely with human memory processes, where memories often become inaccessible due to
retrieval failures rather than complete erasure (Robertson, 2002).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 ALTERNATIVE PERSPECTIVE: FOLLOW-THE-REGULARIZED-LEADER (FTRL)
While the Learning-Retaining viewpoint focuses on the trade-off at the current timestep, an alterna-
tive perspective from online optimization considers the entire history of the sequence. The update
rule in Equation 2 can also be viewed as one step of online gradient descent on the sequence of
losses ℓ(W ;k1,v1), ℓ(W ;k2,v2), . . . , ℓ(W ;kt,vt), Online gradient descent is a special case
of the Follow-The-Regularized-Leader (FTRL) algorithm (Shalev-Shwartz et al., 2012; Hazan et al.,
2016). In FTRL, the goal is to minimize the cumulative loss over all past tokens, balanced by a reg-
ularization term that penalizes the overall complexity of the memory. This leads to:

Wt = arg min
W∈W

t∑
i=1

ℓ̂i(W ;ki,vi)︸ ︷︷ ︸
Attentional Bias

+
1

ηt
Rt(W)︸ ︷︷ ︸

Memory Stability

. (FTRL Viewpoint)

Here, ℓ̂i(W ;xi) represents an approximation (e.g., linearization) of the loss at time i, and Rt(W)
is the regularization term. The (Learning-Retaining Viewpoint) and (FTRL Viewpoint) offer com-
plementary perspectives (one local, one global) and can formally be connected:

Theorem 2.2. Let ηt = η and define ht(W) :=
∑t−1

i=1 ℓ̂i(W ;ki,vi) +
1
ηR(W). AssumeW = Rd

and the function ht(W) is strictly convex in W and let Dh(·, ·) be the Bregman divergence defined
by function h(·), i.e., Dh(W,W ′) = h(W) − h(W ′) − ⟨∇h(W ′),W −W ′⟩. Set Rett(W,W ′) =

Dh(W,W ′) and ℓ̃t(W ;xt) = ℓ̂t(W ;xt) in (Learning-Retaining Viewpoint) . Then, the update rule
in (Learning-Retaining Viewpoint) is equivalent to the update rule in (FTRL Viewpoint) .

The proof is provided in Appendix B. Intuitively, Theorem 2.2 confirms that optimizing the cumula-
tive loss over the entire history (FTRL), can be achieved via optimizing for the immediate trade-off
between learning and retention in (Learning-Retaining Viewpoint) , provided the retention function
is appropriately chosen. This suggests that the (Learning-Retaining Viewpoint) is more general. We
therefore adopt it as the primary lens for most of our derivations in subsequent sections.

2.4 EXTENSIONS AND GENERALIZATIONS

The (Learning-Retaining Viewpoint) can be naturally extended to provide more flexibility. We can
consider a Universal Viewpoint where the memory update relies on recent history, rather than just
the immediate past state:

Wt = arg min
W∈W

ℓ̃t(W ; {ki,vi}ti=t−k)︸ ︷︷ ︸
Attentional Bias

+ Rett
(
W, {Wi−1}ti=t−k′

)︸ ︷︷ ︸
Retention

. (Universal Viewpoint)

Here, the memory update relies on its recent k + 1 states and the latest k′ + 1 key-value pairs.
While (Learning-Retaining Viewpoint) is a special case of (Universal Viewpoint) by setting
(k, k′) = (0, 0), one can obtain more flexible designs by choosing higher values of k, k′. For ex-
ample, setting (k, k′) = (0, 1) can recover optimization algorithms with momentum, such as those
used in Titans (Behrouz et al., 2024b), as discussed in Appendix C.

In all above viewpoints, instead of using the global minimizer of the update, one can approximately
find the minimizer by simply using one (or multiple) steps of a particular optimizer. For example,
one can consider more advanced optimizers (such as Adam or Muon) for updating memory (Clark
et al., 2022; Zhang et al., 2025; Behrouz et al., 2025). In the next section, we summarize the design
choices within the MIRAS framework.

3 MIRAS: A FLEXIBLE FRAMEWORK FOR LEARNING TO MEMORIZE

Building viewpoints presented in the previous section, we present MIRAS framework that not only
accurately unifies existing architectures but also provides insights on how to design the next genera-
tion of neural architectures. As discussed in Section 2, learning an associative memory can be inter-
preted as a meta-learning task, in which the associative memory learns how to compress and store
data into its parameters at test time Sun et al. (2024). The architecture of the memory in such task is
particularly important as in longer contexts as the expressivity of the memory structure can limit its
ability to learn the underlying patterns. Therefore, the first choice to design a neural architecture is
the structure of the memory. Given the structure of the memory, parameterized by a set of parameters
W , we aim to minimize a loss function ℓ(W ; ·, ·) with a retention regularizer Ret(·) via a learning
algorithm (e.g., gradient descent). Accordingly, MIRAS requires four design choices:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: The overview of MIRAS framework. MIRAS is based on four critical choices of (1)
memory architecture, (2) attentional bias, (3) retention gate, and (4) memory learning algorithm. In
this framework, the memory architecture determines the model capacity to memorize; attentional
bias is responsible for modeling the underlying mapping patterns; retention gate determines how
to balance learning new concepts and the retention of previously learned concepts; and memory
learning algorithm is responsible for memory management.

1. Memory Structure: This choice specifies the architecture of the memory. For example, this
architecture can be a linear function, a Multilayer Perceptron (MLP) layer, or even more complex
structures. We may restrict the choice of W to be within a certain region, e.g., W to lie within
an L2 ball to avoid infinite values or unstable learning.

2. Attentional Bias: A key design choice is the objective L(·) (and consequently its approxi-
mations in different viewpoints). This choice determines how we memorize the context and
prioritize the events.

3. Memory Stability and Retention: Another key choice is the retention regularizer. This choice
balances learning with retention of past state. An effective retention gate is key to reliable
performance in long context.

4. Memory Algorithm: Finally, this choice specifies the learning algorithm that we use to optimize
the memory objective. One may use exact minimizer in our framework or use one step (or
multiple steps of) a particular optimizer to update the memory.

The design choices of MIRAS are summarized in Figure 1. In Appendix D, we detail how vari-
ous existing architectures—including Softmax Attention, RNNs with Hebbian rules (e.g., RetNet,
Mamba2), RNNs with Delta rules (e.g., DeltaNet), and deep memory models (e.g., Titans)—can be
derived as specific instantiations of the MIRAS framework. In particular, Table 5 in the appendix
provides a comprehensive overview of this unification. Crucially, this analysis reveals a significant
limitation: almost all these methods rely narrowly on ℓ2 or dot-product attentional biases and ℓ2
retention gates. MIRAS allows other choices of attentional bias/retention gates. In the next section,
we discuss how going beyond the standard choices can lead to new architecture designs.

4 BEYOND EXISTING ATTENTIONAL BIASES AND RETENTION GATES

As discussed in the previous section, existing work focus only on linear/quadratic choices for the
attentional bias or retention gate. However, in general there could be various choices for all the
three aforementioned design choices (even by going beyond Euclidean space). To illustrate the
flexibility of our designed framework, this section proposes and discusses novel design choices in
MIRAS.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We start by discussing novel choices of attentional biases and retention gates in Section 4.1. We
only briefly present three of such variants in this subsection and we will relegate further choices
to Appendix E. Then, we combine our design choices in Section 4.2 to obtain three particular
architectures: Moneta, Yaad, and Memora, which we further experiment on in Section 5.

4.1 NOVEL ALTERNATIVE ATTENTIONAL BIAS AND RETENTION GATES

Variant 1: ℓp-Attentional Bias. Attentional bias defines the “similarity metric” and measures how
well memory can recall the value, given its corresponding key. Although ℓ2 loss is used in prior
work, a natural extension is ℓp-norm class of objectives: We define ℓp-attentional bias as:

L(M(W,kt);vt) = ∥M(W,kt)− vt∥pp, (4)

where p ∈ R≥1 and ∥.∥p is the p-norm. Depending on the distribution of the data, we might want to
use different values of p (see Section 5). For the sake of simplicity, let memory be a matrix defining
a linear mapping, i.e.,M(W,kt) = Wkt, the gradient descent update is:

Wt = Wt−1 − ηt∇ℓ(Wt−1;kt,vt) = Wt−1 − p ηt
(
Sign(Wt−1kt − vt)⊙ |Wt−1kt − vt|p−1) k⊤

t ,
(5)

where ⊙ is the Hadamard (element-wise) product. For p = 1, the recurrence simplifies to: Wt =
Wt−1 − ηt Sign(Wt−1kt − vt) k

⊤
t . We call this variation value-less associative memory, in which

we store entities (keys) but map them into two extreme class of -1 and +1 through the sign function.
This behavior provides inherent robustness, as the magnitude of the error does not affect the update
direction, preventing extreme events (outliers) from overly influencing the memory. One simple
interpretation for such behavior is the coping mechanism in human (Loftus, 1993), in which the
memory does not store the values for extreme events. This interpretation of protective memory in
extreme events motivates our next variant.

Variant 2: Huber Loss: Memory with Coping Mechanism. While ℓ2-norm regression objective
is a common choice, it is known to be sensitive to noise and extreme examples (outliers). To have
a robust loss against outliers, we can use Huber loss as the attention bias, in which an extreme
mismatch (potentially due to outlier data) does not affect the memory learning process:

Wt = Wt−1 −
{
ηt ∇ℓ2(Wt−1;kt,vt) if ∥M(W ;kt)− vt∥ ≤ δt,

ηt δt∇ℓ1(Wt−1;kt,vt)− δ2t Otherwise.
(6)

In this formulation, the parameter δt decides the type of the memory (ℓ2-norm objective or value-
less) based on the context, making the memory more robust to outliers.

Variant 3: Memorization Over A Scaled Probability Simplex. To avoid numerical instabilities,
we can constrained the variable Wt to lie within a scaled probability simplex. In other words, we can
restrict the state to lie in the constraint setW = {W | ∥W∥1 = c and Wjl ≥ 0, ∀j, l}. In this set,
each point W can be viewed as a measure. Thus, we can utilize divergences over measures to define
our retention in (Learning-Retaining Viewpoint) . For example, by choosing Dt(W,W ′) as the
KL divergence and setting ℓ̃(W ;kt,vt) = ⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩ in (Learning-Retaining
Viewpoint) , we get the update rule

Wt ← c Softmax ((1− λ) log(Wt−1)− η∇ℓ(Wt−1;kt,vt)) (7)

where λ ∈ (0, 1) and η ∈ R+ are the hyper-parameters that can be learned during training. The
Softmax operator ensures that the output lies in the setW . To see more discussions and extensions
to general f-divergence retention gates, see Section E.2 in the appendix.

Other Variants. In the appendix section, we derive other novel variants of MIRAS by using elastic
net regularization, Bregman divergence and f− divergence retention gates, and Lq memory stability.
We will also discuss the above variants in more details.

4.2 FOCUS VARIANTS OF MIRAS: MONETA, YAAD, AND MEMORA

Using the above basic variants and the other variants explained in Appendix E, we now introduce
three instantiations of MIRAS, each designed to explore different facets of this expanded optimiza-
tion space, moving beyond the standard ℓ2 and dot-product paradigms.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

MONETA. MONETA is designed to investigate the impact of generalized norms. Given p, q ∈ R≥1,
we design (p, q)-MONETA to explore the impact of generalized ℓp norms for both learning and
regularization. We instantiate MIRAS as follows. Memory Structure: A 2-layer MLP with expansion
factor 4, GELU activation (Hendrycks & Gimpel, 2016), residual connections, and Layer Norm
M(x) = x+LN(W1σ(W2x)). Attentional Bias: ℓp norm. Retention Gate: A hybrid of ℓq retention
gate 1

2(q−1)∥W∥
2
q (see Appendix E for details) and the standard ℓ2 regularization 1

αt
∥W∥22. Memory

Algorithm: Gradient Descent. The above choices result in the following recurrent formula for the
memory module:

At = βtAt−1 − ηt∇ℓ(Wt−1;kt,vt), and Wt =
At

∥At∥q−2
q

. (8)

Notably the gradient can be calculated using Equation 5. We use (p, q) = (3, 4).

YAAD. YAAD is designed for robustness, protecting the memory from extreme events (outliers) us-
ing principles from robust statistics. We design YAAD based on the Huber objective.Memory Struc-
ture: MLP (same architecture as MONETA). Attentional Bias: Huber loss (Equation 6). Retention
Gate: A combination of local and global retention: Rett(W,Wt−1) =

1
2ηt
∥W−Wt−1∥2F+ 1

αt
∥W∥22.

Memory Algorithm: Gradient Descent. Given these choices, we can write the resulting memory
learning process as :

Wt = βtWt−1 −
{
ηt ∇ℓ2(Wt−1;kt,vt) if ∥M(kt)− vt∥ ≤ δt,

ηt δt∇ℓ1(Wt−1;kt,vt)− δ2t Otherwise.
(9)

Note that for improving the expressive power, in all architectures, we decouple the learning rate η
and the retention gate rate α, resulting in a independent parameter βt ∈ [0, 1].

MEMORA. Finally, MEMORA is designed to ensure stable updates by constraining the memory to
a probability simplex and utilizing divergence-based retention. Memory Structure: MLP (same as
MONETA), constrained to the scaled probability simplex. Attentional Bias: dot-product loss. Reten-
tion Gate: KL-divergence for local retention and Shannon entropy for global retention (Appendix E).
Memory Algorithm: Closed-form solution. These choices lead to (see equation 30):

Wt = Softmax (βt log(Wt−1)− ηt∇ℓ(Wt−1;kt,vt)) (10)

Architecture Backbone. For the architectural backbone, we fully follow recent studies (Behrouz

et al., 2024b; Yang et al., 2024a): We replace attention modules with our variants of MIRAS in
Llama’s macro architecture with MLPs with SwiGLU(.) activation, rotary positional encodings
(RoPE) (Su et al., 2024), and RMSNorm (Zhang & Sennrich, 2019). We incorporate a 1D depthwise-
separable convolution layer after each of the query, key, and value projections. For training stability,
we also use ℓ2 normalization to q and k. The output of this module is normalized and gated with a
linear layer (Mehta et al., 2023). For all input-dependent parameters like ηt, βt, and δt, we define
them as the linear projection of the input. The architectures are illustrated in Figure 5.

Parallelizable Training. We build upon the work of Behrouz et al. (2024b); Sun et al. (2024) and
use a hybrid recurrence of linear and non-linear by chunking the sequences into small subsequences.
While the use of MLP memories and non-Euclidean optimization introduces non-linearities in the
recurrence, the hybrid chunking strategy (Appendix F) ensures that the training remains highly par-
allelizable. Inside each chunk, the recurrence is effectively linearized, and non-linear operations
(e.g., the normalization in MONETA or Softmax in MEMORA) are applied only at chunk bound-
aries. This maintains competitive training throughput while offering O(1) complexity per token
during inference.

5 EXPERIMENTS

Experimental details (resp. additional experiments) are in Appendix G (resp. Appendix H).

5.1 LANGUAGE MODELING AND COMMON-SENSE REASONING

We follow recent studies (Yang et al., 2024a;c; Behrouz et al., 2024b) and first focus on the per-
plexity in language modeling and commonsense reasoning tasks. The results for MEMORA, YAAD,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance of MIRAS’s variants and baselines on language modeling and common-sense
reasoning tasks. Hybrid models are marked with ∗. The best results are highlighted .

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ ↑

1.3B params / 100B tokens

Transformer++ 18.53 18.32 42.60 70.02 50.23 53.51 68.83 35.10 40.66 57.09 52.25
RetNet 19.08 17.27 40.52 70.07 49.16 54.14 67.34 33.78 40.78 60.39 52.02
Mamba2 16.56 12.56 45.66 71.87 55.67 55.24 72.47 37.88 40.20 60.13 54.89
DeltaNet 17.71 16.88 42.46 70.72 50.93 53.35 68.47 35.66 40.22 55.29 52.14
Gated DeltaNet 16.42 12.17 46.65 72.25 55.76 57.45 71.21 38.39 40.63 60.24 55.32
Samba∗ 16.13 13.29 44.94 70.94 53.42 55.56 68.81 36.17 39.96 62.11 54.00
Gated DeltaNet-H2∗ 15.91 12.55 48.76 72.19 56.88 57.77 71.33 39.07 41.91 61.55 56.18

MONETA (ours) 15.52 11.47 47.88 73.16 56.14 59.09 72.53 40.32 41.91 61.18 56.52
YAAD (ours) 15.18 11.89 47.23 72.81 56.46 59.02 72.14 40.05 40.73 61.86 56.39
MEMORA (ours) 15.90 12.04 48.67 73.10 55.99 57.36 71.55 37.92 40.19 61.34 55.87

Figure 2: Scaling patterns when increasing (Left) model size, (Middle) sequence length (model size
= 340M) (3) (Right) sequence length (model size = 760M) on C4 dataset.

MONETA and baselines with size of 1.3B are reported in Table 1 (Full results of 340M and 760 in
Table 7). All of our variants outperforms all the baselines including Transformer++, modern linear
recurrent models and hybrid methods. The superior performance compared to hybrid models is par-
ticularly important as all our variants are pure recurrent (attention-free). Among the three variants of
MIRAS, while MONETA achieves slightly weaker performance than MEMORA, and YAAD, the other
two variants are close and depending on the task and model size, the best model can vary.

5.2 SCALING PATTERN

To evaluate the scaling pattern of models and for comparing them with baseline, in this section, we
plot their performance with varying the model size and the context window.

Context Length. We first vary the training context length from 2K to 32K for two version of our
model with size 340M and 760M. The results are reported in Figure 2 (Middle and Right). All
three variants of MIRAS scales better than state-of-the-art baselines when increasing the context
length. We attribute this superior performance to: (1) expressive memory architecture. Contrary to
baselines like Mamba2 and GSA that uses vector- and matrix-valued memory, our variants use 2-
layer MLPs with more expressive power. (2) The choice of retention gate and attentional bias. While
TTT also uses MLP memory, it shows weaker scaling. This highlights a crucial finding: expressive
memory alone is insufficient; it requires correct design choices (e.g. attentional bias, retention, and
optimization algorithm) to be effectively utilized. All of our three variants go beyond the standard ℓ2-
based attentional biases and retention gates. These robust choices prevent memory corruption from
outliers or noise, leading to better utilization of the fixed capacity, especially in long contexts.

Model Size. We also report the #FLOPs vs. perplexity of our models and baselines in Figure 2
(Left). All three variants outperforms all baselines given almost the same budget of FLOPs. These
results, once again support the importance of powerful memory design.

5.3 NEEDLE IN HAYSTACK

To evaluate the effective context window of our models and baselines, we use needle-in-haystack
task. In this task, we evaluate the model on retrieving a piece of information (i.e., the “needle”)
from long distractor texts (i.e., the “haystack”). We focus on the Single NIAH (S-NIAH) task from
RULER benchmark (Hsieh et al., 2024) and evaluate our models and baselines on sequences with
length 1K, 2K, 4K, and 8K. The results are reported in Table 2. All our variants outperforms the
baselines by a considerable margin. Interestingly, MONETA shows superior performance when the
data is synthetic noise (S-NIAH-PK). This highlights the advantage of MONETA’s ℓp-attentional

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

bias and ℓq retention (with (p, q) = (3, 4)). Unlike the ℓ2 objectives used in baselines, these
higher-order norms are inherently more robust to noisy inputs, preventing the distractor texts
from corrupting the memory state. This validates the effectiveness of exploring non-Euclidean
design choices via MIRAS.

Table 2: Performance of MONETA, YAAD, MEMORA, and base-
lines on NIAH task from RULER benchmark. The best results
with highest accuracy are highlighted.

Model S-NIAH-PK S-NIAH-N S-NIAH-W Average
2K 4K 8K 2K 4K 8K 1K 2K 4K

Mamba2 98.6 61.4 31.0 98.4 55.8 14.2 62.2 42.2 4.2 52.0
DeltaNet 96.8 98.8 98.6 47.2 15.4 12.8 85.2 46.2 20.0 57.9
Gated DeltaNet 89.8 91.4 90.0 99.2 91.8 26.4 86.4 82.6 24.4 75.8
TTT 98.4 98.8 98.0 60.2 36.6 10.2 85.8 78.8 28.0 66.1

MONETA 99.4 98.8 98.8 99.4 99.4 92.8 92.2 88.2 70.8 93.5
YAAD 99.2 98.6 94.4 99.8 98.6 93.2 91.8 89.6 67.4 92.9
MEMORA 99.2 98.8 92.6 98.4 99.2 93.2 92.4 88.2 70.4 92.1

Table 3: Ablation on the architec-
ture of MEMORA and MONETA.

Variant MEMORA MONETA
Full Architecture 51.52 52.12
w/o Retention Gate 49.75 50.49
linear memory 50.11 50.26
w/o RoPE 51.28 51.71

Table 4: Ablation study on the
components of YAAD.

Model Avg. LM
YAAD 53.98

- Retention Gate 50.63
linear memory 51.57
- Input-dependent δ 52.19
ℓ2-loss 52.86
ℓ1-loss 53.04

Figure 3: The effect of parameters p and q on the performance
with different context length.

5.4 ABLATION STUDY

We perform ablation studies to validate if different design choices we discussed through the paper
are positively contributing to better performance. Additional ablations are in Appendix H.

The Effect of Design. To evaluate the architectural design choices, we perform an ablation study
on MEMORA, and MONETA in Table 3, as well as on YAADin Table 4. The first row, reports the
performance of full architecture, while (1) the second row removes the retention (i.e., β = 1),
and (2) third row replaces the MLP with a linear layer. In Table 4, (3) forth row makes δ input
independent, (4) the next row removes ℓ2-loss from the Huber loss, and (5) the last row removes the
ℓ1 condition. These results indicate that all design choices are contributing to the performance of
the model.

The Effect of p on Performance. We first evaluate the effect of p on the performance of MONETA.
We vary the value of p ∈ {1, 1.5, 2, 2.8, 3, 3.2, 4} and context window from 2K to 16K. The results
are reported in Figure 3. Interestingly, there is no monotone pattern when increasing the value of
p and the best performance is achieved when p = 3, while p = 4 achieves the worst performance.
Also, although different values of p results in different memory modules with varied performance,
the scaling pattern when increasing the context length is almost the same.

The Effect of q on Performance. We evaluate the effect of q by varying it in {2, 3, 4, 5}. Interest-
ingly, contrary to p, the value of q can change the scaling pattern when increasing the context length.
The main reason for this observation is that the value of q determines the retention gate and a pow-
erful retention gate can improve the memory management, resulting in better performance.

6 CONCLUSION

This paper presents MIRAS, a general framework that explains the connection of online optimization
and test time memorization. MIRAS framework can explain the role of several standard architectural
choices in the literature (e.g., forget gate) and helps design next generation of architectures that are
capable of managing the memory better. Building upon our framework, we present three novel
sequence models, each of which with its own (dis)advantages. Our experimental evaluations show
that all these variants outperform various baselines in various downstream tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trum-
mer, and Christopher Ré. Language models enable simple systems for generating structured views
of heterogeneous data lakes. arXiv preprint arXiv:2304.09433, 2023.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri
Rudra, and Christopher Re. Simple linear attention language models balance the recall-throughput
tradeoff. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=e93ffDcpH3.

Ali Behrouz, Parsa Delavari, and Farnoosh Hashemi. Unsupervised representation learning of
brain activity via bridging voxel activity and functional connectivity. In Forty-first International
Conference on Machine Learning, 2024a. URL https://openreview.net/forum?id=
nOjZfpLyh1.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024b.

Ali Behrouz, Zeman Li, Praneeth Kacham, Majid Daliri, Yuan Deng, Peilin Zhong, Meisam Raza-
viyayn, and Vahab Mirrokni. Atlas: Learning to optimally memorize the context at test time.
arXiv preprint arXiv:2505.23735, 2025.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36:
1560–1588, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300/.

Kevin Clark, Kelvin Guu, Ming-Wei Chang, Panupong Pasupat, Geoffrey Hinton, and Mohammad
Norouzi. Meta-learning fast weight language models. arXiv preprint arXiv:2212.02475, 2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Imre Csiszar. On information-type measure of difference of probability distributions and indirect
observations. Studia Sci. Math. Hungar., 2:299–318, 1967.

Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han,
Ka Chun Cheung, Jan Kautz, Carlos Guestrin, et al. One-minute video generation with test-time
training. arXiv preprint arXiv:2504.05298, 2025.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10

https://openreview.net/forum?id=e93ffDcpH3
https://openreview.net/forum?id=e93ffDcpH3
https://openreview.net/forum?id=nOjZfpLyh1
https://openreview.net/forum?id=nOjZfpLyh1
https://aclanthology.org/N19-1300/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Riccardo Grazzi, Julien Siems, Jörg KH Franke, Arber Zela, Frank Hutter, and Massimiliano
Pontil. Unlocking state-tracking in linear rnns through negative eigenvalues. arXiv preprint
arXiv:2411.12537, 2024.

Klaus Greff, Rupesh K Srivastava, Jan Koutnk, Bas R Steunebrink, and Jürgen Schmidhuber. Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10):
2222–2232, 2016.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, et al. The elements of statistical learning, 2009.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology
press, 2005.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Donald E Hilt and Donald W Seegrist. Ridge, a computer program for calculating ridge regression
estimates, volume 236. Department of Agriculture, Forest Service, Northeastern Forest Experi-
ment . . . , 1977.

Arthur E Hoerl and Robert W Kennard. Ridge regression: applications to nonorthogonal problems.
Technometrics, 12(1):69–82, 1970.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=kIoBbc76Sy.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodol-
ogy and distribution, pp. 492–518. Springer, 1992.

Kazuki Irie, Robert Csordas, and Jürgen Schmidhuber. Practical computational power of linear
transformers and their recurrent and self-referential extensions. arXiv preprint arXiv:2310.16076,
2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh
Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal
machine comprehension. In Proceedings of the IEEE Conference on Computer Vision and Pattern
recognition, pp. 4999–5007, 2017.

11

https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
arXiv preprint arXiv:2501.08313, 2025.

Chengxuan Li, Di Huang, Zeyu Lu, Yang Xiao, Qingqi Pei, and Lei Bai. A survey on long video
generation: Challenges, methods, and prospects. arXiv preprint arXiv:2403.16407, 2024.

Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and Qiang Liu. Longhorn: State space
models are amortized online learners. arXiv preprint arXiv:2407.14207, 2024a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024b.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. Openceres: When open information extrac-
tion meets the semi-structured web. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pp. 3047–3056, 2019.

Elizabeth F Loftus. The reality of repressed memories. American psychologist, 48(5):518, 1993.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language model-
ing via gated state spaces. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=5MkYIYCbva.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Hideyuki Okano, Tomoo Hirano, and Evan Balaban. Learning and memory. Proceedings of the
National Academy of Sciences, 97(23):12403–12404, 2000.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Katrin Erk and Noah A. Smith (eds.),
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 1525–1534, Berlin, Germany, August 2016. Association for Com-
putational Linguistics. doi: 10.18653/v1/P16-1144. URL https://aclanthology.org/
P16-1144/.

Guilherme Penedo, Hynek Kydlcek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
the finest text data at scale. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?
id=n6SCkn2QaG.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Haowen Hou, Janna Lu, William Merrill,
Guangyu Song, Kaifeng Tan, Saiteja Utpala, et al. Rwkv-7” goose” with expressive dynamic state
evolution. arXiv preprint arXiv:2503.14456, 2025a.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Haowen Hou, Janna Lu, William Merrill,
Guangyu Song, Kaifeng Tan, Saiteja Utpala, et al. Rwkv-7” goose” with expressive dynamic state
evolution. arXiv preprint arXiv:2503.14456, 2025b.

12

https://openreview.net/forum?id=5MkYIYCbva
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://aclanthology.org/P16-1144/
https://aclanthology.org/P16-1144/
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Bjorn Deiseroth, Kristian
Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Re, et al. Mechanistic design and
scaling of hybrid architectures. arXiv preprint arXiv:2403.17844, 2024.

Yury Polyanskiy and Yihong Wu. Information theory: From coding to learning. Cambridge univer-
sity press, 2025.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
HGRN2: Gated linear RNNs with state expansion. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=y6SqbJfCSk.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gru-
ber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Günter Klambauer, Jo-
hannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=tL89RnzIiCd.

Lee T Robertson. Memory and the brain. Journal of dental education, 66(1):30–42, 2002.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Jürgen Schmidhuber and Sepp Hochreiter. Long short-term memory. Neural Computation MIT-
Press, 1997.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends® in Machine Learning, 4(2):107–194, 2012.

Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo
Grazzi. Deltaproduct: Increasing the expressivity of deltanet through products of householders.
arXiv preprint arXiv:2502.10297, 2025.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

W Scott Terry. Learning and memory: Basic principles, processes, and procedures. Routledge,
2017.

13

https://openreview.net/forum?id=y6SqbJfCSk
https://openreview.net/forum?id=tL89RnzIiCd
https://openreview.net/forum?id=tL89RnzIiCd
https://openreview.net/forum?id=Ai8Hw3AXqks

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothee
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
Uncovering mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858,
2023.

Johannes von Oswald, Nino Scherrer, Seijin Kobayashi, Luca Versari, Songlin Yang, Maxi-
milian Schlegel, Kaitlin Maile, Yanick Schimpf, Oliver Sieberling, Alexander Meulemans,
et al. Mesanet: Sequence modeling by locally optimal test-time training. arXiv preprint
arXiv:2506.05233, 2025.

Ke Alexander Wang, Jiaxin Shi, and Emily B Fox. Test-time regression: a unifying framework for
designing sequence models with associative memory. arXiv preprint arXiv:2501.12352, 2025.

Yingheng Wang, Zichen Wang, Gil Sadeh, Luca Zancato, Alessandro Achille, George Karypis, and
Huzefa Rangwala. Long-context protein language model. bioRxiv, pp. 2024–10, 2024.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. arXiv preprint arXiv:2412.06464, 2024a.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Forty-first International Conference on Machine
Learning, 2024b. URL https://openreview.net/forum?id=ia5XvxFUJT.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. Advances in Neural Information Processing Systems,
37:115491–115522, 2024c.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluis Marquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan
Sunkavalli, William T Freeman, and Hao Tan. Test-time training done right. arXiv preprint
arXiv:2505.23884, 2025.

14

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=ia5XvxFUJT
https://aclanthology.org/P19-1472/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PRELIMINARIES AND BACKGROUND

In this section, we review the related studies and background concepts that we use through the
paper.

Attention. Attention as the backbone of Transformers is a critical component that acts as their
associative memory (Bietti et al., 2023). Given input x ∈ RN×din , causal attention computes output
y ∈ RN×din based on Softmax over input dependent key, value, and query matrices:

Q = xWQ, K = xWK, V = xWV, (11)

yi =

i∑
j=1

exp
(
q⊤
i kj/

√
din
)
vj∑i

ℓ=1 exp
(
q⊤
i kℓ/

√
din
) , (12)

where WQ,WK, and WV ∈ Rdin×din are learnable parameters. While Transformers achieve
significant improvements compared to traditional Recurrent Neural Networks (RNNs)—such as
LSTM (Schmidhuber & Hochreiter, 1997), their complexity that requires at least N × d opera-
tors to calculate the output has been the main motivation for researchers to think about alternative
architectures. We divide and review the research efforts to design alternative architectures into two
groups: (1) Linear shallow memory recurrent models, (2) Deep memory modules.

(Linear) Recurrent Models. For many years, non-linear (gated) recurrent neural networks had
been the de facto architectural backbones in deep learning (Greff et al., 2016). Their recurrent
nature, however, results in non-parallelizable training, making their large scale training infeasible.
To this end, in recent years, linear RNNs as alternatives to both Transformers and non-linear RNNs
attract much attention mainly due to their parallelizable and linear-time training while maintaining
competitive performance (Yang et al., 2024c; Sun et al., 2023; Peng et al., 2025b). Earlier variants
of linear RNNs (Yang et al., 2024b; Sun et al., 2023; De et al., 2024), which mostly are based on
Hebbian learning rule (Hebb, 2005), aim to compress the data into their vector-valued (or matrix-
valued) memory (Katharopoulos et al., 2020; Sun et al., 2023; Yang et al., 2024b; De et al., 2024;
Liu et al., 2024a). Let Mt ∈ Rd×n be the memory (n = 1 means vector-valued memory), and
k,v ∈ Rd are keys and values (i.e., projection of input xt ∈ Rd), a simple general formulation for
such linear RNNs can be written as:

Mt = At ∗Mt−1 + vtk
⊤
t , (13)

where ∗ is an arbitrary associative operator and At is a data-(in)dependent diagonal matrix or a
scalar (Yang et al., 2024c). Despite the efficiency that comes with the linear recurrent nature of
these models, the memory can overflow mainly due to the additive (without replacement) nature
of Hebbian learning rule, resulting in limited memory capacity and limited expressive power in
in-context learning tasks. Moreover, the vector-valued memory of these architectures can limited
their ability to learn/memorize large context window, mainly due to the limited expressive power of
memory to learn the underlying patterns of data (Behrouz et al., 2024b; Sun et al., 2024).

To address the above mentioned limitations, recurrent models that use a matrix-valued memory
with Delta learning rule has gained popularity in recent years (Schlag et al., 2021; Yang et al.,
2024c). Despite significant advantages, even these delta-rule-based recurrent models face theoretical
limitations (Irie et al., 2023) with moderate performance in practice (Yang et al., 2024c). Recently,
several studies aim to improve the performance of such models by adding scalar or channel-wise
forget gate mechanisms (Yang et al., 2024a; Peng et al., 2025a), , using negative eigenvalues (Grazzi
et al., 2024), and multiple learning steps (Siems et al., 2025). They, however, still suffer from
performance drop in long context, mainly due to the less expressive memory architectures (Behrouz
et al., 2024b).

Deep Memory Module: Titans and Test Time Training. To overcome the limited memory and to
extend the effective context length of deep sequence models, more recent studies focus on a new gen-
eration of architectures with deep memory module (Behrouz et al., 2024b; Sun et al., 2024). These
architectures are built on the meta-learning perspective, where the memory is an MLP architecture
that is updated using gradient descent (with momentum) (Behrouz et al., 2024b; Sun et al., 2024).
Sun et al. (2024) further provide a unifying perspective that how linear and softmax attention are
respectively parametric and non-parameteric solutions of (kernel) regression loss but consider other

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

modern linear RNNs outside of this class of models. Recently, in a concurrent work to ours, Wang
et al. (2025) show that with additional simplification of modern RNNs (e.g., RetNet (Sun et al.,
2023), Mamba (Dao & Gu, 2024)) they approximately place in the same class of models that inter-
nally optimize regression loss. It, however, still remains unanswered that “What is the underlying
design framework behind these sequence models that can accurately unify existing architectures?”
Moreover, the role of forget gates and its alternative choices in modern sequence models is surpris-
ingly less explored.

To clarify the relationships among existing architectures, several recent works have sought unifying
perspectives. Liu et al. (2024) adopt an online-learner view, closely aligned with our (Learning-
Retaining Viewpoint) , while the concurrent work of Wang et al. (2025) frames the problem as
online regression, which corresponds to our (FTRL Viewpoint) . Our approach formally links
these two viewpoints (Theorem 2.2). Unlike those studies, which restrict themselves to ℓ2 and dot-
product losses, MIRAS extends beyond these standard choices: it supports non-Euclidean losses and
regularizations, enabling new architectural designs. This makes MIRAS a comprehensive framework
that both (i) explicitly interprets retention/forget gates as forms of regularization and (ii) generalizes
the attentional-bias objective beyond simple regression losses.

B PROOF OF THEOREM 2.2

Here we present the proof of Theorem 2.2. For the sake of completeness, let us first re-state this
Proposition.

Theorem 2.2. Let ηt = η and define ht(W) :=
∑t−1

i=1 ℓ̂i(W ;ki,vi) +
1
ηR(W). AssumeW = Rd

and the function ht(W) is strictly convex in W and let Dh(·, ·) be the Bregman divergence defined
by function h(·), i.e., Dh(W,W ′) = h(W) − h(W ′) − ⟨∇h(W ′),W −W ′⟩. Set Rett(W,W ′) =

Dh(W,W ′) and ℓ̃t(W ;xt) = ℓ̂t(W ;xt) in (Learning-Retaining Viewpoint) . Then, the update rule
in (Learning-Retaining Viewpoint) is equivalent to the update rule in (FTRL Viewpoint) .

Proof. Let {Ŵ1, Ŵ2, . . .} be the sequence of parameters obtained by (FTRL Viewpoint) and
{W̃1, W̃2, . . .} be the sequence of parameters obtained by (Learning-Retaining Viewpoint) . To
show both update rules are equivalent, it suffices to show that the above two sequences are the same
if they are initialized at the same point. We prove this statement by induction. First of all, since
both sequences are initialized at the same point, the induction base is satisfied (i.e. W̃1 = Ŵ1. Now,
assume by induction hypothesis that

W̃t−1 = Ŵt−1. (14)

To complete the induction, we need to show W̃t = Ŵt. To this end, notice that, by (Learning-
Retaining Viewpoint) , we have

W̃t = argmin
W

ℓ̃t(W,kt,vt) + Rett(W, W̃t−1)

Using the choice of the Attentional Bias and the Retention function in the Proposition, we obtain

W̃t = argmin
W

ℓ̂t(W,kt,vt) +

t−1∑
i=1

ℓ̂i(W,ki,vi) +
1

η
R(W)−

t−1∑
i=1

ℓ̂i(W̃t−1,ki,vi)

− 1

η
R(W̃t−1)−

〈
t−1∑
i=1

∇ℓ̂i(W̃t−1,ki,vi) +
1

η
∇R(W̃t−1),W − W̃t−1

〉
.

(15)

Ignoring the constant terms and using the induction hypothesis equation 14, we get

W̃t = argmin
W

ℓ̂t(W,kt,vt) +

t−1∑
i=1

ℓ̂i(W,ki,vi) +
1

η
R(W)

−

〈
t−1∑
i=1

∇ℓ̂i(Ŵt−1,ki,vi) +
1

η
∇R(Ŵt−1),W − Ŵt−1

〉
.

(16)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

On the other hand, recall that {Ŵ1, Ŵ2, . . .} is obtained by (FTRL Viewpoint) . Therefore, we have

Ŵt−1 = argmin
W

t−1∑
i=1

ℓ̂i(W ;ki,vi) +
1

η
Rt(W).

Thus, we have
t−1∑
i=1

∇ℓ̂i(Wt−1,ki,vi) +
1

η
∇R(Wt−1) = 0. (17)

Combining equation 17 and equation 16, we obtain

W̃t = argmin
W

t∑
i=1

ℓ̂i(W,ki,vi) +
1

η
R(W).

This implies W̃t = Ŵt, which completes the proof.

C VIEWING TITANS AS (UNIVERSAL VIEWPOINT)
Here we discuss how Titans in Behrouz et al. (2024b) can be viewed as a special instantiation of the
(Universal Viewpoint). Let (k, k′) = (0, 1). Set

ℓ̃t(W ; {ki,vi}ti=t−k) = ⟨W −Wt−1,∇ℓ(Wt−1,kt,vt)⟩

and

Rett
(
W, {Wi−1}ti=t−k′

)
=

1

2θt

∥∥∥∥W − ((1− αt + ηt)Wt−1 − ηt(1− αt)Wt−2

)∥∥∥∥2
in (Universal Viewpoint). Then, it is not hard to verify that the update rule for Wt can be given
as

Wt = (1− αt + ηt)Wt−1 − ηt(1− αt)Wt−2 − θt∇ℓ(Wt−1,kt,vt).

This dynamics is equivalent to

Wt = (1− αt)Wt−1 + St

St = ηtSt−1 − θt∇ℓ(Wt−1,kt,vt),

which is essentially the gradient descent update with momentum used in Titans of Behrouz et al.
(2024b).

D UNIFYING VARIOUS EXISTING METHODS UNDER MIRAS
FRAMEWORK

In this section, we discuss how various existing architectures fit into MIRAS framework. To facilitate
the discussion, we recall Figure 1 for comprehensive presentation of MIRAS.

Next, we discuss how various existing architectures can be unified under MIRAS.

RNNs with Hebbian Rule. The first generation of modern recurrent architectures (e.g., Linear
attention (Katharopoulos et al., 2020), RetNet (Sun et al., 2023), Mamba (Gu & Dao, 2024), and
GLA (Yang et al., 2024b)) are based on Hebbian-like (e.g., gated Hebbian) learning rule (Hebb,
2005). We let attentional bias be the dot product similarity. That is, given a memoryM ∈ Rd×n

and k,v ∈ Rd, we define ℓ̃t := −2⟨Mtkt,vt⟩ and local retention as Rett(M,Mt−1) = ∥Mt −
αMt−1∥2F . Using Equation Learning-Retaining Viewpoint and gradient descent as the optimizer
(i.e., memory learning algorithm), the memory update rule is:

Mt = αMt−1 + vtk
⊤
t . (18)

When (1) α = 1, memory update is equivalent to Linear Attention (LA) (Katharopoulos et al., 2020);
(2) α ∈ R is a learnable parameter, resulting architecture is either lightening attention (n > 1) (Li
et al., 2025) or RetNet (n = 1) (Sun et al., 2023); and (3) αt ∈ R are data-dependent learnable
parameters, resulting sequence model is Mamba2 (Dao & Gu, 2024).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 4: The overview of MIRAS framework. MIRAS is based on four critical choices of (1)
memory architecture, (2) attentional bias, (3) retention gate, and (4) memory learning algorithm. In
this framework, the memory architecture determines the model capacity to memorize; attentional
bias is responsible for modeling the underlying mapping patterns; retention gate determines how
to balance learning new concepts and the retention of previously learned concepts; and memory
learning algorithm is responsible for memory management.

RNNs with Delta Rule. To improve the memory management and to enhance the memory capacity
of the above group, several studies suggest using delta rule (Schlag et al., 2021) as the learning
algorithm in recurrent neural networks (e.g., DeltaNet (Schlag et al., 2021), Longhorn (Liu et al.,
2024a), and RWKV7 (Peng et al., 2025a)). In this part, we recall that whereM∈ Rd×n, delta rule is
equivalent to optimizing MSE objective ∥Mtkt−vt∥22 with Rett(M,Mt−1) = ∥Mt−αMt−1∥2F
as local retention, and stochastic gradient descent as optimizer: (ηt is defined in Equation Learning-
Retaining Viewpoint)

Mt = α
(
I− ηtktk

⊤
t

)
Mt−1 + vtk

⊤
t . (19)

When (1) α = 1, memory update is equivalent to DeltaNet (Schlag et al., 2021); and (2) αt ∈ Rm

are data-dependent learnable parameters, resulting sequence model is Gated DeltaNet (Yang et al.,
2024a) (when m = 1). Therefore, RNNs with delta rule are special instances of MIRAS.

Beyond Delta Rule. As discussed earlier, while delta rule with its value replacement strategy is
more powerful than Hebbian-like learning rules, it suffers from theoretical limitations (Irie et al.,
2023) and achieves moderate performance in practice (Yang et al., 2024c). Therefore, several studies
have focused on update rules beyond delta rule. Recently, Titans (Behrouz et al., 2024b) suggests
using non-linear MSE objective of ∥Mt(kt) − vt∥22 with both local and global retention of Dt =
∥Wt−Wt−1∥2F and Gt = ∥Wt∥22 and optimize it with gradient descent with momentum 2. Therefore,
Titans-LMM is a special instance of MIRAS, where we use the abovementioned attentional bias and
retention regularizations, and gradient descent with momentum as the optimizer. Another way to
obtain Titans under MIRAS is explained in Appendix C.

Another example of such models is Mesa-layer (Von Oswald et al., 2023; von Oswald et al., 2025),
in which the model uses

∑t
i=1 ∥Mt(ki)− vi∥22 as the attentional bias objective with ∥Mt∥22 as the

retention regularization. Since these models uses Newton’s method to optimize such an objective,
they provide a more expressive update rule than delta rule. We further discuss a set of new learning
algorithms beyond delta rule in Section 4.

2The retention gate (forget gate) in Titans is different from Mamba2 and Gated DeltaNet that we discussed
above. The main difference comes from the case of full memory erase. While Mamba2 gating removes the
entire memory and treats the next token as the first ever seen data, Titans use a “cold start” strategy and use the
previous state of the memory to measure the surprise of the incoming token before fully erasing the memory.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Overview of recent sequence models in MIRAS framework perspective. Surprisingly, all
models are using the same type of attentional bias and regularization (forget gate). Note that these
architectural choices does not uniquely identify the backbone as there are other design choices (e.g.,
input-dependency, channel-wise parameters, etc.) as well as the use of other components such as
attention, convolutions, etc.

Model Memory Attentional Bias Retention Memory Memory Write OperationArchitecture Gate Algorithm

Shallow Memory

RetNet (2023) Vector Dot-Product L2 GD Mt = αMt−1 + vtk
⊤
t

Transformer (2017) Matrix L2 - Nonparametric Mt =Mt−1 ∪ {(kt,vt)}
LA (2021) Matrix Dot-Product - GD Mt =Mt−1 + vtk

⊤
t

DFW Matrix Dot-Product - GD Mt =
(
βtα

⊤
t

)
⊙Mt−1 + vtk

⊤
t

Lightening Attention (2025) Matrix Dot-Product L2 GD Mt = αMt−1 + vtk
⊤
t

GLA (2024b) Matrix Dot-Product L2 GD Mt = Diag(αt)Mt−1 + vtk
⊤
t

Mamba (2024) Matrix Dot-Product L2 GD Mt = αtMt−1 + vtk
⊤
t

HGRN2 (2024) Matrix L1 L2 GD Mt = Diag(αt)Mt−1 + vt(1− αt)
⊤

DeltaNet (2021) Matrix L2 - GD Mt = (I− βtktk
⊤
t)Mt−1 + βtvtk

⊤
t

Longhorn (2024a) Matrix L2 - Implicit GD Mt =
(
I− βtktk

⊤

1+βtk⊤
t kt

)
Mt−1 +

(
βt

1+k⊤
t ktβt

⊙ xt

)
kt

TTT-Linear (2024) Matrix L2 - GD Mt =Mt−1 − η∇L(Mt−1,xt)
Gated DeltaNet (2024a) Matrix L2 L2 GD Mt =

(
αt(I− βtktk

⊤
t)
)
Mt−1 + βtvtk

⊤
t

RWKV-7 (2025a) Matrix L2 L2 GD Mt = diag(αt)
(
I− βtktk

⊤
t

)
Mt−1 + βtvtk

⊤
t

DeltaProduct (2025) Matrix L2 L2 MGD∗ Mt =
(
αt

∏n
i=1(I− βt,ikt,ik

⊤
t,i)
)
Mt−1 +

∑n
j=1

∏n
i=j(I− βt,ivj,ik

⊤
j,i)

Deep Memory

TTT-MLP (2024) 2-layer MLP L2 - GD Mt =Mt−1 − η∇L(Mt−1,xt)
Titans-LMM (2024b) k-layer MLP L2 L2 + L2† GD + Momentum Mt = αtMt−1 − η∇L(Mt−1,xt)

MONETA (ours) k-layer MLP Lp Lq GD At = αtAt−1 − ηt∇ℓ(Wi−1;kt,vt),Wt =
At

∥At∥q−2
q

YAAD (ours) k-layer MLP Huber L2 GD Wt = αtWt−1 −
{
ηt ∇ℓ2(Wt−1;kt,vt) if ∥M(kt)− vt∥ ≤ δt,

ηt δt∇ℓ1(Wt−1;kt,vt) Otherwise.

MEMORA (ours) k-layer MLP L2 KL GD Wt = Softmax (αt log(Wt−1)− ηt∇ℓ(Wt−1;kt,vt))
∗ is using multiple rounds of GD per token. † Titans use local and global retention using L2 loss.

Attention. As discussed by Sun et al. (2024), softmax attention is a non-parameteric solution of ℓ2-
MSE loss function (i.e., ∥Wk−v∥22) with Nadaraya-Watson estimator. Therefore, softmax attention
(i.e., Transformers) is an instance of MIRAS, when we find the non-parameteric solution to the MSE
loss with Nadaraya-Watson estimator, without retention.

All in all, as illustrated in Table 5, many existing methods can be unified under MIRAS.

E BEYOND EXISTING ATTENTIONAL BIASES AND RETENTION GATES

Here we provide the details of the alternative attentional biases and retention gates discussed in
Section 4. We first propose several novel possible choices of attentional biases and then we discuss
novel choices for retention gate.

E.1 ALTERNATIVE ATTENTIONAL BIASES

Variant 1: ℓp-Attentional Bias. As discussed in the main body, attentional bias defines the “sim-
ilarity metric” and measures how well memory can recall the value, given its corresponding key.
Although ℓ2 regression loss often is a natural choice, it is sensitive to noise in the data. A natural
extension is to use ℓp-norm class of objectives. That is, letM be the memory, k be the keys, and v
be the values, we define ℓp-attentional bias as:

L(M(W,kt);vt) = ∥M(kt)− vt∥pp, (20)

where p ∈ R≥1 and ∥.∥p is the p-norm. Although depending on the distribution of the data, we
might want to use different values of p (see Section 5), different values of p can result in memory
architectures with interesting properties. For the sake of simplicity, let memory be a matrix, i.e.,
W ∈ Rm×d andM(W,kt) = Wkt, the closed form can be derived as:

Wt = Wt−1 − ηt∇ℓ(Wt−1;kt,vt) = Wt−1 − p ηt
(
Sign(Wt−1kt − vt)⊙ |Wt−1kt − vt|p−1

)
k⊤
t .

Let p = 1, the recurrence is simplified as:

Wt = Wt−1 − ηt Sign(Wt−1kt − vt) k
⊤
t , (21)

which means that the memory has only two values of −1 and 1. We call this variation value-less
associative memory, in which we store entities (keys) but map them into two extreme class of -1 and
+1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Remark 1. One of the critical challenges to use the above update rule is in the backpropagation
process, in which Sign(·) and | · | are non-differentiable and so might cause unstable training. To
overcome this issue, we use Sign(x) ≈ tanh (αx) , and |x| =

√
x2 + ϵ, as the smooth approximators

of these functions.

One simple interpretation for such behavior (i.e., value-less memory) is similar to the coping mech-
anism in humans (Loftus, 1993), in which the memory does not store the values for extreme events.
This interpretation of protective memory in extreme events motivates our next variant.

Variant 2: Huber Loss: Memory with Coping Mechanism. While ℓ2-norm objective is a com-
mon choice for many statistical and machine learning tasks, it is known to be sensitive to outliers
and extreme samples.This sensitivity extends to the use of ℓ2 loss for attentional bias. To address
this and drawing motivation from robust regression literature, we suggest utilizing the Huber loss-
type (Huber, 1992; Hastie et al., 2009) as the attentional bias, thereby reducing the negative impact
of the outlier data on the memory learning process.

We can apply Huber-type loss in three different ways: The first approach is to define the summation
of the Huber loss across different coordinates as the total loss, i.e.,

ℓ(W ;kt,vt) =
∑
j

H(M(W,kt)j − vt,j),

whereM(W,kt)j and vt,j denote the j-th coordinate ofM(W,kt) and vt respectively. The func-
tionH(·) : R 7→ R is the Huber loss defined as

H(a) =
{

1
2a

2 if |a| ≤ δ
δ
(
|a| − 1

2δ
)

if |a| > δ.
(22)

Utilizing this attentional bias can lead to various memory update rules. For example, for the matrix
form memoryM(W,kt) = Wkt, the update rule is given by

Wt = Wt−1 − ηt

[(
(Wkt − vt)k

T
t

)
⊙
(
I(|Wkt − vt| ≤ δt)1

⊤)
+
(
δtSign(Wkt − vt)k

⊤)⊙ (I(|Wkt − vt| > δt)1
⊤)] (23)

In this formulation, the parameter δt decides the type of the memory used for each block of mem-
ory (ℓ2-norm objective or value-less) based on the context, making the memory more robust to
outliers.

The second approach is to define the Huber-type loss based on the ℓ2 loss over all coordinates,
i.e.,

ℓ(W ;kt,vt) = H(∥M(W,kt)− vt∥2).
For simplicity of derivations, assume matrix memory M(W,kt) = Wkt. Then using gradient
descent for updating memory leads the memory update rule

Wt = Wt−1 − ηt

{
(M(Wt−1,kt)− vt)k

T
t if ∥M(Wt−1,kt)− vt∥2 ≤ δt,

δt
(M(Wt−1,kt)−vt)
∥M(Wt−1,kt)−vt∥2

kT
t Otherwise.

(24)

Again, in the form equation 24, the parameter δt decides the type of the memory used (ℓ2-norm
objective or normalized version) based on the context, making the memory more robust to out-
liers.

Finally, in the third approach, we present a smooth mixture method, in which the memory decides if
for an incoming data it is better to use ℓ2 or ℓ1 attentional bias:

Wt = Wt−1 −
{
ηt ∇ℓ2(Wt−1;kt,vt) if ∥M(kt)− vt∥ ≤ δt,

ηt δt∇ℓ1(Wt−1;kt,vt) Otherwise.
(25)

The role of parameter δt is the same as above.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Variant 3: Memory Robust to Value Shifts. Following the robustness requirement discussed in
the previous section, we aim to design a memory mechanism that exhibits resilience against small
shifts in the value parameter. A natural approach in this context is to employ a robust optimization
formulation. Specifically, we define the loss function as the worst-case ℓ2 distance between the
predicted memory output and the perturbed true value:

L(M(W,kt);vt) = max
∥δvt∥2≤∆

1

2
∥M(W,kt)− (vt + δvt)∥22. (26)

This formulation seeks the memory parameters W that perform well even under the adverse local
perturbation of the true value vt within an ℓ2 ball of radius ∆. To solve the maximization problem
in equation 26, we find the optimal perturbation δv∗

t . By solving this problem with respect to δvt,
we arrive at:

δv∗
t = ∆

−M(W,kt) + vt

∥M(W,kt)− vt∥2
Substituting this optimal perturbation back into the loss function equation 26, we obtain the robust
loss:

L(M(W,kt);vt) =
1

2
∥M(W,kt)− vt∥22 +∆∥M(W,kt)− vt∥2 +

1

2
∆2.

This robust loss function is a combination of the standard ℓ2 loss and a term proportional to the ℓ2
norm of the error, scaled by the robustness parameter ∆. The value of ∆ thus controls the trade-off
between fitting the nominal data and ensuring robustness against value perturbations.

For simplicity of the derivations, let us consider a constant value for ∆, an Euclidean retention
gate Rett (W,Wt−1) = ∥W − Wt−1∥2, and an attentional bias term ℓ̃(W ;kt,vt) = ⟨W −
Wt−1,∇ℓ(Wt−1;kt,vt)⟩. Furthermore, to simplify the memory operation, we assume a linear
matrix memory model M(W,kt) = Wkt. Under these assumptions, we can derive the memory
update mechanism using gradient descent on the robust loss:

Wt = Wt−1 − η

((
M(Wt−1,kt)− vt

)
k⊤
t +∆

M(Wt−1,kt)− vt

∥M(Wt−1,kt)− vt∥2
k⊤
t

)
In this update rule, the parameter ∆, which governs the influence of the robustness term, can also be
treated as a learnable parameter, allowing the model to adapt its robustness based on the observed
data.

E.2 ALTERNATIVE RETENTION GATES AND MEMORY STABILITY

Variant 4: Memorization Over A Scaled Probability Simplex Via f -Divergence. A common
technique in learning to prevent numerical instabilities and exploding values is to restrict the search
space to a bounded domain. Following this principle, to avoid numerical instabilities, we can con-
strained the variable Wt to lie within a (scaled) probability simplex. In other words, we can restrict
the state to lie in the constraint set

W = {W | ∥W∥1 = c and Wjl ≥ 0, ∀j, l}.

In this set, each matrix W can be viewed as a measure. Thus, in (Learning-Retaining Viewpoint)
, we can utilize divergences over measures to define our premetric. For example, we can use f -
divergence measure (Polyanskiy & Wu, 2025, Def 4.9), (Csiszar, 1967) to define Dt(·, ·). More
specifically, let f(·) be a smooth strictly convex function from R+ to R with f(1) = 0. Then, we
can define the f− divergence between W and W ′ as

Dt(W,W ′) =
∑
jl

W ′
jl f

(
Wjl

W ′
jl

)
.

It is known that f -divergence is zero if and only if W = W ′; see (Polyanskiy & Wu, 2025,
Theorem 2.3). Using the above premetric as the retention gate and setting ℓ̃(W ;kt,vt) =
⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩ in (Learning-Retaining Viewpoint) , we get the update rule

Wt = Wt−1 ⊙ g (−ζt − ηt∇ℓ(Wt−1;kt,vt)) . (27)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Here g(·) is the inverse of the mapping f ′, i.e., g(f ′(τ)) = τ, ∀τ ; the operator ⊙ denotes the
Hadamard (elementwise) product, and ζt should be chosen such that ∥Wt∥1 = c. Notice that since
the function f(·) is strictly convex and smooth, its derivative is strictly increasing and hence g(·) is
well defined. Conversely, for any strictly monotone function g(·), we can find its inverse function
g−1 (which is strictly increasing) and define f(τ) = const +

∫∞
τ ′=0

g−1(τ ′)dτ ′. The term const
should be chosen such that f(1) = 0. Then the update rule in equation 27 can be interpreted by the
f -divergence regularization, as explained above. Therefore, one can directly choose a continuous
monotonically increasing function g(·) and use equation 27 for memory update.

Specializing to KL divergence. Let us further make the above update rule explicit by using special
function f . If we choose f(τ) = τ ln(τ), then the f -divergence becomes the widely used KL
divergence measure Dt(W,Wt−1) =

∑
jl Wjl log

(
Wjl

(Wt)jl

)
. In addition, we can also utilize the

Shannon entropy as the global retention by regularizing deviations from uniform distribution, i.e.,
Gt(W) =

∑
jl Wjl log(Wjl). Combining these choices of the local and global retention gates, we

obtain the overall retention gate

Rett(W,Wt−1) =
1

ηt

∑
jl

Wjl log

(
Wjl

(Wt)jl

)
+

1

αt

∑
jl

Wjl log(Wjl)

Choosing the attentional bias ℓ̃(W ;kt,vt) = ⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩ and the above reten-
tion gate will lead to the update rule

Wt = argmin
W
⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩+

1

ηt

∑
jl

Wjl log

(
Wjl

(Wt)jl

)
+

1

αt

∑
jl

Wjl log(Wjl)

(28)

s.t.
∑
jl

Wjl = c, Wjl ≥ 0, ∀jl (29)

Attaching the Lagrange multiplier to the first constraint, the KKT conditions implies

(∇ℓ(Wt−1;kt,vt))jl +

(
1

ηt
+

1

αt

)
(1 + logWjl)−

1

ηt
log ((Wt−1)jl) + µt = 0, ∀j, l (30)

where µt should be chosen such that
∑

jl Wjl = c. Rearranging the terms and defining λt =
1/αt

1/αt+1/ηt
, η′t =

1
1/αt+1/ηt

, we get the update rule

Wt ← c Softmax ((1− λt) log(Wt−1)− η′t∇ℓ(Wt−1;kt,vt)) (31)

where λt ∈ (0, 1) and η′ ∈ R+ are the hyper-parameters that can be learned during training. The
Softmax operator ensures that the output lies in the setW .

Notice that while all above calculations are done for a matrix W , similar update rule holds for other
forms of parameters such as when W is a neural network (or when the parameter W is normalized
per slice).

Variant 5: Elastic Net Regularization: Hard and Soft Forgetting. Elastic net is a powerful
and popular tool in regression analysis to balance the feature selection capabilities of LASSO (Tib-
shirani, 1996) and bias reduction properties of Ridge regression (Hilt & Seegrist, 1977; Hoerl &
Kennard, 1970). It has been widely used in different applications due to its ability to handle high-
dimensional data and mitigate the effects of multicollinearity. Given this success, a natural question
is what happens if we use this regularization scheme in our context.

Let us start based on (Learning-Retaining Viewpoint) to design our memorization scheme. As
mentioned in (Learning-Retaining Viewpoint) , the loss function ℓ̃t(W ;kt,vt) is an approximation
of the original function ℓ(·), measuring our goodness-of-fit. Regularizing this loss with elastic net
regularizer, we obtain the approximation

ℓ̃t(W ;kt,vt) = ⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

with a global retention of Gt(W) = 1
2β ∥W∥

2
2 + 1

α∥W∥1. To fully specify the update rule of
(Learning-Retaining Viewpoint) , we also need to specify the premetric functions Dt(·, ·). For the
sake of keeping the update rule simple (and parallelizable), we can choose

Dt(W,Wt−1) =
1

2
∥W −Wt−1∥22.

These choices of the attentional bias and retention gate leads to the following update rule:

Wt = Sγ (λWt−1 − ζ∇ℓ(Wt−1;kt,vt)) , (32)

where γ = ηβ
α(η+β) , λ = β

β+η , ζ = ηλ, and Sγ is the soft thresholding operator, applied element-
wise. For each element, this operator is defined as

Sγ(z) = sign(z)max {0, |z| − γ} .
In other words, for large values of z, Sγ(z) makes z closer to zero by γ amount. If it is already in
the γ-vicinity of zero, then it makes it zero (hard forget).

Equation equation 32 can be viewed as a combination of soft forgetting (obtained by multiplying W
by λ ∈ (0, 1), and a hard forgetting (if it is smaller than γ). The hyperparameters γ, λ, and ζ can be
learned. Notice that since the shrinkage operator is not differentiable, we can approximate it with its
smooth approximation. For example, we can use Sγ(z) ≈ |z|∗arctan(z/γ)

π/2 .

Variant 6: Elastic Net Regularization: Forgetting via Soft-thresholding. The elastic net regu-
larizer can also be used in the (FTRL Viewpoint) . In particular, in (FTRL Viewpoint) , we can
set

1

ηt
Rt(W) =

1

η
∥W∥2 + 1

α
∥W∥1

and use ℓ̂(W ;xi) = ⟨W −Wi−1,∇ℓ(Wi−1;xi)⟩. Assuming initialization at W0 = 0, these choices
of attentional bias and retention gate leads to the update rules:

At = At−1 − η∇ℓ(Wt−1;kt,vt)

Wt = Sη/α (At) (33)

Here Sη/α(·) is the soft-thresholding operator with parameter η/α, which can be smoothly as ex-
plained in Variant 1.1.

Variant 7: General Lq Memory Stability. Existing work is based on the retention gate choices
Dt(W,Wt−1) = ∥W −Wt−1∥2F or R(W) = ∥W∥22. However, one can choose other choices of
retention gate. For example, in (FTRL Viewpoint) , we can choose Lq norm as the regularizer
R(W). More specifically, for 1 < q ≤ 2, we can set

1

ηt
R(W) =

1

2η(q − 1)
∥W∥2q.

Using this retention gate and choosing ℓ̂i(W ;kt,vt) = ⟨W − Wi−1,∇ℓ(Wi−1;kt,vt)⟩ in
(FTRL Viewpoint) , leads to the update rule Wt = −η At

∥At∥p−2
p

, where p = q
q−1 and At =∑t

i=1∇ℓ(Wi−1;kt,vt); see (Shalev-Shwartz et al., 2012, Section 2.6). Here, ⊙ denotes the
Hadamard (element-wise) product and | · | is the element-wise absolute value operator. Assuming
W0 = 0, this update rule can be recursively written as:

At = At−1 − η∇ℓ(Wi−1;kt,vt), and Wt =
At

∥At∥p−2
p

.

Variant 8: Bregman Divergence as Retention Gate.. Another natural choice is to use Bregman
divergence as retention gate, leading to a mirror descent-type algorithms. In particular, given a
smooth strictly convex function f(·) : R 7→ R, we can define the function F (W) =

∑
jl f(Wjl).

Based on this choice of function F , we define the Bregman divergence

Dt(W,W ′) = F (W)− F (W ′)− ⟨W ′,W −W ′⟩

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

as our parametric function. Utilizing this retention gate and choosing ℓ̃t(W ;kt,vt) = ⟨W −
Wt−1,∇ℓ(Wt−1;kt,vt)⟩ in (Learning-Retaining Viewpoint) , we obtain the update rule

Wt = g (−η∇ℓ(Wt−1;kt,vt) + F ′(Wt−1)) .

Here, F ′ is the mapping obtained by applying f ′(·) (the derivative of f) element-wise to all entries
of its input matrix argument. The function g is the inverse of the mapping F ′(·), i.e., g(F ′(W)) =
W .

If we choose f(τ) = τ2

2 , then F ′(W) becomes the identity mapping and so is g. Therefore, the
above update becomes simple gradient descent with no nonlinearity involved in the update rule.
However, other choices of f(·) introduces additional nonlinearity in g(·), which can enhance the
expressivity of our memory. For example, we can choose the function f(·) so that its derivative
becomes the inverse sigmoid function, i.e., f ′(τ) = ln

(
τ

1−τ

)
with f ′ : (0, 1) 7→ R. Since f ′(·) is

strictly increasing, then the function f(·) (and hence F (·)) is strictly convex. Therefore, the Bregman
divergence is well defined. Moreover, the inverse of the function f ′(·) becomes the sigmoid function,
i.e., g(τ) = σ(τ) = exp(τ)

1+exp(τ) with g : R 7→ (0, 1). Then, the update of the memory becomes

Wt = σ

(
ln

(
Wt

1−Wt

)
− η∇ℓ(Wt−1;kt,vt)

)
,

where σ is the sigmoid function operated element-wise on the entries of W , and the division operator
Wt

1−Wt
is also performed element-wise. This update rule guarantees that the elements of Wt remains

within the interval (0, 1).

F PARALLELIZABLE TRAINING AND EFFICIENT IMPLEMENTATION OF
MIRAS’ VARIANTS

While the design of MIRAS’s variant are theoretically well-motivated, their recurrence is non-linear,
potentially make their straightforward training slow for large scales. In this section, we build upon
the work of Behrouz et al. (2024b); Sun et al. (2024) to make the training parallelizable. The main
idea is to divide the sequence into chunks with size b (usually is 16 or 64) and calculate the gradient
for all tokens in the current chunk with respect to the last state of the memory in the previous
chunk. That is, we use ∇ℓ(Mt′ ;kt,vt) instead of ∇ℓ(Mt−1;kt,vt), where t′ is the last state in
the previous chunk.

Given the above trick, we can calculate all gradients at once and make the recurrence inside each
chunk linear. However, to fully take advantage of accelerators, we need to reformulate the process
as matrix multiplication. For MONETA, for the sake of clarity, assume q = 2. We follow the same
algorithm as Behrouz et al. (2024b) and expand the recurrence as follows:

Mt = αtMt−1 − ηt∇ℓ(Mt−1;ki,vi)

= βtM0 −
t∑

i=1

ηi
βt

βi
∇ℓ(Mt′ ;ki,vi), (34)

where t′ = t − mod(t, b), and βi =
∏i

j=1 αj . For the sake of clarity, we focus on the first chunk,
i.e., t = b and so t′ = 0, and explain the process for the case thatMt = Wt is linear. The process
for 2-layer MLPs and other chunks is similar. Using ℓp loss function, we have:

∇ℓ(W0;ki,vi) = p
(
Sign(Wkt − vt)⊙ |Wkt − vt|p−1

)
k⊤
t

⇒
b∑

i=1

ηi
βb

βi
∇ℓ(W0;xi) = pEb ⊙Bb ⊙ Sign(Wkt − vt)⊙ (|W0K − V |p−1)K⊤, (35)

where Eb = [η1 η2 . . . ηb] and Bb is defined analogously on βb

βi
s. For the sake of stablity in

training, we use Sign(x) ≈ tanh (αx) and |x| =
√
x2 + ϵ, where ϵ > 0 is a small number (i.e.,

ϵ = 1e − 6). As discussed before, the case that q ̸= 2 appears as a normalization term on the
memory. Similar to Titans (Behrouz et al., 2024b) and TTT (Sun et al., 2024), we do not apply this
non-linearity inside each chunk and instead use it at the end of each chunk.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 5: Visualization of the MIRAS’ variant architecture, their hybrid counterpart with SWA, and
block design of MIRAS layer.

The process is the same for other two variants: (1) YAAD: We calculate the gradient of both ℓ1 and
ℓ2 loss and use a masking based on ∥M(kt)− vt∥ ≤ δt. (2) MEMORA: update has two non-linear
part, i.e., softmax and log. As discussed above, we apply the softmax at the end of each chunk.
Therefore, for the log function, we can calculate all the gradients of each chunk at first and then
expand the recurrence with respect to the log of weights. Again, this process make the inside chunk
recurrence linear and inter-chunk recurrence non-linear.

G EXPERIMENTAL SETUP

We perform experimental evaluation on the language modeling (Merity et al., 2017; Paperno et al.,
2016), common-sense reasoning (Bisk et al., 2020; Zellers et al., 2019; Sakaguchi et al., 2021;
Clark et al., 2018; 2019), and long context needle-in-haystack tasks (Hsieh et al., 2024). We com-
pare our models with the state-of-the-art linear recurrent models, Transformers, and hybrid models
(recurrent + attention). More specifically we compare with Transformer++ (Touvron et al., 2023),
RetNet (Sun et al., 2023), Gated Linear Attention (GLA) (Yang et al., 2024b), Mamba (Gu & Dao,
2024), Mamba2 (Dao & Gu, 2024), DeltaNet (Yang et al., 2024c), TTT (Sun et al., 2024), and Gated
DeltaNet (Yang et al., 2024a).

We train our models with training context window of size 4096 using either FineWeb-Edu
dataset (Penedo et al., 2024) (for LM and common-sense reasoning tasks) or C4 dataset (Raffel
et al., 2020) (for scaling patterns). We use model sizes of 120M, 340M, 760M, and 1.3B parame-
ters. We train small models (120M and 340M) on 15B tokens sampled from the dataset, the medium
size model (760M) on 30B tokens, and the large model on 100B tokens.

Table 6: Architectural Details.

Model Block Dim Head Peak LR Token

170M 12 768 16 3e-3 15B
350M 24 1024 16 1.5e-3 15B
780M 24 1536 16 1.25e-3 30B

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 LANGUAGE MODELING

The full results for experiments on language modeling and common-sense reasoning tasks are re-
ported in Table 7. Similar to 1.3B scale, our models achieve higher average accuracy compared to
modern recurrent models.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 7: Performance of MIRAS’ variants and recurrent- and Transformer-based baselines on lan-
guage modeling and common-sense reasoning tasks. Hybrid models are marked with ∗. The best
results are highlighted .

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ ↑

340M params / 15B tokens

Transformer++ 31.52 41.08 30.76 62.98 34.76 50.53 45.21 24.05 36.81 58.24 42.92
RetNet 32.50 49.73 28.24 62.61 34.15 50.91 44.27 23.62 36.79 59.72 42.54
GLA 28.51 43.02 28.73 64.05 35.96 50.00 54.19 24.29 37.13 58.39 44.09
Mamba 30.83 40.21 29.94 63.79 35.88 49.82 49.24 24.56 35.41 60.07 43.59
DeltaNet 28.65 47.30 28.43 63.52 35.95 49.63 52.68 25.37 37.96 58.79 44.04
TTT 27.44 34.19 30.06 63.97 35.71 50.08 53.01 26.11 37.32 59.83 44.51
Gated DeltaNet 27.01 30.94 34.11 63.08 38.12 51.60 55.28 26.77 34.89 59.54 45.42

MONETA (ours) 26.19 29.31 35.70 63.99 39.23 52.04 55.96 27.15 37.29 60.22 46.44
YAAD (ours) 26.61 29.11 34.09 64.93 39.86 51.12 54.75 28.64 33.82 60.29 45.93
MEMORA (ours) 27.16 30.44 33.68 65.21 39.17 51.23 53.40 27.99 34.1 59.29 45.51

760M params / 30B tokens

Transformer++ 25.21 27.64 35.78 66.92 42.19 51.95 60.38 32.46 39.51 60.37 48.69
RetNet 26.08 24.45 34.51 67.19 41.63 52.09 63.17 32.78 38.36 57.92 48.46
Mamba2 22.94 28.37 33.54 67.90 42.71 49.77 63.48 31.09 40.06 58.15 48.34
DeltaNet 24.37 24.60 37.06 66.93 41.98 50.65 64.87 31.39 39.88 59.02 48.97
TTT 24.17 23.51 34.74 67.25 43.92 50.99 64.53 33.81 40.16 59.58 47.32
Gated DeltaNet 21.18 22.09 35.54 68.01 44.95 50.73 66.87 33.09 39.21 59.14 49.69
Samba∗ 20.63 22.71 39.72 69.19 47.35 52.01 66.92 33.20 38.98 61.24 51.08
Gated DeltaNet-H2∗ 19.88 20.83 39.18 68.95 48.22 52.57 67.01 35.49 39.39 61.11 51.49

MONETA (ours) 21.18 21.94 38.02 69.55 49.16 53.01 67.47 36.09 40.53 63.18 52.12
YAAD (ours) 20.99 21.57 37.85 69.14 50.02 53.93 67.78 36.27 41.01 63.34 53.98
MEMORA (ours) 22.28 22.31 38.19 67.82 49.30 53.28 63.57 36.15 40.94 62.96 51.52

1.3B params / 100B tokens

Transformer++ 18.53 18.32 42.60 70.02 50.23 53.51 68.83 35.10 40.66 57.09 52.25
RetNet 19.08 17.27 40.52 70.07 49.16 54.14 67.34 33.78 40.78 60.39 52.02
Mamba2 16.56 12.56 45.66 71.87 55.67 55.24 72.47 37.88 40.20 60.13 54.89
DeltaNet 17.71 16.88 42.46 70.72 50.93 53.35 68.47 35.66 40.22 55.29 52.14
Gated DeltaNet 16.42 12.17 46.65 72.25 55.76 57.45 71.21 38.39 40.63 60.24 55.32
Samba∗ 16.13 13.29 44.94 70.94 53.42 55.56 68.81 36.17 39.96 62.11 54.00
Gated DeltaNet-H2∗ 15.91 12.55 48.76 72.19 56.88 57.77 71.33 39.07 41.91 61.55 56.18

MONETA (ours) 15.52 11.47 47.88 73.16 56.14 59.09 72.53 40.32 41.91 61.18 56.52
YAAD (ours) 15.18 11.89 47.23 72.81 56.46 59.02 72.14 40.05 40.73 61.86 56.39
MEMORA (ours) 15.90 12.04 48.67 73.10 55.99 57.36 71.55 37.92 40.19 61.34 55.87

H.2 EFFICIENCY EVALUATIONS

In this section, we evaluate the training and inference throughput of MIRAS’s variants with state-of-
the-art sequence models, including Transformers. In particular, in 8K context window, the training
throughput (103 T/s) of Transformers, Mamba, DeltaNet, and Titans are 48, 33, 39, and 37, respec-
tively. MIRAS’s variants of MEMORA, YAAD, and MONETA have training throughput of 34, 36,
37 (103 T/s), which is compatible and on par with state-of-the-art recurrent neural networks. It is
notable that this throughput is achieved without any specially design kernel. Therefore, in summary:
(1) Comparing to modern sequence models such as Mamba and DeltaNet (which also take advan-
tage of optimized kernels), MIRAS’s variants show competitive speed and are fast enough to be
able to be scaled to larger scales; (2) Comparing to Titans, MIRAS’s variants do not add significant
computational overhead, despite they having more expressive attentional biases.

H.3 MAD BENCHMARK

Next, we evaluate our models’ performance and baselines’ on MAD benchmark, which is a synthetic
benchmark for evaluating the performance of sequence models in memorization, recall, compres-
sion, and copying tasks (Poli et al., 2024). The results are reported in Table 8. All MIRAS’s variants
achieve higher accuracy compared to baselines. Particularly in memorization, our models show rel-
atively higher rate of improvements, which highlights the importance of going beyond conventional
attentional biases.

H.4 IN-CONTEXT RETRIEVAL TASK

In this section, we evaluate the performance of MIRAS’s variants and baselines on in-context re-
call tasks, which is one of the most challenging benchmarks for recurrent neural networks. In this
section, we follow Arora et al. (2024) and evaluate the models on SWDE (Lockard et al., 2019),

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 8: Performance of MIRAS’ variants, and baselines on the synthetic benchmark of MAD (Poli
et al., 2024). Our models achieve higher accuracy compared to all the baselines, including Trans-
formers.

Compression (Noisy) ICR Fuzzy ICR Selective Memorization AverageCopying

Transformers 49.4 100 48.2 95.9 83.8 75.46
Gated DeltaNet 44.8 100 32.5 96.2 81.7 71.04
Titans 49.6 100 49.7 99.4 83.5 76.44

YAAD (ours) 51.9 100 50.2 99.6 85.7 77.28
MONETA (ours) 51.1 100 48.9 99.6 85.4 77.00
MEMORA (ours) 50.5 100 48.7 99.6 85.1 76.78

Table 9: The performance of MIRAS’ variants compared to baselines. While still Transformers
achieve the best results in in-context recall tasks, our design of more expressive attentional bias can
potentially reduce the performance gap with Transformers in future.

SWDE NQ DROP FDA SQUAD TQA Average

Transformers 84.9 23.0 28.4 72.5 48.1 64.4 53.55
Gated DeltaNet 63.2 19.1 26.7 33.4 39.6 59.7 40.28
Titans 65.1 20.7 27.2 37.3 42.6 61.0 42.31

YAAD (ours) 66.2 20.9 27.2 38.1 42.7 61.3 42.73
MEMORA (ours) 65.5 20.5 26.9 38.2 43.0 61.2 42.55
MONETA (ours) 64.9 20.7 27.1 37.9 42.5 61.0 42.35

NQ (Kwiatkowski et al., 2019), DROP (Dua et al., 2019), FDA (Arora et al., 2023), SQUAD (Ra-
jpurkar et al., 2016), and TQA (Kembhavi et al., 2017). The results are reported in Table 9. Trans-
formers still achieve the best results, outperforming all the recurrent models in in-context recall
tasks. Our variants of MIRAS, however, show competitive performance and improve the gap of
recurrent models with Transformers.

27

	Introduction
	Associative Memory, Attentional Bias, and Retention
	The Optimization Perspective: Learning and Retaining
	The Learning-Retaining Viewpoint
	Alternative Perspective: Follow-The-Regularized-Leader (FTRL)
	Extensions and Generalizations

	Miras: A Flexible Framework for Learning to Memorize
	Beyond Existing Attentional Biases and Retention Gates
	Novel Alternative Attentional Bias and Retention Gates
	Focus Variants of Miras: Moneta, Yaad, and Memora

	Experiments
	Language Modeling and Common-sense Reasoning
	Scaling Pattern
	Needle In Haystack
	Ablation Study

	Conclusion
	Preliminaries and Background
	Proof of Theorem 2.2
	Viewing Titans as (Universal Viewpoint)
	Unifying Various Existing Methods Under Miras Framework
	Beyond Existing Attentional Biases and Retention Gates
	Alternative Attentional Biases
	Alternative Retention Gates and Memory Stability

	Parallelizable Training and Efficient Implementation of Miras' Variants
	Experimental Setup
	Additional Experimental Results
	Language Modeling
	Efficiency Evaluations
	MAD Benchmark
	In-context Retrieval Task

