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ABSTRACT

This paper introduces MIRAS, a unified framework that reconceives neural archi-
tectures (such as Transformers and modern linear RNNs) as associative-memory
modules governed by online optimization. In MIRAS, each module learns key-
value mappings via an attentional bias (the internal learning objective) and pre-
serves past information via a retention function (the memory regularizer). This
perspective provides a principled reinterpretation of “forgetting” mechanisms as
forms of regularization. Our framework reveals a critical limitation: virtually all
existing sequence models, including recent unification efforts, are constrained by
dot-product similarity or ℓ2 loss.MIRAS moves beyond this narrow focus, pro-
viding a generative framework that unlocks a richer design space informed by
principles from (robust) optimization and statistics. We introduce diverse alter-
natives—such as ℓp norms, Huber loss, KL-based losses, and f -divergence mea-
sures—leading to novel architectural designs with improved stability and robust-
ness. Utilizing this expanded space, we build three novel, attention-free, and par-
allelizable models (MONETA, MEMORA, YAAD) that combine expressive MLP
memories with these new mechanisms. Empirically, different MIRAS instanti-
ations trade off complementary strengths, illustrating the framework’s capacity
to navigate architectural design choices. Several variants achieve strong scaling,
larger effective context windows, and demonstrate results better than state-of-the-
art linear RNNs across various tasks, including language modeling, commonsense
reasoning, and challenging long-context recall.

1 INTRODUCTION

Designing efficient architectural backbones for sequence modeling is vital for strengthening foun-
dation models across diverse domains and data modalities such as language (Vaswani et al., 2017;
Team et al., 2024), computer vision (Dosovitskiy et al., 2020), computational biology (Wang et al.,
2024), and neuroscience (Behrouz et al., 2024a). Transformers (Vaswani et al., 2017) remain state
of the art thanks to their in-context learning and scalability (Kaplan et al., 2020), but their quadratic
time and space complexity limits use in long-context applications (Dalal et al., 2025; Liu et al.,
2024b; Li et al., 2024).

Recent work tackles Transformers’ long-context limits by creating efficient recurrent alterna-
tives (Schlag et al., 2021; Smith et al., 2022). Unlike the Transformer’s linearly growing KV cache,
these models compress context into fixed-size memory, requiring better memory management for
strong performance. To design more effective architectures, studies improves memory capabilities
through: (1) richer learning rules, from Hebbian (Hebb, 2005) to Delta (Schlag et al., 2021); (2) ad-
vanced forget gates, from LSTM (Schmidhuber & Hochreiter, 1997) to Mamba2 (Dao & Gu, 2024)
and Titan (Behrouz et al., 2024b); (3) more expressive memory, from vector memory in RetNet (Sun
et al., 2023) and LRU (Orvieto et al., 2023) to deep neural memory in TTT (Sun et al., 2024).

At the core of these advancements lies a critical question: “what is the underlying design frame-
work behind these sequence models, and how can these models be enhanced?”. Taking inspiration
from the broad definitions of associative memory and learning in neuropsychology literature (Okano
et al., 2000), several studies discuss connections between Transformers and (linear) Recurrent Neu-
ral Networks (RNNs) with associative memory (Hopfield, 1982; Ramsauer et al., 2021; Bietti et al.,
2023). These studies, however, either: (1) lack a universal explanation to fully illustrate the un-
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derlying learning algorithms, (2) are limited to a specific definition of associative memory and lack
generalizability, (3) are unable to describe standard, widely-used components such as forget gate.
In an effort to address these concerns, several works have tried to unify neural architecture designs.
Notably, Liu et al. (2024a) adopted an online learner viewpoint, similar to the (Learning-Retaining
Viewpoint) in our paper. Concurrently, Wang et al. (2025) adopted an online regression viewpoint,
which connects to the (FTRL Viewpoint) in our work.

While these frameworks successfully unify existing models, they remain constrained by the ℓ2 and
dot-product paradigms, effectively making them specific instances of our broader framework. MI-
RAS distinguishes itself in two critical ways: First, we provide a formal connection between these
two viewpoints (Theorem 2.2). Second, and crucially, MIRAS transcends the limitations of Eu-
clidean spaces. Unlike prior frameworks that merely catalog existing ℓ2-based methods, MIRAS
provides the generative capacity to design novel architectures with enhanced robustness and stabil-
ity, addressing the sensitivity to outliers inherent in ℓ2-based optimization.

Contributions. Inspired by the human cognitive phenomenon of attentional bias—the natural ten-
dency to prioritize certain stimuli—we re-examine the foundations of sequence modeling by con-
necting (online) optimization and associative memory. This perspective allows us to unify existing
architectures and unlock a principled design space. Our main contributions are as follows:

• A Unified Framework: We introduce MIRAS1, a comprehensive framework that reconceptualizes
sequence models (including Transformers and modern RNNs) as associative memory modules
governed by online optimization. MIRAS formally defines the core components of these models
as Attentional Bias (the internal learning objective) and Retention (the memory regularizer).

• Theoretical Reinterpretation and Critical Insights: Through the lens of MIRAS, we provide inter-
pretation of existing forgetting mechanisms (e.g., gates in LSTMs or Mamba2) as specific forms
of regularization within online optimization frameworks (e.g., FTRL). Crucially, our unification
reveals a significant limitation: virtually all existing successful architectures rely narrowly on ℓ2
loss or dot-product similarity for both bias and retention (See Table 5).

• Expansion of the Architectural Design Space: MIRAS provides a principled foundation for moving
beyond the ℓ2 paradigm. We leverage principles from robust optimization and statistics to propose
and explore novel, non-Euclidean attentional biases (e.g., Huber loss, ℓp norms) and retention
gates (e.g., KL-divergence, f-divergence), leading to architectures with improved stability and
robustness. We specifically derive eight of these variants in Section 4.

• Novel Attention-Free Architectures and Validation: Utilizing this expanded design space, we intro-
duce three novel, attention-free, and parallelizable architectures: MONETA, YAAD, and MEM-
ORA. These models combine expressive MLP-based memories with our novel optimization mech-
anisms. Empirically, we demonstrate that different MIRAS instantiations trade off complementary
strengths, achieving strong scaling laws and superior performance compared to state-of-the-art
Transformers and linear RNNs across language modeling, commonsense reasoning, and challeng-
ing long-context recall tasks.

2 ASSOCIATIVE MEMORY, ATTENTIONAL BIAS, AND RETENTION

Associative memory, a core component of human learning (Terry, 2017), has inspired numerous
artificial neural architectures (Hopfield, 1982; Schlag et al., 2021; Behrouz et al., 2024b). Broadly
speaking, associative memory is an operator that learns mappings between keys and values. To learn
these mappings effectively, the memory requires an objective function that measures the quality of
the learned associations and guides the learning process.

Definition 2.1 (Associative Memory and Attentional Bias). Given a set of keysK ⊆ Rdk and values
V ⊆ Rdv , associative memory is an operator M : K → V . Learning the mapping of associative
memory is based on an objective L, called Attentional Bias, that determines the type of memory and
its tendency to prioritize some events:

M∗ = argmin
M

L(M(K);V). (1)

1 “Miras” is the translation of “Legacy” in several languages including Persian, Arabic, and Turkish. We
choose this name since this framework provides clear steps for future design of sequence models.
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When memory is parameterized by W , we useM(W,k). In this setting, the optimization in equa-
tion 1 is performed over W . This learning process can be viewed as a meta (in-context) learning task,
where the model learns how to store data into its parameters at test time (Sun et al., 2024).

2.1 THE OPTIMIZATION PERSPECTIVE: LEARNING AND RETAINING

Definition 2.1 translates the design of a sequence model into an optimization problem. In an online
setting, where key-value pairs (kt,vt) arrive sequentially, a straightforward approach to optimize
Equation 1 is to use gradient descent. Given a new pair, we update the memory parameters:

Wt = Wt−1 − ηt∇ℓ(Wt−1;kt,vt), (2)

where ℓ(Wt−1;kt,vt) := L(M(W ;kt),vt). This update can be interpreted as adjusting the mem-
ory based on a “momentary surprise” (Behrouz et al., 2024b), where the model prioritizes memoriz-
ing tokens that violate the expectations of the objective L. This update rule highlights a fundamen-
tal tension in sequence modeling: the need to learn from the latest information (adaptability) while
remaining stable enough to retain previously memorized context (stability). We can formalize this
tension by viewing the gradient descent update (2) through an optimization lens. Mathematically,
Equation 2 is equivalent to the solution of the following optimization problem:

Wt = argmin
W

⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩+
1

2ηt
∥W −Wt−1∥22 (3)

The first term locally approximates ℓ(W ;kt,vt) at the previous state Wt−1; minimizing it corre-
sponds to learning the new token. The second term is a quadratic penalty that regularizes deviations
from Wt−1; minimizing it corresponds to retaining past information and ensuring stability.

2.2 THE LEARNING-RETAINING VIEWPOINT

The formulation in equation 3 relies specifically on linear approximations and quadratic regular-
ization. However, we can generalize this concept by employing different approximations for the
attentional bias and alternative functions for retention. This generalization leads to:

Wt = arg min
W∈W

ℓ̃t(W ;kt,vt)︸ ︷︷ ︸
Attentional Bias

+ Rett (W,Wt−1)︸ ︷︷ ︸
Retention

. (Learning-Retaining Viewpoint)

Here, ℓ̃t(W ;kt,vt) is an approximation of ℓ(W ;kt,vt), driving the learning of new concepts.
Rett (W,Wt−1) is the retention function, regularizing changes in W to maintain stability and pre-
serve learned knowledge. This viewpoint has also been acknowledge by Liu et al. (2024a).

The retention function can be further decomposed into local and global components:

Rett (W,Wt−1) =
1

ηt
Dt (W,Wt−1)︸ ︷︷ ︸
Local Retention

+
1

αt
Gt (W )︸ ︷︷ ︸

Global Retention

.

The local retention Dt (W,Wt−1) is typically a premetric (e.g., ℓ2 distance, KL divergence) that
controls deviations from the immediate past state Wt−1. The coefficient ηt acts as a meta in-context
learning rate, balancing learning (larger ηt) against retention (smaller ηt). The global retention Gt

controls the overall complexity or size of the memory (e.g., weight decay).

Remark on “Forgetting” as Regularization. Within this viewpoint, mechanisms often termed
“forget gates” (Behrouz et al., 2024b; Yang et al., 2024a) are reinterpreted not as explicit erasure
mechanisms, but as specific implementations of the Retention function (regularization). The model
optimizes how much of the past state to retain by balancing the regularization penalty against the
learning objective. This interpretation is crucial as it provides a principled way to design novel retention
mechanisms derived from optimization theory (See Section 4), rather than relying on heuristic gating
structures. Therefore, we use the term Retention Gate throughout this work. This interpretation
aligns closely with human memory processes, where memories often become inaccessible due to
retrieval failures rather than complete erasure (Robertson, 2002).
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2.3 ALTERNATIVE PERSPECTIVE: FOLLOW-THE-REGULARIZED-LEADER (FTRL)
While the Learning-Retaining viewpoint focuses on the trade-off at the current timestep, an alterna-
tive perspective from online optimization considers the entire history of the sequence. The update
rule in Equation 2 can also be viewed as one step of online gradient descent on the sequence of
losses ℓ(W ;k1,v1), ℓ(W ;k2,v2), . . . , ℓ(W ;kt,vt), . . . . Online gradient descent is a special case
of the Follow-The-Regularized-Leader (FTRL) algorithm (Shalev-Shwartz et al., 2012; Hazan et al.,
2016). In FTRL, the goal is to minimize the cumulative loss over all past tokens, balanced by a reg-
ularization term that penalizes the overall complexity of the memory. This leads to:

Wt = arg min
W∈W

t∑
i=1

ℓ̂i(W ;ki,vi)︸ ︷︷ ︸
Attentional Bias

+
1

ηt
Rt(W )︸ ︷︷ ︸

Memory Stability

. (FTRL Viewpoint)

Here, ℓ̂i(W ;xi) represents an approximation (e.g., linearization) of the loss at time i, and Rt(W )
is the regularization term. The (Learning-Retaining Viewpoint) and (FTRL Viewpoint) offer com-
plementary perspectives (one local, one global) and can formally be connected:

Theorem 2.2. Let ηt = η and define ht(W ) :=
∑t−1

i=1 ℓ̂i(W ;ki,vi) +
1
ηR(W ). AssumeW = Rd

and the function ht(W ) is strictly convex in W and let Dh(·, ·) be the Bregman divergence defined
by function h(·), i.e., Dh(W,W ′) = h(W ) − h(W ′) − ⟨∇h(W ′),W −W ′⟩. Set Rett(W,W ′) =

Dh(W,W ′) and ℓ̃t(W ;xt) = ℓ̂t(W ;xt) in (Learning-Retaining Viewpoint) . Then, the update rule
in (Learning-Retaining Viewpoint) is equivalent to the update rule in (FTRL Viewpoint) .

The proof is provided in Appendix B. Intuitively, Theorem 2.2 confirms that optimizing the cumula-
tive loss over the entire history (FTRL), can be achieved via optimizing for the immediate trade-off
between learning and retention in (Learning-Retaining Viewpoint) , provided the retention function
is appropriately chosen. This suggests that the (Learning-Retaining Viewpoint) is more general. We
therefore adopt it as the primary lens for most of our derivations in subsequent sections.

2.4 EXTENSIONS AND GENERALIZATIONS

The (Learning-Retaining Viewpoint) can be naturally extended to provide more flexibility. We can
consider a Universal Viewpoint where the memory update relies on recent history, rather than just
the immediate past state:

Wt = arg min
W∈W

ℓ̃t(W ; {ki,vi}ti=t−k)︸ ︷︷ ︸
Attentional Bias

+ Rett
(
W, {Wi−1}ti=t−k′

)︸ ︷︷ ︸
Retention

. (Universal Viewpoint)

Here, the memory update relies on its recent k + 1 states and the latest k′ + 1 key-value pairs.
While (Learning-Retaining Viewpoint) is a special case of (Universal Viewpoint) by setting
(k, k′) = (0, 0), one can obtain more flexible designs by choosing higher values of k, k′. For ex-
ample, setting (k, k′) = (0, 1) can recover optimization algorithms with momentum, such as those
used in Titans (Behrouz et al., 2024b), as discussed in Appendix C.

In all above viewpoints, instead of using the global minimizer of the update, one can approximately
find the minimizer by simply using one (or multiple) steps of a particular optimizer. For example,
one can consider more advanced optimizers (such as Adam or Muon) for updating memory (Clark
et al., 2022; Zhang et al., 2025; Behrouz et al., 2025). In the next section, we summarize the design
choices within the MIRAS framework.

3 MIRAS: A FLEXIBLE FRAMEWORK FOR LEARNING TO MEMORIZE

Building viewpoints presented in the previous section, we present MIRAS framework that not only
accurately unifies existing architectures but also provides insights on how to design the next genera-
tion of neural architectures. As discussed in Section 2, learning an associative memory can be inter-
preted as a meta-learning task, in which the associative memory learns how to compress and store
data into its parameters at test time Sun et al. (2024). The architecture of the memory in such task is
particularly important as in longer contexts as the expressivity of the memory structure can limit its
ability to learn the underlying patterns. Therefore, the first choice to design a neural architecture is
the structure of the memory. Given the structure of the memory, parameterized by a set of parameters
W , we aim to minimize a loss function ℓ(W ; ·, ·) with a retention regularizer Ret(·) via a learning
algorithm (e.g., gradient descent). Accordingly, MIRAS requires four design choices:

4
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Figure 1: The overview of MIRAS framework. MIRAS is based on four critical choices of (1)
memory architecture, (2) attentional bias, (3) retention gate, and (4) memory learning algorithm. In
this framework, the memory architecture determines the model capacity to memorize; attentional
bias is responsible for modeling the underlying mapping patterns; retention gate determines how
to balance learning new concepts and the retention of previously learned concepts; and memory
learning algorithm is responsible for memory management.

1. Memory Structure: This choice specifies the architecture of the memory. For example, this
architecture can be a linear function, a Multilayer Perceptron (MLP) layer, or even more complex
structures. We may restrict the choice of W to be within a certain region, e.g., W to lie within
an L2 ball to avoid infinite values or unstable learning.

2. Attentional Bias: A key design choice is the objective L(·) (and consequently its approxi-
mations in different viewpoints). This choice determines how we memorize the context and
prioritize the events.

3. Memory Stability and Retention: Another key choice is the retention regularizer. This choice
balances learning with retention of past state. An effective retention gate is key to reliable
performance in long context.

4. Memory Algorithm: Finally, this choice specifies the learning algorithm that we use to optimize
the memory objective. One may use exact minimizer in our framework or use one step (or
multiple steps of) a particular optimizer to update the memory.

The design choices of MIRAS are summarized in Figure 1. In Appendix D, we detail how vari-
ous existing architectures—including Softmax Attention, RNNs with Hebbian rules (e.g., RetNet,
Mamba2), RNNs with Delta rules (e.g., DeltaNet), and deep memory models (e.g., Titans)—can be
derived as specific instantiations of the MIRAS framework. In particular, Table 5 in the appendix
provides a comprehensive overview of this unification. Crucially, this analysis reveals a significant
limitation: almost all these methods rely narrowly on ℓ2 or dot-product attentional biases and ℓ2
retention gates. MIRAS allows other choices of attentional bias/retention gates. In the next section,
we discuss how going beyond the standard choices can lead to new architecture designs.

4 BEYOND EXISTING ATTENTIONAL BIASES AND RETENTION GATES

As discussed in the previous section, existing work focus only on linear/quadratic choices for the
attentional bias or retention gate. However, in general there could be various choices for all the
three aforementioned design choices (even by going beyond Euclidean space). To illustrate the
flexibility of our designed framework, this section proposes and discusses novel design choices in
MIRAS.

5
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We start by discussing novel choices of attentional biases and retention gates in Section 4.1. We
only briefly present three of such variants in this subsection and we will relegate further choices
to Appendix E. Then, we combine our design choices in Section 4.2 to obtain three particular
architectures: Moneta, Yaad, and Memora, which we further experiment on in Section 5.

4.1 NOVEL ALTERNATIVE ATTENTIONAL BIAS AND RETENTION GATES

Variant 1: ℓp-Attentional Bias. Attentional bias defines the “similarity metric” and measures how
well memory can recall the value, given its corresponding key. Although ℓ2 loss is used in prior
work, a natural extension is ℓp-norm class of objectives: We define ℓp-attentional bias as:

L(M(W,kt);vt) = ∥M(W,kt)− vt∥pp, (4)

where p ∈ R≥1 and ∥.∥p is the p-norm. Depending on the distribution of the data, we might want to
use different values of p (see Section 5). For the sake of simplicity, let memory be a matrix defining
a linear mapping, i.e.,M(W,kt) = Wkt, the gradient descent update is:

Wt = Wt−1 − ηt∇ℓ(Wt−1;kt,vt) = Wt−1 − p ηt
(
Sign(Wt−1kt − vt)⊙ |Wt−1kt − vt|p−1) k⊤

t ,
(5)

where ⊙ is the Hadamard (element-wise) product. For p = 1, the recurrence simplifies to: Wt =
Wt−1 − ηt Sign(Wt−1kt − vt) k

⊤
t . We call this variation value-less associative memory, in which

we store entities (keys) but map them into two extreme class of -1 and +1 through the sign function.
This behavior provides inherent robustness, as the magnitude of the error does not affect the update
direction, preventing extreme events (outliers) from overly influencing the memory. One simple
interpretation for such behavior is the coping mechanism in human (Loftus, 1993), in which the
memory does not store the values for extreme events. This interpretation of protective memory in
extreme events motivates our next variant.

Variant 2: Huber Loss: Memory with Coping Mechanism. While ℓ2-norm regression objective
is a common choice, it is known to be sensitive to noise and extreme examples (outliers). To have
a robust loss against outliers, we can use Huber loss as the attention bias, in which an extreme
mismatch (potentially due to outlier data) does not affect the memory learning process:

Wt = Wt−1 −
{
ηt ∇ℓ2(Wt−1;kt,vt) if ∥M(W ;kt)− vt∥ ≤ δt,

ηt δt∇ℓ1(Wt−1;kt,vt)− δ2t Otherwise.
(6)

In this formulation, the parameter δt decides the type of the memory (ℓ2-norm objective or value-
less) based on the context, making the memory more robust to outliers.

Variant 3: Memorization Over A Scaled Probability Simplex. To avoid numerical instabilities,
we can constrained the variable Wt to lie within a scaled probability simplex. In other words, we can
restrict the state to lie in the constraint setW = {W | ∥W∥1 = c and Wjl ≥ 0, ∀j, l}. In this set,
each point W can be viewed as a measure. Thus, we can utilize divergences over measures to define
our retention in (Learning-Retaining Viewpoint) . For example, by choosing Dt(W,W ′) as the
KL divergence and setting ℓ̃(W ;kt,vt) = ⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩ in (Learning-Retaining
Viewpoint) , we get the update rule

Wt ← c Softmax ((1− λ) log(Wt−1)− η∇ℓ(Wt−1;kt,vt)) (7)

where λ ∈ (0, 1) and η ∈ R+ are the hyper-parameters that can be learned during training. The
Softmax operator ensures that the output lies in the setW . To see more discussions and extensions
to general f-divergence retention gates, see Section E.2 in the appendix.

Other Variants. In the appendix section, we derive other novel variants of MIRAS by using elastic
net regularization, Bregman divergence and f− divergence retention gates, and Lq memory stability.
We will also discuss the above variants in more details.

4.2 FOCUS VARIANTS OF MIRAS: MONETA, YAAD, AND MEMORA

Using the above basic variants and the other variants explained in Appendix E, we now introduce
three instantiations of MIRAS, each designed to explore different facets of this expanded optimiza-
tion space, moving beyond the standard ℓ2 and dot-product paradigms.

6
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MONETA. MONETA is designed to investigate the impact of generalized norms. Given p, q ∈ R≥1,
we design (p, q)-MONETA to explore the impact of generalized ℓp norms for both learning and
regularization. We instantiate MIRAS as follows. Memory Structure: A 2-layer MLP with expansion
factor 4, GELU activation (Hendrycks & Gimpel, 2016), residual connections, and Layer Norm
M(x) = x+LN(W1σ(W2x)). Attentional Bias: ℓp norm. Retention Gate: A hybrid of ℓq retention
gate 1

2(q−1)∥W∥
2
q (see Appendix E for details) and the standard ℓ2 regularization 1

αt
∥W∥22. Memory

Algorithm: Gradient Descent. The above choices result in the following recurrent formula for the
memory module:

At = βtAt−1 − ηt∇ℓ(Wt−1;kt,vt), and Wt =
At

∥At∥q−2
q

. (8)

Notably the gradient can be calculated using Equation 5. We use (p, q) = (3, 4).

YAAD. YAAD is designed for robustness, protecting the memory from extreme events (outliers) us-
ing principles from robust statistics. We design YAAD based on the Huber objective.Memory Struc-
ture: MLP (same architecture as MONETA). Attentional Bias: Huber loss (Equation 6). Retention
Gate: A combination of local and global retention: Rett(W,Wt−1) =

1
2ηt
∥W−Wt−1∥2F+ 1

αt
∥W∥22.

Memory Algorithm: Gradient Descent. Given these choices, we can write the resulting memory
learning process as :

Wt = βtWt−1 −
{
ηt ∇ℓ2(Wt−1;kt,vt) if ∥M(kt)− vt∥ ≤ δt,

ηt δt∇ℓ1(Wt−1;kt,vt)− δ2t Otherwise.
(9)

Note that for improving the expressive power, in all architectures, we decouple the learning rate η
and the retention gate rate α, resulting in a independent parameter βt ∈ [0, 1].

MEMORA. Finally, MEMORA is designed to ensure stable updates by constraining the memory to
a probability simplex and utilizing divergence-based retention. Memory Structure: MLP (same as
MONETA), constrained to the scaled probability simplex. Attentional Bias: dot-product loss. Reten-
tion Gate: KL-divergence for local retention and Shannon entropy for global retention (Appendix E).
Memory Algorithm: Closed-form solution. These choices lead to (see equation 30):

Wt = Softmax (βt log(Wt−1)− ηt∇ℓ(Wt−1;kt,vt)) (10)

Architecture Backbone. For the architectural backbone, we fully follow recent studies (Behrouz

et al., 2024b; Yang et al., 2024a): We replace attention modules with our variants of MIRAS in
Llama’s macro architecture with MLPs with SwiGLU(.) activation, rotary positional encodings
(RoPE) (Su et al., 2024), and RMSNorm (Zhang & Sennrich, 2019). We incorporate a 1D depthwise-
separable convolution layer after each of the query, key, and value projections. For training stability,
we also use ℓ2 normalization to q and k. The output of this module is normalized and gated with a
linear layer (Mehta et al., 2023). For all input-dependent parameters like ηt, βt, and δt, we define
them as the linear projection of the input. The architectures are illustrated in Figure 5.

Parallelizable Training. We build upon the work of Behrouz et al. (2024b); Sun et al. (2024) and
use a hybrid recurrence of linear and non-linear by chunking the sequences into small subsequences.
While the use of MLP memories and non-Euclidean optimization introduces non-linearities in the
recurrence, the hybrid chunking strategy (Appendix F) ensures that the training remains highly par-
allelizable. Inside each chunk, the recurrence is effectively linearized, and non-linear operations
(e.g., the normalization in MONETA or Softmax in MEMORA) are applied only at chunk bound-
aries. This maintains competitive training throughput while offering O(1) complexity per token
during inference.

5 EXPERIMENTS

Experimental details (resp. additional experiments) are in Appendix G (resp. Appendix H).

5.1 LANGUAGE MODELING AND COMMON-SENSE REASONING

We follow recent studies (Yang et al., 2024a;c; Behrouz et al., 2024b) and first focus on the per-
plexity in language modeling and commonsense reasoning tasks. The results for MEMORA, YAAD,
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Table 1: Performance of MIRAS’s variants and baselines on language modeling and common-sense
reasoning tasks. Hybrid models are marked with ∗. The best results are highlighted .

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ ↑

1.3B params / 100B tokens

Transformer++ 18.53 18.32 42.60 70.02 50.23 53.51 68.83 35.10 40.66 57.09 52.25
RetNet 19.08 17.27 40.52 70.07 49.16 54.14 67.34 33.78 40.78 60.39 52.02
Mamba2 16.56 12.56 45.66 71.87 55.67 55.24 72.47 37.88 40.20 60.13 54.89
DeltaNet 17.71 16.88 42.46 70.72 50.93 53.35 68.47 35.66 40.22 55.29 52.14
Gated DeltaNet 16.42 12.17 46.65 72.25 55.76 57.45 71.21 38.39 40.63 60.24 55.32
Samba∗ 16.13 13.29 44.94 70.94 53.42 55.56 68.81 36.17 39.96 62.11 54.00
Gated DeltaNet-H2∗ 15.91 12.55 48.76 72.19 56.88 57.77 71.33 39.07 41.91 61.55 56.18

MONETA (ours) 15.52 11.47 47.88 73.16 56.14 59.09 72.53 40.32 41.91 61.18 56.52
YAAD (ours) 15.18 11.89 47.23 72.81 56.46 59.02 72.14 40.05 40.73 61.86 56.39
MEMORA (ours) 15.90 12.04 48.67 73.10 55.99 57.36 71.55 37.92 40.19 61.34 55.87

Figure 2: Scaling patterns when increasing (Left) model size, (Middle) sequence length (model size
= 340M) (3) (Right) sequence length (model size = 760M) on C4 dataset.

MONETA and baselines with size of 1.3B are reported in Table 1 (Full results of 340M and 760 in
Table 7). All of our variants outperforms all the baselines including Transformer++, modern linear
recurrent models and hybrid methods. The superior performance compared to hybrid models is par-
ticularly important as all our variants are pure recurrent (attention-free). Among the three variants of
MIRAS, while MONETA achieves slightly weaker performance than MEMORA, and YAAD, the other
two variants are close and depending on the task and model size, the best model can vary.

5.2 SCALING PATTERN

To evaluate the scaling pattern of models and for comparing them with baseline, in this section, we
plot their performance with varying the model size and the context window.

Context Length. We first vary the training context length from 2K to 32K for two version of our
model with size 340M and 760M. The results are reported in Figure 2 (Middle and Right). All
three variants of MIRAS scales better than state-of-the-art baselines when increasing the context
length. We attribute this superior performance to: (1) expressive memory architecture. Contrary to
baselines like Mamba2 and GSA that uses vector- and matrix-valued memory, our variants use 2-
layer MLPs with more expressive power. (2) The choice of retention gate and attentional bias. While
TTT also uses MLP memory, it shows weaker scaling. This highlights a crucial finding: expressive
memory alone is insufficient; it requires correct design choices (e.g. attentional bias, retention, and
optimization algorithm) to be effectively utilized. All of our three variants go beyond the standard ℓ2-
based attentional biases and retention gates. These robust choices prevent memory corruption from
outliers or noise, leading to better utilization of the fixed capacity, especially in long contexts.

Model Size. We also report the #FLOPs vs. perplexity of our models and baselines in Figure 2
(Left). All three variants outperforms all baselines given almost the same budget of FLOPs. These
results, once again support the importance of powerful memory design.

5.3 NEEDLE IN HAYSTACK

To evaluate the effective context window of our models and baselines, we use needle-in-haystack
task. In this task, we evaluate the model on retrieving a piece of information (i.e., the “needle”)
from long distractor texts (i.e., the “haystack”). We focus on the Single NIAH (S-NIAH) task from
RULER benchmark (Hsieh et al., 2024) and evaluate our models and baselines on sequences with
length 1K, 2K, 4K, and 8K. The results are reported in Table 2. All our variants outperforms the
baselines by a considerable margin. Interestingly, MONETA shows superior performance when the
data is synthetic noise (S-NIAH-PK). This highlights the advantage of MONETA’s ℓp-attentional
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bias and ℓq retention (with (p, q) = (3, 4)). Unlike the ℓ2 objectives used in baselines, these
higher-order norms are inherently more robust to noisy inputs, preventing the distractor texts
from corrupting the memory state. This validates the effectiveness of exploring non-Euclidean
design choices via MIRAS.

Table 2: Performance of MONETA, YAAD, MEMORA, and base-
lines on NIAH task from RULER benchmark. The best results
with highest accuracy are highlighted.

Model S-NIAH-PK S-NIAH-N S-NIAH-W Average
2K 4K 8K 2K 4K 8K 1K 2K 4K

Mamba2 98.6 61.4 31.0 98.4 55.8 14.2 62.2 42.2 4.2 52.0
DeltaNet 96.8 98.8 98.6 47.2 15.4 12.8 85.2 46.2 20.0 57.9
Gated DeltaNet 89.8 91.4 90.0 99.2 91.8 26.4 86.4 82.6 24.4 75.8
TTT 98.4 98.8 98.0 60.2 36.6 10.2 85.8 78.8 28.0 66.1

MONETA 99.4 98.8 98.8 99.4 99.4 92.8 92.2 88.2 70.8 93.5
YAAD 99.2 98.6 94.4 99.8 98.6 93.2 91.8 89.6 67.4 92.9
MEMORA 99.2 98.8 92.6 98.4 99.2 93.2 92.4 88.2 70.4 92.1

Table 3: Ablation on the architec-
ture of MEMORA and MONETA.

Variant MEMORA MONETA
Full Architecture 51.52 52.12
w/o Retention Gate 49.75 50.49
linear memory 50.11 50.26
w/o RoPE 51.28 51.71

Table 4: Ablation study on the
components of YAAD.

Model Avg. LM
YAAD 53.98

- Retention Gate 50.63
linear memory 51.57
- Input-dependent δ 52.19
ℓ2-loss 52.86
ℓ1-loss 53.04

Figure 3: The effect of parameters p and q on the performance
with different context length.

5.4 ABLATION STUDY

We perform ablation studies to validate if different design choices we discussed through the paper
are positively contributing to better performance. Additional ablations are in Appendix H.

The Effect of Design. To evaluate the architectural design choices, we perform an ablation study
on MEMORA, and MONETA in Table 3, as well as on YAADin Table 4. The first row, reports the
performance of full architecture, while (1) the second row removes the retention (i.e., β = 1),
and (2) third row replaces the MLP with a linear layer. In Table 4, (3) forth row makes δ input
independent, (4) the next row removes ℓ2-loss from the Huber loss, and (5) the last row removes the
ℓ1 condition. These results indicate that all design choices are contributing to the performance of
the model.

The Effect of p on Performance. We first evaluate the effect of p on the performance of MONETA.
We vary the value of p ∈ {1, 1.5, 2, 2.8, 3, 3.2, 4} and context window from 2K to 16K. The results
are reported in Figure 3. Interestingly, there is no monotone pattern when increasing the value of
p and the best performance is achieved when p = 3, while p = 4 achieves the worst performance.
Also, although different values of p results in different memory modules with varied performance,
the scaling pattern when increasing the context length is almost the same.

The Effect of q on Performance. We evaluate the effect of q by varying it in {2, 3, 4, 5}. Interest-
ingly, contrary to p, the value of q can change the scaling pattern when increasing the context length.
The main reason for this observation is that the value of q determines the retention gate and a pow-
erful retention gate can improve the memory management, resulting in better performance.

6 CONCLUSION

This paper presents MIRAS, a general framework that explains the connection of online optimization
and test time memorization. MIRAS framework can explain the role of several standard architectural
choices in the literature (e.g., forget gate) and helps design next generation of architectures that are
capable of managing the memory better. Building upon our framework, we present three novel
sequence models, each of which with its own (dis)advantages. Our experimental evaluations show
that all these variants outperform various baselines in various downstream tasks.
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A PRELIMINARIES AND BACKGROUND

In this section, we review the related studies and background concepts that we use through the
paper.

Attention. Attention as the backbone of Transformers is a critical component that acts as their
associative memory (Bietti et al., 2023). Given input x ∈ RN×din , causal attention computes output
y ∈ RN×din based on Softmax over input dependent key, value, and query matrices:

Q = xWQ, K = xWK, V = xWV, (11)

yi =

i∑
j=1

exp
(
q⊤
i kj/

√
din
)
vj∑i

ℓ=1 exp
(
q⊤
i kℓ/

√
din
) , (12)

where WQ,WK, and WV ∈ Rdin×din are learnable parameters. While Transformers achieve
significant improvements compared to traditional Recurrent Neural Networks (RNNs)—such as
LSTM (Schmidhuber & Hochreiter, 1997), their complexity that requires at least N × d opera-
tors to calculate the output has been the main motivation for researchers to think about alternative
architectures. We divide and review the research efforts to design alternative architectures into two
groups: (1) Linear shallow memory recurrent models, (2) Deep memory modules.

(Linear) Recurrent Models. For many years, non-linear (gated) recurrent neural networks had
been the de facto architectural backbones in deep learning (Greff et al., 2016). Their recurrent
nature, however, results in non-parallelizable training, making their large scale training infeasible.
To this end, in recent years, linear RNNs as alternatives to both Transformers and non-linear RNNs
attract much attention mainly due to their parallelizable and linear-time training while maintaining
competitive performance (Yang et al., 2024c; Sun et al., 2023; Peng et al., 2025b). Earlier variants
of linear RNNs (Yang et al., 2024b; Sun et al., 2023; De et al., 2024), which mostly are based on
Hebbian learning rule (Hebb, 2005), aim to compress the data into their vector-valued (or matrix-
valued) memory (Katharopoulos et al., 2020; Sun et al., 2023; Yang et al., 2024b; De et al., 2024;
Liu et al., 2024a). Let Mt ∈ Rd×n be the memory (n = 1 means vector-valued memory), and
k,v ∈ Rd are keys and values (i.e., projection of input xt ∈ Rd), a simple general formulation for
such linear RNNs can be written as:

Mt = At ∗Mt−1 + vtk
⊤
t , (13)

where ∗ is an arbitrary associative operator and At is a data-(in)dependent diagonal matrix or a
scalar (Yang et al., 2024c). Despite the efficiency that comes with the linear recurrent nature of
these models, the memory can overflow mainly due to the additive (without replacement) nature
of Hebbian learning rule, resulting in limited memory capacity and limited expressive power in
in-context learning tasks. Moreover, the vector-valued memory of these architectures can limited
their ability to learn/memorize large context window, mainly due to the limited expressive power of
memory to learn the underlying patterns of data (Behrouz et al., 2024b; Sun et al., 2024).

To address the above mentioned limitations, recurrent models that use a matrix-valued memory
with Delta learning rule has gained popularity in recent years (Schlag et al., 2021; Yang et al.,
2024c). Despite significant advantages, even these delta-rule-based recurrent models face theoretical
limitations (Irie et al., 2023) with moderate performance in practice (Yang et al., 2024c). Recently,
several studies aim to improve the performance of such models by adding scalar or channel-wise
forget gate mechanisms (Yang et al., 2024a; Peng et al., 2025a), , using negative eigenvalues (Grazzi
et al., 2024), and multiple learning steps (Siems et al., 2025). They, however, still suffer from
performance drop in long context, mainly due to the less expressive memory architectures (Behrouz
et al., 2024b).

Deep Memory Module: Titans and Test Time Training. To overcome the limited memory and to
extend the effective context length of deep sequence models, more recent studies focus on a new gen-
eration of architectures with deep memory module (Behrouz et al., 2024b; Sun et al., 2024). These
architectures are built on the meta-learning perspective, where the memory is an MLP architecture
that is updated using gradient descent (with momentum) (Behrouz et al., 2024b; Sun et al., 2024).
Sun et al. (2024) further provide a unifying perspective that how linear and softmax attention are
respectively parametric and non-parameteric solutions of (kernel) regression loss but consider other
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modern linear RNNs outside of this class of models. Recently, in a concurrent work to ours, Wang
et al. (2025) show that with additional simplification of modern RNNs (e.g., RetNet (Sun et al.,
2023), Mamba (Dao & Gu, 2024)) they approximately place in the same class of models that inter-
nally optimize regression loss. It, however, still remains unanswered that “What is the underlying
design framework behind these sequence models that can accurately unify existing architectures?”
Moreover, the role of forget gates and its alternative choices in modern sequence models is surpris-
ingly less explored.

To clarify the relationships among existing architectures, several recent works have sought unifying
perspectives. Liu et al. (2024) adopt an online-learner view, closely aligned with our (Learning-
Retaining Viewpoint) , while the concurrent work of Wang et al. (2025) frames the problem as
online regression, which corresponds to our (FTRL Viewpoint) . Our approach formally links
these two viewpoints (Theorem 2.2). Unlike those studies, which restrict themselves to ℓ2 and dot-
product losses, MIRAS extends beyond these standard choices: it supports non-Euclidean losses and
regularizations, enabling new architectural designs. This makes MIRAS a comprehensive framework
that both (i) explicitly interprets retention/forget gates as forms of regularization and (ii) generalizes
the attentional-bias objective beyond simple regression losses.

B PROOF OF THEOREM 2.2

Here we present the proof of Theorem 2.2. For the sake of completeness, let us first re-state this
Proposition.

Theorem 2.2. Let ηt = η and define ht(W ) :=
∑t−1

i=1 ℓ̂i(W ;ki,vi) +
1
ηR(W ). AssumeW = Rd

and the function ht(W ) is strictly convex in W and let Dh(·, ·) be the Bregman divergence defined
by function h(·), i.e., Dh(W,W ′) = h(W ) − h(W ′) − ⟨∇h(W ′),W −W ′⟩. Set Rett(W,W ′) =

Dh(W,W ′) and ℓ̃t(W ;xt) = ℓ̂t(W ;xt) in (Learning-Retaining Viewpoint) . Then, the update rule
in (Learning-Retaining Viewpoint) is equivalent to the update rule in (FTRL Viewpoint) .

Proof. Let {Ŵ1, Ŵ2, . . .} be the sequence of parameters obtained by (FTRL Viewpoint) and
{W̃1, W̃2, . . .} be the sequence of parameters obtained by (Learning-Retaining Viewpoint) . To
show both update rules are equivalent, it suffices to show that the above two sequences are the same
if they are initialized at the same point. We prove this statement by induction. First of all, since
both sequences are initialized at the same point, the induction base is satisfied (i.e. W̃1 = Ŵ1. Now,
assume by induction hypothesis that

W̃t−1 = Ŵt−1. (14)

To complete the induction, we need to show W̃t = Ŵt. To this end, notice that, by (Learning-
Retaining Viewpoint) , we have

W̃t = argmin
W

ℓ̃t(W,kt,vt) + Rett(W, W̃t−1)

Using the choice of the Attentional Bias and the Retention function in the Proposition, we obtain

W̃t = argmin
W

ℓ̂t(W,kt,vt) +

t−1∑
i=1

ℓ̂i(W,ki,vi) +
1

η
R(W )−

t−1∑
i=1

ℓ̂i(W̃t−1,ki,vi)

− 1

η
R(W̃t−1)−

〈
t−1∑
i=1

∇ℓ̂i(W̃t−1,ki,vi) +
1

η
∇R(W̃t−1),W − W̃t−1

〉
.

(15)

Ignoring the constant terms and using the induction hypothesis equation 14, we get

W̃t = argmin
W

ℓ̂t(W,kt,vt) +

t−1∑
i=1

ℓ̂i(W,ki,vi) +
1

η
R(W )

−

〈
t−1∑
i=1

∇ℓ̂i(Ŵt−1,ki,vi) +
1

η
∇R(Ŵt−1),W − Ŵt−1

〉
.

(16)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

On the other hand, recall that {Ŵ1, Ŵ2, . . .} is obtained by (FTRL Viewpoint) . Therefore, we have

Ŵt−1 = argmin
W

t−1∑
i=1

ℓ̂i(W ;ki,vi) +
1

η
Rt(W ).

Thus, we have
t−1∑
i=1

∇ℓ̂i(Wt−1,ki,vi) +
1

η
∇R(Wt−1) = 0. (17)

Combining equation 17 and equation 16, we obtain

W̃t = argmin
W

t∑
i=1

ℓ̂i(W,ki,vi) +
1

η
R(W ).

This implies W̃t = Ŵt, which completes the proof.

C VIEWING TITANS AS (UNIVERSAL VIEWPOINT)
Here we discuss how Titans in Behrouz et al. (2024b) can be viewed as a special instantiation of the
(Universal Viewpoint). Let (k, k′) = (0, 1). Set

ℓ̃t(W ; {ki,vi}ti=t−k) = ⟨W −Wt−1,∇ℓ(Wt−1,kt,vt)⟩

and

Rett
(
W, {Wi−1}ti=t−k′

)
=

1

2θt

∥∥∥∥W − ((1− αt + ηt)Wt−1 − ηt(1− αt)Wt−2

)∥∥∥∥2
in (Universal Viewpoint). Then, it is not hard to verify that the update rule for Wt can be given
as

Wt = (1− αt + ηt)Wt−1 − ηt(1− αt)Wt−2 − θt∇ℓ(Wt−1,kt,vt).

This dynamics is equivalent to

Wt = (1− αt)Wt−1 + St

St = ηtSt−1 − θt∇ℓ(Wt−1,kt,vt),

which is essentially the gradient descent update with momentum used in Titans of Behrouz et al.
(2024b).

D UNIFYING VARIOUS EXISTING METHODS UNDER MIRAS
FRAMEWORK

In this section, we discuss how various existing architectures fit into MIRAS framework. To facilitate
the discussion, we recall Figure 1 for comprehensive presentation of MIRAS.

Next, we discuss how various existing architectures can be unified under MIRAS.

RNNs with Hebbian Rule. The first generation of modern recurrent architectures (e.g., Linear
attention (Katharopoulos et al., 2020), RetNet (Sun et al., 2023), Mamba (Gu & Dao, 2024), and
GLA (Yang et al., 2024b)) are based on Hebbian-like (e.g., gated Hebbian) learning rule (Hebb,
2005). We let attentional bias be the dot product similarity. That is, given a memoryM ∈ Rd×n

and k,v ∈ Rd, we define ℓ̃t := −2⟨Mtkt,vt⟩ and local retention as Rett(M,Mt−1) = ∥Mt −
αMt−1∥2F . Using Equation Learning-Retaining Viewpoint and gradient descent as the optimizer
(i.e., memory learning algorithm), the memory update rule is:

Mt = αMt−1 + vtk
⊤
t . (18)

When (1) α = 1, memory update is equivalent to Linear Attention (LA) (Katharopoulos et al., 2020);
(2) α ∈ R is a learnable parameter, resulting architecture is either lightening attention (n > 1) (Li
et al., 2025) or RetNet (n = 1) (Sun et al., 2023); and (3) αt ∈ R are data-dependent learnable
parameters, resulting sequence model is Mamba2 (Dao & Gu, 2024).
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Figure 4: The overview of MIRAS framework. MIRAS is based on four critical choices of (1)
memory architecture, (2) attentional bias, (3) retention gate, and (4) memory learning algorithm. In
this framework, the memory architecture determines the model capacity to memorize; attentional
bias is responsible for modeling the underlying mapping patterns; retention gate determines how
to balance learning new concepts and the retention of previously learned concepts; and memory
learning algorithm is responsible for memory management.

RNNs with Delta Rule. To improve the memory management and to enhance the memory capacity
of the above group, several studies suggest using delta rule (Schlag et al., 2021) as the learning
algorithm in recurrent neural networks (e.g., DeltaNet (Schlag et al., 2021), Longhorn (Liu et al.,
2024a), and RWKV7 (Peng et al., 2025a)). In this part, we recall that whereM∈ Rd×n, delta rule is
equivalent to optimizing MSE objective ∥Mtkt−vt∥22 with Rett(M,Mt−1) = ∥Mt−αMt−1∥2F
as local retention, and stochastic gradient descent as optimizer: (ηt is defined in Equation Learning-
Retaining Viewpoint)

Mt = α
(
I− ηtktk

⊤
t

)
Mt−1 + vtk

⊤
t . (19)

When (1) α = 1, memory update is equivalent to DeltaNet (Schlag et al., 2021); and (2) αt ∈ Rm

are data-dependent learnable parameters, resulting sequence model is Gated DeltaNet (Yang et al.,
2024a) (when m = 1). Therefore, RNNs with delta rule are special instances of MIRAS.

Beyond Delta Rule. As discussed earlier, while delta rule with its value replacement strategy is
more powerful than Hebbian-like learning rules, it suffers from theoretical limitations (Irie et al.,
2023) and achieves moderate performance in practice (Yang et al., 2024c). Therefore, several studies
have focused on update rules beyond delta rule. Recently, Titans (Behrouz et al., 2024b) suggests
using non-linear MSE objective of ∥Mt(kt) − vt∥22 with both local and global retention of Dt =
∥Wt−Wt−1∥2F and Gt = ∥Wt∥22 and optimize it with gradient descent with momentum 2. Therefore,
Titans-LMM is a special instance of MIRAS, where we use the abovementioned attentional bias and
retention regularizations, and gradient descent with momentum as the optimizer. Another way to
obtain Titans under MIRAS is explained in Appendix C.

Another example of such models is Mesa-layer (Von Oswald et al., 2023; von Oswald et al., 2025),
in which the model uses

∑t
i=1 ∥Mt(ki)− vi∥22 as the attentional bias objective with ∥Mt∥22 as the

retention regularization. Since these models uses Newton’s method to optimize such an objective,
they provide a more expressive update rule than delta rule. We further discuss a set of new learning
algorithms beyond delta rule in Section 4.

2The retention gate (forget gate) in Titans is different from Mamba2 and Gated DeltaNet that we discussed
above. The main difference comes from the case of full memory erase. While Mamba2 gating removes the
entire memory and treats the next token as the first ever seen data, Titans use a “cold start” strategy and use the
previous state of the memory to measure the surprise of the incoming token before fully erasing the memory.
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Table 5: Overview of recent sequence models in MIRAS framework perspective. Surprisingly, all
models are using the same type of attentional bias and regularization (forget gate). Note that these
architectural choices does not uniquely identify the backbone as there are other design choices (e.g.,
input-dependency, channel-wise parameters, etc.) as well as the use of other components such as
attention, convolutions, etc.

Model Memory Attentional Bias Retention Memory Memory Write OperationArchitecture Gate Algorithm

Shallow Memory

RetNet (2023) Vector Dot-Product L2 GD Mt = αMt−1 + vtk
⊤
t

Transformer (2017) Matrix L2 - Nonparametric Mt =Mt−1 ∪ {(kt,vt)}
LA (2021) Matrix Dot-Product - GD Mt =Mt−1 + vtk

⊤
t

DFW Matrix Dot-Product - GD Mt =
(
βtα

⊤
t

)
⊙Mt−1 + vtk

⊤
t

Lightening Attention (2025) Matrix Dot-Product L2 GD Mt = αMt−1 + vtk
⊤
t

GLA (2024b) Matrix Dot-Product L2 GD Mt = Diag(αt)Mt−1 + vtk
⊤
t

Mamba (2024) Matrix Dot-Product L2 GD Mt = αtMt−1 + vtk
⊤
t

HGRN2 (2024) Matrix L1 L2 GD Mt = Diag(αt)Mt−1 + vt(1− αt)
⊤

DeltaNet (2021) Matrix L2 - GD Mt = (I− βtktk
⊤
t )Mt−1 + βtvtk

⊤
t

Longhorn (2024a) Matrix L2 - Implicit GD Mt =
(
I− βtktk

⊤

1+βtk⊤
t kt

)
Mt−1 +

(
βt

1+k⊤
t ktβt

⊙ xt

)
kt

TTT-Linear (2024) Matrix L2 - GD Mt =Mt−1 − η∇L(Mt−1,xt)
Gated DeltaNet (2024a) Matrix L2 L2 GD Mt =

(
αt(I− βtktk

⊤
t )
)
Mt−1 + βtvtk

⊤
t

RWKV-7 (2025a) Matrix L2 L2 GD Mt = diag(αt)
(
I− βtktk

⊤
t

)
Mt−1 + βtvtk

⊤
t

DeltaProduct (2025) Matrix L2 L2 MGD∗ Mt =
(
αt

∏n
i=1(I− βt,ikt,ik

⊤
t,i)
)
Mt−1 +

∑n
j=1

∏n
i=j(I− βt,ivj,ik

⊤
j,i)

Deep Memory

TTT-MLP (2024) 2-layer MLP L2 - GD Mt =Mt−1 − η∇L(Mt−1,xt)
Titans-LMM (2024b) k-layer MLP L2 L2 + L2† GD + Momentum Mt = αtMt−1 − η∇L(Mt−1,xt)

MONETA (ours) k-layer MLP Lp Lq GD At = αtAt−1 − ηt∇ℓ(Wi−1;kt,vt),Wt =
At

∥At∥q−2
q

YAAD (ours) k-layer MLP Huber L2 GD Wt = αtWt−1 −
{
ηt ∇ℓ2(Wt−1;kt,vt) if ∥M(kt)− vt∥ ≤ δt,

ηt δt∇ℓ1(Wt−1;kt,vt) Otherwise.

MEMORA (ours) k-layer MLP L2 KL GD Wt = Softmax (αt log(Wt−1)− ηt∇ℓ(Wt−1;kt,vt))
∗ is using multiple rounds of GD per token. † Titans use local and global retention using L2 loss.

Attention. As discussed by Sun et al. (2024), softmax attention is a non-parameteric solution of ℓ2-
MSE loss function (i.e., ∥Wk−v∥22) with Nadaraya-Watson estimator. Therefore, softmax attention
(i.e., Transformers) is an instance of MIRAS, when we find the non-parameteric solution to the MSE
loss with Nadaraya-Watson estimator, without retention.

All in all, as illustrated in Table 5, many existing methods can be unified under MIRAS.

E BEYOND EXISTING ATTENTIONAL BIASES AND RETENTION GATES

Here we provide the details of the alternative attentional biases and retention gates discussed in
Section 4. We first propose several novel possible choices of attentional biases and then we discuss
novel choices for retention gate.

E.1 ALTERNATIVE ATTENTIONAL BIASES

Variant 1: ℓp-Attentional Bias. As discussed in the main body, attentional bias defines the “sim-
ilarity metric” and measures how well memory can recall the value, given its corresponding key.
Although ℓ2 regression loss often is a natural choice, it is sensitive to noise in the data. A natural
extension is to use ℓp-norm class of objectives. That is, letM be the memory, k be the keys, and v
be the values, we define ℓp-attentional bias as:

L(M(W,kt);vt) = ∥M(kt)− vt∥pp, (20)

where p ∈ R≥1 and ∥.∥p is the p-norm. Although depending on the distribution of the data, we
might want to use different values of p (see Section 5), different values of p can result in memory
architectures with interesting properties. For the sake of simplicity, let memory be a matrix, i.e.,
W ∈ Rm×d andM(W,kt) = Wkt, the closed form can be derived as:

Wt = Wt−1 − ηt∇ℓ(Wt−1;kt,vt) = Wt−1 − p ηt
(
Sign(Wt−1kt − vt)⊙ |Wt−1kt − vt|p−1

)
k⊤
t .

Let p = 1, the recurrence is simplified as:

Wt = Wt−1 − ηt Sign(Wt−1kt − vt) k
⊤
t , (21)

which means that the memory has only two values of −1 and 1. We call this variation value-less
associative memory, in which we store entities (keys) but map them into two extreme class of -1 and
+1.
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Remark 1. One of the critical challenges to use the above update rule is in the backpropagation
process, in which Sign(·) and | · | are non-differentiable and so might cause unstable training. To
overcome this issue, we use Sign(x) ≈ tanh (αx) , and |x| =

√
x2 + ϵ, as the smooth approximators

of these functions.

One simple interpretation for such behavior (i.e., value-less memory) is similar to the coping mech-
anism in humans (Loftus, 1993), in which the memory does not store the values for extreme events.
This interpretation of protective memory in extreme events motivates our next variant.

Variant 2: Huber Loss: Memory with Coping Mechanism. While ℓ2-norm objective is a com-
mon choice for many statistical and machine learning tasks, it is known to be sensitive to outliers
and extreme samples.This sensitivity extends to the use of ℓ2 loss for attentional bias. To address
this and drawing motivation from robust regression literature, we suggest utilizing the Huber loss-
type (Huber, 1992; Hastie et al., 2009) as the attentional bias, thereby reducing the negative impact
of the outlier data on the memory learning process.

We can apply Huber-type loss in three different ways: The first approach is to define the summation
of the Huber loss across different coordinates as the total loss, i.e.,

ℓ(W ;kt,vt) =
∑
j

H(M(W,kt)j − vt,j),

whereM(W,kt)j and vt,j denote the j-th coordinate ofM(W,kt) and vt respectively. The func-
tionH(·) : R 7→ R is the Huber loss defined as

H(a) =
{

1
2a

2 if |a| ≤ δ
δ
(
|a| − 1

2δ
)

if |a| > δ.
(22)

Utilizing this attentional bias can lead to various memory update rules. For example, for the matrix
form memoryM(W,kt) = Wkt, the update rule is given by

Wt = Wt−1 − ηt

[ (
(Wkt − vt)k

T
t

)
⊙
(
I(|Wkt − vt| ≤ δt)1

⊤)
+
(
δtSign(Wkt − vt)k

⊤)⊙ (I(|Wkt − vt| > δt)1
⊤) ] (23)

In this formulation, the parameter δt decides the type of the memory used for each block of mem-
ory (ℓ2-norm objective or value-less) based on the context, making the memory more robust to
outliers.

The second approach is to define the Huber-type loss based on the ℓ2 loss over all coordinates,
i.e.,

ℓ(W ;kt,vt) = H(∥M(W,kt)− vt∥2).
For simplicity of derivations, assume matrix memory M(W,kt) = Wkt. Then using gradient
descent for updating memory leads the memory update rule

Wt = Wt−1 − ηt

{
(M(Wt−1,kt)− vt)k

T
t if ∥M(Wt−1,kt)− vt∥2 ≤ δt,

δt
(M(Wt−1,kt)−vt)
∥M(Wt−1,kt)−vt∥2

kT
t Otherwise.

(24)

Again, in the form equation 24, the parameter δt decides the type of the memory used (ℓ2-norm
objective or normalized version) based on the context, making the memory more robust to out-
liers.

Finally, in the third approach, we present a smooth mixture method, in which the memory decides if
for an incoming data it is better to use ℓ2 or ℓ1 attentional bias:

Wt = Wt−1 −
{
ηt ∇ℓ2(Wt−1;kt,vt) if ∥M(kt)− vt∥ ≤ δt,

ηt δt∇ℓ1(Wt−1;kt,vt) Otherwise.
(25)

The role of parameter δt is the same as above.
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Variant 3: Memory Robust to Value Shifts. Following the robustness requirement discussed in
the previous section, we aim to design a memory mechanism that exhibits resilience against small
shifts in the value parameter. A natural approach in this context is to employ a robust optimization
formulation. Specifically, we define the loss function as the worst-case ℓ2 distance between the
predicted memory output and the perturbed true value:

L(M(W,kt);vt) = max
∥δvt∥2≤∆

1

2
∥M(W,kt)− (vt + δvt)∥22. (26)

This formulation seeks the memory parameters W that perform well even under the adverse local
perturbation of the true value vt within an ℓ2 ball of radius ∆. To solve the maximization problem
in equation 26, we find the optimal perturbation δv∗

t . By solving this problem with respect to δvt,
we arrive at:

δv∗
t = ∆

−M(W,kt) + vt

∥M(W,kt)− vt∥2
Substituting this optimal perturbation back into the loss function equation 26, we obtain the robust
loss:

L(M(W,kt);vt) =
1

2
∥M(W,kt)− vt∥22 +∆∥M(W,kt)− vt∥2 +

1

2
∆2.

This robust loss function is a combination of the standard ℓ2 loss and a term proportional to the ℓ2
norm of the error, scaled by the robustness parameter ∆. The value of ∆ thus controls the trade-off
between fitting the nominal data and ensuring robustness against value perturbations.

For simplicity of the derivations, let us consider a constant value for ∆, an Euclidean retention
gate Rett (W,Wt−1) = ∥W − Wt−1∥2, and an attentional bias term ℓ̃(W ;kt,vt) = ⟨W −
Wt−1,∇ℓ(Wt−1;kt,vt)⟩. Furthermore, to simplify the memory operation, we assume a linear
matrix memory model M(W,kt) = Wkt. Under these assumptions, we can derive the memory
update mechanism using gradient descent on the robust loss:

Wt = Wt−1 − η

((
M(Wt−1,kt)− vt

)
k⊤
t +∆

M(Wt−1,kt)− vt

∥M(Wt−1,kt)− vt∥2
k⊤
t

)
In this update rule, the parameter ∆, which governs the influence of the robustness term, can also be
treated as a learnable parameter, allowing the model to adapt its robustness based on the observed
data.

E.2 ALTERNATIVE RETENTION GATES AND MEMORY STABILITY

Variant 4: Memorization Over A Scaled Probability Simplex Via f -Divergence. A common
technique in learning to prevent numerical instabilities and exploding values is to restrict the search
space to a bounded domain. Following this principle, to avoid numerical instabilities, we can con-
strained the variable Wt to lie within a (scaled) probability simplex. In other words, we can restrict
the state to lie in the constraint set

W = {W | ∥W∥1 = c and Wjl ≥ 0, ∀j, l}.

In this set, each matrix W can be viewed as a measure. Thus, in (Learning-Retaining Viewpoint)
, we can utilize divergences over measures to define our premetric. For example, we can use f -
divergence measure (Polyanskiy & Wu, 2025, Def 4.9), (Csiszar, 1967) to define Dt(·, ·). More
specifically, let f(·) be a smooth strictly convex function from R+ to R with f(1) = 0. Then, we
can define the f− divergence between W and W ′ as

Dt(W,W ′) =
∑
jl

W ′
jl f

(
Wjl

W ′
jl

)
.

It is known that f -divergence is zero if and only if W = W ′; see (Polyanskiy & Wu, 2025,
Theorem 2.3). Using the above premetric as the retention gate and setting ℓ̃(W ;kt,vt) =
⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩ in (Learning-Retaining Viewpoint) , we get the update rule

Wt = Wt−1 ⊙ g (−ζt − ηt∇ℓ(Wt−1;kt,vt)) . (27)
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Here g(·) is the inverse of the mapping f ′, i.e., g(f ′(τ)) = τ, ∀τ ; the operator ⊙ denotes the
Hadamard (elementwise) product, and ζt should be chosen such that ∥Wt∥1 = c. Notice that since
the function f(·) is strictly convex and smooth, its derivative is strictly increasing and hence g(·) is
well defined. Conversely, for any strictly monotone function g(·), we can find its inverse function
g−1 (which is strictly increasing) and define f(τ) = const +

∫∞
τ ′=0

g−1(τ ′)dτ ′. The term const
should be chosen such that f(1) = 0. Then the update rule in equation 27 can be interpreted by the
f -divergence regularization, as explained above. Therefore, one can directly choose a continuous
monotonically increasing function g(·) and use equation 27 for memory update.

Specializing to KL divergence. Let us further make the above update rule explicit by using special
function f . If we choose f(τ) = τ ln(τ), then the f -divergence becomes the widely used KL
divergence measure Dt(W,Wt−1) =

∑
jl Wjl log

(
Wjl

(Wt)jl

)
. In addition, we can also utilize the

Shannon entropy as the global retention by regularizing deviations from uniform distribution, i.e.,
Gt(W ) =

∑
jl Wjl log(Wjl). Combining these choices of the local and global retention gates, we

obtain the overall retention gate

Rett(W,Wt−1) =
1

ηt

∑
jl

Wjl log

(
Wjl

(Wt)jl

)
+

1

αt

∑
jl

Wjl log(Wjl)

Choosing the attentional bias ℓ̃(W ;kt,vt) = ⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩ and the above reten-
tion gate will lead to the update rule

Wt = argmin
W
⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩+

1

ηt

∑
jl

Wjl log

(
Wjl

(Wt)jl

)
+

1

αt

∑
jl

Wjl log(Wjl)

(28)

s.t.
∑
jl

Wjl = c, Wjl ≥ 0, ∀jl (29)

Attaching the Lagrange multiplier to the first constraint, the KKT conditions implies

(∇ℓ(Wt−1;kt,vt))jl +

(
1

ηt
+

1

αt

)
(1 + logWjl)−

1

ηt
log ((Wt−1)jl) + µt = 0, ∀j, l (30)

where µt should be chosen such that
∑

jl Wjl = c. Rearranging the terms and defining λt =
1/αt

1/αt+1/ηt
, η′t =

1
1/αt+1/ηt

, we get the update rule

Wt ← c Softmax ((1− λt) log(Wt−1)− η′t∇ℓ(Wt−1;kt,vt)) (31)

where λt ∈ (0, 1) and η′ ∈ R+ are the hyper-parameters that can be learned during training. The
Softmax operator ensures that the output lies in the setW .

Notice that while all above calculations are done for a matrix W , similar update rule holds for other
forms of parameters such as when W is a neural network (or when the parameter W is normalized
per slice).

Variant 5: Elastic Net Regularization: Hard and Soft Forgetting. Elastic net is a powerful
and popular tool in regression analysis to balance the feature selection capabilities of LASSO (Tib-
shirani, 1996) and bias reduction properties of Ridge regression (Hilt & Seegrist, 1977; Hoerl &
Kennard, 1970). It has been widely used in different applications due to its ability to handle high-
dimensional data and mitigate the effects of multicollinearity. Given this success, a natural question
is what happens if we use this regularization scheme in our context.

Let us start based on (Learning-Retaining Viewpoint) to design our memorization scheme. As
mentioned in (Learning-Retaining Viewpoint) , the loss function ℓ̃t(W ;kt,vt) is an approximation
of the original function ℓ(·), measuring our goodness-of-fit. Regularizing this loss with elastic net
regularizer, we obtain the approximation

ℓ̃t(W ;kt,vt) = ⟨W −Wt−1,∇ℓ(Wt−1;kt,vt)⟩.
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with a global retention of Gt(W ) = 1
2β ∥W∥

2
2 + 1

α∥W∥1. To fully specify the update rule of
(Learning-Retaining Viewpoint) , we also need to specify the premetric functions Dt(·, ·). For the
sake of keeping the update rule simple (and parallelizable), we can choose

Dt(W,Wt−1) =
1

2
∥W −Wt−1∥22.

These choices of the attentional bias and retention gate leads to the following update rule:

Wt = Sγ (λWt−1 − ζ∇ℓ(Wt−1;kt,vt)) , (32)

where γ = ηβ
α(η+β) , λ = β

β+η , ζ = ηλ, and Sγ is the soft thresholding operator, applied element-
wise. For each element, this operator is defined as

Sγ(z) = sign(z)max {0, |z| − γ} .
In other words, for large values of z, Sγ(z) makes z closer to zero by γ amount. If it is already in
the γ-vicinity of zero, then it makes it zero (hard forget).

Equation equation 32 can be viewed as a combination of soft forgetting (obtained by multiplying W
by λ ∈ (0, 1), and a hard forgetting (if it is smaller than γ). The hyperparameters γ, λ, and ζ can be
learned. Notice that since the shrinkage operator is not differentiable, we can approximate it with its
smooth approximation. For example, we can use Sγ(z) ≈ |z|∗arctan(z/γ)

π/2 .

Variant 6: Elastic Net Regularization: Forgetting via Soft-thresholding. The elastic net regu-
larizer can also be used in the (FTRL Viewpoint) . In particular, in (FTRL Viewpoint) , we can
set

1

ηt
Rt(W ) =

1

η
∥W∥2 + 1

α
∥W∥1

and use ℓ̂(W ;xi) = ⟨W −Wi−1,∇ℓ(Wi−1;xi)⟩. Assuming initialization at W0 = 0, these choices
of attentional bias and retention gate leads to the update rules:

At = At−1 − η∇ℓ(Wt−1;kt,vt)

Wt = Sη/α (At) (33)

Here Sη/α(·) is the soft-thresholding operator with parameter η/α, which can be smoothly as ex-
plained in Variant 1.1.

Variant 7: General Lq Memory Stability. Existing work is based on the retention gate choices
Dt(W,Wt−1) = ∥W −Wt−1∥2F or R(W ) = ∥W∥22. However, one can choose other choices of
retention gate. For example, in (FTRL Viewpoint) , we can choose Lq norm as the regularizer
R(W ). More specifically, for 1 < q ≤ 2, we can set

1

ηt
R(W ) =

1

2η(q − 1)
∥W∥2q.

Using this retention gate and choosing ℓ̂i(W ;kt,vt) = ⟨W − Wi−1,∇ℓ(Wi−1;kt,vt)⟩ in
(FTRL Viewpoint) , leads to the update rule Wt = −η At

∥At∥p−2
p

, where p = q
q−1 and At =∑t

i=1∇ℓ(Wi−1;kt,vt); see (Shalev-Shwartz et al., 2012, Section 2.6). Here, ⊙ denotes the
Hadamard (element-wise) product and | · | is the element-wise absolute value operator. Assuming
W0 = 0, this update rule can be recursively written as:

At = At−1 − η∇ℓ(Wi−1;kt,vt), and Wt =
At

∥At∥p−2
p

.

Variant 8: Bregman Divergence as Retention Gate.. Another natural choice is to use Bregman
divergence as retention gate, leading to a mirror descent-type algorithms. In particular, given a
smooth strictly convex function f(·) : R 7→ R, we can define the function F (W ) =

∑
jl f(Wjl).

Based on this choice of function F , we define the Bregman divergence

Dt(W,W ′) = F (W )− F (W ′)− ⟨W ′,W −W ′⟩
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as our parametric function. Utilizing this retention gate and choosing ℓ̃t(W ;kt,vt) = ⟨W −
Wt−1,∇ℓ(Wt−1;kt,vt)⟩ in (Learning-Retaining Viewpoint) , we obtain the update rule

Wt = g (−η∇ℓ(Wt−1;kt,vt) + F ′(Wt−1)) .

Here, F ′ is the mapping obtained by applying f ′(·) (the derivative of f ) element-wise to all entries
of its input matrix argument. The function g is the inverse of the mapping F ′(·), i.e., g(F ′(W )) =
W .

If we choose f(τ) = τ2

2 , then F ′(W ) becomes the identity mapping and so is g. Therefore, the
above update becomes simple gradient descent with no nonlinearity involved in the update rule.
However, other choices of f(·) introduces additional nonlinearity in g(·), which can enhance the
expressivity of our memory. For example, we can choose the function f(·) so that its derivative
becomes the inverse sigmoid function, i.e., f ′(τ) = ln

(
τ

1−τ

)
with f ′ : (0, 1) 7→ R. Since f ′(·) is

strictly increasing, then the function f(·) (and hence F (·)) is strictly convex. Therefore, the Bregman
divergence is well defined. Moreover, the inverse of the function f ′(·) becomes the sigmoid function,
i.e., g(τ) = σ(τ) = exp(τ)

1+exp(τ) with g : R 7→ (0, 1). Then, the update of the memory becomes

Wt = σ

(
ln

(
Wt

1−Wt

)
− η∇ℓ(Wt−1;kt,vt)

)
,

where σ is the sigmoid function operated element-wise on the entries of W , and the division operator
Wt

1−Wt
is also performed element-wise. This update rule guarantees that the elements of Wt remains

within the interval (0, 1).

F PARALLELIZABLE TRAINING AND EFFICIENT IMPLEMENTATION OF
MIRAS’ VARIANTS

While the design of MIRAS’s variant are theoretically well-motivated, their recurrence is non-linear,
potentially make their straightforward training slow for large scales. In this section, we build upon
the work of Behrouz et al. (2024b); Sun et al. (2024) to make the training parallelizable. The main
idea is to divide the sequence into chunks with size b (usually is 16 or 64) and calculate the gradient
for all tokens in the current chunk with respect to the last state of the memory in the previous
chunk. That is, we use ∇ℓ(Mt′ ;kt,vt) instead of ∇ℓ(Mt−1;kt,vt), where t′ is the last state in
the previous chunk.

Given the above trick, we can calculate all gradients at once and make the recurrence inside each
chunk linear. However, to fully take advantage of accelerators, we need to reformulate the process
as matrix multiplication. For MONETA, for the sake of clarity, assume q = 2. We follow the same
algorithm as Behrouz et al. (2024b) and expand the recurrence as follows:

Mt = αtMt−1 − ηt∇ℓ(Mt−1;ki,vi)

= βtM0 −
t∑

i=1

ηi
βt

βi
∇ℓ(Mt′ ;ki,vi), (34)

where t′ = t − mod(t, b), and βi =
∏i

j=1 αj . For the sake of clarity, we focus on the first chunk,
i.e., t = b and so t′ = 0, and explain the process for the case thatMt = Wt is linear. The process
for 2-layer MLPs and other chunks is similar. Using ℓp loss function, we have:

∇ℓ(W0;ki,vi) = p
(
Sign(Wkt − vt)⊙ |Wkt − vt|p−1

)
k⊤
t

⇒
b∑

i=1

ηi
βb

βi
∇ℓ(W0;xi) = pEb ⊙Bb ⊙ Sign(Wkt − vt)⊙ (|W0K − V |p−1)K⊤, (35)

where Eb = [η1 η2 . . . ηb] and Bb is defined analogously on βb

βi
s. For the sake of stablity in

training, we use Sign(x) ≈ tanh (αx) and |x| =
√
x2 + ϵ, where ϵ > 0 is a small number (i.e.,

ϵ = 1e − 6). As discussed before, the case that q ̸= 2 appears as a normalization term on the
memory. Similar to Titans (Behrouz et al., 2024b) and TTT (Sun et al., 2024), we do not apply this
non-linearity inside each chunk and instead use it at the end of each chunk.
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Figure 5: Visualization of the MIRAS’ variant architecture, their hybrid counterpart with SWA, and
block design of MIRAS layer.

The process is the same for other two variants: (1) YAAD: We calculate the gradient of both ℓ1 and
ℓ2 loss and use a masking based on ∥M(kt)− vt∥ ≤ δt. (2) MEMORA: update has two non-linear
part, i.e., softmax and log. As discussed above, we apply the softmax at the end of each chunk.
Therefore, for the log function, we can calculate all the gradients of each chunk at first and then
expand the recurrence with respect to the log of weights. Again, this process make the inside chunk
recurrence linear and inter-chunk recurrence non-linear.

G EXPERIMENTAL SETUP

We perform experimental evaluation on the language modeling (Merity et al., 2017; Paperno et al.,
2016), common-sense reasoning (Bisk et al., 2020; Zellers et al., 2019; Sakaguchi et al., 2021;
Clark et al., 2018; 2019), and long context needle-in-haystack tasks (Hsieh et al., 2024). We com-
pare our models with the state-of-the-art linear recurrent models, Transformers, and hybrid models
(recurrent + attention). More specifically we compare with Transformer++ (Touvron et al., 2023),
RetNet (Sun et al., 2023), Gated Linear Attention (GLA) (Yang et al., 2024b), Mamba (Gu & Dao,
2024), Mamba2 (Dao & Gu, 2024), DeltaNet (Yang et al., 2024c), TTT (Sun et al., 2024), and Gated
DeltaNet (Yang et al., 2024a).

We train our models with training context window of size 4096 using either FineWeb-Edu
dataset (Penedo et al., 2024) (for LM and common-sense reasoning tasks) or C4 dataset (Raffel
et al., 2020) (for scaling patterns). We use model sizes of 120M, 340M, 760M, and 1.3B parame-
ters. We train small models (120M and 340M) on 15B tokens sampled from the dataset, the medium
size model (760M) on 30B tokens, and the large model on 100B tokens.

Table 6: Architectural Details.

Model Block Dim Head Peak LR Token

170M 12 768 16 3e-3 15B
350M 24 1024 16 1.5e-3 15B
780M 24 1536 16 1.25e-3 30B

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 LANGUAGE MODELING

The full results for experiments on language modeling and common-sense reasoning tasks are re-
ported in Table 7. Similar to 1.3B scale, our models achieve higher average accuracy compared to
modern recurrent models.
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Table 7: Performance of MIRAS’ variants and recurrent- and Transformer-based baselines on lan-
guage modeling and common-sense reasoning tasks. Hybrid models are marked with ∗. The best
results are highlighted .

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ ↑

340M params / 15B tokens

Transformer++ 31.52 41.08 30.76 62.98 34.76 50.53 45.21 24.05 36.81 58.24 42.92
RetNet 32.50 49.73 28.24 62.61 34.15 50.91 44.27 23.62 36.79 59.72 42.54
GLA 28.51 43.02 28.73 64.05 35.96 50.00 54.19 24.29 37.13 58.39 44.09
Mamba 30.83 40.21 29.94 63.79 35.88 49.82 49.24 24.56 35.41 60.07 43.59
DeltaNet 28.65 47.30 28.43 63.52 35.95 49.63 52.68 25.37 37.96 58.79 44.04
TTT 27.44 34.19 30.06 63.97 35.71 50.08 53.01 26.11 37.32 59.83 44.51
Gated DeltaNet 27.01 30.94 34.11 63.08 38.12 51.60 55.28 26.77 34.89 59.54 45.42

MONETA (ours) 26.19 29.31 35.70 63.99 39.23 52.04 55.96 27.15 37.29 60.22 46.44
YAAD (ours) 26.61 29.11 34.09 64.93 39.86 51.12 54.75 28.64 33.82 60.29 45.93
MEMORA (ours) 27.16 30.44 33.68 65.21 39.17 51.23 53.40 27.99 34.1 59.29 45.51

760M params / 30B tokens

Transformer++ 25.21 27.64 35.78 66.92 42.19 51.95 60.38 32.46 39.51 60.37 48.69
RetNet 26.08 24.45 34.51 67.19 41.63 52.09 63.17 32.78 38.36 57.92 48.46
Mamba2 22.94 28.37 33.54 67.90 42.71 49.77 63.48 31.09 40.06 58.15 48.34
DeltaNet 24.37 24.60 37.06 66.93 41.98 50.65 64.87 31.39 39.88 59.02 48.97
TTT 24.17 23.51 34.74 67.25 43.92 50.99 64.53 33.81 40.16 59.58 47.32
Gated DeltaNet 21.18 22.09 35.54 68.01 44.95 50.73 66.87 33.09 39.21 59.14 49.69
Samba∗ 20.63 22.71 39.72 69.19 47.35 52.01 66.92 33.20 38.98 61.24 51.08
Gated DeltaNet-H2∗ 19.88 20.83 39.18 68.95 48.22 52.57 67.01 35.49 39.39 61.11 51.49

MONETA (ours) 21.18 21.94 38.02 69.55 49.16 53.01 67.47 36.09 40.53 63.18 52.12
YAAD (ours) 20.99 21.57 37.85 69.14 50.02 53.93 67.78 36.27 41.01 63.34 53.98
MEMORA (ours) 22.28 22.31 38.19 67.82 49.30 53.28 63.57 36.15 40.94 62.96 51.52

1.3B params / 100B tokens

Transformer++ 18.53 18.32 42.60 70.02 50.23 53.51 68.83 35.10 40.66 57.09 52.25
RetNet 19.08 17.27 40.52 70.07 49.16 54.14 67.34 33.78 40.78 60.39 52.02
Mamba2 16.56 12.56 45.66 71.87 55.67 55.24 72.47 37.88 40.20 60.13 54.89
DeltaNet 17.71 16.88 42.46 70.72 50.93 53.35 68.47 35.66 40.22 55.29 52.14
Gated DeltaNet 16.42 12.17 46.65 72.25 55.76 57.45 71.21 38.39 40.63 60.24 55.32
Samba∗ 16.13 13.29 44.94 70.94 53.42 55.56 68.81 36.17 39.96 62.11 54.00
Gated DeltaNet-H2∗ 15.91 12.55 48.76 72.19 56.88 57.77 71.33 39.07 41.91 61.55 56.18

MONETA (ours) 15.52 11.47 47.88 73.16 56.14 59.09 72.53 40.32 41.91 61.18 56.52
YAAD (ours) 15.18 11.89 47.23 72.81 56.46 59.02 72.14 40.05 40.73 61.86 56.39
MEMORA (ours) 15.90 12.04 48.67 73.10 55.99 57.36 71.55 37.92 40.19 61.34 55.87

H.2 EFFICIENCY EVALUATIONS

In this section, we evaluate the training and inference throughput of MIRAS’s variants with state-of-
the-art sequence models, including Transformers. In particular, in 8K context window, the training
throughput (103 T/s) of Transformers, Mamba, DeltaNet, and Titans are 48, 33, 39, and 37, respec-
tively. MIRAS’s variants of MEMORA, YAAD, and MONETA have training throughput of 34, 36,
37 (103 T/s), which is compatible and on par with state-of-the-art recurrent neural networks. It is
notable that this throughput is achieved without any specially design kernel. Therefore, in summary:
(1) Comparing to modern sequence models such as Mamba and DeltaNet (which also take advan-
tage of optimized kernels), MIRAS’s variants show competitive speed and are fast enough to be
able to be scaled to larger scales; (2) Comparing to Titans, MIRAS’s variants do not add significant
computational overhead, despite they having more expressive attentional biases.

H.3 MAD BENCHMARK

Next, we evaluate our models’ performance and baselines’ on MAD benchmark, which is a synthetic
benchmark for evaluating the performance of sequence models in memorization, recall, compres-
sion, and copying tasks (Poli et al., 2024). The results are reported in Table 8. All MIRAS’s variants
achieve higher accuracy compared to baselines. Particularly in memorization, our models show rel-
atively higher rate of improvements, which highlights the importance of going beyond conventional
attentional biases.

H.4 IN-CONTEXT RETRIEVAL TASK

In this section, we evaluate the performance of MIRAS’s variants and baselines on in-context re-
call tasks, which is one of the most challenging benchmarks for recurrent neural networks. In this
section, we follow Arora et al. (2024) and evaluate the models on SWDE (Lockard et al., 2019),
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Table 8: Performance of MIRAS’ variants, and baselines on the synthetic benchmark of MAD (Poli
et al., 2024). Our models achieve higher accuracy compared to all the baselines, including Trans-
formers.

Compression (Noisy) ICR Fuzzy ICR Selective Memorization AverageCopying

Transformers 49.4 100 48.2 95.9 83.8 75.46
Gated DeltaNet 44.8 100 32.5 96.2 81.7 71.04
Titans 49.6 100 49.7 99.4 83.5 76.44

YAAD (ours) 51.9 100 50.2 99.6 85.7 77.28
MONETA (ours) 51.1 100 48.9 99.6 85.4 77.00
MEMORA (ours) 50.5 100 48.7 99.6 85.1 76.78

Table 9: The performance of MIRAS’ variants compared to baselines. While still Transformers
achieve the best results in in-context recall tasks, our design of more expressive attentional bias can
potentially reduce the performance gap with Transformers in future.

SWDE NQ DROP FDA SQUAD TQA Average

Transformers 84.9 23.0 28.4 72.5 48.1 64.4 53.55
Gated DeltaNet 63.2 19.1 26.7 33.4 39.6 59.7 40.28
Titans 65.1 20.7 27.2 37.3 42.6 61.0 42.31

YAAD (ours) 66.2 20.9 27.2 38.1 42.7 61.3 42.73
MEMORA (ours) 65.5 20.5 26.9 38.2 43.0 61.2 42.55
MONETA (ours) 64.9 20.7 27.1 37.9 42.5 61.0 42.35

NQ (Kwiatkowski et al., 2019), DROP (Dua et al., 2019), FDA (Arora et al., 2023), SQUAD (Ra-
jpurkar et al., 2016), and TQA (Kembhavi et al., 2017). The results are reported in Table 9. Trans-
formers still achieve the best results, outperforming all the recurrent models in in-context recall
tasks. Our variants of MIRAS, however, show competitive performance and improve the gap of
recurrent models with Transformers.
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