
Infinite-Width Limit of a Single Attention Layer:
Analysis via Tensor Programs

Mana Sakai1,3 Ryo Karakida2,3 Masaaki Imaizumi1,3

1The University of Tokyo
2National Institute of Advanced Industrial Science and Technology

3RIKEN Center for Advanced Intelligence Project

mana.sakai.77@gmail.com, karakida.ryo@aist.go.jp,
imaizumi@g.ecc.u-tokyo.ac.jp

Abstract

In modern theoretical analyses of neural networks, the infinite-width limit is often
invoked to justify Gaussian approximations of neuron preactivations (e.g., via neural
network Gaussian processes or Tensor Programs). However, these Gaussian-based
asymptotic theories have so far been unable to capture the behavior of attention
layers, except under special regimes such as infinitely many heads or tailored scaling
schemes. In this paper, leveraging the Tensor Programs framework, we rigorously
identify the infinite-width limit distribution of variables within a single attention
layer under realistic architectural dimensionality and standard 1/

√
𝑛-scaling with

𝑛 dimensionality. We derive the exact form of this limit law without resorting
to infinite-head approximations or tailored scalings, demonstrating that it departs
fundamentally from Gaussianity. This limiting distribution exhibits non-Gaussianity
from a hierarchical structure, being Gaussian conditional on the random similarity
scores. Numerical experiments validate our theoretical predictions, confirming the
effectiveness of our theory at finite width and accurate description of finite-head
attentions. Beyond characterizing a standalone attention layer, our findings lay the
groundwork for developing a unified theory of deep Transformer architectures in
the infinite-width regime.

1 Introduction

A useful approach to understanding the complex probabilistic behavior of neural networks is through
the study of parameter distributions in the infinite-width limit. Notable examples include the
neural network Gaussian process (NNGP) [LBN+18, HBSDN20], which approximates the limit of
stochastic parameter distributions with Gaussian processes; the neural tangent kernel (NTK) [JGH18],
which represents the model near the initial value with kernel functions; mean field theory, which
describes the update of parameter distributions [MMN18]; and the Tensor Program, developed by
[Yan19a, Yan20a, YL21, Yan20b, YH21, YL23, YHB+21, YYZH24], which is a general probabilistic
analytical framework that unifies the representation of the infinite-width limit for a wide range of
neural architectures and multiple layers. These methods provide probabilistic models that closely
approximate the complex phenomena of neural networks.

One challenge in the studies is to properly represent the attention mechanisms used in Trans-
formers [VSP+17], which frequently appear in recent large-scale architectures [DCLT19, AAA+23,
ZZL+23]. Unlike ordinary multi-layer perceptrons, an attention layer has interactions between query
and key variables by multiplication, which makes the infinite-width limit distribution considerably

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

more complex as shown in [HBSDN20], for example. To avoid this difficulty, the existing studies have
mainly limited themselves to two special settings to compute the parameter distribution of the limit:
(i) Infinite-head regime: [HBSDN20] considers the NNGP for the attention mechanism with infinite
heads, resulting in a Gaussian approximation. (ii) 1/𝑛-scaling regime: the Tensor Programs [Yan19b]
approximate the multiplication by changing the scale of the input variables for attention layers from
1/
√
𝑛 to 1/𝑛, where 𝑛 is a dimension of variables. However, these simplifications compromise the

expressiveness and structure of actual attention mechanisms (and consequently, of Transformers).
Specifically, the limit distribution at the infinite-head is not an effective approximation of the actual
attention mechanisms because it differs significantly from the finite-head case. Also, the 1/𝑛-scaling
regime makes all similarity scores converge to zero in the infinite-width limit, making the model
equivalent to not measuring similarity between key and query vectors. Therefore, the limit parameter
distribution of the attention mechanism is still under development.

In this study, we investigate the infinite-width limit distribution of outputs of a single attention layer
under the common scaling and number of heads. To achieve this, we apply the Tensor Programs
framework and analyze a new class of variables defined by the multiplication of intermediate variables,
and derive a corresponding limit distribution. This new class of variables allows us to represent the
dot-product score by the multiplication of keys and queries in the attention mechanism.

We summarize our contributions as follows:

• Non-Gaussian limiting distribution: We study a distribution of outputs of a single attention
layer with the 1/

√
𝑛-scaling and finite heads, and demonstrate that in the infinite-width limit,

the output distribution converges to a hierarchical Gaussian distribution, which is a type of
non-Gaussian. Specifically, the limiting distribution is a Gaussian conditional on the random
similarity score, and this score variable itself converges to a Gaussian.

• Consistency with numerical experiments: Our experiments justify that our theoretical
limit distribution accurately captures the non-Gaussian behaviors exhibited by attention
mechanisms. Specifically, even when the width is finite, our theory proves sufficiently
accurate, provided that the dimension is large enough.

• Novel proof technique with dot-products: We develop a novel proof technique focused on
analyzing the similarity score variables by the dot-products of an attention layer. More
concretely, we first show a convergence of the score variables to their limiting distributions,
and then prove a conditional weak convergence of the outputs of an attention layer. This
analysis characterizes the output distribution of an attention layer by incorporating the
intrinsic randomness from the dot-product.

1.1 Related Works

The concentration of measures in neural networks plays a fundamental role in both theoretical analysis
and practical applications of machine learning. Initially, studies in this area aimed to characterize the
feedforward signal propagation in wide neural networks with random weights, inspired by statistical
mechanics [Ama77, SCS88]. The outputs of such random neural networks converge to a Gaussian
process, and the computation of signal propagation reduces to the composition of kernel functions
of Gaussian processes utilized in machine learning [Nea96, Wil96, DFS16, LBN+18, dGMHR+18].
They are often referred to as the NNGP. Since the NNGP kernel captures intrinsic inductive biases
of architectures, its prediction performance correlates well with trained networks across different
architectures [LBN+18]. Moreover, one can interpret NNGP as a network with random initialization
of optimization, which naturally leads to quantitative insight into desirable weight scales to avoid
exploding/vanishing signal and gradient problems [PLR+16, SGGSD17].

Depending on the network architecture, various types of kernels can be obtained, not only for
fully-connected neural networks, but also convolutional neural networks (CNNs) [NXL+19], skip
connections [YS17], naive or gated recurrent neural networks (RNNs) [CPS18, Yan19b], and more
[YPR+19, GHLG23]. While some classical works assumed random Gaussian weights generated in
an i.i.d. manner, recent research has shown that the same NNGP can be derived even in networks
with non-Gaussian [GY22] or weakly correlated weights [SNT24]. The NNGP can also be obtained
for a network with a narrow bottleneck layer sandwiched between wide layers [APH20].

Two pioneering studies have investigated the NNGP of self-attention layers [Yan19b, HBSDN20].
Initially, [Yan19b] pointed out that an unconventional scaling factor of 1/𝑛 in the softmax function

2

enables straightforward NNGP evaluation. Greg Yang has introduced the theoretical framework of
Tensor Programs [Yan19a, Yan20a, Yan20b], systematically composing kernel functions, including
NNGPs, for modern neural networks. Transformers with the 1/𝑛-scaling fall within the scope of the
applicability of Tensor Programs. However, the 1/𝑛-scaling is rarely used in theoretical or practical
contexts, leaving the more realistic 1/

√
𝑛-scaling unresolved. To attack this problem, [HBSDN20]

analyzed self-attention by varying the number of heads. They numerically demonstrated non-Gaussian
behavior emerging in the single-head case due to stochasticity and correlations within the attention
matrix, even at infinite embedding dimensions. They further showed that if we take the infinite
limit of the number of heads, Gaussian behavior emerges in the self-attention output and defines
an NNGP kernel termed infinite attention. Although this infinite attention empirically improved
performance on certain NNGP regression benchmarks, its suitability as a theoretical foundation for
realistic self-attention remains uncertain. This is because practical attention implementations typically
use only 1-128 heads [EXW+24], far fewer than the embedding dimension.

Beyond the classical NNGP and Tensor Programs analyses, several recent works have examined
Transformers under the standard 1/

√
𝑛 scaling and related asymptotic or dynamical regimes. [DYZ23]

analyzed Transformers by tracking the first two moments (the kernel) of the signal to characterize
propagation at initialization and during training. [CNQG24] applied mean-field theory to characterize
the edge of chaos via forward and backward signal propagation, assuming Gaussianity of the QK
product. [BCP24] employed dynamical mean field theory to study training dynamics under various
infinite limits, including infinite width, heads, and depth, identifying parameterizations that ensure
stable feature learning over time. [NLL+23] modeled signal evolution with a stochastic differential
equation, which requires modifying the softmax function.

2 Preliminary

2.1 Notation and Setup of Neural Networks

We define the notation for a standard neural network and its usage. In what follows, we denote by 𝑛 the
dimensionality corresponding to the network’s width. Although we can vary 𝑛 across different layers
or architectures, for simplicity we here treat every layer as having the same width 𝑛. A comprehensive
summary of the notations used throughout this paper is provided in Appendix A.

Neural network We define notation for standard neural networks, excluding the attention mechanism.
In particular, we adopt notations inspired by the framework of Tensor Programs [Yan19a, Yan19b],
which allow us to describe a broad class of neural network architectures.

We describe an architecture of feed-forward neural networks as a finite set of R𝑛-valued random
vectors ℎ1, . . . , ℎ𝐽 , which is inductively generated by the following rule. We fix a nonempty subset
V0 ⊂ {ℎ1, . . . , ℎ𝐽 }, called the set of initial vectors (input layer). For each index 𝑘 with ℎ𝑘 ∉ V0, the
vector ℎ𝑘 is generated either by matrix multiplication (MatMul) or by a coordinatewise nonlinearity
(Nonlin). In the MatMul rule, given a weight matrix𝑊 ∈ R𝑛×𝑛 and some 𝑗 ≠ 𝑘 , one sets ℎ𝑘 = 𝑊ℎ 𝑗 .
In the Nonlin rule, given 𝑘 ∉ { 𝑗1, . . . , 𝑗𝑚} ⊂ [𝐽] and a function 𝜙 : R𝑚 → R, one sets

ℎ𝑘 = 𝜙(ℎ 𝑗1 , . . . , ℎ 𝑗𝑚), ℎ𝑘𝛼 = 𝜙(ℎ 𝑗1𝛼 , . . . , ℎ 𝑗𝑚𝛼) (𝛼 ∈ [𝑛]).

This type of Tensor Program is called Netsor, and it covers a broad range of neural network
architectures, including a perceptron layer, a convolutional layer, a recurrent layer, and many others
[Yan19a, Yan19b].

We present the perceptron layer as a specific neural network represented by Netsor. Suppose
𝑥ℓ−1 ∈ R𝑛 is the input of the ℓ-th layer. It generates pre-activation variable 𝑧ℓ ∈ R𝑛 and the input of
the next layer 𝑥ℓ ∈ R𝑛 by

𝑧ℓ = 𝑊ℓ𝑥ℓ−1, 𝑥ℓ = 𝜙(𝑧ℓ),

where 𝑊ℓ ∈ R𝑛×𝑛 is a weight matrix and 𝜙 : R → R is a (potentially nonlinear) coordinatewise
activation function. The vectors 𝑧ℓ and 𝑥ℓ are generated by MatMul and Nonlin, respectively.

Multi-head attention We define the attention layer. Let 𝑠 and 𝐻 denote the spatial dimension
and the number of heads, respectively. Suppose 𝑊𝑄,𝑎,𝑊𝐾,𝑎,𝑊𝑉,𝑎,𝑊𝑂,𝑎 ∈ R𝑛×𝑛 are weight

3

matrices for head 𝑎 ∈ [𝐻]. With an input sequence of 𝑠 random vectors 𝑥1, . . . , 𝑥𝑠 ∈ R𝑛, we
define 𝑋 ∈ R𝑠×𝑛 as a matrix whose 𝑖-th row is 𝑥𝑖 , i.e., 𝑋⊤ = [𝑥1 · · · 𝑥𝑠]. For each head 𝑎 ∈ [𝐻],
define 𝑄 (𝑎) = 𝑋 (𝑊𝑄,𝑎)⊤, 𝐾 (𝑎) = 𝑋 (𝑊𝐾,𝑎)⊤, 𝑉 (𝑎) = 𝑋 (𝑊𝑉,𝑎)⊤, so that 𝑄 (𝑎) , 𝐾 (𝑎) , 𝑉 (𝑎) are R𝑠×𝑛
matrices. The scaled dot-product score matrix is given by

𝐺 (𝑎) =
1
√
𝑛
𝑄 (𝑎) (𝐾 (𝑎))⊤ = (𝑝 (𝑎)

𝑖, 𝑗
)𝑖, 𝑗∈[𝑠] ∈ R𝑠×𝑠 , 𝑝

(𝑎)
𝑖, 𝑗

=
1
√
𝑛
(𝑊𝑄,𝑎𝑥𝑖)⊤ (𝑊𝐾,𝑎𝑥 𝑗). (1)

Here, the common scaling 1/
√
𝑛 in the definition of 𝑝 (𝑎)

𝑖, 𝑗
is a key issue in this study.1 Applying the

row-wise SoftMax to the score matrix, we define

𝐴(𝑎) = SoftMax(𝐺 (𝑎)) ∈ R𝑠×𝑠 , 𝐴
(𝑎)
𝑖, 𝑗

= SoftMax 𝑗 (𝑝 (𝑎)𝑖,1 , . . . , 𝑝
(𝑎)
𝑖,𝑠
).

We then weight the values to form each head’s output Head(𝑎) = 𝐴(𝑎)𝑉 (𝑎) ∈ R𝑠×𝑛. Finally, we sum
across all 𝐻 heads to recover the full attention output MultiHead = 𝐻−

1
2
∑𝐻
𝑎=1 Head(𝑎) (𝑊𝑂,𝑎)⊤ ∈

R𝑠×𝑛, where each row MultiHead𝑖 · is given by

(MultiHead𝑖 ·)⊤ =
1
√
𝐻

𝐻∑︁
𝑎=1

𝑠∑︁
𝑗=1
𝑊𝑂,𝑎𝑊𝑉,𝑎𝑥𝑖SoftMax 𝑗 (𝑝 (𝑎)𝑖,1 , . . . , 𝑝

(𝑎)
𝑖,𝑠
) ∈ R𝑛 (𝑖 ∈ [𝑠]). (2)

Weight initialization We set the weight matrices such as𝑊ℓ ,𝑊𝑄,𝑎,𝑊𝐾,𝑎,𝑊𝑉,𝑎, and𝑊𝑂,𝑎, and
initial vectors ℎ ∈ V0 as follows:

(i) Each weight matrix 𝑊 is independent. Each (𝛼, 𝛽) element of 𝑊 is sampled i.i.d. from
𝑊𝛼𝛽 ∼ 𝑁 (0, 𝜎2

𝑊
/𝑛), where 𝜎𝑊 > 0 is a constant that may depend on𝑊 .

(ii) Let 𝑍V0 = {𝑍ℎ : ℎ ∈ V0} ∈ R |V0 | be a multivariate normal distribution. For each 𝛼 ∈ [𝑛],
the collection of 𝛼-th components of all initial vectors inV0, denoted by {ℎ𝛼 : ℎ ∈ V0}, is
sampled i.i.d. from 𝑍V0 .

This setup of weight matrices is common in practice (see [GB10] for summary) and also identical to
that in the existing Tensor Programs [Yan19a, Yan19b, Yan20b].

2.2 Distribution of Attention Mechanism in Previous Setup

We discuss the existing challenges on characterizing the output distribution of the attention layer,
which exhibits non-Gaussian behavior. To derive this distribution, two regimes are typically made:
the choice of scaling in the similarity computation, and the number of heads.

1/𝑛-scaling regime [Yan19b] studies an attention layer whose scaling term 1/
√
𝑛 in the scaled

dot-product of Eq. (1) is replaced by 1/𝑛. In this regime, the Tensor Programs framework can show
that the outputs of the attention layer converge to a Gaussian distribution: as 𝑛→∞, it holds that

MultiHead𝑖𝛼
𝑑−→ 𝑁 (0, 𝜅2), (𝛼 ∈ [𝑛]),

with some 𝜅 > 0 (see Appendix A and Theorem E.8 in [Yan19b] for details). Intuitively, in the
1/𝑛-scaling regime, the dot-product score 𝑝 (𝑎)

𝑖, 𝑗
converges to 0 for every pair (𝑖, 𝑗) ∈ [𝑠]2 and head

𝑎 ∈ [𝐻], which simplifies the non-Gaussian behavior of the attention outputs.

Infinite-heads regime [HBSDN20] considers the regime in which many dimensionality diverge to
infinite, then shows the convergence of the attention outputs to Gaussian. Specifically, it is shown that
as 𝑛, 𝐻 →∞, it holds that

MultiHead𝑖𝛼
𝑑−→ 𝑁 (0, (𝜅′)2), (𝛼 ∈ [𝑛]),

1Our analysis focuses on the 1/
√
𝑛-scaling, a choice motivated by its prevalence in both practical Transformer

implementations and the theoretical literature (e.g., [HBSDN20, DYZ23, CNQG24]). While some analyses have
raised questions about its stability [YHB+21, BCP24], the precise conditions for stable training remain an active
area of research and may depend on factors often abstracted away in simplified limits, such as the number of
tokens or data-specific statistics. For instance, recent work has shown that data statistics can significantly alter
optimal scaling rules [HL25].

4

with some 𝜅′ > 0 (see Theorem 3 in [HBSDN20]). The variance (𝜅′)2 is described by a covariance
of the nonlinearly transformed dot-product score 𝑝 (𝑎)

𝑖, 𝑗
. In the result, by letting the number of heads

𝐻 grow to infinite, the complex non-Gaussian effects from the dot-product score are smoothed out,
yielding a convenient Gaussian distribution.

While these approximations are analytically appealing, they have notable limitations. In practice,
Transformers typically use 1/

√
𝑛-scaling (see Equation (1) in [VSP+17]) and a finite number of heads,

resulting in the frequently observed non-Gaussian behaviors of attention layers. Although the above
regimes simplify the behavior into a Gaussian form for tractability, a more precise theory is needed to
capture the true behavior of attention layers in practice.

3 Main Theorem

3.1 Limiting Distribution

We introduce the limiting distribution for two types of quantities: variables generated within the
Netsor program, and the scalar dot-products that arise in attention mechanisms. The convergence of
these variables to their limiting distributions is formally established in our main result, Theorem 3.1.
Definition 3.1 (Limiting Distribution). (A) Limiting distribution for vectors in the Netsor
program: For each vector ℎ ∈ R𝑛 in the Netsor program, there exist a corresponding random
variable 𝑍ℎ as follows:

(i) If ℎ is an initial vector fromV0, then 𝑍ℎ follows the distribution specified in Section 2.1.
(ii) If 𝑔1, . . . , 𝑔𝑘 are generated by MatMul, then (𝑍𝑔1

, . . . , 𝑍𝑔
𝑘) is a zero-mean Gaussian vector.

Specifically, for 𝑔𝑖 = 𝑊 𝑖ℎ𝑖 and 𝑔 𝑗 = 𝑊 𝑗ℎ 𝑗 , their covariance is given by

Cov(𝑍𝑔𝑖 , 𝑍𝑔 𝑗) =
{
0 (if𝑊 𝑖 and𝑊 𝑗 are different matrices),
𝜎2
𝑊
E[𝑍ℎ𝑖𝑍ℎ 𝑗] (if𝑊 𝑖 and𝑊 𝑗 are the same matrix).

(iii) If ℎ is generated by Nonlin, ℎ = 𝜙(ℎ1, . . . , ℎ𝑘), then 𝑍ℎ is defined as 𝑍ℎ = 𝜙(𝑍ℎ1
, . . . , 𝑍ℎ

𝑘).

(B) Limiting distribution for scalar dot-products: For each scalar 𝑝𝑖 = (𝑔𝑖,1)⊤𝑔𝑖,2/
√
𝑛, where 𝑔𝑖,1

and 𝑔𝑖,2 are outputs of MatMul within the Netsor program, we define 𝑝𝑖 as follows:

(iv) (𝑝1, . . . , 𝑝𝑟) is a zero-mean Gaussian vector. This vector is statistically independent of all
𝑍ℎ variables defined in (A). The covariance of (𝑝1, . . . , 𝑝𝑟) is given by

Cov(𝑝𝑖 , 𝑝𝑘) = E[𝑍𝑔
𝑖,1
𝑍𝑔

𝑖,2
𝑍𝑔

𝑘,1
𝑍𝑔

𝑘,2] .

In Definition 3.1, the formulations for the limiting random variables 𝑍ℎ associated with initial vectors,
MatMul outputs, and Nonlin outputs are developed by the existing Tensor Programs framework
[Yan19b]. Specifically, the limiting distribution of initial vectors follows that given in Section 2.1;
variables generated by MatMul converge to Gaussian distribution; and variables generated by Nonlin
are nonlinear transformations of the corresponding limiting distributions.

The distinct aspect of our analysis lies in the treatment of the limiting distribution for the scalar dot-
products (𝑝1, . . . , 𝑝𝑟), which represent pre-softmax attention scores. While the marginal Gaussian
distribution of these scores is consistent with that in the infinite-head limit (see Theorem 3 in
[HBSDN20]), our framework explicitly defines them as a Gaussian vector that is independent of the
limiting distributions 𝑍ℎ within the Netsor program. This independence facilitates the computation
of the limiting distribution of the attention outputs, as it allows us to treat the attention scores separately
from the other variables in the Netsor program.

3.2 Statement

In this section, we show the convergence of the distribution of variables in the presence of an attention
layer as the main result. Here, we refer to a function as pseudo-Lipschitz if it is pseudo-Lipschitz of
order 𝑑 for some 𝑑 ∈ [2,∞). See Definition C.1 for the definition of pseudo-Lipschitz functions.

5

As a preparation, we first introduce the results of the convergence of the Netsor program without an
attention layer. The following theorem is a slight simplification of Theorem 5.4 in [Yan19b].2
Fact 3.1 (Netsor Master Theorem [Yan19b]). Consider a Netsor program. Suppose all initial
vectors and weight matrices are sampled as explained in Section 2.1, and all nonlinearities used in
Nonlin are pseudo-Lipschitz. For any positive integer 𝑘 , let ℎ1, . . . , ℎ𝑘 be any vectors in the Netsor
program. Then, for any pseudo-Lipschitz function 𝜓 : R𝑘 → R, we have

1
𝑛

𝑛∑︁
𝛼=1

𝜓(ℎ1, . . . , ℎ𝑘) 𝑎.𝑠.−→ E[𝜓(𝑍ℎ1
, . . . , 𝑍ℎ

𝑘)]

as 𝑛→∞. Here, 𝑍ℎ1
, . . . , 𝑍ℎ

𝑘 are defined in Definition 3.1, (i)–(iii).

Building on the Netsor master theorem, we now present our main result. Before that, we introduce
some assumptions specific to the attention layer.
Assumption 3.1. Let 𝑟 and 𝑚 be positive integers that satisfy 𝑚 ≥ 2𝑟 . Suppose 𝑔1, . . . , 𝑔𝑚 ∈ R𝑛 are
vectors in the Netsor program generated by MatMul. We assume that a subset {𝑔𝑖, 𝑗 : 𝑖 ∈ [𝑟], 𝑗 ∈
[2]} ⊂ {𝑔1, . . . , 𝑔𝑚} can be expressed as, without loss of generality,3

𝑔𝑖, 𝑗 = 𝑊 𝑖, 𝑗𝑥𝑖, 𝑗 , 𝑥𝑖, 𝑗 = 𝜙𝑖, 𝑗 (𝑔1, . . . , 𝑔𝑚) (𝑖 ∈ [𝑟], 𝑗 ∈ [2]),

where each 𝜙𝑖, 𝑗 is a bounded and pseudo-Lipschitz function. The weight matrices𝑊 𝑖, 𝑗 ∈ R𝑛×𝑛 satisfy
two conditions:

(a) {𝑊 𝑖, 𝑗 : 𝑖 ∈ [𝑟], 𝑗 ∈ [2]} is specific to the generation of {𝑔𝑖, 𝑗 : 𝑖 ∈ [𝑟], 𝑗 ∈ [2]} and is not
used for any 𝑔 ∈ {𝑔1, . . . , 𝑔𝑚} \ {𝑔𝑖, 𝑗 : 𝑖 ∈ [𝑟], 𝑗 ∈ [2]}.

(b) It is permissible for 𝑊 𝑖, 𝑗 to be the same matrix as 𝑊 𝑖′ , 𝑗′ unless 𝑖 = 𝑖′, 𝑗 ≠ 𝑗 ′ (e.g., 𝑊1,1

could be the same matrix as𝑊2,1).

Finally, we define the scalar dot-products {𝑝𝑖 : 𝑖 ∈ [𝑟]} by

𝑝𝑖 =
1
√
𝑛
(𝑔𝑖,1)⊤𝑔𝑖,2 (𝑖 ∈ [𝑟]).

Theorem 3.1. Consider a Netsor program, and suppose all nonlinearities used in Nonlin are
pseudo-Lipschitz. We adopt the settings and notations from Assumption 3.1, which defines vectors
𝑔1, . . . , 𝑔𝑚 and scalar dot-products 𝑝1, . . . , 𝑝𝑟 . Further, suppose all initial vectors and weight
matrices are sampled as explained in Section 2.1. Now, let ℎ1, . . . , ℎ𝑘 ∈ R𝑛 be vectors whose elements
are given by

ℎ
𝑗
𝛼 = 𝜑 𝑗 (𝑔1

𝛼, . . . , 𝑔
𝑚
𝛼 , 𝑝1, . . . , 𝑝𝑟) (𝛼 ∈ [𝑛], 𝑗 ∈ [𝑘]),

where each 𝜑 𝑗 is a pseudo-Lipschitz function. Then, for any bounded and pseudo-Lipschitz function
𝜓 : R𝑘 → R, we have

1
𝑛

𝑛∑︁
𝛼=1

𝜓(ℎ1
𝛼, . . . , ℎ

𝑘
𝛼)

𝑑−→ E[𝜓(𝑍ℎ1
, . . . , 𝑍ℎ

𝑘) | 𝑝1, . . . , 𝑝𝑟]

as 𝑛 → ∞. Here, 𝑍ℎ 𝑗 is given by 𝑍ℎ
𝑗

= 𝜑 𝑗 (𝑍𝑔1
, . . . , 𝑍𝑔

𝑚

, 𝑝1, . . . , 𝑝𝑟) for 𝑗 ∈ [𝑘], and
(𝑍𝑔1

, . . . , 𝑍𝑔
𝑚

, 𝑝1, . . . , 𝑝𝑟) is defined in Definition 3.1.

It may be noted that in the statement of Theorem 3.1, the boundedness of 𝜙𝑖, 𝑗 as in Assumption 3.1
is not essential, and we can drop this condition. However, we keep it for simplicity of the proof.
Also, note that in this statement, 𝑝1, . . . , 𝑝𝑟 are random variables with positive variance, and the
convergence in distribution→𝑑 described in the statement refers to convergence to the distribution
of them. Unlike the conventional master theorem derived from Tensor Programs [Yan19a, Yan19b],

2[Yan19b] considers controlled functions instead of pseudo-Lipschitz functions, the former of which is a
generalization of pseudo-Lipschitz functions.

3The Tensor Programs framework generates vectors inductively, precluding circular dependencies (see
Section 2.1). Consequently, for each 𝑥𝑖, 𝑗 = 𝜙𝑖, 𝑗 (𝑔1, . . . , 𝑔𝑚), any arguments from {𝑔1, . . . , 𝑔𝑚} that effectively
contribute to the output 𝑥𝑖, 𝑗 (i.e., those upon which the function 𝜙𝑖, 𝑗 actually depends) must be defined prior to
𝑔𝑖, 𝑗 = 𝑊 𝑖, 𝑗𝑥𝑖, 𝑗 in this inductive sequence.

6

this theorem simultaneously characterizes the randomness of the ordinary variables like 𝑔1, . . . , 𝑔𝑚,
along with the effects of finite-dimensional random variables 𝑝1, . . . , 𝑝𝑟 .

Theorem 3.1 implies that, due to the randomness of (𝑝1, . . . , 𝑝𝑟), the overall outputs resemble a
hierarchical distribution, where the variance of one limiting distribution may depend on a realization
of another limiting distribution (𝑝1, . . . , 𝑝𝑟). This result differs from existing results by the Tensor
Programs where the variance depends on moments of the other distributions. This result leads to a
non-Gaussian limiting distribution in the attention case, whose details will be provided in Example 3.1.

The following corollary is an analogue of Theorem A.5 in [Yan20b].
Corollary 3.2 (Coordinatewise Convergence). Assume the same premise as in Theorem 3.1. Then,
for all 𝛼 ≥ 1, we have

(ℎ1
𝛼, . . . , ℎ

𝑘
𝛼)

𝑑−→ (𝑍ℎ1
, . . . , 𝑍ℎ

𝑘).

We present specific multi-head attention results as an example of the application of Corollary 3.2.
This example implies that the output of the attention mechanisms is described by a non-Gaussian
distribution. Specifically, when 𝑦𝑖 is an output of a multi-head attention layer as MultiHead𝑖 ·
defined in Eq. (2), (𝑍 𝑦1

, . . . , 𝑍 𝑦
𝑠) follows a hierarchical Gaussian distribution whose conditioning

(𝑝1, . . . , 𝑝𝑟) = {𝑝 (𝑎)𝑖, 𝑗 : 𝑖, 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻]} itself is a random variable, causing (𝑍 𝑦1
, . . . , 𝑍 𝑦

𝑠) to
converge to a heavy-tailed non-Gaussian distribution overall. We provide the details as follows:
Example 3.1 (Multi-Head Attention). We consider the multi-head attention in Eq. (2). Recall
that 𝑠 is the spatial dimension and 𝐻 is the number of heads. We sample new weight matrices
𝑊𝑄,𝑎,𝑊𝐾,𝑎,𝑊𝑉,𝑎,𝑊𝑂,𝑎 ∈ R𝑛×𝑛 for 𝑎 ∈ [𝐻]. Let 𝑥1, . . . , 𝑥𝑠 ∈ R𝑛 be vectors within the Netsor
program. We assume these input vectors are generated by Nonlin, where the nonlinearity is bounded
and pseudo-Lipschitz. For 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻], we define the value vectors 𝑣𝑎, 𝑗 = 𝑊𝑉,𝑎𝑥 𝑗 ∈ R𝑛 (𝑗 ∈
[𝑠], 𝑎 ∈ [𝐻]) and its further transform 𝑣̃𝑎, 𝑗 = 𝑊𝑂,𝑎𝑣𝑎, 𝑗 ∈ R𝑛. Finally, with the score 𝑝 (𝑎)

𝑖, 𝑗
in Eq. (1),

we rewrite an element of the multi-head attention Eq. (2) as

𝑦𝑖𝛼 =
1
√
𝐻

𝐻∑︁
𝑎=1

𝑠∑︁
𝑗=1

SoftMax 𝑗 (𝑝 (𝑎)𝑖,1 , . . . , 𝑝
(𝑎)
𝑖,𝑠
)𝑣̃𝑎, 𝑗𝛼

=: 𝜑𝑖
(
{𝑣̃𝑎, 𝑗𝛼 : 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻]}, {𝑝 (𝑎)

𝑖, 𝑗
: 𝑖, 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻]}

)
,

by introducing functions 𝜑𝑖 (𝑖 ∈ [𝑠]), each of which is a pseudo-Lipschitz function.4 Then, by
Corollary 3.2, we have

(𝑦1
𝛼, . . . , 𝑦

𝑠
𝛼)

𝑑−→ (𝑍 𝑦1
, . . . , 𝑍 𝑦

𝑠) (𝑛→∞),

where 𝑍 𝑦𝑖 is defined by 𝑍 𝑦𝑖 = 𝐻− 1
2
∑𝐻
𝑎=1

∑𝑠
𝑗=1 SoftMax 𝑗 (𝑝 (𝑎)𝑖,1 , . . . , 𝑝

(𝑎)
𝑖,𝑠
)𝑍 𝑣̃𝑎, 𝑗 . By Definition 3.1,

{𝑍 𝑣̃𝑎, 𝑗 : 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻]} and {𝑝 (𝑎)
𝑖, 𝑗

: 𝑖, 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻]} satisfy the following.

• {𝑍 𝑣̃𝑎, 𝑗 : 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻]} is independent of {𝑝 (𝑎)
𝑖, 𝑗

: 𝑖, 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻]}.
• {𝑍 𝑣̃𝑎, 𝑗 : 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻]} is jointly Gaussian with zero mean. For 𝑎, 𝑎′ ∈ [𝐻] and
𝑗 , 𝑗 ′ ∈ [𝑠], the covariance is given by

Cov(𝑍 𝑣̃𝑎, 𝑗 , 𝑍 𝑣̃𝑎
′ , 𝑗′) =

{
0 (𝑎 ≠ 𝑎′),
𝜎2
𝑊𝑂,𝑎𝜎

2
𝑊𝑉,𝑎E[𝑍 𝑥

𝑗

𝑍 𝑥
𝑗′] (𝑎 = 𝑎′).

• {𝑝 (𝑎)
𝑖, 𝑗

: 𝑖, 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻]} is jointly Gaussian with zero mean. For 𝑎, 𝑎′ ∈ [𝐻] and
𝑖, 𝑖′, 𝑗 , 𝑗 ′ ∈ [𝑠], the covariance is given by

Cov(𝑝 (𝑎)
𝑖, 𝑗
, 𝑝
(𝑎′)
𝑖′ , 𝑗′) =

{
0 (𝑎 ≠ 𝑎′),
𝜎2
𝑊𝑄,𝑎𝜎

2
𝑊𝐾,𝑎E[𝑍 𝑥

𝑖

𝑍 𝑥
𝑖′]E[𝑍 𝑥 𝑗 𝑍 𝑥 𝑗

′
] (𝑎 = 𝑎′).

4See Proposition C.3 and Lemma C.4. Note that SoftMax is Lipschitz so that it is also pseudo-Lipschitz
(Fact C.3).

7

Note that {𝑍 𝑥 𝑗 : 𝑗 ∈ [𝑠]} can be computed by Definition 3.1.

The pseudocode for this example is presented in Algorithm 1 in Appendix B.1.
Remark 3.1. It is well-known in probability theory that hierarchical mixtures of Gaussian components
typically lead to distributions with heavier tails than standard Gaussians. This observation highlights
a significant challenge for theoretical analysis, since many existing frameworks, such as NNGP and
Tensor Programs, are developed under regimes where the limiting distributions are Gaussian (or can
be expressed as Gaussian components with correction terms). Extending these tools to rigorously
handle such heavy-tailed non-Gaussian behaviors remains an important open problem, and we believe
our work provides a concrete starting point for such future developments.
Remark 3.2. Our result in Example 3.1 has a close relationship with the result of [HBSDN20]. First,
the limiting distribution of the attention scores in our framework perfectly matches the Gaussian
distribution in their infinite-head limit. Second, the variance of our finite-head non-Gaussian output
distribution theoretically matches the variance of their infinite-head Gaussian output distribution. This
alignment suggests that while the infinite-head limit correctly captures the second-order statistics of the
output, our finite-head analysis provides a more complete picture by characterizing the non-Gaussian
aspects of the distribution that are not captured by second-order statistics alone.

4 Proof Sketch of Theorem 3.1

We sketch the proof of Theorem 3.1. First, observe that it is equivalent to the following statement:
Theorem 4.1. Assume the same premise as in Theorem 3.1. Then, for any bounded and pseudo-
Lipschitz function 𝜓, we have

𝑝

as 𝑛→∞, where (𝑍𝑔1
, . . . , 𝑍𝑔

𝑚

, 𝑝1, . . . , 𝑝𝑟) is defined in Definition 3.1.

Clearly, Theorem 3.1 implies Theorem 4.1. Conversely, applying Proposition C.3 establishes the
opposite direction.

In what follows, we outline the proof of Theorem 4.1. Hereafter, x1:𝑘 denotes the vector (𝑥1, . . . , 𝑥𝑘),
and likewise, x1:𝑘

𝛼 denotes the vector (𝑥1
𝛼, . . . , 𝑥

𝑘
𝛼). Fix a bounded and pseudo-Lipschitz function 𝜓.

By Lemma C.2, it suffices to show that, for any bounded and Lipschitz function 𝑓 ,�����E 𝑓
(

1
𝑛

𝑛∑︁
𝛼=1

𝜓(g1:𝑚
𝛼 ,p1:𝑟)

)
− E 𝑓

(
E[𝜓(𝑍g1:𝑚

, p̊1:𝑟) | p̊1:𝑟]
)�����→ 0

holds. Note that by Fact 3.1, we have
1
𝑛

𝑛∑︁
𝛼=1

𝜓̃(g1:𝑚
𝛼)

𝑎.𝑠.−→ E[𝜓̃(𝑍g1:𝑚)] (3)

for any pseudo-Lipschitz function 𝜓̃. Using this result, we first show that p1:𝑟 converges in distribution
to p̊1:𝑟 , which is a Gaussian vector defined by Definition 3.1 (Appendix D.1.1). Then, we consider�����E 𝑓

(
1
𝑛

𝑛∑︁
𝛼=1

𝜓(g1:𝑚
𝛼 ,p1:𝑟)

)
− E 𝑓

(
E[𝜓(𝑍g1:𝑚

, p̊1:𝑟) | p̊1:𝑟]
)����� ≤ 𝑆1 + 𝑆2,

where 𝑆1 and 𝑆2 are given by

𝑆1 =

�����E 𝑓
(

1
𝑛

𝑛∑︁
𝛼=1

𝜓(g1:𝑚
𝛼 ,p1:𝑟)

)
− E 𝑓

(
E

[
𝜓(𝑍g1:𝑚

,p1:𝑟) | p1:𝑟

])����� ,
𝑆2 =

���E 𝑓 (
E

[
𝜓(𝑍g1:𝑚

,p1:𝑟) | p1:𝑟

])
− E 𝑓

(
E[𝜓(𝑍g1:𝑚

, p̊1:𝑟) | p̊1:𝑟]
)��� .

We separately show 𝑆1 → 0 (Appendix D.1.2) and 𝑆2 → 0 (Appendix D.1.3).

5 Simulation and Discussion

We perform simulations to validate the infinite-width limit distributions derived in Example 3.1.
Details on the simulation setting can be found in Appendix B. All simulation codes are available at
https://github.com/manasakai/infinite-width-attention.

8

https://github.com/manasakai/infinite-width-attention

−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 n=16

n=64

n=256

n=1024

∞-width

(a) Distribution of 𝑦1
1 and 𝑍 𝑦

1
.

2 2.5 3 3.5 4 4.5 5

−7

−6

−5

−4

−3

log_4(n)

lo
g(

K
L

)

(b) KL divergence with error bars.

Figure 1: Comparison of the distribution of the attention output 𝑦1
1 and its infinite-width limit

𝑍 𝑦
1 in Example 3.1. (a) Kernel density estimates of the empirical distribution (via Monte Carlo

sampling) of 𝑦1
1 for widths 𝑛 ∈ {16, 64, 256, 1024} (dashed lines) alongside that of 𝑍 𝑦1 (solid line),

showing the convergence of the finite-width distribution to its limit. (b) Average of the log-KL
divergence log KL(Dist(𝑦1

1)∥Dist(𝑍 𝑦1)) over 10 independent trials, plotted against log4 (𝑛) with error
bars indicating one standard deviation, confirming a decreasing trend.

−3 −2 −1 0 1 2 3

0

1

2

3

4

5

6

7 n=256, 1/√n-scaling

n=256, 1/n-scaling

∞-width, 1/√n-scaling

∞-width, 1/n-scaling

(a) Dot-product score under different scalings.

−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6
n=256, H=1

n=256, H=256

∞-width, H=1

∞-width, H=256

∞-width ,∞-head

(b) Varying head count of the attention output.

Figure 2: Visualization of the dot-product score 𝑝 (1)1,1 and attention output 𝑦1
1, as defined in Example 3.1,

comparing finite-width behavior to their infinite-width limits. (a) Histogram of the empirical
distribution of 𝑝 (1)1,1 for 𝑛 = 256 alongside the plot of its infinite-width limit distribution 𝑝1

1,1, under
two scaling schemes; 1/

√
𝑛 and 1/𝑛. The 1/𝑛-scaled score collapses to zero in the infinite-width

limit, while the 1/
√
𝑛-scaled score retains a nondegenerate distribution. (b) Kernel density estimates

of the empirical distribution of 𝑦1
1 for 𝑛 = 256 (dashed lines) alongside the plot of its infinite-width

limit distribution 𝑍 𝑦1 (solid lines), varying head counts 𝐻 ∈ {1, 256}. The black solid line represents
the density of the infinite-head limit distribution from [HBSDN20]. This demonstrates that our
theoretical prediction remains accurate even when 𝐻 grows, and it approaches the infinite-head limit.

5.1 Effect of Finite Width

To assess how well the infinite-width theory of Theorem 3.1 aligns with finite-width multi-head
attention behavior and to verify that discrepancies diminish as width grows, we perform 10 independent
experiments for each width 𝑛 ∈ {16, 64, 256, 1024}. In each trial, we draw samples of the multi-head
output 𝑦1

1 with 𝐻 = 2 in Example 3.1, estimate its density via kernel density estimation, and compute
the KL divergence to its theoretical limit 𝑍 𝑦1 , the density of which is also approximated via Monte
Carlo sampling. Figure 1(a) plots the estimated densities of our first trial, showing that the density of
𝑦1

1 converges rapidly to that of 𝑍 𝑦1 as 𝑛 increases. Figure 1(b) quantifies this convergence by plotting
the average log-KL divergence against log4 (𝑛), with error bars showing one standard deviation across
the 10 trials, demonstrating a consistent decay with growing width.

9

5.2 Scalings of the Dot-product Score and Finiteness of Heads

We next investigate two facets of finite-width behavior in Example 3.1, which are the effect of different
scaling rules on the variability of the dot-product score and the impact of a finite number of heads on
the attention output. For comparison, [Yan19b] assumes 1/𝑛-scaling, and the infinite-head result by
[HBSDN20] applies only in the limit 𝑛, 𝐻 →∞.

Figure 2(a) shows the histogram of the empirical distribution of the dot-product score 𝑝
(1)
1,1 at

width 𝑛 = 256 under the two scaling schemes 1/
√
𝑛 and 1/𝑛, together with the infinite-width limit

distribution 𝑝1
1,1. Even at this moderate width, the 1/𝑛-scaled scores are tightly concentrated around

zero, whereas the 1/
√
𝑛-scaled scores remain spread out in a nondegenerate fashion, confirming that

only the latter preserves variability away from zero at large 𝑛.

Figure 2(b) reports histograms of the attention output 𝑦1
1 for 𝑛 = 256 with head counts 𝐻 = 1

and 𝐻 = 256, overlaid with the infinite-width densities of 𝑍 𝑦1 , which are approximated via Monte
Carlo sampling. The close agreement between finite-width histograms and their infinite-width limit
curves, even when 𝐻 grows on the same order as 𝑛, demonstrates the robustness of our infinite-width
approximation in the growing number of heads. Furthermore, it is observed that as 𝐻 increases, our
non-Gaussian distribution approaches the Gaussian distribution from [HBSDN20].

Beyond the choice of scaling, our work provides a general perspective on the number of attention
heads: our theory provides an accurate characterization for both finite and large numbers of heads,
effectively subsuming the large-𝐻 regime within a single framework. This robustness is confirmed
by our experiments, which show our theoretical predictions remain highly accurate as 𝐻 grows
large (Figure 2(b)), as well as in low-rank attention setting where the number of heads 𝐻 increases
proportionally with the network width 𝑛 (Appendix B.2).

6 Conclusion

In this paper, we rigorously analyzed the infinite-width limit distribution of outputs from a single
attention layer using the Tensor Programs framework. Specifically, we theoretically showed and
empirically confirmed that the attention outputs converge to a non-Gaussian distribution under realistic
conditions with finite heads and standard 1/

√
𝑛-scaling.

Looking forward, we believe our framework can serve as a foundation for future extension to
deep Transformer architectures. We predict that as layers are stacked, the output distribution may
increasingly diverge from any hierarchical Gaussian form, possibly yielding even heavier-tailed
non-Gaussian behaviors. This departure from Gaussianity is not merely a theoretical curiosity, but
it has profound implications for the learning dynamics of attention-based models. For instance,
the presence of higher-order moments associated with such non-Gaussianity could influence signal
propagation by preserving feature variability across layers, thereby reducing the risk of rank collapse.
Furthermore, the anisotropy induced by non-Gaussianity may lead to more irregular curvature in
the optimization landscape, possibly affecting the convergence properties of training dynamics (e.g.,
through sharper gradients or more prominent saddle regions). From a feature learning perspective,
heavier-tailed distributions might even prove advantageous, as amplified high-magnitude components
could facilitate the emergence of dominant features. Consequently, this prediction, that the divergence
from Gaussianity intensifies as layers are stacked, suggests that a new framework distinct from existing
Gaussian-based approaches is essential for analyzing deep architectures. Our work provides an
important first step towards this direction.

As a limitation of this study, our analysis assumes a constant sequence length and batch size, following
the Tensor Programs framework. Extending the framework to handle growing sequence lengths is an
important direction for future research.

Acknowledgements

Mana Sakai was supported by RIKEN Junior Research Associate Program. Ryo Karakida was
supported by JST FOREST (Grant No. JPMJFR226Q) and JSPS KAKENHI (Grant No. 22H05116).

10

Masaaki Imaizumi was supported by JSPS KAKENHI (Grant No. 24K02904), JST CREST (Grant
No. JPMJCR21D2), and JST FOREST (Grant No. JPMJFR216I).

References
[AAA+23] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-

rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[Ama77] S.-I. Amari. Neural theory of association and concept-formation. Biological Cyber-
netics, 26(3):175–185, 1977.

[APH20] Devanshu Agrawal, Theodore Papamarkou, and Jacob Hinkle. Wide neural networks
with bottlenecks are deep Gaussian processes. Journal of Machine Learning Research,
21(175):1–66, 2020.

[BCP24] Blake Bordelon, Hamza Chaudhry, and Cengiz Pehlevan. Infinite limits of multi-
head transformer dynamics. In Advances in Neural Information Processing Systems,
volume 37, pages 35824–35878. Curran Associates, Inc., 2024.

[BCRT58] J. R. Blum, H. Chernoff, M. Rosenblatt, and H. Teicher. Central limit theorems for
interchangeable processes. Canadian Journal of Mathematics, 10:222–229, 1958.

[BM11] Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense
graphs, with applications to compressed sensing. IEEE Transactions on Information
Theory, 57(2):764–785, 2011.

[CNQG24] Aditya Cowsik, Tamra Nebabu, Xiao-Liang Qi, and Surya Ganguli. Geometric
dynamics of signal propagation predict trainability of transformers. arXiv preprint
arXiv:2403.02579, 2024.

[CPS18] Minmin Chen, Jeffrey Pennington, and Samuel S. Schoenholz. Dynamical isometry
and a mean field theory of RNNs: Gating enables signal propagation in recurrent
neural networks. In Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 873–882.
PMLR, 2018.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Jill Burstein,
Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, 2019. Association for Computational Linguistics.

[DFS16] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural
networks: The power of initialization and a dual view on expressivity. In Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[dGMHR+18] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and
Zoubin Ghahramani. Gaussian process behaviour in wide deep neural networks. In
International Conference on Learning Representations, 2018.

[DYZ23] Emily Dinan, Sho Yaida, and Susan Zhang. Effective theory of Transformers at
initialization. arXiv preprint arXiv:2304.02034, 2023.

[EXW+24] Katie Everett, Lechao Xiao, Mitchell Wortsman, Alexander A. Alemi, Roman Novak,
Peter J. Liu, Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jaehoon Lee,
and Jeffrey Pennington. Scaling exponents across parameterizations and optimizers.
In Proceedings of the 41st International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pages 12666–12700. PMLR,
2024.

11

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors,
Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–256,
Chia Laguna Resort, Sardinia, Italy, 2010. PMLR.

[GHLG23] Tianxiang Gao, Xiaokai Huo, Hailiang Liu, and Hongyang Gao. Wide neural networks
as Gaussian processes: Lessons from deep equilibrium models. In Advances in Neural
Information Processing Systems, volume 36, pages 54918–54951. Curran Associates,
Inc., 2023.

[GY22] Eugene Golikov and Greg Yang. Non-Gaussian tensor programs. In Advances in
Neural Information Processing Systems, volume 35, pages 21521–21533. Curran
Associates, Inc., 2022.

[HBSDN20] Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention:
NNGP and NTK for deep attention networks. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 4376–4386. PMLR, 2020.

[HL25] Soufiane Hayou and Liyuan Liu. Optimal embedding learning rate in LLMs: The
effect of vocabulary size. arXiv preprint arXiv:2506.15025, 2025.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

[LBN+18] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Penning-
ton, and Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. In
International Conference on Learning Representations, 2018.

[MMN18] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the
landscape of two-layer neural networks. Proceedings of the National Academy of
Sciences, 115(33):E7665–E7671, 2018.

[Nea96] Radford M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture
Notes in Statistics. Springer Science & Business Media, 1996.

[NLL+23] Lorenzo Noci, Chuning Li, Mufan (Bill) Li, Bobby He, Thomas Hofmann, Chris J
Maddison, and Daniel M. Roy. The shaped Transformer: Attention models in the
infinite depth-and-width limit. In Advances in Neural Information Processing Systems,
volume 36, pages 54250–54281. Curran Associates, Inc., 2023.

[NXL+19] Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron,
Daniel A. Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep
convolutional networks with many channels are Gaussian processes. In International
Conference on Learning Representations, 2019.

[PLR+16] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya
Ganguli. Exponential expressivity in deep neural networks through transient chaos. In
Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

[SCS88] H. Sompolinsky, A. Crisanti, and H. J. Sommers. Chaos in random neural networks.
Physical Review Letters, 61:259–262, 1988.

[SGGSD17] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep
information propagation. In International Conference on Learning Representations,
2017.

[SNT24] Thiziri Nait Saada, Alireza Naderi, and Jared Tanner. Beyond IID weights: sparse
and low-rank deep neural networks are also Gaussian processes. In The Twelfth
International Conference on Learning Representations, 2024.

12

[Vaa98] A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1998.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[Wil96] Christopher K. I. Williams. Computing with infinite networks. In Advances in Neural
Information Processing Systems, volume 9. MIT Press, 1996.

[Yan19a] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian
process behavior, gradient independence, and neural tangent kernel derivation. arXiv
preprint arXiv:1902.04760, 2019.

[Yan19b] Greg Yang. Tensor programs i: Wide feedforward or recurrent neural networks of any
architecture are Gaussian processes. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[Yan20a] Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv
preprint arXiv:2006.14548, 2020.

[Yan20b] Greg Yang. Tensor programs iii: Neural matrix laws. arXiv preprint arXiv:2009.10685,
2020.

[YH21] Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-
width neural networks. In Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
11727–11737. PMLR, 2021.

[YHB+21] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi,
Nick Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural
networks via zero-shot hyperparameter transfer. In Advances in Neural Information
Processing Systems, volume 34, pages 17084–17097. Curran Associates, Inc., 2021.

[YL21] Greg Yang and Etai Littwin. Tensor programs iib: Architectural universality of neural
tangent kernel training dynamics. In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 11762–11772. PMLR, 2021.

[YL23] Greg Yang and Etai Littwin. Tensor programs ivb: Adaptive optimization in the
infinite-width limit. arXiv preprint arXiv:2308.01814, 2023.

[YPR+19] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S.
Schoenholz. A mean field theory of batch normalization. In International Conference
on Learning Representations, 2019.

[YS17] Greg Yang and Samuel S. Schoenholz. Mean field residual networks: On the edge of
chaos. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[YYZH24] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature
learning in infinite depth neural networks. In The Twelfth International Conference on
Learning Representations, 2024.

[ZZL+23] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large
language models. arXiv preprint arXiv:2303.18223, 2023.

13

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly stated the main claim in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We stated the limitation in the last section for discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14

Justification: We have described the full assumption, statements, and proof in the main body
and the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described the detailed experimental details in the corresponding
section in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We will open the source code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have clearly described the experimental details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have repeated the experimental multiple times and report the standard
deviation comes from the replication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [No]
Justification: Our experiments are small-scale and implementable by a small laptop. Also,
we do not pursue the computational cost in this study, so the computational resource is out
of our focus.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked the code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: A main focus of this study is fundamental, so there is almost no effect on social
impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Since this paper is theoretical, the outcome does not have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We have not used any existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

18

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: We have not created a new asset throughout this study.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: We have not performed the crowdsourcing experiments and others.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: Since this study is fundamental, there is no potential risk on this point.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We have used LLM only for the formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Notation Summary

This section summarizes the key notations. We adopt two main conventions for simplicity. First,
for finite-width vectors and matrices, superscripts serve as indices to distinguish variables (e.g.,
𝑥𝑖 ∈ R𝑛, 𝑊 𝑖 ∈ R𝑛×𝑛), while subscripts denote their components (e.g., 𝑥𝑖𝛼,𝑊 𝑖

𝛼𝛽
∈ R). Second, the

dependence on the network width 𝑛 for all finite-width variables is kept implicit (e.g., we write 𝑥𝑖
instead of 𝑥𝑖 (𝑛)). For other notations, please refer to Table 1.

Table 1: General Notations
Symbol Description
𝑛 The dimensionality of vector spaces, corresponding to the network’s width.
𝐻 The number of heads in the multi-head attention mechanism.
𝑠 The spatial dimension of input sequences (i.e., sequence length).
𝑊 A generic weight matrix in R𝑛×𝑛 with elements𝑊𝛼𝛽 ∼ N(0, 𝜎2

𝑊
/𝑛).

𝑍ℎ A random variable for the infinite-width limit of a vector ℎ.
𝑝 A random variable for the infinite-width limit of a scalar dot-product 𝑝.
x1:𝑘 The vector (𝑥1, . . . , 𝑥𝑘).
x1:𝑘
𝛼 The vector (𝑥1

𝛼, . . . , 𝑥
𝑘
𝛼).

B Simulation Details and Supplementary Analysis

B.1 General Experimental Setup

Unless otherwise noted, the simulations presented in this paper set the spatial dimension to 𝑠 = 4.
The core experimental setup follows that described in Example 3.1, which is outlined in Algorithm 1.

Algorithm 1 Multi-Head Attention (Example 3.1)

Input: {𝑥𝑖}𝑖∈[𝑠] ⊲ R𝑛 input vectors for a sequence of length 𝑠
Input: {𝑊𝑄,𝑎,𝑊𝐾,𝑎,𝑊𝑉,𝑎,𝑊𝑂,𝑎}𝑎∈[𝐻] ⊲ R𝑛×𝑛 weight matrices for 𝐻 heads

for 𝑎 ∈ [𝐻] do
for 𝑖 ∈ [𝑠] do

𝑞𝑎,𝑖 ← 𝑊𝑄,𝑎𝑥𝑖 ⊲ MatMul: Query vectors
𝑘𝑎,𝑖 ← 𝑊𝐾,𝑎𝑥𝑖 ⊲ MatMul: Key vectors
𝑣𝑎,𝑖 ← 𝑊𝑉,𝑎𝑥𝑖 ⊲ MatMul: Value vectors
𝑣̃𝑎,𝑖 ← 𝑊𝑂,𝑎𝑣𝑎,𝑖 ⊲ MatMul: Output-projected value vectors

end for
end for

for 𝑎 ∈ [𝐻] do
for 𝑖 ∈ [𝑠] do

for 𝑗 ∈ [𝑠] do
𝑝
(𝑎)
𝑖, 𝑗
← (𝑞𝑎,𝑖)⊤𝑘𝑎, 𝑗/

√
𝑛 ⊲ Scaled dot-product scores

end for
end for

end for

for 𝑖 ∈ [𝑠] do
𝑦𝑖 ← 1√

𝐻

∑𝐻
𝑎=1

∑𝑠
𝑗=1 SoftMax 𝑗 (𝑝 (𝑎)𝑖,1 , . . . , 𝑝

(𝑎)
𝑖,𝑠
)𝑣̃𝑎, 𝑗 ⊲ Attention output vectors

end for

Output: {𝑦𝑖}𝑖∈[𝑠] ⊲ R𝑛 output vectors

21

Specifically, let 𝑥1, . . . , 𝑥𝑠 be outputs of Nonlin. These are obtained by applying a clipping activation
function 𝜓 to preceding vectors ℎ1, . . . , ℎ𝑠 ∈ R𝑛:

𝑥𝑖𝛼 = 𝜓(ℎ𝑖𝛼) = −𝐶1{ℎ𝑖𝛼 < −𝐶} + ℎ𝑖𝛼1{−𝐶 ≤ ℎ𝑖𝛼 ≤ 𝐶} + 𝐶1{ℎ𝑖𝛼 > 𝐶} (𝛼 ∈ [𝑛], 𝑖 ∈ [𝑠]), (4)

where 1{·} denotes the indicator function and 𝐶 is a positive constant. The vectors ℎ1, . . . , ℎ𝑠 are
outputs of MatMul, defined by

ℎ𝑖 = 𝑊 𝑖ℎ (𝑖 ∈ [𝑠]).
Each element of the initial vector ℎ ∈ R𝑛 is sampled independently from a standard normal distribution.

For all weight matrices involved in the attention mechanism 𝑊𝑄,𝑎,𝑊𝐾,𝑎,𝑊𝑉,𝑎,𝑊𝑂,𝑎 and the
matrices𝑊 𝑖 generating 𝑥𝑖 , we set

𝜎2
𝑊𝑄,𝑎 = 𝜎2

𝑊𝐾,𝑎 = 𝜎2
𝑊𝑉,𝑎 = 𝜎2

𝑊𝑂,𝑎 = 𝜎2
𝑊 𝑖 = 1.

The elements of these weight matrices are independently sampled from N(0, 𝜎2
𝑊
/𝑛), where 𝜎2

𝑊
is

the respective variance (here, 1).

Under this setup, the input vectors 𝑥 𝑗 to the attention layer are designed such that their infinite-width
limits 𝑍 𝑥 𝑗 are uncorrelated for 𝑗 ≠ 𝑗 ′, i.e.,

E[𝑍 𝑥 𝑗 𝑍 𝑥 𝑗
′
] = 0 (𝑗 , 𝑗 ′ ∈ [𝑠], 𝑗 ≠ 𝑗 ′).

Furthermore, the infinite-width limit 𝑍ℎ𝑖 is a standard normal random variable, leading to

E[(𝑍 𝑥𝑖)2] = E[(𝜓(𝑍ℎ𝑖))2] = 2𝐶2 (1 −Φ(𝐶)) − 2𝐶𝜙(𝐶) + 2Φ(𝐶) − 1,

where 𝐶 is the constant used in the clipping activation, and Φ and 𝜙 are the cumulative distribution
function and probability density function of the standard normal distribution, respectively. As𝐶 →∞,
this value converges to 1. In our experiments, we set 𝐶 = 100, and we approximate E[(𝑍 𝑥𝑖)2] by 1.
Consequently, the covariances of the limiting variables for the vectors 𝑣̃𝑎, 𝑗 and dot-product scores
𝑝
(𝑎)
𝑖, 𝑗

simplify as described in Example 3.1,

Cov(𝑍 𝑣̃𝑎, 𝑗 , 𝑍 𝑣̃𝑎
′ , 𝑗′) =

{
E[(𝑍 𝑥 𝑗)2] ≈ 1 (𝑎 = 𝑎′, 𝑗 = 𝑗 ′),
0 (otherwise),

and

Cov(𝑝 (𝑎)
𝑖, 𝑗
, 𝑝
(𝑎′)
𝑖′ , 𝑗′) =

{(
E[(𝑍 𝑥𝑖)2]

)2
≈ 1 (𝑎 = 𝑎′, 𝑖 = 𝑖′, 𝑗 = 𝑗 ′),

0 (otherwise).

To estimate the empirical distributions of finite-width attention outputs and their corresponding
infinite-width limits, we employ Monte Carlo sampling. For each such estimation, 50, 000 samples are
drawn, unless otherwise noted. Kernel density estimation (KDE) is used to visualize these empirical
distributions.

B.2 Analysis of Low-Rank Attention

B.2.1 Specific Setup for Low-Rank Attention

In practice, large-scale Transformers typically assume a specific embedding dimensionality for
multi-head self-attention layers. For head counts 𝐻, the embedding dimension 𝑛 is set linearly as
𝑛 = 𝐻𝑛𝐻 , where 𝑛𝐻 denotes the head dimension and determines the sizes of weight matrices as
𝑊𝑄,𝑎,𝑊𝐾,𝑎,𝑊𝑉,𝑎 ∈ R𝑛𝐻×𝑛. Thus, the QK product becomes low-rank relative to the embedding
dimension 𝑛, and the scaling factor is given by 1/√𝑛𝐻 as follows:

𝑝
(𝑎)
𝑖, 𝑗

=
1
√
𝑛𝐻
(𝑊𝑄,𝑎𝑥𝑖)⊤ (𝑊𝐾,𝑎𝑥 𝑗) (𝑖, 𝑗 ∈ [𝑠], 𝑎 ∈ [𝐻]).

For example, the original Transformer architecture sets 𝐻 = 8 and 𝑛𝐻 = 64. Large-scale models
often increase the number of heads to be on the order of the hidden embedding dimension [EXW+24],
as seen in GPT-3 (175B parameters), which sets 𝐻 = 96 and 𝑛𝐻 = 128.

22

−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
n=64, H=1

n=256, H=4

n=1024, H=16

∞-width, H=1

∞-width, H=4

∞-width, H=16

(a) Distribution of 𝑦1
1 and 𝑍 𝑦

1
.

0 0.5 1 1.5 2

−7.5

−7

−6.5

−6

−5.5

log_4(n)

lo
g(

K
L

)

(b) KL divergence with error bars.

Figure 3: Comparison of the distribution of the attention output 𝑦1
1 and its infinite-width limit 𝑍 𝑦

under the low-rank setting. (a) Kernel density estimates of the empirical distribution (via Monte Carlo
sampling) of 𝑦1

1 for various widths 𝑛 and head counts 𝐻 (with 𝑛𝐻 = 𝑛/𝐻 = 64 is fixed, dashed lines)
alongside that of 𝑍 𝑦 (solid lines). (b) Average of the log-KL divergence log KL(Dist(𝑦1

1)∥Dist(𝑍 𝑦1))
over 10 independent trials, plotted against log4 (𝑛) with error bars indicating one standard deviation.

Additionally, since the output from each head is also of dimension 𝑛𝐻 through the value matrix, an
output weight𝑊𝑂,𝑎 ∈ R𝑛×𝑛𝐻 is applied to map it back to the 𝑛-dimensional input for the subsequent
layer:

𝑦𝑖 =
1
√
𝐻

𝐻∑︁
𝑎=1

𝑠∑︁
𝑗=1

SoftMax 𝑗 (𝑝 (𝑎)𝑖,1 , . . . , 𝑝
(𝑎)
𝑖,𝑠
)𝑊𝑂,𝑎𝑊𝑉,𝑎𝑥 𝑗 (𝑖 ∈ [𝑠]).

Note that, to ensure the dot-product scores and the attention outputs are of order 1, the weight matrices
are randomly initialized with the following scales:

𝑊
𝑄,𝑎

𝛼𝛽
,𝑊

𝐾,𝑎

𝛼𝛽
,𝑊

𝑉,𝑎

𝛼𝛽
∼ 𝑁 (0, 𝜎2

𝑊/𝑛), 𝑊
𝑂,𝑎

𝛼𝛽
∼ 𝑁 (0, 𝜎2

𝑊/𝑛𝐻) (𝛼, 𝛽 ∈ [𝑛]).
For simplicity, we set 𝜎𝑊 = 1.

B.2.2 Results and Discussion

Finally, we investigate the behavior of the attention output 𝑦1 in the low-rank regime described above,
where the number of heads 𝐻 increases proportionally with 𝑛. Fixing the head dimension 𝑛𝐻 =

𝑛/𝐻 = 64, we perform 10 independent experiments for each (𝑛, 𝐻) ∈ {(64, 1), (256, 4), (1024, 16)}.
Figure 3(a) shows the estimated densities of our first trial, and Figure 3(b) plots the average log-KL
divergence between the distribution of 𝑦1

1 and the corresponding infinite-width limit distribution, with
error bars showing one standard deviation across the 10 trials. These figures show the convergence to
the infinite-width limit as 𝑛 and 𝐻 increase proportionally.

Notably, even in these practically relevant settings employing low-rank attention (where head-
specific projections are 𝑛𝐻 × 𝑛 or 𝑛 × 𝑛𝐻 rather than the 𝑛 × 𝑛 matrices primarily assumed in our
formal derivations in Theorem 3.1), our infinite-width framework continues to provide an excellent
approximation. This agreement suggests that the core principles of convergence captured by our
theory extend robustly to common architectural variants like low-rank attention (with appropriate
scaling considerations), underscoring the practical utility of our theoretical predictions under these
structural assumptions common in modern attention models.

B.3 Additional Experiments on Robustness

To further validate the robustness of our theoretical predictions, we conducted additional experiments
by varying key hyperparameters. These experiments investigate the impact of the spatial dimension
(i.e., the number of tokens) and the choice of activation function.

B.3.1 Varying the Spatial Dimension

Our main experiments in Section 5 were conducted with a spatial dimension of 𝑠 = 4. Here, we
present the results for an increased spatial dimension of 𝑠 = 8. All other experimental settings remain

23

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8
n=16

n=64

n=256

n=1024

∞-width,

(a) Distribution of 𝑦1
1 and 𝑍 𝑦

1
.

2 2.5 3 3.5 4 4.5 5

−7

−6

−5

−4

−3

log_4(n)

lo
g(

K
L

)

(b) KL divergence with error bars.

Figure 4: Comparison of the distribution of the attention output 𝑦1
1 and its infinite-width limit 𝑍 𝑦1

when 𝑠 = 8. (a) Kernel density estimates of the empirical distribution (via Monte Carlo sampling) of
𝑦1

1 for widths 𝑛 ∈ {16, 64, 256, 1024} (dashed lines) alongside that of 𝑍 𝑦1 (solid line). (b) Average
of the log-KL divergence log KL(Dist(𝑦1

1)∥Dist(𝑍 𝑦1)) over 10 independent trials, plotted against
log4 (𝑛) with error bars indicating one standard deviation.

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8
n=16

n=64

n=256

n=1024

∞-width

(a) Distribution of 𝑦1
1 and 𝑍 𝑦

1
.

2 2.5 3 3.5 4 4.5 5

−8

−7

−6

−5

−4

log_4(n)

lo
g(

K
L

)

(b) KL divergence with error bars.

Figure 5: Comparison of the distribution of the attention output 𝑦1
1 and its infinite-width limit 𝑍 𝑦 with

ReLU activation function. (a) Kernel density estimates of the empirical distribution (via Monte Carlo
sampling) of 𝑦1

1 for various widths 𝑛 and head counts 𝐻 (with 𝑛𝐻 = 𝑛/𝐻 = 64 is fixed, dashed lines)
alongside that of 𝑍 𝑦 (solid lines). (b) Average of the log-KL divergence log KL(Dist(𝑦1

1)∥Dist(𝑍 𝑦1))
over 10 independent trials, plotted against log4 (𝑛) with error bars indicating one standard deviation.

identical to those described in Appendix B.1. The results, shown in Figure 4, demonstrates that
our theory remains accurate even when the number of tokens is changed. This suggests that the
convergence to the theoretical limit is robust to changes in the sequence length.

B.3.2 Varying the Activation Function

The experiments in the main text utilize a clipping activation function. To ensure our findings are
not specific to this choice, we also perform experiments with the ReLU activation function, i.e.,
𝜓(ℎ𝑖𝛼) = ℎ𝑖𝛼 ∨ 0 in Eq. (4), which is widely used in modern neural networks.5 The covariances of the
limiting variables for the vectors 𝑣̃𝑎, 𝑗 and the dot-product scores 𝑝 (𝑎)

𝑖, 𝑗
are

Cov(𝑍 𝑣̃𝑎, 𝑗 , 𝑍 𝑣̃𝑎
′ , 𝑗′) = 1{𝑎 = 𝑎′}

[
1

2𝜋
+

(
1
2
− 1

2𝜋

)
1{ 𝑗 = 𝑗 ′}

]
and

Cov(𝑝 (𝑎)
𝑖, 𝑗
, 𝑝
(𝑎′)
𝑖′ , 𝑗′) = 1{𝑎 = 𝑎′}

[
1

2𝜋
+

(
1
2
− 1

2𝜋

)
1{𝑖 = 𝑖′}

] [
1

2𝜋
+

(
1
2
− 1

2𝜋

)
1{ 𝑗 = 𝑗 ′}

]
.

5We note that the ReLU function is not bounded and consequently, our theory does not directly apply.
However, as mentioned in the main text, the boundedness assumption is not essential to our theory.

24

For each experiment, we draw 100,000 samples for both the finite-width attention output and its
corresponding infinite-width limit, an increase from 50,000. The experimental setup is otherwise
identical to that described in Appendix B.1.

Figure 5 confirms a strong agreement between the empirical distributions and our theoretical
predictions. This indicates that our theory is robust to this change in activation function, strengthening
its applicability to a broader range of practical model architectures.

C Mathematical Tools

C.1 Basics

Lemma C.1. For 1 ≤ 𝑚 ≤ ∞ and 𝑎1, . . . , 𝑎𝑘 ∈ R, we have����� 𝑘∑︁
𝑖=1

𝑎𝑖

�����𝑚 ≤
(
𝑘∑︁
𝑖=1
|𝑎𝑖 |

)𝑚
≤ 𝑘𝑚−1

𝑘∑︁
𝑖=1
|𝑎𝑖 |𝑚.

Proof. The first inequality is an application of the triangle inequality. The second inequality follows
from Jensen’s inequality. Since 𝑚 ≥ 1, the function 𝑥 ↦→ 𝑥𝑚 on [0,∞) is convex, and thus Jensen’s
inequality implies(

𝑘∑︁
𝑖=1
|𝑎𝑖 |

)𝑚
= 𝑘𝑚

(
1
𝑘

𝑘∑︁
𝑖=1
|𝑎𝑖 |

)𝑚
≤ 𝑘𝑚 1

𝑘

𝑘∑︁
𝑖=1
|𝑎𝑖 |𝑚 = 𝑘𝑚−1

𝑘∑︁
𝑖=1
|𝑎𝑖 |𝑚

as desired. □

Lemma C.2 (Portmanteau lemma (Lemma 2.2 in [Vaa98])). The following conditions are equivalent.

(i) 𝑋𝑛
𝑑−→ 𝑋 .

(ii) E[𝑓 (𝑋𝑛)] → E[𝑓 (𝑋)] for all bounded and continuous function 𝑓 .

(iii) E[𝑓 (𝑋𝑛)] → E[𝑓 (𝑋)] for all bounded and Lipschitz function 𝑓 .

(iv) P(𝑋𝑛 ∈ 𝐵) → P(𝑋 ∈ 𝐵) for all Borel sets 𝐵 with P(𝑋 ∈ 𝛿𝐵) = 0, where 𝛿𝐵 denotes the
boundary of 𝐵.

Fact C.1. Suppose {𝑋𝑛}𝑛∈N is a sequence of integrable random variables that converges in probability
to 𝑋 . Then the following statements are equivalent.

(i) The sequence {𝑋𝑛}𝑛∈N is uniformly integrable.

(ii) E(|𝑋𝑛 |) → E(|𝑋 |) < ∞.
Remark C.1. If 𝑋𝑛 converges to 0 in probability, then by Fact C.1, we have

E(|𝑋𝑛 |) = 𝑜(1) ⇐⇒ {𝑋𝑛}𝑛∈N is uniformly integrable.

Moreover, since |E(𝑋𝑛) | ≤ E(|𝑋𝑛 |), it follows that E(𝑋𝑛) = 𝑜(1).
Fact C.2. Suppose there exists 𝛿 > 1 such that sup𝑛 E(|𝑋𝑛 | 𝛿) < ∞. Then the sequence {𝑋𝑛}𝑛∈N is
uniformly integrable.

C.2 Pseudo-Lipschitz Functions

Definition C.1 (Pseudo-Lipschitz functions [BM11]). Let 𝑑 > 1 be a constant. A function 𝑓 : R𝑘 → R
is pseudo-Lipschitz of order 𝑑 if there exists a constant 𝐶 > 0 such that, for all 𝑥, 𝑦 ∈ R𝑘 ,

| 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐶∥𝑥 − 𝑦∥(1 + ∥𝑥∥𝑑−1 + ∥𝑦∥𝑑−1)
holds.
Fact C.3. The following statements hold.

(i) A Lipschitz function is pseudo-Lipschitz of order 𝑑 for all 𝑑 > 1.

25

(ii) A pseudo-Lipschitz function (of any given order) is continuous.

In this paper, we refer to a function as pseudo-Lipschitz if it is pseudo-Lipschitz of order 𝑑 for some
𝑑 ∈ [2,∞).
Proposition C.3. Suppose 𝑓 : R𝑘 → R and 𝑔𝑖 : Rℓ → R (𝑖 ∈ [𝑘]) are pseudo-Lipschitz. Then the
function ℎ : Rℓ → R defined by ℎ(𝑥) = 𝑓 (𝑔1 (𝑥), . . . , 𝑔𝑘 (𝑥)) is also pseudo-Lipschitz.

Proof. Suppose 𝑓 is pseudo-Lipschitz of order 𝑑0 + 1 and each 𝑔𝑖 is pseudo-Lipschitz of order 𝑑𝑖 + 1.
Define a function 𝑔 : Rℓ → R𝑘 and a constant 𝑑 ≥ 1 by

𝑔(𝑥) = (𝑔1 (𝑥), . . . , 𝑔𝑘 (𝑥)), 𝑑 = max{𝑑1, . . . , 𝑑𝑘}.
Applying the pseudo-Lipschitz bounds for 𝑓 and each 𝑔𝑖 gives

|ℎ(𝑥) − ℎ(𝑥′) | ≲ ∥𝑔(𝑥) − 𝑔(𝑥′)∥
(
1 + ∥𝑔(𝑥)∥𝑑0 + ∥𝑔(𝑥′)∥𝑑0

)
and

|𝑔𝑖 (𝑥) − 𝑔𝑖 (𝑥′) | ≲ ∥𝑥 − 𝑥′∥
(
1 + ∥𝑥∥𝑑𝑖 + ∥𝑥′∥𝑑𝑖

)
≲ ∥𝑥 − 𝑥′∥

(
1 + ∥𝑥∥𝑑 + ∥𝑥′∥𝑑

)
.

The last inequality implies

∥𝑔(𝑥) − 𝑔(𝑥′)∥ =
(
𝑘∑︁
𝑖=1
|𝑔𝑖 (𝑥) − 𝑔𝑖 (𝑥′) |2

)1/2

≲ ∥𝑥 − 𝑥′∥
(
1 + ∥𝑥∥𝑑 + ∥𝑥′∥𝑑

)
.

On the other hand, since

∥𝑔(𝑥)∥2 =

𝑘∑︁
𝑖=1
|𝑔𝑖 (𝑥) |2 ≤

(
𝑘∑︁
𝑖=1
|𝑔𝑖 (𝑥) |

)2

holds in general, Lemma C.1 implies

∥𝑔(𝑥)∥𝑑0 ≤
(
𝑘∑︁
𝑖=1
|𝑔𝑖 (𝑥) |

)𝑑0

≲
𝑘∑︁
𝑖=1
|𝑔𝑖 (𝑥) |𝑑0 .

The pseudo-Lipschitz property of each 𝑔𝑖 yields

|𝑔𝑖 (𝑥) | ≤ |𝑔𝑖 (0) | + |𝑔𝑖 (𝑥) − 𝑔𝑖 (0) | ≲ 1 + ∥𝑥∥(1 + ∥𝑥∥𝑑𝑖) ≲ 1 + ∥𝑥∥𝑑𝑖+1 ≲ 1 + ∥𝑥∥𝑑+1.
Hence, by Lemma C.1, we have

∥𝑔(𝑥)∥𝑑0 ≲ (1 + ∥𝑥∥𝑑+1)𝑑0 ≲ 1 + ∥𝑥∥𝑑0 (𝑑+1) .

Combining these elements gives

|ℎ(𝑥) − ℎ(𝑥′) | ≲ ∥𝑥 − 𝑥′∥
(
1 + ∥𝑥∥𝑑 + ∥𝑥′∥𝑑

) (
1 + ∥𝑥∥𝑑0 (𝑑+1) + ∥𝑥′∥𝑑0 (𝑑+1)

)
.

We expand the product as

(1 + ∥𝑥∥𝑑 + ∥𝑥′∥𝑑) (1 + ∥𝑥∥𝑑0 (𝑑+1) + ∥𝑥′∥𝑑0 (𝑑+1))
= 1 + ∥𝑥∥𝑑 + ∥𝑥′∥𝑑 + ∥𝑥∥𝑑0 (𝑑+1) + ∥𝑥′∥𝑑0 (𝑑+1) + ∥𝑥∥𝑑+𝑑0 (𝑑+1) + ∥𝑥′∥𝑑+𝑑0 (𝑑+1)

+ ∥𝑥∥𝑑 ∥𝑥′∥𝑑0 (𝑑+1) + ∥𝑥′∥𝑑 ∥𝑥∥𝑑0 (𝑑+1) .

Observe that each of the first seven terms are bounded by 1 + ∥𝑥∥𝑎 + ∥𝑥′∥𝑎, where 𝑎 is given by

𝑎 = 𝑑 + 𝑑0 (𝑑 + 1).
For the remaining two terms, we apply the weighted AM-GM inequality to obtain

∥𝑥∥𝑑 ∥𝑥′∥𝑑0 (𝑑+1) = (∥𝑥∥𝑎) 𝑑𝑎 (∥𝑥′∥𝑎)
𝑑0 (𝑑+1)
𝑎 ≤ 𝑑

𝑎
∥𝑥∥𝑎 + 𝑑0 (𝑑 + 1)

𝑎
∥𝑥′∥𝑎 ≤ ∥𝑥∥𝑎 + ∥𝑥′∥𝑎 .

The same bound applies to ∥𝑥′∥𝑑 ∥𝑥∥𝑑0 (𝑑+1) . Therefore the entire product satisfies

(1 + ∥𝑥∥𝑑 + ∥𝑥′∥𝑑) (1 + ∥𝑥∥𝑑0 (𝑑+1) + ∥𝑥′∥𝑑0 (𝑑+1)) ≲ 1 + ∥𝑥∥𝑎 + ∥𝑥′∥𝑎,
which implies that ℎ is pseudo-Lipschitz of order 𝑎. □

26

Lemma C.4. Define 𝑓 : R2 → R by 𝑓 (𝑥, 𝑦) = 𝑥𝑦. Then 𝑓 is pseudo-Lipschitz of order 𝑑 for every
𝑑 ∈ [2,∞).

Proof. For (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ R2, we have

| 𝑓 (𝑥, 𝑦) − 𝑓 (𝑥′, 𝑦′) | = |𝑥𝑦 − 𝑥′𝑦′ | = |𝑥(𝑦 − 𝑦′) + (𝑥 − 𝑥′)𝑦′ |
≤ |𝑥 | |𝑦 − 𝑦′ | + |𝑥 − 𝑥′ | |𝑦′ | ≤ ∥(𝑥, 𝑦) − (𝑥′, 𝑦′)∥(|𝑥 | + |𝑦′ |).

Observe that for any 𝑑 ≥ 2, we have

|𝑥 | ≤ ∥(𝑥, 𝑦)∥ ≤ 1 + ∥(𝑥, 𝑦)∥𝑑−1, |𝑦′ | ≤ ∥(𝑥′, 𝑦′)∥ ≤ 1 + ∥(𝑥′, 𝑦′)∥𝑑−1,

and consequently, we have

|𝑥 | + |𝑦′ | ≲ 1 + ∥(𝑥, 𝑦)∥𝑑−1 + ∥(𝑥′, 𝑦′)∥𝑑−1.

This gives us

| 𝑓 (𝑥, 𝑦) − 𝑓 (𝑥′, 𝑦′) | ≲ ∥(𝑥, 𝑦) − (𝑥′, 𝑦′)∥(1 + ∥(𝑥, 𝑦)∥𝑑−1 + ∥(𝑥′, 𝑦′)∥𝑑−1),
which shows that 𝑓 is pseudo-Lipschitz of order 𝑑. □

D Remaining proofs

D.1 Proof of Theorem 4.1

In this section we provide detailed proofs for the results sketched in Section 4, thereby completing the
proof of Theorem 4.1.

Throughout, E[· | 𝑋] denotes the conditional expectation with respect to the 𝜎-algebra 𝜎(𝑋). Since
conditional expectations are only defined up to almost-sure equality, we omit “a.s.” when writing
“a.s.
= ” in this context.

D.1.1 Weak Convergence of the Dot Products

In this section we prove the following proposition.
Proposition D.1. Under the assumptions of Theorem 4.1, the vector (𝑝1, . . . , 𝑝𝑟) converges in
distribution to (𝑝1, . . . , 𝑝𝑟), which is the Gaussian vector defined in Definition 3.1.

The proof of Proposition D.1 relies on the next lemma, which is an application of Theorem 2 in
[BCRT58].
Lemma D.2. For each 𝑛 ∈ N, let {𝑋𝛼}𝛼∈[𝑛] be an exchangeable sequence of random variables
satisfying

E[𝑋𝛼] = 0, E[𝑋2
𝛼] = 𝜎2

𝑛 , 𝜎2
𝑛 → 𝜎2

∗ ≥ 0 (𝑛→∞).
Set 𝑆 =

∑𝑛
𝛼=1 𝑋𝛼/

√
𝑛. Assume the following conditions:

(a) E(𝑋1𝑋2) = 𝑜(1/𝑛).

(b) lim𝑛→∞ E(𝑋2
1 𝑋

2
2) = 𝜎

4
∗ .

(c) E(|𝑋1 |3) = 𝑜(
√
𝑛).

Then, 𝑆 converges in distribution to 𝑍 , where the random variable 𝑍 satisfies

𝑍
a.s.
= 0 if 𝜎2

∗ = 0, 𝑍 ∼ 𝑁 (0, 𝜎2
∗) otherwise.

We introduce the following notation. For any two matrices𝑊 𝑖, 𝑗 and𝑊 𝑖′ , 𝑗′ appearing in the program,
define 𝑑 (𝑖

′ , 𝑗′)
(𝑖, 𝑗) by

𝑑
(𝑖′ , 𝑗′)
(𝑖, 𝑗) =

{
1 (if𝑊 𝑖, 𝑗 and𝑊 𝑖′ , 𝑗′ are the same matrices),
0 (otherwise).

27

It is important to note that 𝑑 (𝑖
′ , 𝑗′)
(𝑖, 𝑗) is always a deterministic value that is independent of 𝑛, and is fixed

by the program architecture. According to the sampling rule explained in Section 2.1, the matrices
𝑊 𝑖, 𝑗 and𝑊 𝑖′ 𝑗′ are sampled independently whenever 𝑑 (𝑖

′ , 𝑗′)
(𝑖, 𝑗) is zero. In particular, Assumption 3.1

gives
𝑑
(𝑖,2)
(𝑖,1) = 0 (𝑖 ∈ [𝑟]). (5)

Let 𝑡1, . . . , 𝑡𝑟 be arbitrary constants. We define

𝑆 =

𝑟∑︁
𝑖=1

𝑡𝑖 𝑝𝑖 =

𝑟∑︁
𝑖=1

𝑡𝑖
©­« 1
√
𝑛

𝑛∑︁
𝛼=1

𝑛∑︁
𝛾1=1

𝑛∑︁
𝛾2=1

𝑊 𝑖,1
𝛼𝛾1
𝑊 𝑖,2
𝛼𝛾2
𝑥𝑖,1𝛾1

𝑥𝑖,2𝛾2

ª®¬ =
1
√
𝑛

𝑛∑︁
𝛼=1

𝑋𝛼,

where 𝑋𝛼 is given by

𝑋𝛼 =

𝑟∑︁
𝑖=1

𝑛∑︁
𝛾1 ,𝛾2=1

𝑡𝑖𝑊
𝑖,1
𝛼𝛾1
𝑊 𝑖,2
𝛼𝛾2
𝑥𝑖,1𝛾1

𝑥𝑖,2𝛾2
.

Lemmas D.3–D.8 show that the sequence {𝑋𝛼}𝛼∈[𝑛] satisfies the conditions of Lemma D.2. The
proof of Proposition D.1 is completed by applying Lemma D.2 to 𝑆 =

∑𝑛
𝛼=1 𝑋𝛼/

√
𝑛 and then invoking

the Cramér–Wold device.
Lemma D.3. The sequence {𝑋𝛼}𝛼∈[𝑛] is exchangeable.

Proof. By the sampling rule, an element𝑊 𝑖, 𝑗

𝛼𝛽
of the random matrix𝑊 𝑖, 𝑗 independently and identically

follows N(0, 𝜎2
𝑊 𝑖, 𝑗/𝑛) for 𝛼, 𝛽 ∈ [𝑛]. Hence, conditional on {𝑥𝑖, 𝑗 : 𝑖 ∈ [𝑟], 𝑗 ∈ [2]}, the random

variables 𝑋1, . . . , 𝑋𝑛 are i.i.d. Hence, by de Finetti’s theorem, {𝑋𝛼}𝛼∈[𝑛] is exchangeable. □

Lemma D.4. E(𝑋𝛼) = 0 holds for every 𝛼 ∈ [𝑛].

Proof. We compute E(𝑋𝛼) =
∑𝑟
𝑖=1

∑𝑛
𝛾1 ,𝛾2=1 𝑡𝑖E

(
𝑊
𝑖,1
𝛼𝛾1

)
E

(
𝑊
𝑖,2
𝛼𝛾2

)
E

(
𝑥
𝑖,1
𝛾1 𝑥

𝑖,2
𝛾2

)
= 0. □

Lemma D.5. We have lim𝑛→∞ E(𝑋2
𝛼) = 𝜎2

∗ with

𝜎2
∗ =

𝑟∑︁
𝑖1 ,𝑖2=1

𝑡𝑖1 𝑡𝑖2E
[
𝑍𝑔

𝑖1 ,1
𝑍𝑔

𝑖1 ,2
𝑍𝑔

𝑖2 ,1
𝑍𝑔

𝑖2 ,2
]

=

𝑟∑︁
𝑖1 ,𝑖2=1

∑︁
(𝑗 , 𝑗′) ∈𝐽

𝑡𝑖1 𝑡𝑖2𝜎
2
𝑊 𝑖1 ,1

𝜎2
𝑊 𝑖1 ,2
E

[
𝑍 𝑥

𝑖1 ,1
𝑍 𝑥

𝑖2 , 𝑗
]
E

[
𝑍 𝑥

𝑖1 ,2
𝑍 𝑥

𝑖2 , 𝑗
′]
𝑑
(𝑖2 , 𝑗)
(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′)
(𝑖1 ,2) ,

where we defined 𝐽 = {(1, 2), (2, 1)}.

Proof. For any 𝛼 ∈ [𝑛], we have
E(𝑋2

𝛼)

= E

©­«
𝑟∑︁
𝑖1=1

𝑛∑︁
𝛾1 ,𝛾2=1

𝑡𝑖1𝑊
𝑖1 ,1
𝛼𝛾1
𝑊 𝑖1 ,2
𝛼𝛾2
𝑥𝑖,1𝛾1

𝑥𝑖,2𝛾2

ª®¬ ©­«
𝑟∑︁
𝑖2=1

𝑛∑︁
𝛾3 ,𝛾4=1

𝑡𝑖2𝑊
𝑖2 ,1
𝛼𝛾3
𝑊 𝑖2 ,2
𝛼𝛾4
𝑥𝑖2 ,1𝛾3

𝑥𝑖2 ,2𝛾4

ª®¬


=

𝑟∑︁
𝑖1 ,𝑖2=1

𝑛∑︁
𝛾1 ,...,𝛾4=1

𝑡𝑖1 𝑡𝑖2E
(
𝑊 𝑖1 ,1
𝛼𝛾1
𝑊 𝑖1 ,2
𝛼𝛾2
𝑊 𝑖2 ,1
𝛼𝛾3
𝑊 𝑖2 ,2
𝛼𝛾4

)
E

(
𝑥𝑖1 ,1𝛾1

𝑥𝑖1 ,2𝛾2
𝑥𝑖2 ,1𝛾3

𝑥𝑖2 ,2𝛾4

)
=

𝑟∑︁
𝑖1 ,𝑖2=1

𝑛∑︁
𝛾1 ,𝛾2=1

∑︁
(𝑗 , 𝑗′) ∈𝐽

𝑡𝑖1 𝑡𝑖2E
[
(𝑊 𝑖1 ,1

𝛼𝛾1
)2

]
E

[
(𝑊 𝑖1 ,2

𝛼𝛾2
)2

]
E

(
𝑥𝑖1 ,1𝛾1

𝑥
𝑖2 , 𝑗
𝛾1 𝑥

𝑖1 ,2
𝛾2
𝑥
𝑖2 , 𝑗

′
𝛾2

)
𝑑
(𝑖2 , 𝑗)
(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′)
(𝑖1 ,2)

=

𝑟∑︁
𝑖1 ,𝑖2=1

∑︁
(𝑗 , 𝑗′) ∈𝐽

𝑡𝑖1 𝑡𝑖2𝜎
2
𝑊 𝑖1 ,1

𝜎2
𝑊 𝑖1 ,2
E

©­«
1
𝑛

𝑛∑︁
𝛾1=1

𝑥𝑖1 ,1𝛾1
𝑥
𝑖2 , 𝑗
𝛾1

ª®¬ ©­«1
𝑛

𝑛∑︁
𝛾2=1

𝑥𝑖1 ,2𝛾2
𝑥
𝑖2 , 𝑗

′
𝛾2

ª®¬
 𝑑 (𝑖2 , 𝑗)(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′)
(𝑖1 ,2)

𝑛→∞−→
𝑟∑︁

𝑖1 ,𝑖2=1

∑︁
(𝑗 , 𝑗′) ∈𝐽

𝑡𝑖1 𝑡𝑖2𝜎
2
𝑊 𝑖1 ,1

𝜎2
𝑊 𝑖1 ,2
E

[
𝑍 𝑥

𝑖1 ,1
𝑍 𝑥

𝑖2 , 𝑗
]
E

[
𝑍 𝑥

𝑖1 ,2
𝑍 𝑥

𝑖2 , 𝑗
′]
𝑑
(𝑖2 , 𝑗)
(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′)
(𝑖1 ,2) ,

28

where the convergence follows from Lemma D.9. Finally, Eq. (5) and Definition 3.1 imply that

𝜎2
𝑊 𝑖1 ,1

𝜎2
𝑊 𝑖1 ,2
E

[
𝑍 𝑥

𝑖1 ,1
𝑍 𝑥

𝑖2 , 𝑗
]
E

[
𝑍 𝑥

𝑖1 ,2
𝑍 𝑥

𝑖2 , 𝑗
′]
𝑑
(𝑖2 , 𝑗)
(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′)
(𝑖1 ,2) = E

[
𝑍𝑔

𝑖1 ,1
𝑍𝑔

𝑖1 ,2
𝑍𝑔

𝑖2 ,1
𝑍𝑔

𝑖2 ,2
]

holds for any 𝑖1, 𝑖2 ∈ [𝑟] and (𝑗 , 𝑗 ′) ∈ 𝐽. □

Lemma D.6. E(𝑋𝛼𝑋𝛽) = 0 holds for every 𝛼, 𝛽 ∈ [𝑛], 𝛼 ≠ 𝛽.

Proof. For 𝛼 ≠ 𝛽, we have

E(𝑋𝛼𝑋𝛽) = E
©­«

𝑟∑︁
𝑖1=1

𝑛∑︁
𝛾1 ,𝛾2=1

𝑡𝑖1𝑊
𝑖1 ,1
𝛼𝛾1
𝑊 𝑖1 ,2
𝛼𝛾2
𝑥𝑖1 ,1𝛾1

𝑥𝑖1 ,2𝛾2

ª®¬ ©­«
𝑟∑︁
𝑖2=1

𝑛∑︁
𝛾3 ,𝛾4=1

𝑡𝑖2𝑊
𝑖2 ,1
𝛽𝛾3
𝑊
𝑖2 ,2
𝛽𝛾4
𝑥𝑖2 ,1𝛾3

𝑥𝑖2 ,2𝛾4

ª®¬


=

𝑟∑︁
𝑖1 ,𝑖2=1

𝑛∑︁
𝛾1 ,...,𝛾4=1

𝑡𝑖1 𝑡𝑖2E
(
𝑊 𝑖1 ,1
𝛼𝛾1

)
E

(
𝑊 𝑖1 ,2
𝛼𝛾2

)
E

(
𝑊
𝑖2 ,1
𝛽𝛾3

)
E

(
𝑊
𝑖2 ,2
𝛽𝛾4

)
E

(
𝑥𝑖1 ,1𝛾1

𝑥𝑖1 ,2𝛾2
𝑥𝑖2 ,1𝛾3

𝑥𝑖2 ,2𝛾4

)
= 0

as desired. □

Lemma D.7. lim𝑛→∞ E(𝑋2
𝛼𝑋

2
𝛽
) = 𝜎4

∗ holds for every 𝛼, 𝛽 ∈ [𝑛], 𝛼 ≠ 𝛽.

Proof. By a calculation similar to Lemma D.5, we have
E(𝑋2

𝛼𝑋
2
𝛽)

=

𝑟∑︁
𝑖1 ,...,𝑖4=1

∑︁
(𝑗1 , 𝑗′1) , (𝑗2 , 𝑗

′
2) ∈𝐽2

𝑡𝑖1 𝑡𝑖2 𝑡𝑖3 𝑡𝑖4𝜎
2
𝑊 𝑖1 ,1

𝜎2
𝑊 𝑖2 ,2

𝜎2
𝑊 𝑖3 ,1

𝜎2
𝑊 𝑖4 ,2

𝑑
(𝑖2 , 𝑗1)
(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′1)
(𝑖1 ,2) 𝑑

(𝑖4 , 𝑗2)
(𝑖3 ,1) 𝑑

(𝑖4 , 𝑗′2)
(𝑖3 ,2)

× E
©­«

1
𝑛

𝑛∑︁
𝛾1=1

𝑥𝑖1 ,1𝛾1
𝑥
𝑖2 , 𝑗1
𝛾1

ª®¬ ©­«1
𝑛

𝑛∑︁
𝛾2=1

𝑥𝑖1 ,2𝛾2
𝑥
𝑖2 , 𝑗

′
1

𝛾2
ª®¬ ©­«1
𝑛

𝑛∑︁
𝛾3=1

𝑥
𝑖3 ,1
𝛾3 𝑥

𝑖4 , 𝑗2
𝛾3

ª®¬ ©­«1
𝑛

𝑛∑︁
𝛾4=1

𝑥
𝑖3 ,2
𝛾4 𝑥

𝑖4 , 𝑗
′
2

𝛾4
ª®¬


𝑛→∞−→
𝑟∑︁

𝑖1 ,...,𝑖4=1

∑︁
(𝑗1 , 𝑗′1) , (𝑗2 , 𝑗

′
2) ∈𝐽2

𝑡𝑖1 𝑡𝑖2 𝑡𝑖3 𝑡𝑖4𝜎
2
𝑊 𝑖1 ,1

𝜎2
𝑊 𝑖2 ,2

𝜎2
𝑊 𝑖3 ,1

𝜎2
𝑊 𝑖4 ,2

𝑑
(𝑖2 , 𝑗1)
(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′1)
(𝑖1 ,2) 𝑑

(𝑖4 , 𝑗2)
(𝑖3 ,1) 𝑑

(𝑖4 , 𝑗′2)
(𝑖3 ,2)

× E
[
𝑍 𝑥

𝑖1 ,1
𝑍 𝑥

𝑖2 , 𝑗1
]
E

[
𝑍 𝑥

𝑖1 ,2
𝑍 𝑥

𝑖2 , 𝑗
′
1
]
E

[
𝑍 𝑥

𝑖3 ,1
𝑍 𝑥

𝑖4 , 𝑗2
]
E

[
𝑍 𝑥

𝑖3 ,2
𝑍 𝑥

𝑖4 , 𝑗
′
2
]
,

where the convergence follows from Lemma D.9. Observe that this limit is equivalent to 𝜎4
∗ . □

Lemma D.8. E(|𝑋𝛼 |3) = 𝑜(
√
𝑛) holds as 𝑛→∞ for every 𝛼 ∈ [𝑛].

Proof. By the Lyapunov inequality, we have

1
√
𝑛
E(|𝑋𝛼 |3) ≤

1
√
𝑛

(
E(𝑋4

𝛼)
) 3

4 ≤ 1
√
𝑛

(
sup
𝑛

E(𝑋4
𝛼)

) 3
4

.

Thus, it suffices to show that sup𝑛 E(𝑋4
𝛼) < ∞ holds. We can express E(𝑋4

𝛼) as

E(𝑋4
𝛼) =

𝑟∑︁
𝑖1 ,...,𝑖4=1

𝑛∑︁
𝛾1 ,...,𝛾8=1

𝑡𝑖1 𝑡𝑖2 𝑡𝑖3 𝑡𝑖4E
[
𝑊 𝑖1 ,1
𝛼𝛾1
𝑊 𝑖2 ,1
𝛼𝛾2
𝑊
𝑖3 ,1
𝛼𝛾3𝑊

𝑖4 ,1
𝛼𝛾4
𝑊 𝑖1 ,2
𝛼𝛾5
𝑊 𝑖2 ,2
𝛼𝛾6
𝑊
𝑖3 ,2
𝛼𝛾7𝑊

𝑖4 ,2
𝛼𝛾8

]
× E

[
𝑥𝑖1 ,1𝛾1

𝑥𝑖2 ,1𝛾2
𝑥
𝑖3 ,1
𝛾3 𝑥

𝑖4 ,1
𝛾4
𝑥𝑖1 ,2𝛾5

𝑥𝑖2 ,2𝛾6
𝑥
𝑖3 ,2
𝛾7 𝑥

𝑖4 ,2
𝛾8

]
.

Applying the Cauchy–Schwarz inequality yields

E
[
𝑥𝑖1 ,1𝛾1

𝑥𝑖2 ,1𝛾2
𝑥
𝑖3 ,1
𝛾3 𝑥

𝑖4 ,1
𝛾4
𝑥𝑖1 ,2𝛾5

𝑥𝑖2 ,2𝛾6
𝑥
𝑖3 ,2
𝛾7 𝑥

𝑖4 ,2
𝛾8

]
≤

(
4∏
𝑘=1
E

[
(𝑥𝑖 𝑗 ,1𝛾 𝑗)

8
]) 1

8
(

4∏
𝑘=1
E

[
(𝑥𝑖 𝑗 ,2𝛾4+ 𝑗)

8
]) 1

8

=

(
4∏
𝑘=1
E

[
(𝑥𝑖 𝑗 ,11)

8
]) 1

8
(

4∏
𝑘=1
E

[
(𝑥𝑖 𝑗 ,21)

8
]) 1

8

≤ sup
𝑖∈[𝑟], 𝑗∈[2]

E
[
(𝑥𝑖, 𝑗1)

8
]
.

29

By the boundedness of 𝑥𝑖, 𝑗 (𝑖 ∈ [𝑟], 𝑗 ∈ [2]), the last term is bounded uniformly in 𝑛, and
consequently, it holds that

sup
𝑛

E
[
𝑥𝑖1 ,1𝛾1

𝑥𝑖2 ,1𝛾2
𝑥
𝑖3 ,1
𝛾3 𝑥

𝑖4 ,1
𝛾4
𝑥𝑖1 ,2𝛾5

𝑥𝑖2 ,2𝛾6
𝑥
𝑖3 ,2
𝛾7 𝑥

𝑖4 ,2
𝛾8

]
< ∞.

Hence, we compute

E(𝑋4
𝛼) ≲

𝑟∑︁
𝑖1 ,...,𝑖4=1

𝑛∑︁
𝛾1 ,...,𝛾8=1

E
[
𝑊 𝑖1 ,1
𝛼𝛾1
𝑊 𝑖2 ,1
𝛼𝛾2
𝑊
𝑖3 ,1
𝛼𝛾3𝑊

𝑖4 ,1
𝛼𝛾4
𝑊 𝑖1 ,2
𝛼𝛾5
𝑊 𝑖2 ,2
𝛼𝛾6
𝑊
𝑖3 ,2
𝛼𝛾7𝑊

𝑖4 ,2
𝛼𝛾8

]
=

𝑟∑︁
𝑖=1

𝑛∑︁
𝛾1 ,...,𝛾8=1

E
[
𝑊 𝑖,1
𝛼𝛾1
𝑊 𝑖,1
𝛼𝛾2
𝑊 𝑖,1
𝛼𝛾3
𝑊 𝑖,1
𝛼𝛾4
𝑊 𝑖,2
𝛼𝛾5
𝑊 𝑖,2
𝛼𝛾6
𝑊 𝑖,2
𝛼𝛾7𝑊

𝑖,2
𝛼𝛾8

]
+ 4

𝑟∑︁
𝑖1=1

∑︁
𝑖2≠𝑖1

𝑛∑︁
𝛾1 ,...,𝛾8=1

E
[
𝑊 𝑖1 ,1
𝛼𝛾1
𝑊 𝑖1 ,1
𝛼𝛾2
𝑊 𝑖1 ,1
𝛼𝛾3
𝑊 𝑖2 ,1
𝛼𝛾4
𝑊 𝑖1 ,2
𝛼𝛾5
𝑊 𝑖1 ,2
𝛼𝛾6
𝑊 𝑖1 ,2
𝛼𝛾7𝑊

𝑖2 ,2
𝛼𝛾8

]
+ 3

𝑟∑︁
𝑖1=1

∑︁
𝑖2≠𝑖1

𝑛∑︁
𝛾1 ,...,𝛾8=1

E
[
𝑊 𝑖1 ,1
𝛼𝛾1
𝑊 𝑖1 ,1
𝛼𝛾2
𝑊 𝑖2 ,1
𝛼𝛾3
𝑊 𝑖2 ,1
𝛼𝛾4
𝑊 𝑖1 ,2
𝛼𝛾5
𝑊 𝑖1 ,2
𝛼𝛾6
𝑊 𝑖2 ,2
𝛼𝛾7𝑊

𝑖2 ,2
𝛼𝛾8

]
+ 6

𝑟∑︁
𝑖1=1

∑︁
𝑖2≠𝑖1

∑︁
𝑖3∉{𝑖1 ,𝑖2 }

𝑛∑︁
𝛾1 ,...,𝛾8=1

E
[
𝑊 𝑖1 ,1
𝛼𝛾1
𝑊 𝑖1 ,1
𝛼𝛾2
𝑊 𝑖2 ,1
𝛼𝛾3
𝑊
𝑖3 ,1
𝛼𝛾4𝑊

𝑖1 ,2
𝛼𝛾5
𝑊 𝑖1 ,2
𝛼𝛾6
𝑊 𝑖2 ,2
𝛼𝛾7𝑊

𝑖3 ,2
𝛼𝛾8

]
+

𝑟∑︁
𝑖1 ,𝑖2 ,𝑖3 ,𝑖4=1
all distinct

𝑛∑︁
𝛾1 ,...,𝛾8=1

E
[
𝑊 𝑖1 ,1
𝛼𝛾1
𝑊 𝑖2 ,1
𝛼𝛾2
𝑊
𝑖3 ,1
𝛼𝛾3𝑊

𝑖4 ,1
𝛼𝛾4
𝑊 𝑖1 ,2
𝛼𝛾5
𝑊 𝑖2 ,2
𝛼𝛾6
𝑊
𝑖3 ,2
𝛼𝛾7𝑊

𝑖4 ,2
𝛼𝛾8

]
=: 𝐴1 + 4𝐴2 + 3𝐴3 + 6𝐴4 + 𝐴5.

Define 𝜎 by 𝜎 = max{𝜎𝑊 𝑖, 𝑗 : 𝑖 ∈ [𝑟], 𝑗 ∈ [2]}. Then, we compute 𝐴1 as

𝐴1 =

𝑟∑︁
𝑖=1

𝑛∑︁
𝛾1 ,...,𝛾8=1

E
[
𝑊 𝑖,1
𝛼𝛾1
𝑊 𝑖,1
𝛼𝛾2
𝑊 𝑖,1
𝛼𝛾3
𝑊 𝑖,1
𝛼𝛾4

]
E

[
𝑊 𝑖,2
𝛼𝛾5
𝑊 𝑖,2
𝛼𝛾6
𝑊 𝑖,2
𝛼𝛾7𝑊

𝑖,2
𝛼𝛾8

]
=

𝑟∑︁
𝑖=1

𝑛∑︁
𝛾1 ,𝛾2=1

E
[
(𝑊 𝑖,1

𝛼𝛾1
)4

]
E

[
(𝑊 𝑖,2

𝛼𝛾2
)2

]
+ 3

𝑟∑︁
𝑖=1

∑︁
(𝑗 , 𝑗′) ∈𝐽

𝑛∑︁
𝛾1 ,𝛾2=1

∑︁
𝛾3≠𝛾2

E
[
(𝑊 𝑖, 𝑗

𝛼𝛾1)
4
]
E

[
(𝑊 𝑖, 𝑗′

𝛼𝛾2)
2
]
E

[
(𝑊 𝑖, 𝑗′

𝛼𝛾3)
2
]

+ 9
𝑟∑︁
𝑖=1

𝑛∑︁
𝛾1 ,𝛾2=1

∑︁
𝛾3≠𝛾1

∑︁
𝛾4≠𝛾2

E
[
(𝑊 𝑖,1

𝛼𝛾1
)2

]
E

[
(𝑊 𝑖,1

𝛼𝛾2
)2

]
E

[
(𝑊 𝑖,2

𝛼𝛾3
)2

]
E

[
(𝑊 𝑖,2

𝛼𝛾4
)2

]
=

𝑟∑︁
𝑖=1

©­«
9𝜎4

𝑊 𝑖,1𝜎
4
𝑊 𝑖,2

𝑛2 + 3
∑︁
(𝑗 , 𝑗′) ∈𝐽

3(𝑛 − 1)𝜎4
𝑊 𝑖, 𝑗𝜎

4
𝑊 𝑖, 𝑗′

𝑛2 + 9
(𝑛 − 1)2𝜎4

𝑊 𝑖,1𝜎
4
𝑊 𝑖,2

𝑛2
ª®¬

= 9
𝑟∑︁
𝑖=1

𝜎4
𝑊 𝑖,1𝜎

4
𝑊 𝑖,2 ≲ 𝜎

8.

Likewise, we have

𝐴2 =

𝑟∑︁
𝑖1=1

∑︁
𝑖2≠𝑖1

∑︁
(𝑗 , 𝑗′) ∈𝐽

𝑛∑︁
𝛾1 ,...,𝛾8=1

E
[
𝑊 𝑖1 ,1
𝛼𝛾1
𝑊 𝑖1 ,1
𝛼𝛾2
𝑊 𝑖1 ,1
𝛼𝛾3
𝑊
𝑖2 , 𝑗
𝛼𝛾4

]
E

[
𝑊 𝑖1 ,2
𝛼𝛾5
𝑊 𝑖1 ,2
𝛼𝛾6
𝑊 𝑖1 ,2
𝛼𝛾7𝑊

𝑖2 , 𝑗
′

𝛼𝛾8

]
𝑑
(𝑖2 , 𝑗)
(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′)
(𝑖1 ,2)

= 9
𝑟∑︁
𝑖1=1

∑︁
𝑖2≠𝑖1

∑︁
(𝑗 , 𝑗′) ∈𝐽

𝜎4
𝑊 𝑖1 ,1

𝜎4
𝑊 𝑖1 ,2

𝑑
(𝑖2 , 𝑗)
(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′)
(𝑖1 ,2) ≲ 𝜎

8

30

and

𝐴3 =

𝑟∑︁
𝑖1=1

∑︁
𝑖2≠𝑖1

∑︁
(𝑗 , 𝑗′) ∈𝐽

𝑛∑︁
𝛾1 ,...,𝛾8=1

E
[
𝑊 𝑖1 ,1
𝛼𝛾1
𝑊 𝑖1 ,1
𝛼𝛾2
𝑊
𝑖2 , 𝑗
𝛼𝛾3𝑊

𝑖2 , 𝑗
𝛼𝛾4

]
E

[
𝑊 𝑖1 ,2
𝛼𝛾5
𝑊 𝑖1 ,2
𝛼𝛾6
𝑊
𝑖2 , 𝑗

′
𝛼𝛾7 𝑊

𝑖2 , 𝑗
′

𝛼𝛾8

]
𝑑
(𝑖2 , 𝑗)
(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′)
(𝑖1 ,2)

= 9
𝑟∑︁
𝑖1=1

∑︁
𝑖2≠𝑖1

∑︁
(𝑗 , 𝑗′) ∈𝐽

𝜎4
𝑊 𝑖1 ,1

𝜎4
𝑊 𝑖1 ,2

𝑑
(𝑖2 , 𝑗)
(𝑖1 ,1) 𝑑

(𝑖2 , 𝑗′)
(𝑖1 ,2) ≲ 𝜎

8.

Applying a similar argument, we can also show that 𝐴4 ≲ 𝜎
8 and 𝐴5 ≲ 𝜎

8 holds. Therefore, we
conclude that E(𝑋4

𝛼) ≲ 𝜎8 holds, which completes the proof. □

Lemma D.9. Take 𝑘1, . . . , 𝑘8 ∈ {(𝑖, 𝑗) : 𝑖 ∈ [𝑟], 𝑗 ∈ [2]} arbitrarily. Then, the following statements
hold as 𝑛→∞.

(i) For (𝑥𝑘1 , . . . , 𝑥𝑘8), we have

E

©­«
1
𝑛

𝑛∑︁
𝛾1=1

𝑥𝑘1
𝛾1
𝑥𝑘2
𝛾1

ª®¬ ©­«1
𝑛

𝑛∑︁
𝛾2=1

𝑥
𝑘3
𝛾2𝑥

𝑘4
𝛾2

ª®¬ ©­«1
𝑛

𝑛∑︁
𝛾3=1

𝑥
𝑘5
𝛾3𝑥

𝑘6
𝛾3

ª®¬ ©­«1
𝑛

𝑛∑︁
𝛾4=1

𝑥𝑘7
𝛾4
𝑥
𝑘8
𝛾4

ª®¬


→ E
[
𝑍 𝑥

𝑘1
𝑍 𝑥

𝑘2
]
E

[
𝑍 𝑥

𝑘3
𝑍 𝑥

𝑘4
]
E

[
𝑍 𝑥

𝑘5
𝑍 𝑥

𝑘6
]
E

[
𝑍 𝑥

𝑘7
𝑍 𝑥

𝑘8
]
.

(ii) For (𝑥𝑘1 , . . . , 𝑥𝑘4), we have

E

©­«
1
𝑛

𝑛∑︁
𝛾1=1

𝑥𝑘1
𝛾1
𝑥𝑘2
𝛾1

ª®¬ ©­«1
𝑛

𝑛∑︁
𝛾2=1

𝑥
𝑘3
𝛾2𝑥

𝑘4
𝛾2

ª®¬
 → E

[
𝑍 𝑥

𝑘1
𝑍 𝑥

𝑘2
]
E

[
𝑍 𝑥

𝑘3
𝑍 𝑥

𝑘4
]
.

Proof. Define the residual term 𝑅ℓ by

𝑅ℓ =
1
𝑛

𝑛∑︁
𝛾1=1

𝑥
𝑘2ℓ −1
𝛾ℓ 𝑥

𝑘2ℓ
𝛾ℓ − E

[
𝑍 𝑥

𝑘2ℓ −1
𝑍 𝑥

𝑘2ℓ
]

for each 𝑖 ∈ [4]. Define constants 𝐶 and 𝑅̃ by

𝐶 = max
ℓ∈[4]

���E [
𝑍 𝑥

𝑘2ℓ −1
𝑍 𝑥

𝑘2ℓ
] ��� , 𝑅̃ =

(
max
ℓ∈[4]

E(𝑅4
ℓ)

) 1
4

.

Note that 𝐶 is bounded by the boundedness of 𝑥𝑖, 𝑗 for all 𝑖 ∈ [𝑟] and 𝑗 ∈ [2] (see Definition 3.1).
Then, we can write ������E


4∏
ℓ=1

©­«1
𝑛

𝑛∑︁
𝛾ℓ=1

𝑥
𝑘2ℓ −1
𝛾ℓ 𝑥

𝑘2ℓ
𝛾ℓ

ª®¬
 −

4∏
ℓ=1
E

[
𝑍 𝑥

𝑘2ℓ −1
𝑍 𝑥

𝑘2ℓ
] ������

=

�����E
[

4∏
ℓ=1

(
𝑅ℓ + E

[
𝑍 𝑥

𝑘2ℓ −1
𝑍 𝑥

𝑘2ℓ
])]
−

4∏
ℓ=1
E

[
𝑍 𝑥

𝑘2ℓ −1
𝑍 𝑥

𝑘2ℓ
] �����

≤ 4𝐶3 𝑅̃ + 6𝐶2 𝑅̃2 + 4𝐶𝑅̃3 + 𝑅̃4,

where the last inequality follows from the Cauchy–Schwarz inequality and the Lyapunov inequality.
Likewise, we have ������E


2∏
ℓ=1

©­«1
𝑛

𝑛∑︁
𝛾ℓ=1

𝑥
𝑘2ℓ −1
𝛾ℓ 𝑥

𝑘2ℓ
𝛾ℓ

ª®¬
 −

2∏
ℓ=1
E

[
𝑍 𝑥

𝑘2ℓ −1
𝑍 𝑥

𝑘2ℓ
] ������

=

�����E
[

2∏
ℓ=1

(
𝑅ℓ + E

[
𝑍 𝑥

𝑘2ℓ −1
𝑍 𝑥

𝑘2ℓ
])]
−

2∏
ℓ=1
E

[
𝑍 𝑥

𝑘2ℓ −1
𝑍 𝑥

𝑘2ℓ
] �����

≤ 2𝐶𝑅̃ + 𝑅̃2.

31

Thus, it remains only to prove that 𝑅̃ converges to 0 as 𝑛 → ∞. This can be achieved by showing
that E(𝑅4

ℓ
) converges to 0 for all ℓ ∈ [4]. By Fact 3.1 and Lemma C.4, for all ℓ ∈ [4], we know 𝑅ℓ

converges almost surely to 0. The continuous mapping theorem then yields

𝑅4
ℓ

𝑎.𝑠.−→ 0.

To upgrade this to convergence in expectation, Facts C.1 and C.2 imply it suffices to show the existance
of a constant 𝛿 > 1 that satisfies

sup
𝑛

E(𝑅4+𝛿
ℓ) < ∞.

But since each 𝑥𝑖, 𝑗 and its infinite-width limit 𝑍 𝑥𝑖, 𝑗 are bounded, such a 𝛿 exists. Therefore, we
conclude that E(𝑅4

ℓ
) converges to 0 for all ℓ ∈ [4], and consequently, 𝑅̃ does as well. □

D.1.2 𝑆1 Converges to 0

We study the convergence of the term 𝑆1 defined in Section 4. Specifically, we show

𝑆1 =

�����E 𝑓
(

1
𝑛

𝑛∑︁
𝛼=1

𝜓(g1:𝑀
𝛼 ,p1:𝑟)

)
− E 𝑓

(
E

[
𝜓(𝑍g1:𝑀

,p1:𝑟) | p1:𝑟

])�����→ 0.

Fix a small 𝜖 > 0. Since p̊1:𝑟 is a Gaussian vector (see Definition 3.1), it is tight. Hence there exists a
compact set 𝐾 ⊂ R𝑟 that satisfies

P(p̊1:𝑟 ∈ 𝐾) > 1 − 𝜖 .
Set

𝑦 =
1
𝑛

𝑛∑︁
𝛼=1

𝜓(g1:𝑀
𝛼 ,p1:𝑟), 𝑧 = E

[
𝜓(𝑍g1:𝑀

,p1:𝑟) | p1:𝑟

]
.

Then, we have

𝑆1 = |E 𝑓 (𝑦) − E 𝑓 (𝑧) |
≤ |E[(𝑓 (𝑦) − 𝑓 (𝑧))1{p1:𝑟 ∈ 𝐾}] | + |E[(𝑓 (𝑦) − 𝑓 (𝑧))1{p1:𝑟 ∉ 𝐾}] |
≤ |E[(𝑓 (𝑦) − 𝑓 (𝑧))1{p1:𝑟 ∈ 𝐾}] | + E[| 𝑓 (𝑦) − 𝑓 (𝑧) |1{p1:𝑟 ∉ 𝐾}] . (6)

By the boundedness of 𝑓 , the second term of Eq. (6) is bounded as

E[| 𝑓 (𝑦) − 𝑓 (𝑧) |1{p1:𝑟 ∉ 𝐾}] ≤ 𝐶P(p1:𝑟 ∉ 𝐾)

with some constant 𝐶. Furthermore, noting that 𝐾 is a Borel set, applying Lemma C.2 and
Proposition D.1 gives

lim
𝑛→∞

P(p1:𝑟 ∉ 𝐾) = P(p̊1:𝑟 ∉ 𝐾) < 𝜖.

Therefore, for large enough 𝑛, we have

E[| 𝑓 (𝑦) − 𝑓 (𝑧) |1{p1:𝑟 ∉ 𝐾}] < 𝐶𝜖.

For the first term of Eq. (6), we have

|E[(𝑓 (𝑦) − 𝑓 (𝑧))1{p1:𝑟 ∈ 𝐾}] |

≤ sup
a1:𝑟 ∈𝐾

�����E
[
𝑓

(
1
𝑛

𝑛∑︁
𝛼=1

𝜓(g1:𝑀
𝛼 ,a1:𝑟)

)]
− E

[
𝑓

(
E

[
𝜓(𝑍g1:𝑀

,a1:𝑟)
])] �����

= sup
a1:𝑟 ∈𝐾

Φ𝑛 (a1:𝑟),

where Φ𝑛 : R𝑟 → R is defined by

Φ𝑛 (a1:𝑟) =
�����E

[
𝑓

(
1
𝑛

𝑛∑︁
𝛼=1

𝜓(g1:𝑀
𝛼 ,a1:𝑟)

)]
− E

[
𝑓

(
E

[
𝜓(𝑍g1:𝑀

,a1:𝑟)
])] ����� .

Define 𝜓̃a1:𝑟 : R𝑀 → R by
𝜓̃a1:𝑟 (u1:𝑀) = 𝜓(u1:𝑀 ,a1:𝑟). (7)

32

Observe that 𝜓̃a1:𝑟 is bounded by the boundedness of 𝜓. We later show that 𝜓̃a1:𝑟 is also pseudo-
Lipschitz (Lemma D.10). Therefore, by Eq. (3) and Lemma C.2, we have

lim
𝑛→∞

Φ𝑛 (a1:𝑟) = 0 (a1:𝑟 ∈ R𝑟).

Moreover, noting that 𝑓 and 𝜓 are bounded and continuous (see Fact C.3), we can apply the
(uncoditional and conditional) bounded convergence theorem to show that Φ𝑛 is continuous at every
point. Therefore, we can apply Lemma D.11 to show that supa1:𝑟 ∈𝐾 Φ𝑛 (a1:𝑟) converges to 0 as
𝑛→∞.
Lemma D.10. Define 𝜓̃a1:𝑟 : R𝑀 → R by Eq. (7). Then, it is pseudo-Lipschitz.

Proof. Suppose 𝜓 is pseudo-Lipschitz of order 𝑑 + 1 with 𝑑 ≥ 1. Then, we have

|𝜓̃a1:𝑟 (u1:𝑀) − 𝜓̃a1:𝑟 (u′1:𝑀) | = |𝜓(u1:𝑀 ,a1:𝑟) − 𝜓(u′1:𝑀 ,a1:𝑟) |
≲ ∥(u1:𝑀) − (u′1:𝑀)∥(1 + ∥(u1:𝑀 ,a1:𝑟)∥𝑑 + ∥(u′1:𝑀 ,a1:𝑟)∥𝑑).

By Lemma C.1, we can bound ∥(u1:𝑀 ,a1:𝑟)∥𝑑 as

∥(u1:𝑀 ,a1:𝑟)∥𝑑 ≤ (∥(u1:𝑀)∥ + ∥a1:𝑟 ∥)𝑑 ≤ 2𝑑−1
(
∥(u1:𝑀)∥𝑑 + ∥a1:𝑟 ∥𝑑

)
.

Thus, we have

1 + ∥(u1:𝑀 ,a1:𝑟)∥𝑑 + ∥(u′1:𝑀 ,a1:𝑟)∥𝑑 ≤ 1 + 2𝑑−1
(
∥(u1:𝑀)∥𝑑 + ∥(u′1:𝑀)∥

𝑑
)
+ 2𝑑 ∥a1:𝑟 ∥𝑑

≲ 1 + ∥(u1:𝑀)∥𝑑 + ∥(u′1:𝑀)∥
𝑑 ,

where the last inequality holds because a1:𝑟 is fixed. □

Lemma D.11. Let 𝐾 ⊂ R𝑟 be a compact set. Suppose for each 𝑛 ∈ N, 𝑓𝑛 : R→ R is a continuous
function that satisfies

lim
𝑛→∞

𝑓𝑛 (a1:𝑟) = 0 (8)

for any constant a1:𝑟 ∈ 𝐾 . Then, we have

lim
𝑛→∞

sup
a1:𝑟 ∈𝐾

| 𝑓𝑛 (a1:𝑟) | = 0.

Proof. Fix 𝜖 > 0. Let 𝐵(a1:𝑟 , 𝜖) denote the ball of radius 𝜖 centered at a1:𝑟 ∈ R𝑟 . By the continuity
of 𝑓𝑛, for each a1:𝑟 ∈ 𝐾 , there exists 𝛿a1:𝑟 > 0 such that

| 𝑓𝑛 (a1:𝑟) − 𝑓𝑛 (b1:𝑟) | < 𝜖/2 (b1:𝑟 ∈ 𝐵(a1:𝑟 , 𝛿a1:𝑟))

holds. Note that 𝐾 is covered by the union of balls as

𝐾 ⊂
⋃

a1:𝑟 ∈𝐾
𝐵(a1:𝑟 , 𝛿a1:𝑟).

Since 𝐾 is compact, we can cover 𝐾 with finitely many balls, say

𝐾 ⊂
𝐼⋃
𝑖=1

𝐵𝑖 =

𝐼⋃
𝑖=1

𝐵(a𝑖1:𝑟 , 𝛿a𝑖1:𝑟
),

where 𝐵𝑖 is given by 𝐵𝑖 = 𝐵(a𝑖1:𝑟 , 𝛿𝑎𝑖). By Eq. (8), for each 𝑖 ∈ [𝐼], there exists 𝑁𝑖 ∈ N such that

| 𝑓𝑛 (a𝑖1:𝑟) | < 𝜖/2 (𝑛 ≥ 𝑁𝑖)

holds. Let 𝑁 denote the maximum of {𝑁𝑖 : 𝑖 ∈ [𝐼]}. Then, for any 𝑛 ≥ 𝑁 , we have

sup
a1:𝑟 ∈𝐾

| 𝑓𝑛 (a1:𝑟) | ≤ max
𝑖∈[𝐼]

sup
a1:𝑟 ∈𝐵𝑖

| 𝑓𝑛 (a1:𝑟) | ≤ max
𝑖∈[𝐼]

sup
a1:𝑟 ∈𝐵𝑖

(| 𝑓𝑛 (a1:𝑟) − 𝑓𝑛 (a𝑖1:𝑟) | + | 𝑓𝑛 (a
𝑖
1:𝑟) |)

< max
𝑖∈[𝐼]

𝜖 = 𝜖,

which implies the convergence of supa1:𝑟 ∈𝐾 | 𝑓𝑛 (a1:𝑟) | to zero as 𝑛 goes to infinity. □

33

D.1.3 𝑆2 Converges to 0

We study the convergence of the term 𝑆2 also defined in Section 4. Specifically, we prove

𝑆2 =

���E 𝑓 (
E

[
𝜓(𝑍g1:𝑀

,p1:𝑟) | p1:𝑟

])
− E 𝑓

(
E[𝜓(𝑍g1:𝑀

, p̊1:𝑟) | p̊1:𝑟]
)���→ 0.

Define a function Ψ : R𝑟 → R by

Ψ(a1:𝑟) = E
[
𝜓(𝑍g1:𝑀

,a1:𝑟)
]
,

then it is bounded since 𝜓 is bounded. By the bounded convergence theorem, it is also continuous.
Therefore, by the continuous mapping theorem, we have

Ψ(p1:𝑟)
𝑑−→ Ψ(p̊1:𝑟).

Since 𝑍g1:𝑀 is independent of p1:𝑟 , we have

E
[
𝜓(𝑍g1:𝑀

,p1:𝑟) | p1:𝑟

]
= Ψ(p1:𝑟).

Therefore, we haveå
E

[
𝜓(𝑍g1:𝑀

,p1:𝑟) | p1:𝑟

]
𝑑−→ Ψ(p̊1:𝑟).

Note that Ψ(p̊1:𝑟) can be expressed as

Ψ(p̊1:𝑟) = E
[
𝜓(𝑍g1:𝑀

, p̊1:𝑟) | p̊1:𝑟

]
,

where 𝑍g1:𝑀 is independent of p̊1:𝑟 . By Lemma C.2, this implies 𝑆2 → 0.

D.2 Proof of Corollary 3.2

Let 𝜓 : R𝐽 → R be a bounded and Lipschitz function that satisfies |𝜓 | ≤ 𝐶. Note that by Fact C.3, it
is also pseudo-Lipschitz. Define a bounded and continuous function 𝑓 : R→ R by

𝑓 (𝑥) = −𝐶1{𝑥 < 𝐶} + 𝑥1{𝑥 ∈ [−𝐶,𝐶]} + 𝐶{𝑥 ≥ 𝐶}.

Then, Lemma C.2 and Theorem 3.1 imply that

E[𝜓(ℎ1
𝛼, . . . , ℎ

𝐽
𝛼)] = E

(
1
𝑛

𝑛∑︁
𝛼=1

𝜓(ℎ1
𝛼, . . . , ℎ

𝐽
𝛼)

)
= E

[
𝑓

(
1
𝑛

𝑛∑︁
𝛼=1

𝜓(ℎ1
𝛼, . . . , ℎ

𝐽
𝛼)

)]
→ E

[
𝑓

(
E[𝜓(𝑍ℎ1

, . . . , 𝑍ℎ
𝐽) | 𝑝1, . . . , 𝑝𝑟]

)]
= E

[
𝜓(𝑍ℎ1

, . . . , 𝑍ℎ
𝐽)

]
holds as 𝑛 → ∞. Since the above convergence holds for all bounded and Lipschitz function 𝜓, by
Lemma C.2, this implies the desired convergence in distribution.

34

	Introduction
	Related Works

	Preliminary
	Notation and Setup of Neural Networks
	Distribution of Attention Mechanism in Previous Setup

	Main Theorem
	Limiting Distribution
	Statement

	Proof Sketch of Theorem 3.1
	Simulation and Discussion
	Effect of Finite Width
	Scalings of the Dot-product Score and Finiteness of Heads

	Conclusion
	Notation Summary
	Simulation Details and Supplementary Analysis
	General Experimental Setup
	Analysis of Low-Rank Attention
	Specific Setup for Low-Rank Attention
	Results and Discussion

	Additional Experiments on Robustness
	Varying the Spatial Dimension
	Varying the Activation Function

	Mathematical Tools
	Basics
	Pseudo-Lipschitz Functions

	Remaining proofs
	Proof of Theorem 4.1
	Weak Convergence of the Dot Products
	S_1 Converges to 0
	S_2 Converges to 0

	Proof of Corollary 3.2

