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Abstract

Recently, Robey et al. propose a notion of probabilistic robustness, which, at a
high-level, requires a classifier to be robust to most but not all perturbations. They
show that for certain hypothesis classes where proper learning under worst-case
robustness is not possible, proper learning under probabilistic robustness is possible
with sample complexity exponentially smaller than in the worst-case robustness
setting. This motivates the question of whether proper learning under probabilistic
robustness is always possible. In this paper, we show that this is not the case. We
exhibit examples of hypothesis classes H with finite VC dimension that are not
probabilistically robustly PAC learnable with any proper learning rule.

1 Introduction

As deep neural networks become increasingly ubiquitous, their susceptibility to test-time adversarial
attacks has become more and more apparent. Designing learning algorithms that are robust to these
test-time adversarial perturbations has garnered increasing attention by machine learning researchers
and practitioners alike. Prior work on adversarially robust learning has mainly focused on learnability
under the worst-case robust risk, defined as

RU (h;D) := E
(x,y)∼D

[
sup

z∈U(x)

1{h(z) ̸= y}

]
,

where U(x) ⊂ X is an adversarially chosen perturbation set (for example Lp balls). In practice,
however, classifiers trained to achieve worst-case adversarial robustness often exhibit degraded
nominal performance [DHHR20, RXY+19, SZC+18, TSE+18, YRZ+20, ZYJ+19, RCPH22]. As a
result, several works have considered relaxing the worst-case nature of RU (h;D) [RCPH22, LBSS20,
LBSS21, LF19, RBZK21]. In this work, we consider the probabilistic relaxation of worst-case
adversarial robustness, as introduced by [RCPH22]. In particular, we are interested in understanding
the PAC learnability (i.e. sample complexity) of general hypothesis classes under the probabilistic
robust risk, defined as,

RU (h;D, ρ) := E
(x,y)∼D

[
1{Pz∼µU(x)

(h(z) ̸= y) > ρ}
]
,

where again U(x) ⊂ X is an adversarially chosen perturbation set, and µU(x) is an adversarially
chosen probability measure over U(x). Roughly speaking, learning under probabilistic robustness
asks to find a hypothesis h ∈ H that is robust to most, but not all, perturbations for each example
in the support of the data distribution D. As highlighted in [RCPH22], this notion of robustness is
desirable as it nicely interpolates between worst and average case robustness via an interpretable
parameter ρ, while being more computationally tractable compared to existing relaxations. We note
that probabilistic robustness is a strict relaxation of worst-case robustness. While RU (h;D) ≤ ϵ
implies RU (h;D, ρ) ≤ ϵ for every ρ ∈ [0, 1] and every hypothesis h, the converse is not true even for
ρ = 0. Indeed, when ρ = 0, there exists problems were a classifier that is non-robust to a countably
infinite number of perturbations for every x ∈ X still achieves RU (h;D, ρ) = 0.
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2 Notation, Preliminaries, and Problem Setup

Throughout the paper we will let [k] denote the set of integers {1, ..., k}. Let X denote an instance
space, Y = {0, 1} denote our label space, and D be any distribution over X × Y . Let H ⊂ YX

denote a hypothesis class mapping examples in X to labels in Y . In probabilistic robust learning,
an adversary picks for each point x ∈ X , a perturbation set U(x) and a perturbation measure µU(x)

fully supported on U(x). At test time, the adversary receives a test example (x, y) ∼ D, samples a
perturbation x̃ ∼ µU(x), and passes (x̃, y) to the learner. We make no assumptions on U(x) or µU(x)

other than the fact that U(x) must be non-empty for each x ∈ X . From a learning perspective, given
a hypothesis class H, our goal is to design a learning rule A : (X × Y)∗ → YX such that for any
distribution D over X ×Y , the learning rule A finds a predictor that competes with the best predictor
h∗ ∈ H in terms of the probabilistic robust risk using a number of samples that is independent from
D. If A always outputs a hypothesis in H, then we call A a proper learner. The main result in
this paper is showing that sometimes proper learning is not possible, even under the probabilistic
robustness.

We now recall the Vapnik-Chervonekis dimension (VC dimension) which plays an important role in
characterizing PAC learnability under the standard 0-1 risk.
Definition 1. A set {x1, ..., xn} ∈ X is shattered by H, if ∀y1, ..., yn ∈ Y , ∃h ∈ H, s.t. ∀i ∈ [n],
h(xi) = yi. The VC dimension of H, is defined as the largest natural number n ∈ N such that there
exists a set {x1, ..., xn} ∈ X that is shattered by H.

In traditional PAC learning framework, a hypothesis class H is PAC learnable if and only if its VC
dimension is finite [VC71]. In fact, when the VC dimension is finite, H is properly learnable via an
Empirical Risk Minimization (ERM) oracle. As in the worst-case robust setting, we are interested
in understanding what are necessary and sufficient condition on H that enable probabilistic robust
PAC learnability against an arbitrary adversary. A sufficient condition, based on Vapnik’s "General
Learning" [Vap06], is the finiteness of VC dimension of the probabilistic robust loss class LU,ρ

H :

LU,ρ
H = {(x, y) 7→ 1{Pz∼µU(x)

(h(z) ̸= y) > ρ} : h ∈ H}.

In particular, if the VC dimension of the probabilistic robust loss class LU,ρ
H is finite, then H is

probabilistically robustly PAC learnable via oracle access to a Probabilistic Robust Empirical Risk
Minimizer (PRERM) with sample complexity that scales linearly with VC(LU,ρ

H ). In this sense, if
one can upper bound VC(LU,ρ

H ) in terms of VC(H), then finite VC dimension is sufficient for proper
learnability. However, as we will show in the next section, there can be an arbitrarily large gap
between these two quantities, and proper learning overall might not be possible.

3 Proper Learning Is Not Always Possible

In this section, we show that even for hypothesis classes with finite VC dimension, probabilistic
robust PAC learning might not be possible using any proper learning rule. In particular, this implies
that even if there is a probabilistic robust hypothesis in H, and even with arbitrarily large number
of samples, the PRERM may not guarantee low risk. For the proofs in this section we fix X = Rd

equipped with some metric τ , an adversary U : X → 2X such that U(x) = {z ∈ X : τ(x, z) ≤ γ}
for all x ∈ X for some γ > 0, and uniform perturbation measures µU(x) for all x ∈ X .

We start by showing that for every ρ ∈ [0, 1), there can be an arbitrary gap between the VC dimension
of the loss class and the VC dimension of the hypothesis class.
Lemma 1. For every ρ ∈ [0, 1) and m ∈ N, there exists a hypothesis class H ⊂ YX s.t. VC(H) ≤ 1

but VC(LU,ρ
H ) ≥ m.

Proof. Fix ρ ∈ [0, 1). Let m ∈ N. Pick m center points c1, ..., cm in X such that for all i, j ∈ [m],
U(ci) ∩ U(cj) = ∅. For each c ∈ X , let µU(c) denote a probability measure fully supported on the
perturbation set U(c). In particular, let µU(c) be uniform over U(c). For each center ci, consider
2m−1 + 1 disjoint subsets of its perturbation set U(ci) which do not contain ci. Label 2m−1 of these
subsets with a unique bitstring b ∈ {0, 1}m fixing bi = 1. Let Bb

i denote the subset labelled by
bitstring b and let Bi denote the single remaining subset that was not labelled. Let µU(ci)(Bi) = ρ
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and 0 < µU(ci)(Bb
i ) <

1−ρ
2m−1 for every b ∈ {{0, 1}m|bi = 1}. If ρ = 0, let Bi = ∅ for all i ∈ [m].

Observe that indeed µU(ci)

(
Bi ∪

(⋃
b Bb

i

))
< 1. For bitstring b ∈ {0, 1}m, define the hypothesis hb

as

hb(z) =

{
0 if z ∈

⋃m
i=1 Bb

i ∪ Bi

1 otherwise

and consider the hypothesis class H = {hb|b ∈ {0, 1}m} which consists of all 2m hypothesis, one
for each bitstring. Finally, define B =

⋃m
i=1

⋃
b∈{{0,1}m|bi=1} Bb

i ∪ Bi as the union of all the subsets.
We first show that H has VC dimension at most 1. Consider two points x1, x2 ∈ X . We will show
case by case that every possible pair of points cannot be shattered by H. First, consider the case
where, wlog, x1 /∈ B. Then, ∀h ∈ H, h(x1) = 1, and thus shattering is not possible. Now, consider
the case where both x1 ∈ B and x2 ∈ B. If either x1 or x2 is in

⋃m
i=1 Bi, then every hypothesis

h ∈ H will label it as 0, and thus these two points cannot be shattered. If x1 ∈ Bb
i and x2 ∈ Bb

j for
i ̸= j, then hb(x1) = hb(x2) = 0, but ∀h ∈ H s.t. h ̸= hb, h(x1) = h(x2) = 1. If x1 ∈ Bb1

i and
x2 ∈ Bb2

j for b1 ̸= b2, then there exists no hypothesis in H that can label (x1, x2) as (0, 0). Thus,
overall, no two points x1, x2 ∈ X can be shattered by H implying that VC(H) ≤ 1.

Now we are ready to show that the VC dimension of the loss class is at least m. Specifically,
given the sample of labelled points S = {(c1, 1), ..., (cm, 1)}, we will show that the loss behavior
corresponding to hypothesis hb on the sample S is exactly b. Since H contains all the hypotheses
corresponding to every single bitstring b ∈ {0, 1}m, the loss class of H will shatter S. In order to
prove that the loss behavior of hb on the sample S is exactly b, it suffices to show that the probabilistic
loss of hb on example (ci, 1) is bi, where bi denotes the ith bit of b. By definition,

ℓ(hb; ρ) = 1{Pz∼µU(ci)
(hb(z) ̸= 1) > ρ}

= 1{Pz∼µU(ci)
(hb(z) = 0) > ρ}

= 1{Pz∼µU(ci)

(
z ∈ Bb

i ∪ Bi

)
> ρ}

= 1{µU(ci)(B
b
i ∪ Bi) > ρ}

= bi.

Thus, the loss behavior of hb on S is b, and the total number of distinct loss behaviors over each
hypothesis in H on S is 2m, implying that the VC dimension of the loss class is at least m. This
completes the construction and proof of the claim.

Similar to [MHS19], the hypothesis class construction in Lemma 1 can be used to show the existence
of a hypothesis class that cannot be learned properly. Specifically, the lemma below follows exactly
from Lemma 3 in [MHS19]. We include the full proof of Lemma 2 in the Appendix.
Lemma 2. Let m ∈ N. For every ρ ∈ [0, 1) there exists H ⊂ YX with VC(H) ≤ 1 such that
for any proper learner A : (X × Y)∗ → H: (1) there is a distribution D over X × Y and a
hypothesis h∗ ∈ H where RU (h

∗;D, ρ) = 0 and (2) with probability at least 1/7 over S ∼ Dm,
RU (A(S);D, ρ) > 1/8.

We now state our main theorem indicating that proper learning is not possible for any ρ ∈ [0, 1), even
for ρ arbitrarily close to 1. Again, the proof of Theorem 3 closely follows that in [MHS19], however,
since our hypothesis class construction in Lemma 1 is different, we include a complete proof below.
Theorem 3. Fix ρ ∈ [0, 1). There exists a hypothesis class H ⊂ YX with VC(H) ≤ 1 and an
adversary (U , µ), such that H is not properly probabilistically robustly PAC learnable with respect
to (U , µ).

Proof. Fix ρ ∈ [0, 1). Let (Cm)m∈N be an infinite sequence of disjoint sets such that each set Cm

contains 3m distinct center points from X , where for any ci, cj ∈
⋃∞

m=1 Cm such that ci ̸= cj , we
have U(ci) ∩ U(cj) = ∅. For every m ∈ N, construct Hm on Cm as in Lemma 1. In addition, a
key part of this proof is to ensure that the hypothesis in Hm are non-robust to points in Cm′ for all
m′ ̸= m. To do so, we will need to adjust each hypothesis hb ∈ Hm carefully. By definition, for
every m ∈ N, Hm consists of 23m hypothesis of the form

hb(z) =

{
0 if z ∈

⋃3m
i=1 Bb

i ∪ Bi

1 otherwise
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for each bitstring b ∈ {0, 1}3m. Note that the same set
⋃3m

i=1 Bi is shared across every hypothesis
hb ∈ Hm. For each m ∈ N, let Bm =

⋃3m
i=1 Bi be exactly the union of these 3m sets. Next, from the

construction in Lemma 1, for every center ci ∈ Cm, µU(ci)

(
Bi ∪

(⋃
b Bb

i

))
< 1. Thus, there exists

a set B̃i ⊂ U(ci) s.t. µU(ci)(B̃i) > 0 and B̃i ∩
(
Bi ∪

(⋃
b Bb

i

))
= ∅. Consider one such subset B̃i

from each of the 3m centers in Cm and let B̃m =
⋃3m

i=1 B̃i. Finally, make the following adjustment
to each hb ∈ Hm,

hb(z) =

{
0 if z ∈

⋃3m
i=1 Bb

i ∪ Bi or z ∈ Bm′ ∪ B̃m′
for m′ ̸= m

1 otherwise

One can verify that every hypothesis in Hm has a non-robust region (i.e. Bm′ ∪ B̃m′
for m′ ̸= m)

with mass strictly bigger than ρ in every center in Cm′ for every m′ ̸= m. Thus, the hypotheses in
Hm are non-robust to points in Cm′ for all m′ ̸= m. Finally, as we did in Lemma 2, for each m,
we only keep the subset of hypothesis H′

m = {hb ∈ Hm :
∑3m

i=1 bi = m} ⊂ H. Note that for each
m ∈ N, the hypothesis class H′

m behaves exactly like the hypothesis class from Lemma 2 on Cm.

Let H =
⋃∞

m=1 H′
m and U(Cm) =

⋃3m
i=1 U(ci). Since we have modified the hypothesis class, we

need to reprove that its VC dimension is still at most 1.

Consider two points x1, x2 ∈ X . If either x1 or x2 is not in
⋃∞

m=1 U(Cm) and not in
⋃∞

m=1 Bm∪B̃m,
then all hypothesis predict x1 or x2 as 1. If both x1 and x2 are in Bm ∪ B̃m for some m ∈ N, then:

• if either x1 or x2 are in Bm, every hypothesis in H labels either x1 or x2 as 0.

• if both x1 and x2 are in B̃m, we can only get the labeling (1, 1) from hypotheses in Hm and
the labelling (0, 0) from the hypotheses in Hm′ for m′ ̸= m.

In the case both x1 and x2 are in U(Cm) \ (Bm ∪ B̃m), then, they cannot be shattered by Lemma 1.
In the case x1 ∈ Bm ∪ B̃m and x2 ∈ U(Cm) \ (Bm ∪ B̃m):

• if x1 is in Bm, every hypothesis in H labels x1 as 0.

• if x1 is in B̃m then, we can never get the labelling (0, 0).

If x1 ∈ Bi ∪ B̃i and x2 ∈ Bj ∪ B̃j for i ̸= j, then:

• if either x1 or x2 are in Bi or Bj respectively, every hypothesis in H labels either x1 or x2

as 0.

• if both x1 and x2 are in B̃i and B̃j respectively, we can never get the labelling (1, 1).

In the case x1 ∈ Bi ∪ B̃i and x2 ∈ U(Cj) \ (Bj ∪ B̃j) for j ̸= i, then we cannot obtain the labelling
(1, 0). If x1 ∈ U(Ci) \ (Bi ∪ B̃i) and x2 ∈ U(Cj) \ (Bj ∪ B̃j) for i ̸= j, then we cannot obtain the
labelling (0, 0). Since we shown that for all possible x1 and x2, H cannot shatter them, VC(H) ≤ 1.

We now use the same reasoning in [MHS19], to show that no proper learning rule works. By Lemma
2, for any proper learning rule A : (X×Y)∗ → H and for any m ∈ N, we can construct a distribution
D over Cm (which has 3m points from X ) where there exists a hypothesis h∗ ∈ H′

m that achieves
RU (h

∗;D, ρ) = 0, but with probability at least 1/7 over S ∼ Dm, RU (A(S);D, ρ) > 1/8. Note
that it suffices to only consider hypothesis in H′

m because, by construction, all hypothesis in H′
m′

for m′ ̸= m are not probabilistically robust on Cm, and thus always achieve loss 1 on all points in
Cm. Thus, rule A will do worse if it picks hypotheses from these classes. This shows that the sample
complexity of properly probabilistically robustly PAC learning H is arbitrarily large, allowing us to
conclude that H is not properly learnable.

4 Discussion

The ability to achieve test-time robustness via proper learning rules is important from a practical
standpoint. It aligns better with the current approaches used in practice and proper learning algorithms
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are often more simpler to implement than improper ones. Indeed, for worst-case adversarial robust-
ness, the improper learning algorithm proposed by [MHS19] is complicated and computationally
intractable. This motivates understanding when proper learning is possible under our weaker notion
of probabilistic robustness. In particular, is proper learning under RU (h;D, ρ) possible if we assume
a stronger realizability assumption, namely minh∈H RU (h;D, ρ∗) = 0 for ρ∗ < ρ? Crucially, we
note that our construction in Lemma 2 fails if this is the case. Answering whether this is sufficient for
proper learning is an interesting future question.
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ments multiple times)? [N/A]
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applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Auxiliary Proofs Related to Proper Probabilistic Robust Learnability

Proof. [of Lemma 2] This proof closely follows Lemma 3 from [MHS19]. In fact, the only difference
is in the construction of the hypothesis class, which we will describe below.

Fix ρ ∈ [0, 1). Let m ∈ N. Construct a hypothesis class H0 as in Lemma 1 on 3m centers
c1, ..., c3m based on ρ. By the construction in Lemma 1, we know that LU,ρ

H shatters the sample
C = {(c1, 1), ..., (c3m, 1)}. Instead of keeping all of H0, we will only keep a subset H of H0,
namely those classifiers that are probabilistically robustly correct on subsets of size 2m of C. More
specifically, recall from the construction in Lemma 1, that each hypothesis hb ∈ H0 is parameterized
by a bitstring b ∈ {0, 1}3m where if bi = 1, then hb is not robust to example (ci, 1). Therefore,
H = {hb ∈ H0 :

∑3m
i=1 bi = m}. Now, let A : (X × Y)∗ → H be an arbitrary proper learning

rule. Consider a set of distributions D1, ...,DL where L =
(
3m
2m

)
. Each distribution Di is uniform

over exactly 2m centers in C. Critically, note that by our construction of H, every distribution Di is
probabilistically robustly realizable by a hypothesis in H. That is, for all Di, there exists a hypothesis
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h∗ ∈ H s.t. RU (h
∗;D, ρ) = 0. Observe that this satisfies the first condition in Lemma 2. For the

second condition, at a high-level, the idea is to use the probabilistic method to show that there exists a
distribution Di where ES∼Dm

i
[RU (A(S);D, ρ)] ≥ 1

4 and then use a variant of Markov’s inequality
to show that with probability at least 1/7 over S ∼ Dm, RU (A(S);D, ρ) > 1/8.

Let S ∈ Cm be an arbitrary set of m points. Let C be a uniform distribution over C. Let P be a
uniform distribution over D1, ...,DT . Let ES denote the event that S ⊂ supp(Di) for Di ∼ P . Given
the event ES , we will lower bound the expected probabilistic robust loss of the hypothesis the proper
learning rule A outputs,

EDi∼P [RU (A(S);Di, ρ)|ES ] = EDi∼P
[
E(x,y)∼Di

[
1{Pz∼µU(x)

(A(S)(z) ̸= y) > ρ}
]
|ES

]
.

Conditioning on the event that (x, y) /∈ S, denoted, E(x,y)/∈S ,

E(x,y)∼Di

[
1{Pz∼µU(x)

(A(S)(z) ̸= y) > ρ}
]
≥ P(x,y)∼Di

[
E(x,y)/∈S

]
×E(x,y)∼Di

[
1{Pz∼µU(x)

(A(S)(z) ̸= y) > ρ}|E(x,y)/∈S

]
Since Di is supported over 2m points and |S| = m, P(x,y)∼Di

[
E(x,y)/∈S

]
≥ 1

2 since in the worst-
case S ⊂ supp(Di). Thus, we obtain the lower bound,

EDi∼P [RU (A(S);Di, ρ)|ES ] ≥
1

2
EDi∼P

[
E(x,y)∼Di

[
1{Pz∼µU(x)

(A(S)(z) ̸= y) > ρ}|E(x,y)/∈S

]
|ES

]
.

Unravelling the expectation over the draw from Di, we have,

E(x,y)∼Di

[
1{Pz∼µU(x)

(A(S)(z) ̸= y) > ρ}|E(x,y)/∈S

]
≥ 1

m

∑
(x,y)∈supp(Di)\S

1{Pz∼µU(x)
(A(S)(z) ̸= y) > ρ}

Observing that EDi∼P [1{(x, y) ∈ supp(Di)}|ES ] ≥ 1
2 yields,

EDi∼P
[
E(x,y)∼Di

[
1{Pz∼µU(x)

(A(S)(z) ̸= y) > ρ}|E(x,y)/∈S

]
|ES

]
≥ 1

2m

∑
(x,y)/∈S

1{Pz∼µU(x)
(A(S)(z) ̸= y) > ρ}.

Since A(S) ∈ H, by construction of H, there are at least m points in C where A is not probabilisti-
cally robustly correct. Therefore,

1

2m

∑
(x,y)/∈S

1{Pz∼µU(x)
(A(S)(z) ̸= y) > ρ} ≥ 1

2
,

from which we have that, EDi∼P [RU (A(S);Di, ρ)|ES ] ≥ 1
4 . By the law of total expectation, we

have that

EDi∼P
[
ES∼Dm

i
[RU (A(S);Di, ρ)]

]
= ES∼C

[
EDi∼P|ES

[RU (A(S);Di, ρ)]
]

= ES∼C [EDi∼P [RU (A(S);Di, ρ)|ES ]]

≥ 1/4

Since the expectation over D1, ...,DT is at least 1/4, there must exist a distribution Di where
ES∼Dm

i
[RU (A(S);Di, ρ)] ≥ 1/4. Using a variant of Markov’s inequality, we have that

PS∼Dm
i
[RU (A(S);Di, ρ) > 1/8] ≥ 1/7

which completes the proof.
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