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ABSTRACT

Large-scale pre-trained language models (PTLM) have achieved great success
in various natural language processing (NLP) tasks. Much evidence shows that
PTLMs already encode rich knowledge themselves, but knowledge stored in
PTLMs can be opaque and static, making external knowledge retrieval neces-
sary. However, there are two major challenges when using external knowledge.
First, knowledge indexing and retrieving on large-scale knowledge bases are time
costly. Second, knowledge retrieved could be noisy and sometimes misleading.
Motivated by the observation that external knowledge is not always required by
PTLMs, we investigate an effective and efficient way to apply knowledge only
when the knowledge is essential. Specifically, we propose instance-level adap-
tive propulsion of external knowledge (IAPEK), where we score each instance on
whether the PTLMs need the support of external knowledge. To achieve this goal,
we design a novel metric, Thrust, which leverages the distribution estimation on
seen/training instances. Extensive experiments demonstrate that we can achieve
significantly higher cost-efficiency through Thrust compared to the naive usage
of external knowledge on 88% of the evaluated tasks with 26% average perfor-
mance improvement. Such findings further shed light on the real-world practice
of knowledge-enhanced LMs with a limited budget for knowledge seeking due to
computation latency or costs 1.

1 INTRODUCTION

Knowledge plays an important role in solving natural language processing (NLP) tasks, where en-
cyclopedic or commonsense knowledge is commonly required to answer questions from various
tasks (Yin et al., 2022). In recent years, the emergent advance of pre-trained language models
(PTLM) has demonstrated great improvement on various tasks (Devlin et al., 2019; Radford et al.,
2019; Liu et al., 2019; Raffel et al., 2020; Brown et al., 2020). Evidence also show that PTLMs con-
tain rich encyclopedic (Petroni et al., 2019) or commonsense (Kocijan et al., 2019) knowledge them-
selves. However, such implicit knowledge embedded in the model’s hidden states can be opaque,
static, and inefficient to utilize (Khattab et al., 2022). These issues motivate the common practice
on seeking external knowledge (Xu et al., 2021; Verga et al., 2021; Paranjape et al., 2022) in NLP.
A typical line of work focuses on retrieval-based methods, where knowledge is retrieved by a stand-
alone retriever from external knowledge bases and then used to augment the inference models (i.e.,
Reader) such as PTLMs (Karpukhin et al., 2020; Gao & Callan, 2021; Khattab & Zaharia, 2020).

However, there are several limitations with the usage of external knowledge: (i) performance on
the downstream tasks is not commonly revealed. Metrics of the common benchmarks (e.g., MS-
MARCO (Nguyen et al., 2016), BEIR (Thakur et al., 2021)) measure the quality of retrieval (e.g.,
Recall@50, nDCG@10). Although retrieving the relevant content may positively relate to the down-
stream performance, not reporting the downstream performance, especially for the out-of-domain
tasks, limits the exploration of how to utilize the external knowledge in practice; (ii) the external
knowledge can be noisy or unnecessary. On the retriever side, though concurrent retrievers achieve
great performance on various tasks, the noise can still exist. For instance, ColBERT v2 (Santhanam
et al., 2022) achieved 68.9 Success@5 on Natural Question (Kwiatkowski et al., 2019), which sug-
gests that gold documents do not appear in the top 5 retrieved documents for 31.1% of the queries.

1The code and data will be released upon acceptance.
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Figure 1: The predictions from OPT (175B version) with/without external knowledge retrieved by
DPR (Karpukhin et al., 2020) from Wikipedia paragraphs. Although the top retrieved paragraphs
are relevant, since the internal knowledge is already sufficient, the external knowledge can either be
misleading (potentially due to the effect of misprime (Kassner & Schütze, 2020)) or less useful.

Considering the limited input token length, the most useful documents may not be included dur-
ing prediction. Not to mention that others can be noise to the model. On the model side, PTLMs
with growing capacity, from millions (e.g., BERT (Devlin et al., 2019)) to billions of parameters
(e.g., OPT (Zhang et al., 2022b)), may solve the queries directly without external knowledge, which
makes it unnecessary to seek external knowledge and signifies the noise issue. The instance shown
in Figure 1 demonstrates the noise and inefficiency issues. OPT (the version with 175 billion pa-
rameters) can directly give the correct answer without any external knowledge. However, with top
external knowledge retrieved by DPR (Karpukhin et al., 2020) from Wikipedia paragraphs, the ex-
ternal knowledge can be useless or even lead to wrong predictions.

Intuitively, a solution to the noise and inefficiency issues is only seeking external knowledge when it
is necessary. In this work, we capture this intuition by proposing Instance-level Adaptive Propulsion
of External Knowledge (IAPEK) to reduce the effect of noise in external knowledge and improve
the cost-efficiency of knowledge augmentation. In detail, for each instance of a given task, we com-
pute a confidence score measuring how likely it can be solved directly with respect to a given model
and reject the use of external knowledge when the score is high. We design a simple and lightweight
metric Thrust to serve such a purpose by leveraging the estimation of the instance distribution in
the eyes of the target models. To comprehensively understand the effectiveness of Thrust, we first
create a large-scale benchmark examining the downstream performance of the task-plus-knowledge
paradigm with (i) tasks with different formats and types (e.g., multiple-choice classification (MC
classification) and open-domain question answering (open-domain QA)); (ii) knowledge with dif-
ferent formats and from different resources (e.g., knowledge graphs, Wikipedia paragraphs, and
human annotations). Next, with models that can utilize external knowledge, we evaluate the ef-
fectiveness of Thrust by showing that it can boost the performance of various tasks under various
settings, such as injecting external knowledge to different portions of the test instances.

Extensive experiments show that Thrust can improve the cost-efficiency of seeking and using exter-
nal knowledge on 88% cases with 26% average performance improvement through identifying the
instances that mostly require knowledge. We can also observe that, with Thrust, we can achieve
higher performance than injecting external knowledge for all the instances, where models are bene-
fited from both the performance and efficiency aspects.

2 OUR METHOD

2.1 INSTANCE-LEVEL ADAPTIVE PROPULSION OF KNOWLEDGE

We first define IAPEK as follows: for each query qi in a given test set D = {q(1), q(2), . . .}, let f(q)
denotes the scoring function of the necessity of external knowledge, we extract the corresponding
scores S = {f(q)(1), f(q)(2), . . .}. With S , we re-rank the test set into D′ = {q′(1), q′(2), . . .}.
Given any threshold t ∈ R, we sample a subset Dk = {q(1)k , q

(2)
k , . . .} as that with highest knowledge

need, where for each qk ∈ Dk, f(qk) > t. Empirically, we can set t as a particular percentile of
S , e.g., top 25% of S . Next, for each instance in Dk, we seek for external knowledge pieces and
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Figure 2: Figurative illustration of the intuition behind proposing Thrust. We represent the instance
query vectors as triangles and instance clusters with different labels as circles with different colors.
In the controversial and no knowledge cases, the knowledge contained internally is less likely to
answer the query successfully. In contrast, if the model finds the query similar to various seen
instances, the internal knowledge is likely to exist.

augment each query qk to qk+ . We combine updated Dk+ and original unsampled instances D \Dk

to the new knowledge augmented dataset D+ to apply to inference models.

2.2 THRUST

We then introduce a novel empirical method, Thrust, to perform the proposed instance-level adaptive
propulsion of external knowledge (IAPEK). We design Thrust to measure how likely the given
query can be solved by the internal knowledge of the target model. Intuitively, there are two cases
where models can fail to answer a query with internal knowledge: (i) the model has no relevant
knowledge and is not familiar with the query semantics or inference types; (ii) the model faces
controversial knowledge, where the query may have similar semantics with different kinds of seen
questions that potentially require different reasoning to solve.

As shown in Figure 2, the degree of difference of queries and clusters of seen instances can measure
how well the internal knowledge of the model covers such queries. Motivated by the intuition, the
Thrust score is computed as follows: given a task T , we first group the instances by their labels.
For QA tasks, we regard all instances as having a single dummy label. Then, we embed instances
within each group with an embedding function f(.). Next, we form groups for each task T as
gl = {(f(xi), yi)) | yi = l}. With the groups in hand, we perform k-means clustering to proceed
each group into K clusters and instances of task T are represented by the clusters

{
Cj(gl)

}K

j=1
for

l = 1, 2, ..., N , with mj(gl) as the corresponding centroids and m⃗j(gl) as the vectorized centroids
pointing from 0⃗ to the centroids2.

For some test time input x ∈ T , where the label is unknown, let f⃗(x) denote the vectorized features
pointing from 0⃗ to the embedded f(x), the directed distance between the instance and the clusters
are then defined as

d⃗(f, x, j, l, T ) ≜ m⃗j(gl)− f⃗(x). (1)

Influence of each cluster towards the query is considered as a vector with the same direction of d⃗
and re-weighted by the size of the cluster over the square Euclidean distance. Thrust score for an
input x is then computed as

sThrust ≜
1

N ·K
∥

N∑
l=1

K∑
j=1

|Cj(gl)| · d⃗(f, x, j, l, T )

∥d⃗(f, x, j, l, T )∥3
∥. (2)

2We use the last layer of hidden states as the embedding function. For T5-based models, we use the last
layers of the decoders. We empirically set the number of clusters as the max( 4

√
|Dtr

T |, 3), where Dtr denotes
the training set of task T .
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Dataset Type Source Train # Test # Query Len Know. Len Ans. Len

AGNews MC gold 120,000 7,600 8.1 35.9 1.0
e-SNLI NLI human 259,999 9,824 24.9 14.3 1.0
StrategyQA Binary human 2,290 229 10.8 33.5 1.0
CIKQA Binary KG 4,818 604 18.2 28.0 1.0
BoolQ Binary retriever 9,437 3,270 9.8 113.8 1.0
ARC-E MC retriever 2,251 570 23.1 238.2 4.2
ARC-C MC retriever 1,119 299 26.2 240.5 5.5

HotpotQA QA gold 90,447 7,405 19.0 56.3 2.5
NQ QA retriever 96,676 6,468 10.1 588.9 2.3
Web Questions QA retriever 2,474 278 7.8 117.3 4.3
Curated TREC QA retriever 1,125 116 8.4 116.5 7.7
TriviaQA QA retriever 78,785 6,760 15.0 117.6 27.5

Table 1: Statistics of the selected datasets. ARC-E & ARC-C denote the easy and hard ARC datasets
as defined in the original work. MC, NLI, Binary, QA denote the task types of multiple-choice clas-
sification, natural language inference, binary classification, and question answering, respectively.
Query/Know./Ans. Len denote the average numbers of words for the queries/knowledge/answers.

3 EXPERIMENT

3.1 SETUP

We evaluate T5 (Raffel et al., 2020), GPT-J (Wang & Komatsuzaki, 2021), OPT (Zhang et al.,
2022b), and UnifiedQA (Khashabi et al., 2020). We test both the zero-shot learning setting (models
take the prompt with or without knowledge directly) and the transfer-learning setting (models are
fine-tuned with instances containing external knowledge) to examine the proper way to use external
knowledge. For the zero-shot setting, we test on T5, GPT-J, and OPT (30 billion parameter version).
For the transfer-learning setting, we test on UnifiedQA with different scales.

After that, we evaluate the effectiveness of Thrust, where we try to simulate the real-world case
where we have limited bandwidth or budget to retrieve external knowledge. Specifically, we are only
allowed to conduct the knowledge retrieval for 25%, 50%, and 75% of instances. As introduced in
Section 2.1, we use Thrust to rank the instances by their need for external knowledge and select
the instances from the most necessary ones. The threshold can be considered as expecting 100-X%
savings (X = 25, 50, 75) in continuously incoming future test inputs. We compare the performance
difference between Thrust and random sampling3.

For MC classification tasks, we follow previous works to use accuracy as the evaluation metric.
For open-domain QA, we report the QA-F1 scores of the models under different settings. The QA-
F1 score for question answering measures the max uni-gram overlap between the model prediction
and all gold answer candidates. Denoting the gold answer set as G and uni-gram tokens of each
query and each corresponding gold answer as Tq and Tg , the QA-F1 score can then be written as
QA-F1 = maxg∈G(Tq ∩ Tg)/(Tq ∪ Tg). We test on two settings: without knowledge and with
knowledge. For the former one, we directly pass the prompt-decorated queries to the model to
retrieve the choices with the highest probability or the answer to the questions. For the latter one,
we add the prompt-decorated queries, one piece of knowledge, and Answer: into three lines and
pass them all to the models.

3.2 DATASETS

We first prepare a benchmark containing knowledge-intensive tasks from two main types: MC clas-
sification and open-domain question answering, with seven and five tasks, respectively. We unify
the instances into the same format, where each contains: (i) a query: a piece of text containing
a question or the sentences to be classified; (ii) an answer: either the label words or the answers
to the questions in the query; (iii) knowledge: one piece of potentially helpful knowledge for the
query, which is either inherently relevant due to the task design, annotated by humans, or retrieved
from Wikipedia paragraphs with DPR. Details of the selected datasets and definitions of external
knowledge for each task are as follows:

3We also involve BM25 as an alternative to perform IAPEK. The comparison can be found in Appendix.
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Multiple-choice classification. For MC classification, each query q includes a sentence or a ques-
tion and requires models to extract one correct answer from a set of candidate answers (e.g., yes
or no). The selected tasks are (i) AGNews (Zhang et al., 2015): AGNews is a classic text clas-
sification task in NLP, where models are required to classify if a piece of news belongs to which
among political, sports, business, or technology categories. We regard the titles of the news as the
queries since they may already contain sufficient information for classification (e.g., Olympic his-
tory for India belongs to Sports); Then, the content of the news is considered as the gold external
knowledge extracted from the task design; (ii) e-SNLI (Camburu et al., 2018): e-SNLI is a natural
language inference (NLI) task exploiting the role of explanations for the task of textual entailment.
We concatenate the original two sentences with a blank and add a question about if entailment exists
to form the query. Naturally, the human-providing explanations are considered a strong source of
external knowledge; (iii) StrategyQA (Geva et al., 2021): StrategyQA is a challenging multi-hop
reasoning dataset that requires models to answer creative questions (e.g., Did Aristotle use a lap-
top?) through strategical inference from implicit reasoning steps. We regard the original creative
questions as queries and human-written explicit facts (e.g., Aristotle was born in ...) as external
knowledge, which is again powerful and expected to contain little noise; (iv) CIKQA (Zhang et al.,
2022a): CIKQA is a commonsense inference task in the format of multiple-choice question an-
swering, combining the tasks of pronoun coreference resolution, commonsense QA (Talmor et al.,
2019), COPA (Roemmele et al., 2011), and questions mined from ATOMIC knowledge graph (Sap
et al., 2018). We regard the original questions as queries and the supporting commonsense knowl-
edge extracted from knowledge graphs (KGs) in the original work as the external knowledge; (v)
BoolQ (Clark et al., 2019): BoolQ is a question that contains encyclopedic questions that require
models to answer yes or no. Following (Khashabi et al., 2020), we use the Wikipedia paragraphs
retrieved by DPR as the external knowledge, which can be potentially noisy; (vi) ARC-E & ARC-
C (Clark et al., 2018): ARC is a challenging multiple-choice question answering dataset that re-
quires powerful knowledge understanding and reasoning, which is partitioned to an Easy set and a
Challenge set (denoted as ARC-E & ARC-C, respectively), where the Challenge set questions are
answered incorrectly by the retrieval-based or co-occurrence-based algorithms tested by the original
authors. Similarly, we use the Wikipedia paragraphs retrieved by DPR as external knowledge.

Open-domain QA. For open-domain QA, each query q contains an open question that typically
requires solving an encyclopedic or commonsense inference. The generated answers can either
be a few phrases or a single sentence. The involved datasets are HotpotQA (Yang et al., 2018),
Natural Questions (NQ) (Kwiatkowski et al., 2019), Web Questions (Berant et al., 2013), Curated
TREC (Baudiš, 2015), and TriviaQA (Joshi et al., 2017). We use Wikipedia paragraphs retrieved
by DPR as the external knowledge as a common practice (Yin et al., 2022), except for HotpotQA,
where we use the passages the queries are generated from as a gold knowledge resource.

The statistics of the involved datasets are reported in Table 1. We collect a benchmark with var-
ious datasets of different types, formats, and knowledge sources, where we will then evaluate the
effectiveness of IAPEK.

3.3 USING EXTERNAL KNOWLEDGE

Table 2 presents the model performance on both the MC classification and open-domain QA tasks.
For the MC classification tasks, we can observe that: (i) for the zero-shot setting, models do not con-
sistently get benefit from external knowledge. In addition, the ability to utilize external knowledge
is also not clearly improved as the parameter size grows, which indicates that simply using larger
models may not be the solution for better using the knowledge; (ii) for the transfer-learning setting,
although AGNews, e-SNLI, CIKQA, and StrategyQA are not seen during the training of UnifiedQA
models, we can observe that models achieve better performance than vanilla T5 models at differ-
ent sizes. Under the with knowledge case, the UnifiedQA models achieve significant improvement
for utilizing external knowledge compared to the zero-shot models, UnifiedQA-3b achieves the best
performance on all the tasks, which indicates that models can learn and transfer the ability to utilize
external knowledge with instances containing external knowledge.

For open-domain QA datasets, we can observe that: (i) similarly, models fail to get benefit from
external knowledge in 11 out of 25 cases under the zero-shot setting. Surprisingly, the smallest
model T5-base gets benefits for all the tasks, but the largest model (OPT-30b) gets worse perfor-
mance with knowledge for all tasks. The reason behind this can be that, since T5-base does not
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Model parameters AGNews e-SNLI CIKQA StrategyQA BoolQ ARC-E ARC-C

Zero-shot

T5-base 220M 30.2 | 44.4 65.2 | 65.1 51.5 | 51.8 54.1 | 50.2 48.3 | 38.9 27.8 | 28.8 31.4 | 29.4
T5-large 770M 25.8 | 25.2 65.7 | 65.7 50.0 | 50.0 53.3 | 53.3 37.8 | 38.6 25.1 | 27.7 27.7 | 24.7
T5-3b 3B 27.9 | 39.1 57.6 | 61.5 52.6 | 50.5 44.5 | 48.9 56.6 | 45.3 25.8 | 26.0 26.4 | 28.4
GPT-J 6B 25.1 | 26.9 40.8 | 37.0 49.8 | 50.7 47.2 | 55.9 60.2 | 47.2 25.4 | 29.5 28.4 | 27.1
OPT-30b 30B 25.0 | 25.0 65.7 | 65.7 50.0 | 50.0 53.3 | 53.3 37.8 | 37.8 27.4 | 27.7 25.8 | 26.4

Transfer-learning

UnifiedQA-base 220M 46.6 | 35.7 38.5 | 70.2 56.0 | 59.6 48.5 | 57.2 60.4 | 80.8 50.2 | 61.6 44.8 | 45.2
UnifiedQA-large 770M 71.0 | 67.9 42.8 | 74.2 59.6 | 62.1 48.5 | 66.4 59.8 | 84.5 64.0 | 66.0 55.2 | 49.5
UnifiedQA-3b 3B 75.7 | 84.5 62.2 | 89.6 61.3 | 66.9 57.6 | 83.4 61.5 | 87.8 73.7 | 76.5 64.5 | 64.2

Model parameters Web Questions Curated TREC HotpotQA NQ TriviaQA

Zero-shot

T5-base 220M 6.7 | 8.7 2.5 | 3.8 6.0 | 9.1 1.9 | 6.0 8.9 | 13.1
T5-large 770M 5.7 | 7.4 1.9 | 3.0 5.1 | 6.6 1.6 | 2.7 8.3 | 9.0
T5-3b 3B 4.9 | 4.0 2.0 | 1.0 4.9 | 6.8 1.7 | 6.6 8.3 | 5.6
GPT-J 6B 4.3 | 6.3 7.4 | 2.7 5.9 | 5.1 10.9 | 6.9 1.7 | 2.1
OPT-30b 30B 18.3 | 6.3 16.0 | 2.4 11.4 | 2.4 5.3 | 2.1 16.3 | 6.9

Transfer-learning

UnifiedQA-base 220M 10.6 | 44.2 3.6 | 36.9 13.1 | 40.3 3.0 | 34.6 11.7 | 65.6
UnifiedQA-large 770M 12.9 | 46.5 8.2 | 36.6 14.2 | 42.7 3.8 | 36.3 13.7 | 74.6
UnifiedQA-3b 3B 11.5 | 48.1 9.9 | 41.8 17.0 | 47.0 4.4 | 37.6 18.6 | 80.0

Table 2: Performance of various models on the MC classification tasks (accuracy) and open-domain
QA tasks (QA-F1). Performances without/with knowledge external knowledge are presented be-
fore/after the vertical bar, respectively. UnifiedQA-X denotes T5 models with corresponding sizes
fine-tuned on the UnifiedQA dataset.

Dataset UnifiedQA-base UnifiedQA-large UnifiedQA-3b
25% 50% 75% 25% 50% 75% 25% 50% 75%

AGNews 50.7 | 55.6 52.8 | 56.3 55.0 | 56.8 70.2 | 69.1 69.4 | 70.2 68.7 | 70.6 77.9 | 78.4 80.1 | 80.4 82.3 | 82.3
e-SNLI 46.5 | 66.6 54.4 | 68.3 62.3 | 69.6 50.7 | 71.1 58.5 | 72.2 66.4 | 73.2 69.1 | 86.3 75.9 | 87.5 82.8 | 88.8
CIKQA 56.9 | 59.6 57.8 | 59.6 58.7 | 59.9 60.2 | 62.1 60.8 | 62.3 61.5 | 62.4 62.7 | 66.9 64.1 | 66.9 65.5 | 66.9
StrategyQA 50.7 | 55.6 52.8 | 56.3 55.0 | 56.8 52.9 | 62.1 57.4 | 65.3 61.9 | 65.9 64.1 | 74.3 70.5 | 81.4 77.0 | 82.9
BoolQ 65.5 | 76.2 70.7 | 79.9 75.8 | 80.9 65.9 | 77.7 72.1 | 81.3 78.3 | 84.4 68.1 | 79.1 74.6 | 85.7 81.2 | 87.1
ARC-E 50.7 | 55.6 52.8 | 56.3 55.0 | 56.8 64.5 | 64.6 65.0 | 64.7 65.5 | 65.1 74.4 | 74.6 75.1 | 74.9 75.8 | 75.1
ARC-C 44.9 | 43.8 45.0 | 44.5 45.1 | 44.8 53.8 | 50.8 52.3 | 51.2 50.9 | 51.5 64.5 | 63.9 64.4 | 64.9 64.3 | 65.6
WQ 19.2 | 26.3 27.5 | 42.1 35.8 | 43.8 22.5 | 38.5 30.5 | 39.0 38.5 | 46.0 20.9 | 19.3 30.0 | 35.4 39.1 | 46.4
TREC 13.5 | 33.6 21.3 | 36.4 29.1 | 36.9 30.8 | 32.7 32.7 | 36.0 34.6 | 36.3 19.6 | 37.8 27.0 | 40.6 34.4 | 40.9
HotpotQA 25.2 | 32.9 30.2 | 35.5 35.2 | 37.8 26.7 | 35.2 32.1 | 37.5 37.4 | 40.2 24.9 | 41.9 32.3 | 43.9 39.7 | 45.7
TriviaQA 32.0 | 52.7 43.2 | 56.4 54.4 | 60.0 32.4 | 59.7 46.4 | 64.3 60.5 | 71.8 39.2 | 68.3 52.8 | 71.0 66.4 | 73.4
NQ 20.0 | 33.0 24.9 | 33.5 29.7 | 33.9 12.0 | 34.8 20.1 | 35.2 28.2 | 35.7 12.8 | 35.9 21.1 | 36.5 29.4 | 37.0

Table 3: Performance of IAPEK leveraging Thrust. With 25%, 50%, and 75% percent instances
augmented with their corresponding knowledge, performances of random/Thrust are presented be-
fore/after the vertical bar. If performance increases with Thrust, the score will be marked in green
and otherwise in red. WQ, TREC denote the tasks of Web Questions, Curated TREC, respectively.

have enough internal knowledge, any relevant external knowledge can help. As a comparison, the
OPT-30b model already contains rich knowledge, and thus the external knowledge may only be in-
troducing extra noise if the model does not learn to utilize knowledge; (ii) under the transfer-learning
setting, UnifiedQA-based models get significant benefit from the external knowledge, again showing
the effectiveness of helping models to learn to use knowledge.

In conclusion, we find that fine-tuning on instances containing external knowledge is an effective
way to help models gain performance increase from external knowledge at test time. Since the
pre-condition of using IAPEK is that the model can utilize external knowledge well, we conduct
experiments with UnifiedQA only when evaluating the performance of Thrust.
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Model Thrust > Full Thrust < Full

UnifiedQA-base BoolQ(r)* CIKQA(r) StrategyQA(h) e-SNLI(h) ARC-E(r)* WQ(r)*
ARC-C(r) TriviaQA(r)* AGNews(g) TREC(r) HotpotQA(g)* NQ(r)

UnifiedQA-3b
BoolQ(r)* CIKQA(r) ARC-C(r) e-SNLI(h) StrategyQA(h)* AGNews(g)*

HotpotQA(g) ARC-E(r)* WQ(r) TREC(r)
TriviaQA(r)* NQ(r)*

Table 4: Comparison between using Thrust and the costly full knowledge usage for models with
different scales. The knowledge type is noted in bracket, where g denotes gold knowledge, h denotes
human annotated knowledge, and r denotes the knowledge retrieved from Wikipedia passages or
knowledge graphs. If the performance difference is less than 1% accuracy or QA-F1, we denote the
entry with *. WQ, TREC denote the tasks of Web Questions, Curated TREC, respectively. We find
that for many cases Thrust can outperform full knowledge usage with fewer instances augmented
with external knowledge.

3.4 PERFORMANCE OF THRUST

From the results in Table 3, we can observe that: (i) Thrust consistently contributes to the per-
formance from the base to the 3B model. Through clustering the instances, we acquire the whole
instance distribution in the eyes of the models. Then with distance to the cluster, Thrust represents
how well the model can categorize a new query vector and find its similarity with others on the task.
Leveraging such information, Thrust identifies the no knowledge and controversial knowledge cases
well and puts the knowledge into the most necessary ones; (ii) the gain is higher when the portion
of augmented instances is smaller. For instance, for UnifiedQA-3b, the gains from Thrust with 25%
instances augmented with knowledge are 6.1%, 13.56% on MC classification and QA tasks, respec-
tively, while for the 75% case, the gains are 2.8% and 6.8%. Such observation shows that Thrust is
most effective on identifying the most necessary cases. One potential reason is that Thrust is sen-
sitive to the distance change so the isolated instances (no knowledge case in Figure 2) can be easily
identified; (iii) we also observe consistent failure case on ARC-C. The reason can be that the queries
are designed as open questions, and the answers are usually about plans or ideas, not facts, so
that it is hard for the small-size models to extract useful information from the seemingly unrelated
Wikipedia document. For instance, a query from ARC-C is: Juan and LaKeisha roll a few objects
down a ramp. They want to see which object rolls the farthest. What should they do so they can re-
peat their investigation?. The correct and wrong options are Record the details of the investigation
and Choose different objects to roll. For questions of this style, it is even hard for humans to find a
relevant Wikipedia page that can help. The failure case further sheds light on the pre-condition of
Thrust: we assume that external knowledge is useful.

As for efficiency, following the definition in Section 2.2, at test time, the computation complexity for
Thrust is O(NK), where N is the number of labels and K is the number of clusters, for a five-way
classification task, N ·K ≈ 15. However, if we retrieve knowledge from a external corpus, the com-
putation complexity is O(M), where M ≈ 1, 000, 000 for DPR. In this case, expected performance
improvement is O(αM − NK), with α as the probability of rejecting the knowledge use for one
example, which is 0.25 to 0.75 in our experiment. On the other hand, extracting knowledge from
other sources (e.g., human annotations for e-SNLI) can be potentially more time-consuming.

4 ANALYSIS

4.1 COMPARISON WITH FULL KNOWLEDGE USAGE

We denote simply using external knowledge for all instances as a costly but straightforward way of
leveraging external knowledge. Since the big models might be sufficient for certain instances and the
external knowledge might introduce extra noise, we hypothesize that, in some cases, Thrust can help
identify instances requiring (or not) knowledge and achieve higher overall performance on the whole
dataset compared to seeking and adding knowledge indiscriminately. Table 4 presents the compar-
ison between adaptive and indiscriminate knowledge propulsion. Thrust here denotes the best per-
formance achieved when less than 90% of instances use external knowledge. We could observe that,
for 50% and 30% tasks for UnifiedQA-base and UnifiedQA-3b, respectively, Thrust achieves better
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Figure 3: Distribution of Thrust scores for various tasks with UnifiedQA-3b to create the instance
representation. The distribution is normalized by Kernel Density Estimation. Low scores denote the
cases where internal knowledge is not enough, vice versa. We find that Thrust scores predict that
more cases from HotpotQA require external knowledge and more cases from e-SNLI do not require
external knowledge compared to other tasks.

performance than using knowledge for all instances. Such results indicate that Thrust can help avoid
potential noise. On the other hand, we can also observe that for the e-SNLI, Web Questions, and NQ,
the full knowledge setting performs better than Thrust. The reason behind this can be that external
knowledge is essential and of high quality (e.g., the used knowledge is manually written rather than
retrieved). As long as the model can comprehend the external knowledge, seeking and adding more
high-quality knowledge always benefit the models.

4.2 DISTRIBUTION OF THRUST ACROSS TASKS

To further understand how Thrust leads to adaptive knowledge propulsion, we select the top 3
tasks with the highest improvement after applying IAPEK with Thrust from MC classification and
open-domain QA tasks, respectively. The selected tasks are: e-SNLI, BoolQ, CIKQA, HotpotQA,
TriviaQA, and NQ. Figure 3 demonstrates the distribution of Thrust scores for each of the involved
tasks. The scores are cast to [0, 1] with respect to the extremum, and the distribution is normalized
by Kernel Density Estimation. From the figure, we can observe that low scores (i.e., the query
needs external knowledge) appear commonly for the open-domain QA tasks such as HotpotQA and
TriviaQA. CIKQA queries, which are designed to require commonsense knowledge to solve, also
need external knowledge for many cases, as predicted by Thrust. On the other hand, for e-SNLI
and BoolQ, external knowledge is not always necessary. Such findings demonstrate the potential of
using Thrust to investigate the characteristics of tasks from the knowledge aspect.

4.3 LAYER ABLATION

Since we cast instances into the representation space, a crucial contributing factor for Thrust is the
layer of the PTLM to use. To investigate the effect of which layer to use, we conduct experiments
on UnifiedQA-3b with the same setting as in Section 3.1. Figure 4 presents the performance of
adding 25%, 50%, 75% knowledge-augmented instances with Thrust using the hidden states of
different layers. We can observe that, for most tasks, there is no significant difference across lay-
ers, which shows the robustness of Thrust and potential capacity to accelerate the computation of
Thrust of using lower layers. However, for some tasks, such as StrategyQA and Web Questions,
the middle-layer representation may worsen the overall performance. The reason can be that: early
layers in the model contain rich semantic information, and later layers contain task-specific informa-
tion (Lovering et al., 2021), so that both can act as good representation of the instances. However, in
the middle layers, rich semantic features are abandoned during extracting task-specific features and
task-specific features are also not fully extracted and expressed yet.

5 RELATED WORK

PTLM with external knowledge. The paradigm of retrieving knowledge from knowledge bases,
augmenting PTLMs, and solving downstream tasks has been widely explored in the community of
NLP (Lewis et al., 2020; Borgeaud et al., 2022; Izacard et al., 2022). The knowledge bases can
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(a) (b)

Figure 4: Layer-wise ablation across tasks and portions of instances augmented with knowledge for
(a) MC classification tasks and (b) open-domain QA tasks. The X-axis denotes the layer of Unified-
3b decoder used to cast instances into the representation space. We find that for most tasks, the layer
number will not be a significant factor. For some tasks (e.g., StrategyQA), choosing middle layers
for representation slightly worsens the performance.

range from knowledge graphs (Xu et al., 2021), documents (Paranjape et al., 2022), pre-processed
vectors (Verga et al., 2021), other PTLMs (Shwartz et al., 2020), search engines (Nakano et al.,
2021), to Wikipedia documents as used in this work. To augment the PTLMs, common practice
includes creating synthesizing datasets (Wu et al., 2021), adding knowledge to the prompts (Wei
et al., 2022; Nye et al., 2021), create demonstrations (Brown et al., 2020), and extending feature
vectors (Khattab & Zaharia, 2020).

The contribution of IAPEK is orthogonal to above work, as a gated framework to reject annotations
or retrieval. Since Thrust allows test time estimation on the queries, without labels nor gold answers,
the method can be extended to any of these aforementioned settings.

Hardness and Confidence Estimation in PTLMs. Much previous work studies the estimation
of dataset hardness and model confidence under the context of PTLMs. For dataset hardness,
RDA (Perez et al., 2021) measures the hardness as the cumulative area under the loss curves of
cross-fold validation on the test set. Point-wise V-Usable information (Ethayarajh et al., 2022) com-
putes the hardness as entropy difference between the feature-provided case and the blank feature
case. Sensitivity Measurement (Hahn et al., 2021) measures the dataset difference by computing
the variance of loss of the correct labels on a set of neighbor sentences extracted from generative
models with masked original sentences as the inputs. These methods achieve great correlation with
the model performance. However, all these methods focus on analyzing the test set performance,
thus the test set labels are required and can not be applied when predicting the answers. Another line
of work focuses on estimating the expected calibration errors (ECE) for classification (Kong et al.,
2020), QA (Jiang et al., 2021), and math (Lin et al., 2022) datasets, as a reflection of model certainty
on the correct answers. ECE can be considered as an orthogonal evaluation metric to measure the
model’s capability of understanding the tasks, compared to common metrics such as accuracy.

Most of the previous work can be considered a posterior analysis of the model capability. In this
work, instead, we estimate the pragmatic confidence at the test time to empirically increase the
performance with limited budget or bandwidth to acquire knowledge.

6 CONCLUSION

In this work, we propose Instance-level Adaptive Propulsion of External Knowledge (IAPEK) as a
solution to propel model performance when the external knowledge is useful but noisy. Accordingly,
we propose a simple and effective instance-wise metric, Thrust, to perform the adaptive knowledge
injection. Extensive experiments show that Thrust can improve the performance of utilizing external
knowledge under various settings. Understanding the delicate usage of potentially noisy knowledge
for PTLMs can further enable the models to conduct inference beyond the limitation of implicit
internal knowledge.
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A APPENDIX

Figure 5: Distribution of Thrust scores for all involved tasks with UnifiedQA-3b to create the in-
stance representation. The distribution is normalized by Kernel Density Estimation. Low scores
denote the cases where internal knowledge is not enough, vice versa.

Dataset BM25 Thrust
25% 50% 75% 25% 50% 75%

AGNews 77.9 | 77.0 80.1 | 79.2 82.3 | 81.3 77.9 | 78.4 80.1 | 80.4 82.3 | 82.3
e-SNLI 69.1 | 68.4 75.9 | 75.6 82.8 | 83.0 69.1 | 86.3 75.9 | 87.5 82.8 | 88.8
CIKQA 62.7 | 62.3 64.1 | 64.4 65.5 | 66.1 62.7 | 66.9 64.1 | 66.9 65.5 | 66.9
StrategyQA 64.1 | 63.3 70.5 | 68.3 77.0 | 78.1 64.1 | 74.3 70.5 | 81.4 77.0 | 82.9
BoolQ 68.1 | 68.4 74.6 | 75.9 81.2 | 82.0 68.1 | 79.1 74.6 | 85.7 81.2 | 87.1
ARC-E 74.4 | 74.9 75.1 | 75.3 75.8 | 76.3 74.4 | 74.6 75.1 | 74.9 75.8 | 75.1
ARC-C 64.5 | 65.2 64.4 | 66.2 64.3 | 66.6 64.5 | 63.9 64.4 | 64.9 64.3 | 65.6
WQ 20.9 | 19.0 30.0 | 28.2 39.1 | 37.3 20.9 | 19.3 30.0 | 35.4 39.1 | 46.4
TREC 19.6 | 20.4 27.0 | 28.1 34.4 | 36.3 19.6 | 37.8 27.0 | 40.6 34.4 | 40.9
HotpotQA 24.9 | 25.2 32.3 | 32.8 39.7 | 40.6 24.9 | 41.9 32.3 | 43.9 39.7 | 45.7
TriviaQA 39.2 | 34.2 52.8 | 50.0 66.4 | 65.4 39.2 | 68.3 52.8 | 71.0 66.4 | 73.4
NQ 12.8 | 12.9 21.1 | 21.1 29.4 | 29.6 12.8 | 35.9 21.1 | 36.5 29.4 | 37.0

Table 5: Performance of IAPEK with UnifiedQA-3b leveraging Thrust and BM25. With 25%,
50%, and 75% percent instances augmented with their corresponding knowledge, performances
of random/BM25 and random/Thrust are presented before/after the vertical bar. If performance
increases with Thrust, the score will be marked in green and otherwise in red. WQ, TREC denote
the tasks of Web Questions, Curated TREC, respectively. We can observe IAPEK performs good
with BM25 as the difficulty score on QA tasks. However, the performance of BM25 is worse (on
QA tasks) and less robust (on MC classification tasks) comparing to our Thrust.

We use BM25 (Trotman et al., 2014), a common approach to evaluate the difficulty of queries, as
an alternative to Thrust to perform IAPEK. Specifically, we regard each test input as the query
and all training data input as the corpus to extract the score. We use the average of the relevance
score across the corpus to rank each test input. From Table 5, we can observe that BM25 leads to
performance improvement in many cases, Thrust shows better (e.g., for QA tasks) and more robust
improvement (e.g., for classification tasks).
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