
Imagination is All You Need!
Curved Contrastive Learning for Abstract Sequence Modeling

Utilized on Long Short-Term Dialogue Planning

Anonymous ACL submission

Abstract
Motivated by the entailment property of multi-
turn dialogues through contrastive learning sen-
tence embeddings, we introduce a novel tech-
nique, Curved Contrastive Learning (CCL), for
generating semantically meaningful and con-005
versational curved utterance embeddings that
can be compared using cosine similarity. In-
spired by the curvature of space-time (Einstein,
1921), we define the curved property of these
embeddings as the semantic space curved by010
the relative turn distance (our time dimension)
of utterance pairs. The resulting bi-encoder
models can guide transformers as a response
ranking model towards a goal in a zero-shot
fashion by projecting the goal utterance and015
the corresponding reply candidates into a latent
space. Here the cosine similarity indicates the
distance/reachability of a candidate utterance
toward the corresponding goal. Furthermore,
we explore how these forward-entailing lan-020
guage representations can be utilized for assess-
ing the likelihood of sequences by the entail-
ment strength i.e. through the cosine similarity
of its individual members (encoded separately)
as an emergent property in the curved space.025
This allows us to imagine the likelihood of fu-
ture patterns in dialogues, specifically by order-
ing/identifying future goal utterances that are
multiple turns away, given a dialogue context.
As part of our analysis, we investigate charac-030
teristics that make conversations (un)plannable
and find strong evidence of planning capability
over multiple turns (in 61.56% over 3 turns) in
conversations from the DailyDialog (Li et al.,
2017) dataset. Finally, we will show how we035
can exploit the curved property to rank one mil-
lion utterance & context pairs, in terms of GPU
computation time over 7 million times faster
than DialogRPT (Gao et al., 2020), while be-
ing on average 2.8% qualitatively superior for040
sequences longer than 2 turns.

1 Introduction

Large Scale Transformers are becoming more and
more popular in dialogue systems (Zhang et al.

(2019), Peng et al. (2022)). Though these mod- 045

els are very effective in generating human-like re-
sponses in a given context, based on their learning
objective to minimize perplexity, they tend to have
trouble generating engaging dialogues (Gao et al.,
2020). Meister et al. (2022) have shown that hu- 050

man conversations usually do not sample from the
most likelihood of words like transformers do. We
argue that one reason for this is that natural conver-
sations can be (always) considered goal-oriented
(even chitchat) and motivate this claim based on 055

literature from psychology. These have shown that
"Conversation is a goal-directed process" (Myl-
lyniemi, 1986) as humans shift conversation topics
based on the social connection/audience and use
it to shape social relations (Dunbar et al., 1997). 060

The psychological literature also elaborates on how
humans are able to plan and simulate dialogues
by utilizing inner speech as part of verbal working
memory (Grandchamp et al., 2019).

"Key to most of such models is that in- 065

ner speech is posited as part of a speech
production system involving predictive
simulations or “forward models” of lin-
guistic representations" (Alderson-Day
and Fernyhough, 2015) 070

Keeping this in mind, we investigated dialogues
under the aspect of "forward" entailing language
representations by projecting them into a sim-
ple semantic sentence transformer (Reimers and
Gurevych, 2019) latent space. We place a fixed 075

position in the DailyDialog (Li et al., 2017) dataset
as a goal utterance and measure the cosine similar-
ity of the goal to every other utterance within the
dialogue. Our own preliminary work revealed, as
shown in figure 1, that the similarity of previous 080

utterances to the goal utterance increases as they
get closer to the goal utterance.

However, fluctuations between the speaker at
the goal turn (saying the utterance later on) and
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Figure 1: Entailment property of sentence transformer-
based embeddings within conversations on DailyDialog

their dialogue partner can be observed. As we see085

on the blue & red highlighted turns, the goal turn
speaker has a greater similarity to the goal utterance
than the dialogue partner. We filtered all samples
causing these fluctuations and find that these tran-
sitive entailing properties are essential for guiding090

the conversation toward the given goal. Regard-
less of whether the person had the intent to reach
the target goal.We will demonstrate in this paper
how we can build upon this phenomenon to gen-
erate semantically meaningful and conversational095

curved embeddings. In particular, by mixing the
training objective of Natural Language Inference
(NLI) for the semantic embedding space with a dis-
tance proportional and directional aware (through
two special tokens [BEFORE] & [AFTER]) cosine100

similarity score of utterance pairs.
The resulting Curved Contrastive Learning

(CCL) is presented on three tasks: (1) short-term
planning, (2) next utterance selection, and (3) long-
term planning.105

(1) Short-term planning: CCL allows us to
imagine the likelihood of a candidate utterance
leading to a given goal utterance by projecting
them together into one latent space (imaginary
space). The cosine similarity indicates the dis-110

tance/reachability of a candidate utterance towards
the corresponding goal as illustrated in a trans-
former guidance example in figure 2. Thanks to
the transitive property we can select the utterances
at each turn greedily.115

(2) Next utterance selection: The embeddings
can be utilized for sequence modeling by only us-
ing the cosine similarity between the separately
encoded sequence members. It is evaluated by the
ranking performance of the human vs random ut-120

terances task given a dialog context.
(3) Long-term planning: Since these embed-

dings do not require entire sequences for sequence
modeling, we can assess the likelihood of following
patterns (of multiple goal utterances that are mul- 125

tiple turns apart) by using the entailment strength
between these and the context in the curved space.
We will evaluate this approach based on the order-
ing/identifying of future goal utterances.

Furthermore, we investigate two research ques- 130

tions:
• Do chit-chat conversations have planning ca-

pability? (RQ1)
• What characteristics make dialog planning

possible? (RQ2) 135

The paper is structured as follows: In §2 we will
discuss the related work. Following in §3 where
we present the methodology, baselines as well as
basic components for the advanced architectures.
In §4 the short-term planning approaches, followed 140

by the next utterance selection in §5 and the long-
term planning approaches for ordering goals in §6.
We will wrap up the paper with the experiments &
discussion in §7 followed by the conclusion in §8.

2 Related Work 145

Our work builds upon two major concepts, dia-
logue planning, and entailment. Related publica-
tions from the stated fields are discussed below.

Dialogue Planning
While previously introduced planning techniques 150

used several abstraction approaches (Teixeira and
Dragoni, 2022), none of them exploited the charac-
teristics of curved conversation embedding latent
spaces. We argue that generating a complete dia-
logue path is unnecessary as we can simply choose 155

the utterance in the transformer’s search space that
gets us closest to the goal at every turn. Ramakr-
ishnan et al. (2022) proposed a similar idea on
word level by applying constrained decoding to the
dialogue response generation to increase the likeli- 160

hood of a target word not only in the current utter-
ance but also utterances in the future. Furthermore,
DialogRPT (Gao et al., 2020) has been introduced
as a dialogue response ranking model for depth,
width, and upvotes prediction for utterance candi- 165

dates. We will utilize DialogRPT as a baseline for
our next utterance selection experiments based on
the dialogue history.

Entailment
Entailment-based approaches have a long history 170

in NLP and have been utilized for a lot of tasks as
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Figure 2: DialoGPT Guidance Example with Imaginary Embeddings with before [B] and after [A] token.

zero-shot classification tasks like relation extrac-
tion (Obamuyide and Vlachos, 2018) or zero-shot
text classification (Yin et al., 2019). The idea of
entailment graphs and making use of transitivity175

has been previously explored by Kotlerman et al.
(2015) & (Chen et al., 2022). Textual entailment
has also been applied to Dialogue Systems as an
evaluation technique (Dziri et al., 2019) or for im-
proving response quality through backward rea-180

soning (Li et al., 2021). Contrastive learning with
positional information has been previously applied
to image segmentation (Zeng et al., 2021). While
You et al. (2020) utilized contrastive learning with
augmentations for graph neural networks (GNNs).185

Natural Language Inference (NLI) based transform-
ers have been increasingly used for semantic textual
similarity (STS) since the introduction of Sentence
Transformers, thanks to bi-encoders (Reimers and
Gurevych, 2019) that can compare sentence pairs190

with cosine similarity and therefore reduce com-
putation time by a 234000 * fold. This trend has
especially been supported by GPU Search (Johnson
et al., 2017). These sentence transformers have suc-
cessfully been applied to learn utterance represen-195

tations for retrieving utterance replies in dialogue
systems (Liu et al., 2021). However, without utiliz-
ing the curved property of conversations which we
argue, as motivated in §1, is essential for forward
representations.200

3 Methods

In this section, we formally define the research
questions (problem definition), our baselines for
the evaluation, and the core of Imaginary Embed-
dings based on which advanced architectures will205

be built in the following sections.

*According to Reimers and Gurevych (2019) a set of
10000 Sentences would require 50 million inference computa-
tions with Bert which would, according to them, require 65
hours, while SBERT prior encoded would only take 5 seconds

3.1 Problem Definition Planning

As part of this paper, we will investigate two
planning problems, short- and long-term planning.
Short-term planning aims at guiding the conversa- 210

tion from the current position towards a given goal
utterance g (which we define as a semantic utter-
ance) over multiple turns. Long-term planning, on
the other hand, targets the ordering/scheduling of
a set of goals G (utterances that are multiple turns 215

apart) within a conversation.

3.2 Long-Short Term Planning Evaluation

As part of this paper, we introduce a new evaluation
technique, Long-Short Term Planning Evaluation
(LSTPE). LSTPE is split into Short- as well as 220

Long-Term planning.

3.2.1 Short-Term Planing Evaluation
As part of the short-term planning evaluation, we
evaluate the guidance capability of imaginary em-
beddings towards a given goal utterance. For this 225

purpose, we split all dialogues within a given cor-
pus d ∈ C into subsets of d[: hl] which represents
the history of utterances (or context) with a fixed
length hl, d[hl] the "correct" following utterance
and d[hl+gd] as goal utterance with a goal distance 230

gd. We then let a dialog transformer generate 100
candidate utterances given the context d[: hl] for
every dialogue d ∈ C which we project together
with the goal utterance into the imaginary embed-
ding. Following, we compare the ranking score of 235

the original utterance to the artificially generated
utterances.

3.2.2 Long-Term Planning Evaluation
Similar to the Short-Term planning, we take a cor-
pus of dialogue data d ∈ C and split it at fixed posi- 240

tions x into the dialogue history and three goal utter-
ances |G| = 3. Given a dialogue history of length
hl, ∀d ∈ C : d[: hl], d[x], d[x + gd], d[x + 2gd]
where gd ≥ 2 is the distance between the goals.
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We define the first goal in distance as x − hl in245

the perspective of the dialogue history. The three
resulting goal utterances result in 6 possible order
permutations. Since 4 of them are partially ordered,
we split the evaluation into ranking the partially or-
dered and reverse order to the true order separately.250

While this technique is simple and does not require
any supervision, some samples due to the random
selection will be without any context indistinguish-
able. E.g. an utterance like "oh, okay" could be
at any position. Since all models are evaluated on255

the same data set, this is not an issue, however, an
accuracy of 100% will be realistically not possible.

3.3 Next Utterance Selection Evaluation
Furthermore, we will test the embedding’s capa-
bility of telling potential replies from random ut-260

terances given a dialog context by comparing it to
DialogRPT (Gao et al., 2020) on a ranking task.
The data set is built up in a similar way as for short-
term planning.

3.4 Imaginary Embeddings with Curved265

Contrastive Learning
We introduce a novel self-supervised learning tech-
nique to generate semantically meaningful embed-
dings which have a conversation positional as well
as directional awareness between utterance pairs.270

To generate these properties, we train a bi-encoder
sentence transformer on two training objectives.
The first objective builds upon the AllNLI dataset
(a combination of SNLI (Bowman et al., 2015)
and MultiNLI (Williams et al., 2017)) with a sim-275

ple Softmax Loss. To learn the graph structure
of conversations, two special tokens [BEFORE]
and [AFTER] are introduced. The model is (pre-
)trained with a Cosine Similarity loss on DailyDi-
alog (Li et al., 2017), by sliding through conver-280

sational data with a fixed length l = 6. Notably,
we combine consecutive utterances of the same
speaker. Based on this fixed length, the training
data is constructed for a given window as follows:

∀i ∈ {1, .., l} :


([B] u[0], [A] u[i], s = l−i

l

([B] u[i], [A] u[0], s = 0

([B] u[0], [A] u′[r], s = 0

([B] u′[r], [A] u[0], s = 0
(1)285

where [A] = [AFTER], [B] = [BEFORE], u the
utterances in the observed window, u′ a set of ran-

dom utterances, and s the cosine similarity score.
As 3.4 shows, the target cosine similarity for a pos- 290

itive sample pair is proportional to their positional
distance in the dialogue (see illustration in figure
3). Three hard negatives are introduced, the first
ensures the directional property by swapping the
[BEFORE] and [AFTER] token. The following 295

two are selected from a special dataset of random
utterances. Figure 3 unveils the widespread util-

Figure 3: Curved property of Imaginary Embeddings.
Grey/black nodes represent history utterances, orange
nodes are utterance candidates, and dark orange is the
best candidate as it is closest to the goal utterance (red).
From the perspective of the best candidate encoded as
[A], the scores towards history illustrate the training
objective as they are encoded with [B] tokens.

ity of imaginary embeddings. As shown, we can
simply pick the best candidate utterance for reach-
ing a given goal by imagining the closeness of the 300

candidate utterance to the goal in the curved space.
Similar to an object in our universe that always
moves on a straight line but is curved by space-time
(Einstein, 1921), we can follow a line to our goal
utterance by greedily selecting the best utterance 305

on turn-to-turn bases. We illustrated this transitive
property by the light red in-between nodes in fig-
ure 3. While in the short planning the candidate
utterances are sampled from a dialog transformer,
we can simply ignore the closeness of candidate 310

utterances to the history. In long-term planning,
however, we can exploit the curved property of
context utterances for goal ordering as the next
goal should be the closest to the context utterances.
Analogous applies to the best next utterance in the 315

next utterance selection/ranking task.

3.4.1 Adding Speaker Tokens
Furthermore, we can modify imaginary embed-
dings with additional speaker tokens. Given a
multi-turn dialogue with two participants, the to- 320

kens [O] and [E] are added to the [BEFORE]
utterance at the encoding step (for even and odd dis-
tances to the target utterance [AFTER]). Accord-
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ingly, the training objective (see equation 3.4) for
the curved property is slightly modified by adding325

hard negatives for false speaker matches.

4 Short Term Planning Approach
(Transformer Guidance)

As described in section 3.2.1 we utilize imaginary
embeddings as a re-ranking model. Respectively,330

we let a task-specific dialog transformer generate
100 candidate utterances given the context d[: hl]
of a fixed length hl for every sample dialogue
d ∈ C. To get a diverse distribution of utterances
we choose nucleus sampling with p = 0.8 and a335

temperature of t = 0.8. The generated utterances
from the transformer are then projected in the imag-
inary embedding space and the goal similarity of
d[hl + gd] is measured. Following, we check the
rank of the true utterance from the test set leading340

to the goal utterance. The average rank and the
distribution of ranks within the dialogue are evalu-
ated with respect to different history lengths hl and
different goal distances gd.

5 Next Utterance Selection with Curving345

Motivated by the curved property, the most suitable
next utterance uf ∈ UF for a dialogue sequence
his should be closest to the individual utterances of
the sequence on average. We can assess a relative
likelihood between all future utterances by measur-350

ing the entailment strength PE of every uf to the
history utterances based on the cosine similarity as
follows:

PE(uf |his) =
∑

ui∈his

[B] ui [A] uf

∥[B] ui∥ ∥[A] uf∥
(2)

In the ranking evaluation, we will sort the results355

of ∀uf ∈ UF : PE(uf |his) to determine the rank
of the true utterance. Notably, we can observe
the entailment strength (or activation) of individ-
ual utterances to a future one, which enables many
other applications. Furthermore, we can utilize the360

curved context for greedily selecting the next goal
max
g∈G

PE(g|his) in our long-term planning experi-

ments. We will refer to this as greedy curving.

6 Long-Term Planning Approaches

In this section, we will describe how Imaginary365

Embeddings can be used to order goals (a set of ut-
terances) within dialogues for long-term planning.
The models are evaluated with LSTPE, a given set

of goals G with |G| = 3, and an equal distance
between each node. 370

6.1 Imaginary Embedding Chains

Figure 4: Long Term planning Dataset construction
variables (history length, goal distances, (first) goal in
distance) demonstrated. Furthermore, the concept of
Imaginary Embedding Chains (IEC) is illustrated with
its puzzle-like properties with the corresponding goal
utterance colors.

Imaginary Embeddings are perfectly suited for
this task as they can be concatenated into cosine
similarity chains by using the ([B] before and
[A] after token) as illustrated in figure 4. We 375

mathematically define it as:

s(o) =
(∑

i∈o

[B] gi [A] gi+1

∥[B] gi∥ ∥[A] gi+1∥

)
(3)

where we choose the order of goals o ∈ O
by the highest similarity score s with max

o∈O
(s(o))

(strongest entailment strength) of a given sequence 380

o =< g1, ..., gn > of goals gi ∈ G. While this
chain can be arbitrarily long and, thanks to GPU
tensor computations calculated rather quickly, the
complexity with O(n!) for a brute force computa-
tion remains high. 385

6.2 Imaginary Embedding Chains with
History Curving

Finally, we combine the concepts of Imaginary
Embedding Chains and Curving by generating for
every order [g1, g2, g3] a score (equation 4): 390

s(g1, g2, g3) =< g1, g2, g3 > +PE(g1|his)

− 1

2
PE(g2|his)− PE(g3|his) (4)

where < g1, g2, g3 > is the chain score of the given
order and h is the history curving score for the 395

corresponding goal. We motivate the addition of
g1 and the subtraction of g3 (as well as g2) based
on the presumption that g1 should be closest while
g3 should be the furthest away to the history with
respect to the curved property. 400
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7 Experiments

Our experiments are conducted on two dialog cor-
pora, DailyDialog (Li et al., 2017) and the Mi-
crosoft Dialogue Challenge (MDC) corpus (Li
et al., 2018). We experiment with two trans-405

former architectures BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) to generate Imag-
inary Embeddings. In the short-term planning
(transformer guidance) setting, we let our Imag-
inary Embeddings guide DialoGPT (Zhang et al.,410

2019) for DailyDialog and GODEL (Peng et al.,
2022) for the MDC corpus. For the next utterance
selection, we use DialogRPT (Gao et al., 2020) as
a baseline.

7.1 Experimental Setup415

While the DailyDialog data set has a test corpus of
1000 dialogues, we first have to generate a test data
set for MDC. We do so by extracting the last 333
samples for each of the three task-oriented domains
(movie-ticket booking, restaurant reservation, and420

taxi booking). This leaves us with 11,118 dialogues
as training data for DailyDialog and 9088 training
samples for MDC.

7.2 Self-Supervised Training

Apart from combining consecutive utterances of the425

same speaker and removing dialogues with utter-
ances longer than 200 tokens, we apply no further
pre-processing on the training data. As described
in §3.4, we pre-train all our architectures in stage
(1) with a mixed training objective of NLI and the430

Curved Contrastive Learning (CCL) on the Daily-
Dialog corpus for 5 epochs. For all MDC models,
we follow up with a second stage where we train on
the target corpora with the curved property learning
objective only for domain adaptation.While Long435

Term planning performs best after 5 epochs of
further fine-tuning, short-term planning requires
only between 0.5 to 1 epoch(s). We provide all
model cards with a detailed description as part of
our submission in an anonymous GitHub reposi-440

tory†. We will publish the models together with
our training/evaluation scripts upon acceptance.

7.3 Evaluation Data sets

The evaluation data sets DailyDialog and MDC are
constructed analogously. We construct the datasets445

for STP based on history length and goal in distance
†https://anonymous.4open.science/r/

ImaginationIsAllYouNeed-82BF

& LTP based on history length, goal in distance,
goal distances respectively as illustrated in figure
4. Since MDC with an average number of 6.51
turns is even shorter than DialyDialog with 7.84, 450

we are limited in the long-term planning to a shorter
context as well as a goal in distance length.

7.4 Evaluation & Discussion

In the following sections, we will investigate how
well these embeddings perform on our introduced 455

LSTPE (§3.2) and on the next utterance selection
task. In the main paper, we focus on our empirical
findings and present the results of the experiments
for space reasons in aggregated form. We provide
a detailed analysis in the appendix, where we ex- 460

plore examples as well as demonstrate the curved
property of dialogues in these embeddings. This is
illustrated as vector chains in figure 7 or the aver-
age similarity of different distances and directions
within dialogues (appendix A). 465

7.4.1 Short-Term Planning
As shown in the short-term planning aggregated
results table 1, we split the results based on odd
distance length (unveiling utterances of the dialog
partner) and even distance (which would be uttered 470

by the transformer). Both have at least 20% of
the true candidate utterances in the top 5 (of 100)
ranks, 50% in the top 25, and a max average rank
of 32.56. We observe that speaker token-based
imaginary embeddings on odd distances can even 475

achieve 63% in the top 5 with the highest average
rank of 14.01. This can be expected as odd utter-
ances will be uttered by our dialog partner which
we can greatly influence by our preceding utter-
ance. Interestingly, we find that it is significantly 480

easier to plan 3 turns ahead rather than 2 turns. This
is portrayed in the detailed analysis based on the
history length, goal distances, and the first goal dis-
tance (goal in distance) in table 3 (appendix). Our
analysis unveils that the DailyDialog models have 485

an advantage through their more diverse utterance
distribution in selecting the true candidate utter-
ance. Furthermore, they perform more consistently
across different history lengths and goal distances.
MDC, on the other hand, performs overall better 490

but has a higher variance in its performance (with
samples of different history lengths and goal dis-
tance). Concluding that the score distribution in
the ranking process is either more strongly peaked
(most in data sets with lots of request intents) or it 495

more is flattened (especially on data with majorly
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Human Utterance Ranking vs 100 utterances sampled
from DialoGPT Large / GODEL Large (p=0.8, t=0.8)

Imaginary Embedding
without Speaker Token

Imaginary Embedding
with Speaker Token

Goal in Distance Top 5
(in %)

Top 10
(in %)

Top 25
(in %)

Top 50
(in %)

Average
Rank

Top 5
(in %)

Top 10
(in %)

Top 25
(in %)

Top 50
(in %)

Average
Rank

DailyDialog Test Corpus
Guidance even g distance 29.36 35.76 51.03 67.9 34.59 27.78 36.22 53.78 71.36 32.56
Guidance odd g distance 31.31 39.21 54.09 72.78 30.61 63.49 72.18 83.21 91.06 12.9
MDC Test Corpus
Guidance even g distance 20.79 29.32 48.04 70.85 34.86 39.18 50.9 69.29 83.1 22.09
Guidance odd g distance 25.41 32.17 46.8 67.31 35.88 63.06 70.65 80.94 89.16 14.01

Table 1: Aggregated short-term planning evaluation for odd (unveiling utterances of the dialog partner) and even
distances (which would be uttered by the transformer itself).

inform intents). We explore this in detail in the
appendix C. This flattened score distribution can
be expected as in many cases of providing infor-
mation, the actual information has little impact on500

future turns considering a structured task-oriented
setting (e.g. replying on how many people will
attend a reservation).

7.4.2 Next Utterance Selection based on
Curved History505

The sequence modeling capability is evaluated
based on the normalized average rank (of the true
following utterance compared to all other utter-
ances at the same position of the corresponding cor-
pus). We find that the DailyDialog corpus clearly510

outperforms MDC across all variations. As we
demonstrate in figure 5, DailyDialog performs best
with an average rank in the top 10% over all history
lengths (the entire history projected in the curved
space with speaker tokens). For sequences longer515

than 2 turns, it even outperforms all our base vari-
ants of DialogRPT (human vs. random) by at least
2.8%. Overall, we find that DialogRPT has trouble
with increasing sequence lengths as input and find
that keeping the last two utterances performs best.520

Notably, we can assess the entailment strength of
1000000 dialogue paths (1000 dialogues ×1000 ut-
terances) as described in equation 4 in terms of
GPU computation time over 7 million times faster
than DialoRPT which we explore in more detail525

in the appendix B.1. While our experiments on
MDC for the next utterance selection show weak
results, in summary, MDC shows the same fluctua-
tions between primarily inform & requests intents.
While the ranking approaches based on only the530

last utterance are most of the time superior, we ob-
serve on odd turns (where we have a lot of request

intents) the entire history usually performs better
relative to even distances. Conversely, we notice
that approaches based on only the last utterance 535

are especially good on turns where we see more
informing intents (replying to the request). We
further explore this in the appendix B.2.

7.4.3 Long Term Planning Evaluation
The short turn length of the two corpora becomes 540

especially troublesome in the long-term planning
evaluation. Here, we are limited to short con-
text/history lengths as well as short goal distances
and (first) goal in distances.Across all models and
datasets, we observe a solid average rank of 1.67 545

(between 1 and 2 for all approaches) on identify-
ing the correct order of 3 goal utterances within
their 6 possible orders as table 2 unveils. While
our MDC embeddings had especially trouble with
utterance selection in width (selecting an utterance 550

from the same dialog depth §7.4.2), we find that
MDC shows a stronger performance on greedy goal
selection (Greedy Curving (GC)) on classic embed-
dings thanks to the solidified sequential structure
of task-oriented dialogues. This advantage lets 555

MDC outperform DailyDialog also on all other ap-
proaches. When Speaker tokens come into play,
however, MDC drops while DailyDialog improves
in performance compared to classic imaginary em-
beddings. Imaginary Embedding Chains (IEC) and 560

with curved context (IEC & CU) show similar per-
formance in aggregated form. However, when the
context is close (i.e. the first goal is not far away)
IECs with a curved context prevail. This changes
with increasing distance of goals or first goal in 565

distance as highlighted in table 4 of the appendix.
Here, IECs with no context keep an advantage. In
terms of the MDC planning capability, the perfor-
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Figure 5: Normalized average rank of next utterance selection based on dialog history on DailyDialog. Demonstrated
are different Curving variants (only the last utterance or the entire history), classic as well as Speaker Token-based
embeddings, and the DialogRPT pre-trained on the human vs random utterance task baseline.

Imaginary Embedding w.o. Speaker Token Imaginary Embedding with Speaker Token

partially ordered Reverse
order partially ordered Reverse

order

Model Top 1
(in %)

Top 2
(in %)

Top 3
(in %)

Top 4
(in %)

Top 1
(in %)

Average
Rank

Top 1
(in %)

Top 2
(in %)

Top 3
(in %)

Top 4
(in %)

Top 1
(in %)

Average
Rank

DailyDialog Test Corpus
IEC 49.99 70.62 85.26 93.42 79.17 1.8 51.60 72.22 86.82 94.94 81.18 1.78
IEC & CU 50.69 71.24 85.09 93.63 78.54 1.79 51.07 72.98 86.9 94.97 79.87 1.78
GC 57.87 82.47 - - - 1.6 57.32 83.89 - - - 1.59
MDC Test Corpus
IEC 58.72 77.43 90.28 96.38 85.28 1.65 56.83 77.50 90.19 95.44 84.52 1.65
IEC & CU 61.59 77.72 90.15 96.79 86.25 1.63 58.63 78.62 91.20 95.72 85.44 1.62
GC 66.30 89.61 - - - 1.44 56.05 80.59 - - - 1.64

Table 2: Aggregated Long-Term Planning Evaluation on 3 goals with ((2, 2, 2), (2, 2, 0) and (2, 2, 1)) with (history
length, goal distances, first goal in distance). Models include Imaginary Embedding Chain (IEC), Imaginary
Embedding Chain + Curving (IEC & CU), and Greedy Curving (GC).

mance drop-off between the two most common
intents, request and inform, is similar, although570

not as severe as in short-term planning or the next
utterance selection.

8 Conclusion

In this paper, we introduced Curved Contrastive
Learning, a novel technique for generating forward-575

entailing language embeddings. We demonstrated
that these can be utilized on various sequence mod-
eling tasks by only using the cosine similarity be-
tween the separately encoded sequence members
in the curved space. In particular, for the next utter-580

ance selection based on the curved history of utter-
ances (where DailyDialog’s true utterances are con-
stantly in the top 10%), outperforming DialogRPT
on sequences longer than 2 turns while in terms
of GPU computation being over 7 million times585

faster. Furthermore, we have shown their pattern
recognition ability on the ordering/identification
of future representations even at longer distances
and far apart (with an average rank of 1.67/6). We
also demonstrated that these embeddings can be590

applied to guiding dialog transformers to approach

a goal over multiple turns. In particular, by imagin-
ing the closeness of candidate utterances towards
the goal through the transitive properties of the
curved space. Following up on our claim, that even 595

chit-chat can be considered goal-oriented (RQ1),
we find strong evidence of planning capability in
chit-chat conversations over multiple turns. E.g.
48.83% / 61.56% (within the top 5 / top 10 utter-
ances in the re-ranking) on 3 turns ahead. Our 600

RQ2 can be answered by the fact that we observe
significant differences in the plannability of dif-
ferent intents. Our empirical analysis shows that
request intents are significantly easier to plan than
informing intents. While our focus in this paper 605

was mainly on the introduction of Imaginary Em-
beddings and their utilization to dialogue planning,
we leave much more space for further evaluation,
analysis, and applications on the curved properties
of our����universe ‡ embeddings in future works. 610

‡In tribute to our fellow researchers in the field of physics
for their inspiring work on the curvature of spacetime
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9 Limitations

One of our limitations is that the data is split
for short-term planning and long-term planning at
fixed positions which on one side shows the overall
planning capability on different datasets unbiasedly615

but on the other hand mixes the planning ability of
the datasets with the overall performance of the em-
beddings. We have demonstrated in section C.2 that
this can lead in many cases to unplannable exam-
ples. While this means that our embeddings should620

overall perform better than our results suggest, in
the future, we should create either a human-filtered
dataset where planning is always possible or ei-
ther create a human benchmark as a further base-
line. Furthermore, we rely in short-term planning625

(transformer guidance) on the generated utterance
distributions by transformers where we have to bal-
ance between semantic diversity and the likelihood
of utterances. We control these with temperature
and nucleus sampling (top p) and found the best630

trade-off with a temperature of 0.8 and a top p of
0.8. Nonetheless, this can still lead to utterances
that might lead to the goal but that would be not
considered by humans as very likely based on the
given context as we explore in C.2. Furthermore, in635

the next utterance selection, we utilize the vanilla
DialogRPT which has been evaluated in the orig-
inal paper (Gao et al., 2020) on DailyDialog but
seemingly was not trained on a task-oriented cor-
pus. Since we find that the next utterance selection640

based on the curved property of the context in a
task-oriented setting like MDC is almost always
worse than just taking the last utterance, we have
not taken any further steps for experiments on our
baseline DialogRPT in this domain.645

10 Ethics

Like other language models, our model is prone
to bias from training data sets (Schramowski et al.,
2022)(Mehrabi et al., 2019). This is something
to keep in mind when fine-tuning the model for650

domain adaptation. Since the models are for guid-
ance only, we do not see any direct threats related
to language generation. Still, if an individual in-
tentionally wants to harm others and trains a lan-
guage model to generate harmful utterances, our655

model could be employed to support this process.
In contrast, however, we argue that these embed-
dings have great potential through their transitive
properties to foresee and deflect harmful utterances
from afar. Considering the risk that language mod-660

els pose to humans (Weidinger et al., 2021), these
embeddings could be utilized as a filter on top of
generative language models, e.g. removing utter-
ances that would increase the probability of leading
to an utterance of a large set of harmful utterances. 665

Our proposed model has a relatively small model
size and shows higher efficiency during training
& inference compared to DialogRPT, therefore we
see great potential for reducing the carbon footprint
in utterance retrieval tasks, in accordance with re- 670

cent efforts in NLP (Strubell et al., 2019) (Patterson
et al., 2021).
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distance for positive examples as well as a rela-820

tively low similarity for false direction utterance
pairs. Furthermore, we have illustrated the curved

Figure 6: Average Imaginary Embedding Similarity
to correct and false direction utterances based on turn
distance on DailyDialog Test Corpus

property of these embeddings as directed graphs of
dialogues in figure 7 where we notice a tendency
of utterances at the beginning of the dialogue in the825

close right and the last utterance (encoded with the
after token) deeper on the left.

Figure 7: t-SNE visualization of first 4 utterances of
the first 100 dialogues of the DailyDialog Test Corpus
in curved Embedding Space. From Dark green to light
green (u1 → u2 → u3) nodes as well as edges en-
coded with the [BEFORE] token to u4 encoded with
[AFTER] token as light red.

B Next Utterance Selection Extended
Analysis

For the next utterance selection we provide an ex-830

tended description for our speed comparison as
well as the MDC results.

B.1 Speed Comparison

In this section, we will investigate the speed of
our introduced curving technique to rank 1000 in- 835

coming utterances for 1000 different contexts by
comparing it to DialogRPT. Thanks to the curved
property we have to only encode the new incom-
ing utterances with the after token which takes on
GPU (A100-40GB) around one second (1.16s). 840

Following, we load the tensors on GPU, in par-
ticular, the history tensor H (encoded with the af-
ter tokens) with (batch, h_len, emb) (here with a
batch size of 1000 and a history length of 3) as
well as the following utterance candidates U (with 845

(batch, n_cand, emb) which takes 0.091 seconds.
Since we got normalized embeddings from the
sentence transformer we can compute the cosine
similarity-based score for the 1000000 dialogues in
one simple batch matrix multiplication U⊙H.T by 850

transposing the history with dimensions (1, 2). Fol-
lowing we sum across the second dimension (his-
tory dim) like equation 4 illustrates. Compared to
DialogRPT on the same A100-40GB GPU, these
two tensor computations (batch matrix multiplica- 855

tion & sum through the history dimension) take
only 0.000531 seconds for a history length of 3
while DialogRPT needs for the same task, with a
batch size of 32, 4023.78 seconds (67 minutes). As
4023.78
0.000531 = 7.58 · 106 we conclude a 7 million time 860

faster GPU computation time. Thereafter, we sort
the similarity scores and search the index of the
true utterance and return the corresponding rank
which takes around 0.212 seconds.

B.2 MDC Results 865

We demonstrate the results of the MDC next ut-
terance selection in figure 8 where we observe as
described in the main paper the symmetry between
inform and request intents either profiting from
only the last utterance or the entire history. 870

C Extended Short-Term Planning
Evaluation

As part of the extended Short Term Planning Evalu-
ation, we investigate the extended results based on
the history length, goal distances, and the first goal 875

distance (goal in distance) in table 3 and demon-
strate examples.

C.1 Detailed Short-Term Planning Evaluation

Table 3 unveils that additional speaker tokens show
improvement in the MDC Test corpus across all 880
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Figure 8: Normalized average rank of next utterance se-
lection based on dialog history on MDC. Demonstrated
are different Curving variants (only the last utterance
or the entire history), classic as well as Speaker Token-
based embeddings, and the DialogRPT pre-trained on
the human vs random utterance task baseline.

tested categories. While classic embeddings show
on MDC a similar performance across all even
distances, we can observe two spikes at position
(3, 1) and (5, 1) with (hl, gd) on odd distances with
51.17% / 45.80% in the top 5 respectively. At these885

positions, we monitor a 33% increase in the stan-
dard deviation on average of the distribution of
guidance scores i.e. that the model is much more
decisive in its ranking. We analyzed the intent at
these positions and find a two times increase in re-890

quests and a 38% decrease in inform intents to the
data set’s average. While the speaker token-based
embeddings show that we can overcome this gap
for odd distances, we still find that the two lowest
performers on (4, 1) & (4, 3) with "only" 53.03%895

& 51.45% in the top 5 have all a minimum of 80%
of informing intents. Since the two corpora use
separate latent spaces, we do not compare them on
a simple standard deviation. Instead, we take the
sum of average standard deviations as a baseline900

and divide it by the sum of the standard deviations
(for each data set) of the standard deviations (for
each transformer utterance distribution) to measure
the variation in performance over different testing
parameters history length, goal distances, (first)905

goal in distance. With a 35% higher score, Daily-
Dialog shows less variance through different test
parameters. Nonetheless, we find that DailyDialog
has a 12% higher semantic variance across all ut-
terances in the transformer-generated distributions910

than MDC by measuring their average semantic
similarity with a simple semantic sentence trans-
former.

C.2 Examples of Short-Term Planning

While we provide construction of our evaluation915

datasets, we still want to highlight some of the

strengths and weaknesses of our introduced embed-
dings. In the example on the left of figure 9, we
can see that without knowing what the person is
going to say, the model can sometimes move to- 920

ward the goal too greedily. In the example on the
right, we see that the model can also understand
more complex relations, where the only way to get
to a conversation state where someone would ut-
ter "look behind you. They are coming this way" 925

would be in a manner of playing catch me as the
model ranks it on the first position. A lot of the
weaker ranking results are due to the fixed split
of data as demonstrated in figure 10. We observe
in the first example (left) that the model tries to 930

unveil the utterance "You’re right" by trying to get
the other person into an argument (rank 1) where
it hopes the person would then agree to their own
opinion 3 turns later or by trying to unveil the utter-
ance right away (rank 2). In the example in the mid- 935

dle, we see the drawback of purely relying on the
transformer’s context-aware utterance generation
as the selected utterance of "pint of wine" might be
closer to fruits than beer but at the same time is not
a valid answer. This can be also observed in the 940

last example (right).
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Human Utterance Ranking vs 100 utterances sampled
from DialoGPT Large / GODEL Large (p=0.8, t=0.8)

Imaginary Embedding
without Speaker Token

Imaginary Embedding
with Speaker Token

Embedding Type History
Length

Goal
Distance n

Top 5
(in %)

Top 10
(in %)

Top 25
(in %)

Top 50
(in %)

Average
Rank

Top 5
(in %)

Top 10
(in %)

Top 25
(in %)

Top 50
(in %)

Average
Rank

DailyDialog Test Corpus

Guidance with even
goal distance gd

(saying goal by yourself)

2 2 741 23.08 31.44 50.74 70.31 33.65 24.70 33.87 55.06 75.57 30.28
2 4 534 23.03 31.65 48.13 66.85 35.61 22.10 32.02 51.31 71.72 32.57
5 2 479 25.05 31.52 44.47 63.47 38.03 20.88 29.23 49.69 69.52 34.87
5 4 323 15.79 22.60 39.01 56.66 43.02 17.65 24.15 42.11 66.25 38.27
10 2 102 48.04 51.96 60.78 77.45 27.18 36.27 45.10 61.76 70.59 30.37

Guidance with odd
goal distance gd

(unveiling goal utterance
in dialogue partner)

2 1 918 42.37 50.54 66.88 84.64 21.74 70.59 78.54 87.15 94.55 9.15
2 3 651 23.66 33.33 51.00 71.89 32.05 52.53 60.52 74.04 84.79 19.19
5 1 534 35.02 43.26 58.61 76.40 27.90 67.79 77.53 86.70 93.26 10.46
5 3 385 18.44 23.64 40.00 61.04 40.92 48.83 61.56 76.62 85.97 18.83
10 1 183 36.61 44.81 54.10 69.95 30.49 77.60 82.51 91.26 96.72 6.86

MDC Test Corpus

Guidance with even
goal distance gd

(saying goal by yourself)

2 2 600 20.67 28.83 43.00 64.33 37.68 45.83 55.00 69.33 84.33 20.41
2 4 417 21.58 31.18 47.00 67.63 36.02 47.48 55.16 70.26 83.45 20.85
3 2 545 22.02 32.66 50.64 69.72 33.33 34.68 44.40 66.24 78.35 25.08
3 4 344 26.16 38.08 53.49 77.62 28.97 41.28 53.20 67.44 85.76 20.93
4 2 417 20.62 29.50 46.28 64.99 36.58 37.89 47.96 67.63 85.13 21.06
4 4 234 16.67 23.08 47.01 70.51 37.24 40.60 53.42 73.93 89.74 18.04
5 2 344 18.02 24.42 40.70 60.47 40.94 29.36 41.86 61.05 77.03 26.79
5 4 161 20.50 34.78 56.52 78.26 28.09 44.72 58.39 75.78 88.82 17.32

Guidance with odd
goal distance gd

(unveiling goal utterance
in dialogue partner)

2 1 893 20.83 27.32 40.54 61.59 38.89 63.83 69.99 81.41 90.26 13.46
2 3 545 31.19 38.53 55.41 73.76 29.92 69.91 77.06 83.30 90.28 11.78
3 1 600 51.17 58.00 70.33 82.00 20.75 69.17 74.17 83.33 91.50 12.03
3 3 417 15.83 25.18 43.88 68.35 37.87 67.39 73.62 83.93 93.29 11.25
4 1 545 18.17 26.06 43.30 67.16 36.16 53.03 63.49 76.70 84.04 18.23
4 3 344 17.44 25.58 42.44 61.34 39.51 51.45 62.50 76.16 83.14 18.42
5 1 417 45.80 52.28 63.07 74.34 26.56 73.38 77.22 85.85 91.85 10.85
5 3 234 16.24 19.23 32.91 58.55 46.47 71.37 77.78 88.46 92.74 9.92

Table 3: Detailed Short-Term Planning Evaluation with n (number of evaluation samples)
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Figure 9: Good Ranking Examples on DailyDialog Test Corpus with a history length of 2 and a goal distance of 3.
The goal in red, the context in grey, the true utterance in green, and the transformer-generated utterance in blue

Figure 10: Bad Ranking Examples on DailyDialog Test Corpus with a history length of 2 and the goal distance of 3.
The goal in red, the context in grey, the true utterance in green, and the transformer-generated utterance in blue

D Long-Term Planning Results

We present our detailed Long Term planning results
in table 4 as well as examples in the following
subsection.945

D.1 Long-Term Planning Examples

Alike for short-term planning, we will demonstrate
examples to present the weaknesses and as well as
strengths of the embeddings. In figure 11 we show
two very easy examples, where we can follow the950

conversation well without knowing the replies of
the other dialogue partner. This changes especially
in figure 12 where in the left example it is also for
us very difficult to order the corresponding utter-
ances. While one could argue that emergency calls955

tend to start with the location of the incident, the ut-
terance "I haven’t checked yet" makes the ordering
of the utterances without any further context very
difficult. This can also be observed in the right

example of figure 12, however, one could argue 960

that based on the context to which both IEC+CU
and GC have access, the predicted order (of these
two) makes more sense than the original reply or-
der. Nonetheless, both examples show that some
of these orders are debatable. 965
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LTP Planning Evaluation for 3 Goals

Imaginary Embedding
without Speaker Token

Imaginary Embedding
with Speaker Token

partially ordered Reverse
order partially ordered Reverse

order

Model History
Length

Goal
Distances

First Goal
In Distance n

Top 1
(in %)

Top 2
(in %)

Top 3
(in %)

Top 4
(in %)

Top 1
(in %)

Average
Rank

Top 1
(in %)

Top 2
(in %)

Top 3
(in %)

Top 4
(in %)

Top 1
(in %)

Average
Rank

DailyDialog Test Corpus

IEC

2 2 0 385 57.66 72.47 87.79 93.25 81.56 1.67 58.70 76.10 91.43 97.14 84.16 1.66
2 2 1 323 46.13 68.73 84.83 94.74 79.26 1.89 51.39 70.90 86.07 94.43 81.42 1.79
2 2 2 230 46.52 67.83 83.04 90.87 74.78 1.83 46.96 67.39 83.91 92.17 78.70 1.85
2 2 3 183 44.26 66.12 77.60 91.26 73.22 1.94 50.82 68.85 83.61 93.99 77.60 1.84
4 2 0 230 46.52 67.83 83.04 90.87 74.78 1.83 46.96 67.39 83.91 92.17 78.70 1.85
4 2 1 183 44.26 66.12 77.60 91.26 73.22 1.94 50.82 68.85 83.61 93.99 77.60 1.84
4 2 2 102 43.14 68.63 82.35 92.16 73.53 1.89 39.22 60.78 79.41 93.14 64.71 2.07
2 4 0 51 37.25 56.86 78.43 86.27 76.47 2.00 47.06 66.67 96.08 98.04 84.31 1.86

IEC & CU

2 2 0 385 57.92 76.36 90.13 95.84 84.42 1.66 59.74 77.92 92.21 98.18 85.45 1.66
2 2 1 323 46.75 67.80 85.14 95.05 77.71 1.90 47.37 70.59 85.45 94.12 78.95 1.84
2 2 2 230 47.39 69.57 80.00 90.00 73.48 1.81 46.09 70.43 83.04 92.61 75.22 1.85
2 2 3 183 44.26 63.39 77.60 92.35 66.12 1.99 45.90 62.84 79.78 93.44 71.04 1.98
4 2 0 230 50.87 69.57 82.61 94.35 73.48 1.85 50.87 75.65 86.52 95.22 74.78 1.76
4 2 1 183 47.54 68.31 83.06 94.54 71.04 1.90 53.55 72.68 81.42 92.90 69.95 1.76
4 2 2 102 42.16 66.67 83.33 94.12 71.57 1.96 40.20 59.80 78.43 93.14 66.67 2.08
2 4 0 51 41.18 74.51 84.31 92.16 78.43 1.83 56.86 86.27 90.20 96.08 84.31 1.57

GC

2 2 0 385 70.13 88.05 - - - 1.42 70.13 88.83 - - - 1.41
2 2 1 323 56.97 83.28 - - - 1.60 51.39 81.11 - - - 1.67
2 2 2 230 46.52 76.09 - - - 1.77 50.43 81.74 - - - 1.68
2 2 3 183 48.09 74.32 - - - 1.78 44.81 73.77 - - - 1.81
4 2 0 230 62.61 86.52 - - - 1.51 63.48 85.65 - - - 1.51
4 2 1 183 50.82 82.51 - - - 1.67 56.28 84.15 - - - 1.60
4 2 2 102 45.10 74.51 - - - 1.80 39.22 75.49 - - - 1.85
2 4 1 51 78.43 90.20 - - - 1.31 82.35 90.20 - - - 1.27

MDC Test Corpus

IEC
2 2 0 234 52.99 79.91 90.60 97.01 85.47 1.70 50.85 74.79 89.74 96.15 83.33 1.76
2 2 1 161 66.46 78.88 91.93 95.65 86.34 1.52 67.08 82.61 91.93 95.03 88.20 1.46
2 2 2 106 48.11 72.64 88.68 95.28 81.13 1.80 47.17 71.70 85.85 94.34 79.25 1.83
3 2 0 161 66.46 78.88 91.93 95.65 86.34 1.52 67.08 82.61 91.93 95.03 88.20 1.46
3 2 1 106 48.11 72.64 88.68 95.28 81.13 1.80 47.17 71.70 85.85 94.34 79.25 1.83
3 2 2 75 56.00 81.33 92.00 96.00 82.67 1.61 56.00 81.33 92.00 94.67 88.00 1.58

IEC & CU
2 2 0 234 65.81 86.32 93.59 97.86 93.16 1.49 60.68 82.48 94.87 98.72 92.31 1.59
2 2 1 161 67.08 77.02 90.06 96.27 84.47 1.57 65.22 80.75 90.06 95.03 85.71 1.52
2 2 2 106 51.89 69.81 86.79 96.23 81.13 1.83 50.00 72.64 88.68 93.40 78.30 1.74
3 2 0 161 68.32 80.12 93.17 96.27 85.71 1.49 52.80 75.78 82.61 95.65 80.75 1.79
3 2 1 106 50.94 68.87 85.85 95.28 80.19 1.84 42.45 61.32 77.36 91.51 81.13 1.02
3 2 2 75 46.67 66.67 81.33 94.67 78.67 1.94 28.00 50.67 73.33 85.33 58.67 2.22

GC
2 2 0 234 81.20 95.73 - - - 1.23 76.92 95.30 - - - 1.28
2 2 1 161 67.70 88.20 - - - 1.44 45.96 79.50 - - - 1.75
2 2 2 106 50.00 84.91 - - - 1.65 45.28 66.98 - - - 1.88
3 2 0 161 72.67 90.06 - - - 1.37 39.13 69.57 - - - 1.91
3 2 1 106 46.23 83.96 - - - 1.70 48.11 67.92 - - - 1.84
3 2 2 75 45.33 72.00 - - - 1.83 24.00 41.33 - - - 2.35

Table 4: Detailed Long-Term Planning Evaluation with n = number of evaluation samples
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Figure 11: Bad Ranking Examples on DailyDialog Test Corpus with history length of 2, the goal distance of 2, and
goal in distance of 3

Figure 12: Bad Ranking Examples on DailyDialog Test Corpus with history length of 2, the goal distance of 2, and
goal in distance of 3
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