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Abstract

Matching model is essential for Image-Text Re-001
trieval framework. Existing research usually002
train the model with a triplet loss and explore003
various strategy to retrieve hard negative sen-004
tences in the dataset. We argue that current005
retrieval-based negative sample construction006
approach is limited in the scale of the dataset007
thus fail to identify negative sample of high008
difficulty for every image. We propose our009
TAiloring neGative Sentences with Discrimi-010
nation and Correction (TAGS-DC) to generate011
synthetic sentences automatically as negative012
samples. TAGS-DC is composed of masking013
and refilling to generate synthetic negative sen-014
tences with higher difficulty. To keep the dif-015
ficulty during training, we mutually improve016
the retrieval and generation through parameter017
sharing. To further utilize fine-grained seman-018
tic of mismatch in the negative sentence, we019
propose two auxiliary tasks, namely word dis-020
crimination and word correction to improve021
the training. In experiments, we verify the ef-022
fectiveness of our model on MS-COCO and023
Flickr30K compared with current state-of-the-024
art models and demonstrates its robustness and025
faithfulness in the further analysis.026

1 Introduction027

The task of image-text retrieval takes a query image028

(sentence) as input and finds out matched sentences029

(images) from a candidate pool. The key compo-030

nent of the retrieval framework is the similarity031

computation of an image-sentence pair and it aims032

to assign higher scores to positive pairs than nega-033

tive ones. Triplet loss is widely applied for training.034

Take image-to-text as example1, it constructs two035

image-sentence pairs using an image and two sen-036

tences (one is relevant and the other is not), and the037

optimization process increases the similarity of the038

1To keep the presentation simple and clear, we use image-
to-text as example to represent tasks in both ways throughout
the paper.
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(a) The diagram plots a triplet (image, positive sentence,
negative sentence) as a dot is defined by matching score of
the positive pair on the X-axis and that of the negative pair
on the Y-axis. The matching scores are also computed by
CLIP(ViT-B/32) (Radford et al., 2021).

Image Sentence Score
𝑃!: A man with a gray beard rides his bike on the 
beach of the ocean.
𝑁!: Man on bike, with bike clothing and helmet on, 
having trouble maneuvering through sand from beach.
𝐺!: A woman with a gray beard rides his bike on the 
beach of the ocean.

0.40

0.34

0.41

𝑃": A little girl is posing on some pumpkins within an 
area surrounded by flowers.
𝑁": A girl wearing a red and black striped shirt is 
sitting on a brick wall near a flower garden .
𝐺": A little girl is posing on some pumpkins within a
beach surrounded by flowers.

0.47

0.36

0.45

(b) Two images with the positive sentence (P), the most
difficult negative one (N) retrieved from dataset by CLIP
and the generated negative one (G). The score is the cosine
similarity computed by CLIP and larger is better. The under-
lined red words are non-correspondence ones to the image.

Figure 1: Diagram of matching scores (a) and two ex-
amples (b) in Flickr30K (Plummer et al., 2015).

positive pair while decreasing that of the negative 039

one. Previous research (Xuan et al., 2020) reveals 040

that model trained with harder negative samples, 041

i.e., sentences that are more difficult to be distin- 042

guished, can generally achieve better performance. 043

In this line of work, researchers explore various 044

strategies to search mismatched sentences for a 045

query image, from randomly choosing mismatched 046

sentences to using the most similar one. The search 047
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Figure 2: Framework of TAiloring neGative Sentences with word Discrimination and Correction (TAGS-DC).

scope moves from a single training batch (Karpa-048

thy and Fei-Fei, 2015; Faghri et al., 2018; Kiros049

et al., 2014; Socher et al., 2014; Lee et al., 2018;050

Li et al., 2019) to the whole dataset (Chen et al.,051

2020a; Zhang et al., 2020). Although promising052

results have been reported by searching for harder053

negative samples in a larger scope, the effectiveness054

is limited by the scale of the dataset.055

To compare the effectiveness of these strate-056

gies, we randomly sample 3, 000 images in057

Flickr30K (Plummer et al., 2015) and plot training058

triples constructed in Figure 1. Each dot stands059

for a triple (image, positive sentence, negative sen-060

tence), and X-axis is the matching score of the061

positive image-sentence pair while Y-axis is that of062

the negative one. In general, triples located on the063

left of the dotted line are more difficult to be dis-064

tinguished because matching score of the negative065

pair is higher than the positive one or comparable.066

As we can see, triples obtained by searching the067

most difficult mismatched sample in the batch are068

largely located on the right of the dotted line, and069

the matching scores of negative pairs are much070

smaller with a gap larger than 0.05 on average071

(in the right of the solid line). When enlarging072

the searching scope to the whole dataset, triples073

move up in positions, and around 40% of negative074

pairs obtain higher matching scores than positive075

ones. However, there are still 18% of images that076

can only recruit negative samples with a matching077

score 0.05 lower than its positive counterpart. This078

confirms the limitation of retrieve-based negative079

sample construction strategy.080

To have a better understanding, we present two081

triples in Figure 1 i.e., (P1, N1) and (P2, N2) (de-082

noted as black cross). It shows that negative sen-083

tences N1 and N2 describe scenes with significant084

differences compared with the query images, there- 085

fore, they are easy to be distinguished. Given that a 086

high percentage of images obtain these low-quality 087

negative sentences in the dataset, we believe it is 088

necessary to collect negative samples beyond re- 089

trieval. Instead of searching for original sentences 090

in the dataset, we explore constructing artificial 091

negative samples by editing positive sentences. We 092

demonstrate two generated sentences in Figure 1, 093

G1 replaces “man" with “woman" on P1 and G2 094

replaces “area" with “beach" on P2. The generated 095

sentences obtain comparable or even higher match- 096

ing scores than positive ones. We further generate 097

artificial sentences for all images to form a new set 098

of triples. These triples are plotted in Figure 1 as 099

pink dots. We can see all of them located on the 100

left side of the dotted line, which means they are 101

more difficult to be distinguished. 102

In this paper, we propose TAiloring neGative 103

Sentences (TAGS) by rewriting keywords in posi- 104

tive sentences of a query image to construct nega- 105

tive samples automatically. In specific, we employ 106

the strategy of masking and refilling. In masking, 107

we construct scene graph for the positive sentence 108

and mask elements in the graph (objects, attributes, 109

and relations). Refilling replaces the masked origi- 110

nal words with mismatched ones to construct the 111

negative sample. In the training process, we further 112

propose two word-level tasks, word discrimination 113

and word correction, to incorporate fine-grained su- 114

pervision into consideration. Word discrimination 115

requires the model to distinguish which words lead 116

to the mismatch, and word correction demands the 117

regeneration of the original words. Both tasks eval- 118

uate the capability of the model to identify minor 119

differences between synthetic sentences and posi- 120

tive ones. During inference, the output of two tasks 121
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can provide fine-grained information through high-122

lighting and revising mismatched words, and these123

can be regarded as the explanation for the decision124

made by the model to improve the interpretabil-125

ity. We evaluate our model on MS-COCO (Lin126

et al., 2014) and Flickr30K (Plummer et al., 2015).127

Experiment results show the effectiveness of our128

model.129

Our contributions are three-fold: (1) We pro-130

pose a generation-based method to construct nega-131

tive samples to improve the training efficiency of132

image-text retrieval model. (2) To fully exploit133

the synthetic negative sentences, we propose two134

training tasks, word discrimination and word cor-135

rection, to incorporate the fine-grained supervision136

to enhance the multi-modal local correspondence137

modeling. (3) Our model generates state-of-the-138

art performance on two public datasets MS-COCO139

and Flickr30K.140

2 Framework141

The overall framework of TAiloring neGative Sen-142

tences with word Discrimination and Correction143

(TAGS-DC) is shown in Figure 2. For each positive144

image-text pair (Ii, Ti), we first generate negative145

sentences T−
i through scene-graph based masking146

and refilling Ti on the basis of masked language147

model (MLM) in §2.1. Second, we utilizes both148

retrieved and synthetic negative sentences for the149

training of image-text matching (IRTM and ISTM)150

in §2.2, where synthetic negative sentences are ex-151

ploited in sentence-level. Third, we propose to152

train the synthetic sentence generator in a dynamic153

way to keep pace with the upgrading of matching154

model. Fourth, in §2.4, we apply word-level tasks155

of word discrimination (WoD) and word correction156

(WoC) on T−
i to discover their differences with Ti157

for further training. MLM, IRTM, ISTM, WoC158

and WoD share the same backbone Mθ and have159

their own heads, namely, HMLM, HITM, HWoC and160

HWoD. The detailed training step is illustrated in161

Algorithm 1 in appendix.162

2.1 Scene-graph based Sentence Generation163

and Filtering164

In general, negative sentences with more over-165

lapped words with positive sentences tend to obtain166

higher matching scores with the query image, thus167

are more difficult to be distinguished. Therefore,168

we propose to edit relevant sentences to construct169

negative samples for a query image. After the sen-170

tence generation, we control the quality by filtering 171

the false negative sentences. To ensure the editing 172

operates on key semantic units of the sentence, we 173

use a strategy based on scene-graph. 174

2.1.1 Scene-graph based Sentence Editing 175

The module of sentence editing takes a relevant 176

sentence of the query image as input and outputs 177

a synthetic sentence. It first identifies some key 178

semantic units in the sentence and replaces them 179

with other words. We employ a masked language 180

mode for this process following two steps namely, 181

masking and refilling. 182

To identify the key semantic of a sentence, we 183

construct the scene graph for a relevant sentence 184

through scene graph parser of SPICE (Anderson 185

et al., 2016) following SGAE2 (Yang et al., 2019). 186

We then collect objects, relations, and attributes as 187

candidates for masking. To control the semantic 188

offset of the synthetic sentence T
(k)
i , we randomly 189

mask 15% tokens of sentence. 190

In the step of refilling, we use the output head 191

HMLM, which is a two-layer feed-forward network 192

(FFN), on top of the backbone Mθ for masked lan- 193

guage modeling. Thus, image Ii also gets involved 194

in MLM to guide the refilling later. The detailed 195

computation of LMLM is shown in Eq. (1), where ◦ 196

is the function composition and NLL is the loss of 197

negative log-likelihood. 198

MLM : HMLM ◦ Mθ

(
Ii, T

(k)
i

)
→ Ti/T

(k)
i

LMLM = NLL
(
MLM

(
Ii, T

(k)
i

)
, Ti/T

(k)
i

) (1) 199

Then during refilling process, we put T (k)
i into 200

MLM to produce the logit scores, then sample the 201

synthetic sentence T
(k,l)
i following the distribution 202

which originates from the logit with temperature τ 203

as Eq. (2). 204

T
(k,l)
i ∼ Softmax

(
MLM

(
Ii, T

(k)
i

)
/τ

)
(2) 205

We conduct the masking and refilling steps for K 206

and L times to generate candidate synthetic sen- 207

tences. 208

2.1.2 False Negative Sample Filtering 209

It hurts the training of using sentences that are 210

relevant to the query image as negative sam- 211

ples (Chuang et al., 2020; Huynh et al., 2020). 212

Therefore we propose a filtering process to remove 213

2https://github.com/yangxuntu/SGAE
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false negative ones of synthetic sentences. In vi-214

sion and language datasets, each image is annotated215

with multiple descriptive sentences. For example,216

there are five in MSCOCO and Flickr30K. For a217

synthetic sentence, if its replaced tokens are com-218

pletely included in these annotated sentences, we219

will treat it as relevant. Based on this, we filter220

synthetic sentences which are relevant.221

2.2 Image Text Matching222

Given an image Ii and a sentence Tj , the retrieval223

model assigns a matching score s ∈ [0, 1] of224

(Ii, Tj) with an output head HITM, which is a one-225

layer FFN, as Eq. (3).226

ITM : HITM ◦ Mθ(Ii, Tj) → s (3)227

Triplet loss (TripL) is widely applied in image228

text matching. With a hyper-parameter α, it takes a229

query image (text) U as an anchor for the matched230

(positive) image-text pair (U, V ) against the mis-231

matched (negative) pair (U,W ) as the following232

equation.233

TripLα(U, V,W )

=max
(
α− ITM(U, V ) + ITM(U,W ), 0

) (4)234

Matching on Retrieved Cases During training,235

for each positive image-text pair (Ii, Ti), we re-236

trieve a negative image I−i and a sentence T−
i , then237

employ the loss of ITM in Eq. (5) for training,238

LIRTM = TripLα

(
Ii, Ti, T

−
i

)
+ TripLα

(
Ti, Ii, I

−
i

)
(5)239

Matching on Synthetic Sentences First, we pick240

up these relatively better generated negative sen-241

tences. In practice, we compute the matching score242

between each synthetic negative sentence and Ii as243

Eq. (6), and keep a synthetic negative sentence pool244

T−
i to make each of them as difficult as possible.245

T−
i = argmax-m

T−
t ∈{T (k,l)

i |T (k,l)
i ̸=Ti}

ITM(Ii, T
−
t ) (6)246

where argmax-m is to pick out m sentences that247

earn the top-m matching scores.248

Second, with synthetic sentences T−
i in Eq. (6),249

we utilize them and the positive one Ti to compute250

the triplet loss, and get LISTM in Eq. (7).251

LISTM =
1

|T−
i |

∑
T−
t ∈T−

i

TripLα

(
Ii, Ti, T

−
t

)
(7)252

2.3 Dynamic Training Strategy of Negative 253

Sample Generation for Image-Text 254

Matching 255

The naive choice of MLM is to keep a pre-trained 256

static one: pre-training a MLM in advance and fix- 257

ing its parameters during the training of ITM. Re- 258

call that LISTM encourages the ITM model to learn 259

the pattern of synthetic sentences and keep them 260

away from the image, we consider that negative 261

sentences generated by the static MLM would be 262

no longer difficult for the ITM model as the train- 263

ing goes on. We propose to use the dynamic MLM 264

that shares the Mθ with ITM for mutual improve- 265

ment. Through the sharing, MLM continuously 266

learns what is more relevant to the positive sen- 267

tences and produces challenging negative ones for 268

the improvement of ITM. The stronger ITM helps 269

MLM to better identify the semantic alignment of 270

image and keywords. MLM achieves the improve- 271

ment synchronously with ITM through interaction. 272

2.4 Auxiliary Tasks to Incorporate 273

Fine-grained Supervision 274

LISTM only provides sentence-level supervision and 275

we argue it does not fully exploit the synthetic neg- 276

ative sentence. We introduce two auxiliary tasks 277

to utilize the word-level difference and further en- 278

hance the model capability in multi-modal local 279

correspondence modeling. 280

Word Discrimination The task is to determine 281

whether each word of the synthetic sentence T−
t ∈ 282

T−
i is matched with Ii, and we regard the replaced 283

words of T−
t as mismatched ones and others as 284

matched ones. The target label Gt of T−
t ∈ T−

i is 285

determined following Gt,j = 1 if si,j = st,j else 286

0, where si,j and st,j are the j-th token of Ti and 287

T−
t . We set up a new output head HWoD, and the 288

objective of word discrimination is in Eq. (8). 289

WoD : HWoD ◦ Mθ

(
Ii, T

−
t

)
→ Gt

LWoD = NLL
(
WoD

(
Ii, T

−
t

)
,Gt

) (8) 290

Word Correction This task is to correct these 291

mismatched words in T−
t as Eq. (9). The task 292

not only requires the model to comprehensively 293

understand the gap between the synthetic nega- 294

tive sentences and the original positive ones, but 295

also word-dependency knowledge and local cross- 296

modal alignment to fill the gap. HWoC is the out- 297

put head for word correction, and the objective is 298
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MS-COCO Flickr30K

Model
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 RSum R@1 R@5 R@10 R@1 R@5 R@10 RSum

SCAN 50.4 82.2 90.0 38.6 69.3 80.4 410.9 67.4 90.3 95.8 48.6 77.7 85.2 465.0
MMCA 54.0 82.5 90.7 38.7 69.7 80.8 416.4 74.2 92.8 96.4 54.8 81.4 87.8 487.4
AOQ 55.1 83.3 90.8 41.1 71.5 82.0 423.8 72.8 91.8 95.8 55.3 82.2 88.4 486.3

UNITER+DG 51.4 78.7 87.0 39.1 68.0 78.3 402.5 78.2 93.0 95.9 66.4 88.2 92.2 513.9
Unicoder-VL 62.3 87.1 92.8 46.7 76.0 85.3 450.2 86.2 96.3 99.0 71.5 90.9 94.9 538.8
LightningDOT(B) 64.6 87.6 93.5 50.3 78.7 87.5 462.2 86.5 97.5 98.9 72.6 93.1 96.1 544.7
ERNIE-ViL(B) - - - - - - - 86.7 97.8 99.1 75.1 93.4 96.3 548.4
UNITER(B) 64.4 87.4 93.1 50.3 78.5 87.2 460.9 85.9 97.1 98.8 72.5 92.3 96.1 542.7

TAGS-DC(B) 66.6 88.6 94.0 51.6 79.1 87.5 467.4 87.9 98.1 99.3 74.5 93.3 96.3 549.4

CLIP 58.4 81.5 88.1 37.8 62.4 72.2 400.4 88.0 98.7 99.4 68.7 90.6 95.2 540.6
LightningDOT(L) 65.7 89.0 93.7 53.0 80.1 88.0 469.5 87.2 98.3 99.0 75.6 94.0 96.5 550.6
ERNIE-ViL(L) - - - - - - - 89.2 98.5 99.2 76.7 94.1 96.7 554.4
UNITER(L) 65.7 88.6 93.8 52.9 79.9 88.0 468.9 87.3 98.0 99.2 75.6 94.1 96.8 551.0

TAGS-DC(L) 67.8 89.6 94.2 53.3 80.0 88.0 472.9 90.6 98.8 99.1 77.3 94.3 97.3 557.4

Table 1: Overall performance of the image-text retrieval. B and L are the base and large settings.

MS-COCO Flickr30K

Model
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 RSum R@1 R@5 R@10 R@1 R@5 R@10 RSum

TAGS w/ WM 64.9 87.8 93.3 51.1 78.9 87.4 463.4 85.9 97.6 99.1 74.2 93.0 96.1 545.9
TAGS w/ SG 64.1 87.6 93.4 50.9 78.8 87.3 462.1 85.5 97.4 98.9 73.3 92.6 96.0 543.7

TAGS 65.4 88.4 93.6 51.3 79.0 87.5 465.2 87.2 97.8 99.2 74.4 93.1 96.1 547.8

Table 2: Effectiveness of Different Modules. TAGS w/ WM means replace the scene-graph based masking with word
masking in TAGS. TAGS w/ SG means replace dynamic generator with static generator in TAGS.

shown in Eq. (9).299

WoC : HWoC ◦ Mθ

(
Ii, T

−
t

)
→ Ti

LWoC = NLL
(
WoC

(
Ii, T

−
t

)
, Ti

) (9)300

2.5 Overall Training301

Details of our training step are shown in Algo-302

rithm 1 in appendix. The overall training loss of303

our model has five components as Eq. (10) with hy-304

perparameters λIRTM, λMLM, λISTM, λWoD and λWoC.305

306

L = λIRTMLIRTM + λMLMLMLM

+λISTMLISTM + λWoDLWoD + λWoCLWoC
(10)307

During inference, we employ the ITM to determine308

the matching score of the query image (text) and309

the candidate text (image) as Eq. (3).310

3 Experiment311

Dataset We evaluate our model on MS-312

COCO (Lin et al., 2014) and Flickr30K (Plummer313

et al., 2015). In MS-COCO, each image is accom-314

panied with 5 human annotated captions. We split315

the dataset following (Karpathy and Fei-Fei, 2015) 316

with 113,287 images in the training set and 5,000 317

images in the validation and test sets, respectively. 318

Flickr30K (Plummer et al., 2015) consists of 31000 319

images collected from the Flickr website, and ev- 320

ery image contains 5 text descriptions. We take 321

the same splits as in (Karpathy and Fei-Fei, 2015), 322

with 1000 images for validation and 1000 images 323

for testing, and the rest for training. 324

Models for Comparison We compare our model 325

with some competitive approaches, including 326

MMCA (Wei et al., 2020), and AOQ (Chen 327

et al., 2020a). We also compare with meth- 328

ods based on vision language pre-trained mod- 329

els: UNITER+DG (Zhang et al., 2020), Unicoder- 330

VL (Li et al., 2020), LightningDOT (Sun et al., 331

2021), UNITER (Chen et al., 2020b), CLIP (Rad- 332

ford et al., 2021) and ERNIE-ViL (Yu et al., 2020). 333

Implementation We employ the pre-trained 334

UNITER (Chen et al., 2020b) with base (B) and 335

large (L) settings as our backbone. 336
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Evaluation Metrics We report recall at K (R@K)337

and Rsum. R@K is the fraction of queries for338

which the correct item is retrieved among the clos-339

est K points to the query. RSum is the sum of340

R@1+R@5+R@10 in both image-to-text and text-341

to-image.342

3.1 Overall Performance343

The overall result is shown in Table 1. TAGS is344

the model trained with generated negative sam-345

ples, using the dynamic training strategy. TAGS-346

DC is our model built on top of TAGS, further347

trained using two auxiliary tasks. In the base set-348

ting, our model achieves the best performance in349

terms of all metrics except R@1 and R@5 of in350

text-to-image on Flickr30K. In the large setting,351

our model also outperforms other models across352

all metrics except R@5 MS-COCO text-to-image353

and Flickr30K image-to-image R@10. Compared354

with UNITER(L), our model achieves an improve-355

ment of 4.0 and 6.4 RSum points in MS-COCO356

and Flickr30K.357

3.2 Ablation Study358

We further demonstrate the effectiveness of differ-359

ent modules, namely, scene-graph based masking360

(denoted as PM), dynamic sentence generation (de-361

noted as DG), and fine-grained training tasks (de-362

noted as WoD and WoC) in Flickr30K. Original363

TAGS is trained with PM and DG. TAGS-DC is364

further trained with WoD and WoC.365

Scene-graph VS Word based Masking We re-366

place the scene-graph based masking with word-367

based masking (denoted as WM) to form TAGS368

w/ WM. Detailed results are shown in Table 2.369

WM follows the original sampling method of370

UNITER (Chen et al., 2020b) that randomly sam-371

ple 15% tokens to mask, and PM is introduced in372

§2.1. TAGS outperforms TAGS w/ WM in terms373

of all metrics, and this verifies the effectiveness of374

PM.375

Dynamic VS Static Generator We replace DG376

with a static sentence generator (denoted as SG) to377

form TAGS w/ SG. The difference between TAGS378

and TAGS w/ SG lies in that the former shares379

the parameters of ITM and MLM while the latter380

does not. Both of them are initialized with the381

pre-trained UNITER-base and share the same hy-382

perparameters. In detail, we set λMLM = 0.1 and383

λISTM = 0.001. The static generator is fixed as384

a fine-tuned UNITER+MLM model. The perfor- 385

mance of TAGS w/ SG is not so good as TAGS. 386

This demonstrates the effectiveness of DG. 387

WoD and WoC In Table 2, TAGS-DC outper- 388

forms TAGS in both MS-COCO and Flickr30K. 389

This reveals that word discrimination and correc- 390

tion contribute to the performance of ITM. 391

4 Further Analysis 392

4.1 Difficulty Distribution of Samples from 393

Dynamic and Static Generator 394

To see the difficulty of negative samples con- 395

structed by various generation strategies, we plot 396

the value distribution of samples. To evaluate the 397

difficulty, we compute the similarity gap between 398

the positive pair ITM(Ii, Ti) and the negative one 399

ITM(Ii, T
−
t ). We plot the value of negative pair 400

minus positive one with respect to training steps 401

(X-axis). In general, higher value means higher dif- 402

ficulty. The result is shown in Figure 3 where the 403

darker color means more samples. The overall val- 404

ues of TAGS w/ SG (Figure 3 (a)) are higher than 405

TAGS w/ DG (Figure 3 (b)). This implies that the 406

static generator fails to provide negative sentences 407

close to the image for ITM during training while 408

our generator with dynamic generating strategy is 409

effective. 410

-1.0

-0.6

-0.2

0.2

0 1000 2000 3000 4000 5000

-1.0

-0.6

-0.2

0.2

0 1000 2000 3000 4000 5000

(a) Dynamic

(b) Static

Figure 3: Value {ITM(Ii, T
−
t )− ITM(Ii, Ti)} distribu-

tion of triples generated by dynamic and static genera-
tors respectively during the training. X-axis is training
steps.

4.2 Quality Evaluation of Synthetic Sentences 411

We evaluate the quality of generated synthetic sen- 412

tences in terms of automatic metrics and human 413

evaluation. 414
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Fluency We utilize the pre-trained language415

model GPT-2 (Radford et al., 2019) to compute416

the perplexity of synthetic negative sentences for417

the measurement of their fluency. We use positive418

sentences in the test set of Flickr30K as original419

ones and generate negative samples by TAGS and420

VSE-C. Furthermore, we look into sentences after421

correction. The overall results are shown in Table 3.422

Compared with sentences produced by VSE-C, our423

synthetic sentences have much smaller perplexity.424

After correction, the fluency of synthetic sentences425

can be improved.426

Human Evaluation We perform a human evalu-427

ation to see whether all negative sentences gener-428

ated are true negative. We randomly sample 200429

sentences generated by TAGS and ask two annota-430

tors to determine whether the synthetic sentences431

are mismatched to the corresponding images. The432

result shows that 96.5% of synthetic sentences gen-433

erated are true negative.434

Positive Synthetic Corrected VSE-C

Perplexity 51.13 87.63 70.87 292.76

Table 3: Perplexity of synthetic negative sentences.

4.3 Negative Sentences Discrimination435

In this section, we explore to see if the generator436

can discriminate positive sentences from synthetic437

ones. We compare UNITER and TAGS. For a pair438

of sentences (one is positive and the other is a syn-439

thetic negative one), the generator should assign440

a higher score to the positive one. We report the441

accuracy of discrimination. We utilize two negative442

sentence generators TAGS and VSE-C (Shi et al.,443

2018). Two versions of TAGS with different seeds444

are used for cross-validation. Results are shown in445

Table 4. We have several findings as follows. (1)446

TAGS2 is trained with a different seed with TAGS1,447

but the performance of TAGS1 almost makes no dif-448

ference in discriminating their generated sentences.449

(2) Although the synthetic sentences of VSE-C are450

constructed with human efforts, TAGS also outper-451

forms UNITER by about 9%. (3) Three generators452

produce negative sentences with different distri-453

butions, but TAGS performs better than UNITER454

consistently. These facts validate the robustness of455

TAGS.456

Generator Discriminator Accuracy

TAGS1
TAGS1 98.7%

UNITER 2.3%

TAGS2
TAGS1 99.7%

UNITER 2.8%

VSE-C
TAGS1 96.3%

UNITER 87.5%

Table 4: Accuracy of TAGS1 and UNITER in discrim-
inating the negative sentences constructed by TAGS1,
TAGS2 and VSE-C (Shi et al., 2018).

Image Type Sentence U T

Positive
A man wearing a helmet,
floating in the water 92.35 99.90

Synthetic
A man carrying white helmet ,

swimming in the water 93.17 98.92

Corrected
A man wearing a helmet,
swimming in the water - -

Positive A young man about to throw
a football 89.54 99.90

Synthetic
A man playing playing to

catch a ball 90.61 75.39

Corrected
A man player about to throw

a ball - -

Figure 4: Examples of TAGS-DC. The second column
is the sentence type including positive one, synthetic
one and corrected one. The third column is the corre-
sponding sentence of the second column. The fourth
and fifth columns are the UNITER(U) and TAGS-DC(T)
scores for the sentence in the third column, respectively.
The word color in synthetic sentences from green to yel-
low means the increase of the word mismatching scores.
Words with underline mean the regenerated words are
different from the original ones.

4.4 Effectiveness of Two Auxiliary Tasks 457

We show the performance of our model in two 458

auxiliary tasks, namely, word discrimination and 459

correction in the testing set of Flickr30K. In word 460

discrimination, we use a threshold of 0.5 to split 461

the positive and negative ones in terms of probabil- 462

ity. The accuracy of word discrimination is 66.5%. 463

In word correction, the accuracy is 87.3%. With 464

the probability, we can provide additional support 465

information accompanied to the final decision of 466

our model. 467

Two examples are presented in Figure 4. (1) 468

TAGS-DC assigns lower scores for synthetic neg- 469

ative sentences than positive ones, but UNITER 470

fails. (2) Color of “carrying” and “playing playing” 471

are yellow which means that our word discrimina- 472

tion successfully detects these mismatched words. 473

Our model finds the local alignment in word-level 474

and grammatical errors, then generates “wearing” 475
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and “man player” for correction. In the examples,476

word discrimination marks the mismatched com-477

ponents and word correction provides reasons for478

mismatching. (3) Our model fails to identify two479

mismatched words, “swimming”, and “ball”. Con-480

sidering they are partially related to the image, our481

model is less effective in determining the relevance482

of these fuzzy words.483

5 Related Work484

Image-Text Retrieval Most works in image-text485

retrieval focus on better feature extraction and486

cross-modal interaction. Nam et al. (2017) and Ji487

et al. (2019) represent the image by semantics488

gathered from block-based attention. A line of489

research (Lee et al., 2018; Li et al., 2019; Wang490

et al., 2020; Wei et al., 2020; Li et al., 2021) de-491

tects features by pre-trained Faster R-CNN (Ren492

et al., 2015). Some other methods also focus on493

enhancing cross-modality relationship modeling,494

such as the dual attention network (Nam et al.,495

2017), the stacked cross attention (Lee et al., 2018;496

Liu et al., 2019; Hu et al., 2019), the graph struc-497

ture attention (Liu et al., 2020), and the multi-498

modal transformer modeling (Wei et al., 2020).499

UNITER (Chen et al., 2020b), Unicoder (Li et al.,500

2020) and ERNIE-ViL (Yu et al., 2020) follow501

BERT (Devlin et al., 2019) to pre-train the vision-502

language transformer model on the large-scale503

image-text datasets, and finetune in image-text re-504

trieval.505

Negative Samples in Contrastive Learning Se-506

lection strategies for negative samples have been507

widely studied in metric learning (Schroff et al.,508

2015; Oh Song et al., 2016; Harwood et al., 2017;509

Suh et al., 2019; Zhang et al., 2020; Chen et al.,510

2020a). Wu et al. (2017) employ distance weighted511

sampling to select more informative and stable ex-512

amples. Ge (2018) present a novel hierarchical513

triplet loss capable of automatically collecting in-514

formative training samples. In image-text retrieval,515

early works (Kiros et al., 2014; Karpathy and Fei-516

Fei, 2015; Socher et al., 2014) utilize random neg-517

ative samples for training. VSE++ (Faghri et al.,518

2018) incorporates difficult negative ones in the519

multi-modal embedding learning. The method is520

widely applied in the following works (Lee et al.,521

2018; Wei et al., 2020), and achieves significant522

performance improvement. UNITER (Chen et al.,523

2020b) randomly samples a portion of texts (∼512)524

from the dataset and picks up the hardest ones.525

AOQ (Chen et al., 2020a) selects these hard-to- 526

distinguish cases from the whole dataset through 527

a pre-trained ITM model and assigns hierarchical 528

and adaptive penalties for samples with different 529

difficulties. UNITER+DG (Zhang et al., 2020) sam- 530

ples hard negative sentences according to the struc- 531

ture relevance based on denotation graph (Plummer 532

et al., 2015). These methods are retrieval-based 533

and inspire us to find more difficult negative sen- 534

tences through generation. Chuang et al. (2020) 535

propose a method for debiasing, i.e., correcting 536

for the fact that some negative pairs may be false 537

negatives. In our work, we mask keywords (ob- 538

jects, attributes, and relationships) in the positive 539

sentence then refilling, and exclude these sentences 540

of which each token is included in image anno- 541

tated sentences. This method introduces new key- 542

words and alleviates the generation of false nega- 543

tive samples. Kalantidis et al. (2020) consider ap- 544

plying mixup to produce hard negatives in latent 545

space. In our work, we directly rewrite the pos- 546

itive sentences that is missing in the latent space 547

based method, and this improves the robustness and 548

faithfulness. The most similar work is VSE-C (Shi 549

et al., 2018) that attacks the VSE++ (Faghri et al., 550

2018) through replacing the nouns, numerals, and 551

relations according to language priors of human 552

and the WordNet knowledge base. Compare with 553

VSE-C (Shi et al., 2018), our method has three ad- 554

vantages. (1) Our model does not depend on rules. 555

(2) Our model is more flexible and can generate 556

negative sentences with any number, but this is in- 557

tractable for VSE-C. (3) The generated sentences 558

of our model are more fluent than these of VSE-C 559

as the results in Table 4. 560

6 Conclusion 561

In this paper, we focus on the image-text retrieval 562

task and find that retrieve-based negative sentence 563

construction methods are limited by the dataset 564

scale. To further improve the performance, we 565

propose TAiloring neGative Sentences (TAGS). It 566

utilizes masking and refilling to produce synthetic 567

negative sentences as negative samples. We also 568

set up the word discrimination and word correction 569

to introduce word-level supervision to better ex- 570

ploit the synthetic negative sentences. Our model 571

shows competitive performance in MS-COCO and 572

Flickr30k compared with current state-of-the-art 573

models. We also demonstrate the behavior of our 574

model is robust and faithful. 575
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A Appendix 758

A.1 Implementation Details 759

We have two settings, base and large. The base 760

setting of model has 12-layers, 768 hidden size and 761

12 attention heads and the large one has 24-layers, 762

1024 hidden size and 16 attention heads. 763

We utilize grid search to determine the hyper- 764

parameters. In retrieval-based matching, we ran- 765

domly samples 399 negative sentence (image) from 766

the whole dataset for the query image (sentence), 767

and pick out the top 31 ones from them according to 768

the matching scores. In the masked language mod- 769

eling, we utilize the scene graph parser in SPICE 770

to extract the phrases of objects, relationships and 771

attributes from the positive sentence, and take these 772

phrases as a whole to sample and mask. The mask 773

probability is 0.15. In the generation enhanced 774

matching, the temperature τ ∈ {1.0, 1.5}, and we 775

set K = L = 20 and |T−
i | = 31/23 for the base 776

and large settings. λITM, λMLM, λISTM, λWoD and 777

λWoC is sampled from {1.0}, {5e-2, 1e-1}, {1e-4, 778

5e-4, 1e-3}, {5e-4, 1e-3} and {5e-4, 1e-3}, where 779

we set λWoD = λWoC. 780

Our training is composed of two steps, (1) we 781

train with ITM, MLM and ISTM with 5,000 steps as 782

NSG; (2) we further train the model with the whole 783

loss function as NSGDC with 1,500 steps. The 784

learning rate lr is sampled from {5e-5, 4e-5, 1e-5}. 785

We use a linear learning rate scheduler with 10% 786

warmup proportion. The Adam with β1 = 0.9 and 787

10



Algorithm 1 Training step of TAGS-DC
Input: A positive image-text pair (Ii, Ti).
Parameter: Backbone Mθ, the head of masked
language model HMLM , image-text matching HITM ,
word discrimination HWoD and word correction
HWoC.

1: # negative sentence generation.
2: Initializing T̂−

i := {}.
3: for k in 1, . . . ,K do
4: Randomly masking Ti to get the masked one

T(k)
i .

5: Computing LMLM in Eq. (1) with Mθ and
HMLM.

6: for l in 1, . . . ,L do
7: Refilling T(k)

i to generate a synthetic sen-
tence T(k,l)

i following Eq. (2).
8: if T(k,l)

i satisfies criteria C1 then
9: Adding T(k,l)

i to T̂−
i and computing its

matching score with Ii.
10: end if
11: end for
12: end for
13: # image text matching.
14: Sampling negative image I−i and negative sen-

tence T−
i to compute LIRTM in Eq. (5) with Mθ

and HITM.
15: Picking out top-m synthetic sentences from

T̂−
i by the matching scores to constitute T−

i .
16: Utilizing T−

i and Ii to compute LISTM in
Eq. (7) with Mθ and HITM.

17: # word discrimination and word correction.
18: for T−

t in T−
i do

19: Utilizing T−
t and Ii to compute LWoD in

Eq. (8) with Mθ and HWoD.
20: Utilizing T−

t and Ii to compute LWoC in
Eq. (9) with Mθ and HWoC.

21: end for

β2 = 0.98 is taken as the optimizer. The dropout788

is 0.1.789

Our code is implemented with pytorch. For base790

setting in Flickr30K, we utilize 8 V100 for training791

and the computation time is about 8 hours.792

A.2 Algorithm of TAGS-DC793
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Dataset Model lr α τ |T−
i | λITM λMLM λISTM λWoD λWoC

Flickr30k

NSG(B) 5e-5 0.2 1.5 31 1.0 1e-1 1e-3 - -
NSGDC(B) 1e-5 0.2 1.5 31 1.0 1e-1 1e-3 1e-3 1e-3

NSG(L) 4e-5 0.2 1.5 23 1.0 1e-1 5e-4 - -
NSGDC(L) 1e-5 0.2 1.5 23 1.0 1e-1 5e-4 5e-4 5e-4

MS-COCO

NSG(B) 5e-5 0.2 1.5 31 1.0 5e-2 1e-4 - -
NSGDC(B) 1e-5 0.2 1.5 31 1.0 5e-2 1e-4 5e-4 5e-4

NSG(L) 4e-5 0.2 1.5 23 1.0 5e-2 5e-4 - -
NSGDC(L) 1e-5 0.2 1.5 23 1.0 5e-2 5e-4 5e-4 5e-4

Table 5: Hyper-parameters
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