
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A2PERF: REAL-WORLD AUTONOMOUS AGENTS
BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous agents and systems cover a number of application areas, from robotics
and digital assistants to combinatorial optimization, all sharing common, unre-
solved research challenges. It is not sufficient for agents to merely solve a given
task; they must generalize to out-of-distribution tasks, perform reliably, and use
hardware resources efficiently during training and on-device deployment, among
other requirements. Several major classes of methods, such as reinforcement
learning and imitation learning, are commonly used to tackle these problems, each
with different trade-offs. However, there is currently no benchmarking suite that
defines the environments, datasets, and metrics which can be used to develop
reference implementations and seed leaderboards with baselines, providing a mean-
ingful way for the community to compare progress. We introduce A2Perf—a
benchmarking suite including three environments that closely resemble real-world
domains: computer chip floorplanning, web navigation, and quadruped locomotion.
A2Perf provides metrics that track task performance, generalization, system re-
source efficiency, and reliability, which are all critical to real-world applications. In
addition, we propose a data cost metric to account for the cost incurred acquiring
offline data for imitation learning, reinforcement learning, and hybrid algorithms,
which allows us to better compare these approaches. A2Perf also contains baseline
implementations of standard algorithms, enabling apples-to-apples comparisons
across methods and facilitating progress in real-world autonomy. As an open-source
and extendable benchmark, A2Perf is designed to remain accessible, documented,
up-to-date, and useful to the research community over the long term.

1 INTRODUCTION

Autonomous agents observe their environment, make decisions, and perform tasks with minimal
human interference [57]. These agents have been successfully evaluated across a wide range of
application domains. However, developing algorithms for autonomous agents that can be deployed
in real-world scenarios presents significant challenges [14]. These challenges include dealing with
high-dimensional state and action spaces, partial observability, non-stationarity, sparse rewards, and
the need for safety constraints. Furthermore, real-world environments often have multiple objectives,
require sample efficiency, and necessitate robust and explainable decision-making. Addressing these
challenges is crucial for productionizing reinforcement learning algorithms to real-world problems.

To enable researchers to develop algorithms with real-world deployment considerations in mind,
there is a need for benchmarks that incorporate practical metrics. These include metrics such as the
compute required for training and inference, wall-clock time, and effort expended on data collection.
While there are existing benchmarks for autonomous agents [25; 65; 34; 4; 9; 58], most only evaluate
an agent’s raw performance on the same task on which it was trained, without considering numerous
other metrics that matter in real-world production training and deployment scenarios.

In this paper, we introduce A2Perf1, a benchmarking framework that aims to bridge the gap between
algorithms research and real-world applications by providing a comprehensive evaluation platform
for autonomous agents, thereby expanding the applicability of reinforcement learning to a wide range
of practical domains. In addition, it comes equipped with a critical set of metrics for fair assessment.

1A2Perf code: https://anonymous.4open.science/r/A2Perf-2BFC

1

https://anonymous.4open.science/r/A2Perf-2BFC

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Benchmark Metrics Realistic
Tasks

Offline
DatasetsGeneralization System Data Cost Reliability

A2Perf ✓ ✓ ✓ ✓ ✓ ✓

D4RL [16] ✓ ✗ ✗ ✗ ✓ ✓
Meta-World [65] ✓ ✗ ✗ ✗ ✓ ✗

CoinRun [10] ✓ ✗ ✗ ✗ ✗ ✗
DM Control [58] ✗ ✗ ✗ ✗ ✗ ✗
Safety Gym [32] ✗ ✗ ✗ ✗ ✓ ✗

ALE [4] ✗ ✗ ✗ ✗ ✗ ✗
MineRL [25] ✓ ✗ ✗ ✗ ✗ ✓

OpenAI Gym [5] ✗ ✗ ✗ ✗ ✗ ✗
Loon Benchmark [18] ✓ ✗ ✗ ✗ ✓ ✓

Table 1: A2Perf compared to existing benchmarks that evaluate autonomous agents. Checkmarks (✓) indicate
the presence of a feature or metric, while crosses (✗) denote its absence. A2Perf distinguishes itself by including
metrics for generalization, system resource efficiency, data cost, and reliability, in addition to providing realistic
tasks and offline datasets. The selected domains in A2Perf are designed to closely mirror real-world challenges,
ensuring the relevance and transferability of the benchmark results to practical applications.

A2Perf incorporates three challenging domains based on prior work [13; 43; 23] that closely mirror
scenarios that have been demonstrated in the real world: computer chip-floorplanning, website form-
filling and navigation, and quadruped locomotion. In addition, these domains were chosen because
they inherently exhibit a small Sim2Real gap. The computer chip-floorplanning domain [42; 43] was
used to help create an iteration of Google’s tensor processing unit2, where the autonomous agent
optimizes the layout of chip components. In the website form-filling and navigation domain [22; 23],
agents autonomously navigate and interact with websites in a Google Chrome3 browser, making it
identical to real-world web navigation. The quadruped locomotion domain [49] has demonstrated
successful transfer of learned walking gaits to the Unitree Laikago4 robot.

Furthermore, to address the metrics gap, A2Perf provides an open-source benchmarking suite that
evaluates agents across four key metric categories: (1) data cost, which quantifies the effort required
to gather training data for imitation learning, (2) application performance, relating to the quality of
the agent’s task-specific execution, and it’s ability to generalize to tasks that it was not explicitly
trained to perform; (3) system resource efficiency, focusing on the hardware resources used during
training and inference; and (4) reliability, denoting the consistency of an agent’s performance over
training and inference. While three domains and for classes of metrics are currently available, A2Perf
allows for straightforward expansion to benchmark on custom domains and for custom metrics.

Our experimental evaluation yields valuable insights into the real-world applicability of autonomous
agents across diverse domains. In the web navigation domain, we explore the feasibility of deploying
agents by analyzing their inference time, power usage, and memory consumption, demonstrating that
trained agents can operate with latencies comparable to human reaction times on consumer-grade
hardware. Furthermore, our reliability metrics prove crucial in selecting agents for chip floorplanning
and quadruped locomotion tasks. For chip floorplanning, we find that the PPO [53] algorithm provides
more consistent initial placements compared to DDQN [61], reducing variability for designers. In
quadruped locomotion, PPO exhibits superior stability during training, while SAC [26] demonstrates
more consistent gaits during deployment, highlighting the importance of considering reliability
in real-world scenarios. These findings underscore A2Perf’s ability to provide a comprehensive
evaluation of autonomous agents, facilitating their successful deployment in practical applications.

2 RELATED WORK

Benchmarking Autonomous Agents Table 1 offers a comparison between A2Perf and existing
benchmarks, highlighting the unique contributions of our proposed benchmarking suite. Existing
benchmarks for autonomous agents, such as those introduced by Brockman et al. [5]; Bellemare

2History of the Tensor Processing Unit: https://shorturl.at/Bo71S
3Google Chrome Browser: https://www.google.com/chrome/
4Unitree Laikago: https://shorturl.at/FD6uP

2

https://shorturl.at/Bo71S
 https://www.google.com/chrome/
https://shorturl.at/FD6uP

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al. [4]; Tassa et al. [58], provide diverse environments for testing various algorithms. However,
these benchmarks often focus on specific types of learning algorithms or on evaluating particular
desirable qualities in autonomous agents. For example, Fu et al. [16] and Gulcehre et al. [21] evaluate
offline reinforcement learning [38], while Yu et al. [65] focuses on meta-reinforcement learning [62].
Similarly, Ye et al. [64] tests sample efficiency, Guss et al. [25] challenges agents on long-horizon
tasks, and Cobbe et al. [10] evaluates generalization ability. While these benchmarks provide insights,
they do not fully capture the challenges faced by autonomous agents in real-world applications [14].
Environments, benchmarks, and datasets have been made to foster the development of autonomous
agents in real-world scenarios, such as aerial balloon navigation [18], autonomous driving [56],
website navigation [23], and furniture assembly [37]. Yet, these initiatives are often domain-specific
and lack the comprehensive scope needed to evaluate agents across a wide range of real-world
challenges as outlined by prior work [14], which forms the basis for our work. Consequently, there
remains a need for a benchmarking suite that encompasses a diverse set of tasks and environments,
reflecting the complexity and variety of problems encountered in real-world applications.

Benchmarking System Performance In addition to evaluating task-specific performance metrics,
analyzing the end-to-end performance cost and examining the hardware resources required to apply
learning algorithms on specific environments has gained significant attention [63; 47]. Benchmarks
such as MLPerf [50] and DAWNBench [12] have been developed to assess various aspects of com-
mercial deep learning workloads across training and inference, considering a diverse class of systems.
Furthermore, recent studies have investigated the environmental impact of deep learning by quantify-
ing the carbon footprint associated with training and inference using large neural network models [48].
This line of research has also extended to autonomous agents, with works like QuaRL demonstrating
reduced energy consumption and emissions through lower-precision distributed training [36]. Despite
these efforts, there remains a need for evaluating the system performance and energy consumption of
autonomous agents to provide valuable insights into their practical feasibility and sustainability.

Reliability Metrics for Reinforcement Learning Reliability is a concern in reinforcement learning
(RL), as current metrics often rely on point estimates of aggregate performance, which fail to capture
the true performance of algorithms and make it challenging to draw conclusions about the state-of-
the-art [1; 27; 11]. The increasing complexity of benchmarking tasks has made it infeasible to run
hundreds of training runs, necessitating the development of tools to evaluate reliability based on a
limited number of runs [1]. For real-world deployments, reliability is essential to ensure that RL
algorithms perform consistently and robustly across different conditions and environments. To assess
reliability, it is essential to consider metrics across three axes of variability: time (within a training
run), runs (across random seeds), and rollouts of a fixed policy [8]. By incorporating reliability
metrics into A2Perf, we will be able to better assess the robustness and consistency of RL algorithms.

3 EVALUATION METRICS

To assess autonomous agents for real-world applications, A2Perf offers a comprehensive set of
metrics across four categories: data cost, application performance, system performance, and reliability.
Table 2 summarizes the metrics corresponding to each category. The relative importance of these
categories varies depending on the specific application domain, so in Section 4, we state which metric
categories are most critical for each domain included in the initial release of A2Perf to help guide
practitioners in selecting the most suitable agent for their use case.

3.1 DATA COST

Autonomous agents can be trained either with or without expert demonstrations. Methods that
leverage expert demonstrations, such as imitation learning (IL) [29; 31; 6; 3; 33; 54], aim to learn
from pre-collected datasets of human or expert agent trajectories. On the other hand, methods like
online [44] and offline RL [38; 60; 45; 2] do not necessarily require expert demonstrations and instead
learn through interaction with the environment or sub-optimal demonstration data.

Comparing agent performance trained using different approaches is challenging but important to gain
a holistic picture of the costs and trade-offs involved. IL methods may be more sample efficient than
RL methods, as they do not need to interact with the environment online. However, this perspective
overlooks the effort required to collect expert demonstration data used for IL.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Data Cost System Reliability Application

Training Training Sample Cost
Energy
Power

RAM Usage
Wall-Clock Time

Dispersion (Runs)
Dispersion (Time)

Long-Term Risk (Time)
Risk (Runs)

Short-Term Risk (Time)

Episodic Returns
Generalization Returns

Inference N/A Inference Time
Power

RAM Usage

Dispersion (Rollouts)
Risk (Rollouts)

N/A

Table 2: A2Perf assesses four categories—data cost, system performance, reliability, and application perfor-
mance—during training and inference. These metrics provide a comprehensive evaluation of autonomous agents.
See Section 3 for detailed descriptions of the metric categories.

To facilitate fair comparisons between these approaches, we propose the training sample cost metric,
which quantifies the effort required to obtain offline datasets used by the agent. In this context, we
denote the training sample cost of an offline dataset D as CD. An agent that uses samples from
datasets D1, D2, . . . , DK will incur a total training sample cost of Training Sample Cost =∑K

i=1 CDi
. The datasets Di could be of different expertise levels, meaning they contain demonstra-

tions from agents or humans with varying levels of task proficiency.

The training sample cost can be measured with any metric that meaningfully represents the effort
required to generate samples for imitation learning. For example, the cost could be expressed in terms
of money spent on human labor or computational resources, hours invested in collecting the data, or
any other relevant metric. The choice of metric may depend on the specific application and the type
of data being collected since training samples can originate from a variety of sources, such as human
operators [41], pre-existing policies [28], or logged experiences from different agents [17; 35].

In A2Perf, we restrict our use of the training sample cost metric to datasets generated solely from RL
policies. Specifically, we define the training sample cost, CD, of a dataset D as the average energy
consumed to train the policies that are used to generate the dataset D. This can be expressed as:

CD =
1

|ΠD|
∑

π∈ΠD

Etrain(π) (1)

where ΠD is the set of policies used to generate the dataset D, |ΠD| denotes the number of policies
in this set, and Etrain(π) represents the energy consumed to train the policy π. As we strive for more
equitable comparisons between approaches to training autonomous agents, we urge the research
community to consider the cost of acquiring training data. To this end, we release datasets for each
domain and task in A2Perf, along with their associated training sample costs. While the specific
expertise levels may vary across domains and tasks, we generally consider three categories: novice,
intermediate, and expert. See Appendix D for the dataset collection procedure and Appendix
E for details on the dataset format.

3.2 SYSTEM PERFORMANCE

System metrics provide insight into the feasibility of deploying autonomous agents, particularly
considering the scaling demands on energy and data efficiency [15]. A2Perf uses the CodeCarbon
library [30] to track metrics during training, such as energy usage, power draw, RAM consumption,
and wall-clock time. Energy and power usage inform the user about the sustainability and power costs
associated with training the agent, which is particularly important in power-constrained environments
or when planning for long-term, continuous training [46]. RAM consumption metrics help in
understanding the memory efficiency of the training process, as high RAM consumption may limit
the settings where the agent can be trained or require costly hardware upgrades [39]. During the
inference phase, A2Perf records power draw, RAM consumption, and average inference time.

System performance measurements may vary significantly across different experimental setups. To
ensure reproducibility and facilitate meaningful comparisons, we strongly recommend that users
report the deep learning framework, CPU model, GPU model, and Python version used when running
A2Perf. Providing this information allows for more accurate interpretation of results. For details on
our experimental setup, please refer to Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 RELIABILITY

Phase Metric Name Description Equation

Tr
ai

ni
ng

Dispersion Within Runs Measures higher-frequency variability using
IQR within a sliding window along the

detrended training curve. Lower values indicate
more stable performance.

1

T − 4

T−2∑
t=3

IQR
(
{∆Pt′}t+2

t′=t−2

)

Short-term Risk (CVaR) Estimates extreme short-term performance
drops. Lower values indicate less risk of sudden

drops.

CVaRα (∆Pt)
T
t=1

Long-term Risk (CVaR) Captures potential for long-term performance
decrease. Lower values indicate less risk of

degradation.

CVaRα

(
max
t′≤t

Pt′ − Pt

)

Dispersion Across Runs Measures variance across training runs. Lower
values indicate more consistent performance

across runs.

1

T

T∑
t=1

IQR
(
{Pt,j}nj=1

)
Risk Across Runs (CVaR) Measures expected performance of

worst-performing agents. Higher values indicate
better worst-case performance.

CVaRα (PT,j)
n
j=1

In
fe

re
nc

e

Dispersion Across Rollouts Measures variability in performance across
multiple rollouts. Lower values indicate more

consistent performance.

IQR (Ri)
m
i=1

Risk Across Rollouts (CVaR) Measures worst-case performance during
inference. Higher values indicate better

worst-case performance.

CVaRα (Ri)
m
i=1

Table 3: Reliability Metrics with Mathematical Formulations. Pt: performance at time t. Pt,j : performance at
time t for run j. Ri: performance during rollout i. ∆Pt = Pt−Pt−1: performance change between consecutive
time steps (detrended value). CVaRα: Conditional Value at Risk at level α. IQR: Inter-Quartile Range. Sliding
window length is 5 time steps centered on t, calculated over all t from 3 to T − 2 to ensure the window is valid.
T : total number of time steps. n: number of runs (10 for our experiments). m: number of rollouts (100 for our
experiments).

Reliability signifies safety, accountability, reproducibility, stability, and trustworthiness [8; 51].
A2Perf uses the statistical methods proposed by Chan et al. [8] to measure the reliability of au-
tonomous agents during training and inference. During training, A2Perf examines dispersion across
multiple training runs, dispersion over time within a single run, risk across runs, and risk over time.
These metrics provide insights into the variability and worst-case performance of the agent. For
inference, A2Perf measures dispersion and risk across rollouts to assess the consistency and potential
suboptimal performance of the final trained agent. Table 3 provides an overview of the reliability
metrics tracked by A2Perf, along with how they should be interpreted. For a detailed description of
each metric and their calculation, please refer to the work by Chan et al. [8].

3.4 APPLICATION PERFORMANCE

Application performance is measured using task performance and generalization. Task performance is
the agent’s mean returns when rolled out for 100 episodes on the task it was trained for. Generalization
assesses the agent’s ability to adapt to tasks outside of its specific training distribution, and is computed
as the sum of mean returns for all tasks, including the task the agent was trained to perform.

3.5 USING A2PERF METRICS IN PRACTICE

The metrics provided by A2Perf across data cost, application performance, system performance, and
reliability offer a holistic view of autonomous agent performance. However, the relative importance
of these metrics can vary significantly depending on the specific application domain. For instance,
in resource-constrained environments, system performance metrics may be critical, while in safety-
critical applications, reliability metrics might take precedence. In Section 5, we demonstrate how
these metrics can be applied and interpreted in the context of our three benchmark domains: computer
chip floorplanning, web navigation, and quadruped locomotion.

4 A2PERF DOMAINS
The domains in A2Perf were selected based on their demonstrated transfer from simulated environ-
ments to the real world. The circuit training domain was used in creating an iteration of Google’s

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Real-World Challenges Chip
Floorplanning

Web
Navigation

Quadruped
Locomotion

(RW1)* Training offline from fixed logs. ✓ ✓ ✓

(RW2) Learning on the real system from limited samples. ✗ ✗ ✓

(RW3) High-dimensional and continuous state and action
spaces.

✓ ✗ ✓

(RW4) Safety constraints. ✗ ✓ ✓

(RW5) Tasks are partially observable, non-stationary or
stochastic.

✗ ✗ ✓

(RW6) Unspecified, multi-objective or risk sensitive reward
functions.

✓ ✓ ✓

(RW7) Need for explainable policies. ✗ ✓ ✗

(RW8) Real-time inference at the control frequency of the
system.

✗ ✓ ✓

(RW9) Delays in actuators, sensors or rewards. ✗ ✓ ✓

Table 4: Real-World Challenges proposed by Dulac-Arnold et al. [14]. Checkmarks (✓) indicate challenges
commonly encountered in the general domain area, while (✗) denotes challenges less frequently encountered.
The challenge marked with an asterisk (*), RW1, applies to all A2Perf domains, as learning from offline data is
possible for all environments. Each broad challenge is encountered in at least one of the A2Perf domain areas,
highlighting the relevance of the selected domains to current real-world reinforcement learning problems.

Tensor Processing Unit (TPU) [43]. The quadruped locomotion domain has been shown to transfer
successfully to real Unitree Laikago robots [49]. The web navigation domain is derived from Mini-
Wob [55], MiniWob++ [40], and gMiniWob [23], and operates in an actual Google Chrome browser,
mirroring real-life web interactions. Additionally, [22] showed that policies trained in MiniWob++
transfer to real-life web pages for task completion.

By focusing on domains with demonstrated real-world applicability, progress made within the A2Perf
benchmark can directly contribute to improving the performance of downstream real-world (RW)
tasks. We specify how each domain aligns with the real-world challenges presented by Dulac-Arnold
et al. [14] (Table 4), and denote which of A2Perf’s metric categories are important for each domain.

4.1 CIRCUIT TRAINING (RW1, RW3, RW6)

Chip floorplanning involves creating a physical layout for a microprocessor, a task that has resisted
automation for decades and requires months of human engineering effort. To address this challenge,
Google has made Circuit Training available as an open-source framework that uses RL to generate
chip floorplans [20]. In this domain, an agent places macros (reusable blocks of circuitry) onto
the chip canvas, with the objective of optimizing wirelength, congestion, and density. Even though
the state and action spaces are discrete, the number of states and actions increases combinatorially
with the number of nodes and cells on the chip (RW3). As an illustration, Mirhoseini et al. [43]
calculate that placing 1,000 clusters of nodes on a grid with 1,000 cells results in a state space on
the order of 102,500, which is vastly larger than the state space of Go at 10360. Chip design also
involves optimizing for multiple objectives, such as maximizing clock frequency, reducing power
consumption, and minimizing chip area (RW6). During training, these objectives are approximated
using proxy metrics. However, evaluating the true objectives requires time-consuming simulations
with industry-grade placement tools 5. If the results are unsatisfactory, the proxy metrics must be
adjusted, and the agents must be retrained, leading to a costly iterative and resource-intensive process.

The metric categories included in A2Perf that are crucial to evaluating Circuit Training agents are task
performance (optimality of macro placements), inference reliability (to ensure consistent macro
placements for human designers to build on top of), inference system performance (to collaborate
with human designers in a timely manner), generalization (to optimally place macros unseen netlists),

5For example, Cadence Innovus and Synopsys IC Compiler

6

https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.synopsys.com/implementation-and-signoff/physical-implementation/ic-compiler.html

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Ariane (Training)
BC DDQN PPO

Category Metric Name
Data Cost Training Sample Cost 48.28 0 0

Application Generalization (100 eps. [all tasks]) -2.18 -2.19 -2.05
Returns (100 eps.) -1.10 ± 0.04 -1.13 ± 0.04 -0.99 ± 7.25e-03

Reliability Dispersion Across Runs (IQR) N/A 0.03 ± 0.03 0.04 ± 0.02
Dispersion Within Runs (IQR) N/A 0.02 ± 0.03 4.77e-03 ± 4.92e-03
Long Term Risk (CVaR) N/A 1.20 0.03
Risk Across Runs (CVaR) N/A -1.17 -1.03
Short Term Risk (CVaR) N/A 0.07 0.01

System Energy Consumed (kWh) 0.11 ± 6.45e-04 108.20 ± 4.29 120.53 ± 2.78
GPU Power Usage (W) 211.35 ± 16.76 585.98 ± 172.50 692.94 ± 120.08
Mean RAM Usage (GB) 4.72 ± 0.53 849.37 ± 64.85 834.05 ± 55.90
Peak RAM Usage (GB) 5.25 ± 0.07 889.56 ± 23.44 906.45 ± 68.01
Wall Clock Time (Hours) 0.48 ± 2.61e-03 21.94 ± 0.90 23.95 ± 0.54

Ariane (Inference)
Reliability Dispersion Across Rollouts (IQR) 0.01 0.05 0.01

Risk Across Rollouts (CVaR) -1.23 -1.25 -1.01
System GPU Power Usage (W) 136.91 ± 21.48 69.50 ± 4.60 49.43 ± 30.29

Inference Time (ms) 10.0 ± 0.46 20.0 ± 2.69 20.0 ± 2.68
Mean RAM Usage (GB) 2.19 ± 0.21 2.15 ± 0.30 2.51 ± 0.49
Peak RAM Usage (GB) 2.29 ± 0.01 2.28 ± 0.13 2.71 ± 0.62

Table 5: Metrics for the Ariane Netlist task of CircuitTraining-v0. All metrics are averaged over ten random
seeds. We report mean and standard deviation for metrics where it is applicable. BC results are obtained by
training on the entire intermediate dataset.

and data cost (due to many netlists being proprietary and the high overhead of human designers
producing final macro placements).

4.2 WEB NAVIGATION (RW1, RW4, RW6, RW7, RW8, RW9)

Software tools exist to automate browser tasks6, but due to the varied formatting of websites, hand-
crafted algorithms are not a viable solution for general web navigation. Researchers have begun
applying learning algorithms to design agents that can understand web pages [24] and automatically
navigate through them to fill out forms [23; 22]. In A2Perf, we use gMiniWob [23] to create mock
websites that act as environments for the agent. See Appendix F for details about the website genera-
tion process and agent interaction. To achieve maximum rewards, the agent must avoid malicious
links and advertisement banners (RW4) while correctly filling out all fields in web forms. The
combination of these constraints create a multi-objective reward function (RW6). The explainability
of an agent’s decision-making is also important, particularly when agents handle sensitive tasks such
as online shopping or investing (RW7). Finally, agents must be robust to the system challenges of
real-time inference, such as inference speed and network delays (RW8, RW9).

The metric categories included in A2Perf that are crucial to evaluating web navigation agents are task
performance (general correctness of form-filling), inference system performance (for seamlessly
navigating the web at speeds similar to humans), inference reliability (to avoid dangerous actions like
clicking malicious links), generalization (to handle varying website designs), and training system
performance (to account for the computational demands of training on diverse web environments,
which often requires tokenizing HTML web pages).

4.3 QUADRUPED LOCOMOTION (RW1, RW2, RW3, RW4, RW5, RW6, RW8, RW9)

In recent years, the robotics community has gradually shifted towards training autonomous agents for
robotic control. A prominent example of this trend is seen in quadruped locomotion, where RL has
become the dominant technique. We followed the pioneering work of Peng et al. [49], in which a
quadruped robot learns complex locomotion skills such as pacing, trotting, spinning, hop-turning,
and side-stepping by imitating motion capture data from a real dog.

6Selenium, used in A2Perf, is a popular browser automation tool.

7

https://www.selenium.dev/documentation/webdriver/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Difficulty 1, 1 Website (Training)
BC DDQN PPO

Category Metric Name
System Energy Consumed (kWh) 0.04 ± 6.02× 10−4 29.56 ± 7.23 28.82 ± 1.19

GPU Power Usage (W) 125.89 ± 2.53 265.09 ± 21.50 305.15 ± 34.41
Mean RAM Usage (GB) 4.10 ± 0.33 1140.98 ± 580.55 1592.45 ± 388.64
Peak RAM Usage (GB) 4.23 ± 0.04 1931.54 ± 242.31 2305.57 ± 135.48
Wall Clock Time (Hours) 0.31 ± 4.91× 10−3 8.13 ± 5.17 10.50 ± 0.44

Difficulty 1, 1 Website (Inference)
System GPU Power Usage (W) 108.61 ± 15.76 59.61 ± 1.41 60.26 ± 1.14

Inference Time (ms) 3.07 ± 0.47 110 ± 9.93 120 ± 9.71
Mean RAM Usage (GB) 1.97 ± 0.32 2.08 ± 0.20 2.12 ± 0.17
Peak RAM Usage (GB) 2.11 ± 0.11 2.18 ± 0.11 2.19 ± 0.09

Table 6: Metrics for the "Difficulty Level 1, 1 Website" task of WebNavigation-v0. All metrics are averaged
over ten random seeds. We report mean and standard deviation for metrics where it is applicable. BC results are
obtained by training on the entire novice dataset.

Given the physical dynamics involved in quadruped locomotion, research often necessitates learning
directly from limited samples on the actual robot (RW2). Learning walking gaits also involves
high-dimensional, continuous state and action spaces (RW3), as the robot needs to precisely control
multiple joints and limbs to navigate complex environments. The agent must reason about complex
dynamics, avoid unsafe falls (RW4), adapt gaits to various speeds and terrains (RW5), and operate in
partially observable environments (RW5) where states like contact forces are not directly measurable.
Optimizing robotic controllers is usually multi-objective (RW6), balancing competing objectives
like locomotion speed, stability, satisfying safety constraints, and minimizing energy expenditure.
Furthermore, real-time inference (RW8) and dealing with system delays (RW9) are critical for
controlling robots, as slow computations or delays can negatively impact stability and performance.

The metric categories included in A2Perf that are crucial to evaluating quadruped locomotion agents
are task performance (accuracy in imitating desired gaits), inference reliability (to ensure smooth,
stable walking without sudden dangerous movements), inference system performance (for real-time
responsiveness and energy efficiency on onboard compute), generalization (to adapt to novel terrains
and morphologies of the robot).

5 EVALUATION

We show how A2Perf can aid algorithm development and evaluation on challenging, real-world
problems. We highlight A2Perf’s evaluation capabilities along the axes of training sample cost,
system performance, and reliability. For all domains and tasks, results are averaged over ten random
seeds to ensure robustness and reproducibility. See Appendix A for more experimental results.

5.1 COMPARING ACROSS ALGORITHM TYPES WITH DATA COST

A2Perf provides datasets generated with agents of varying expertise (Section 3.1), along with their
associated training sample costs. This enables the comparison of agents by considering both task
performance and the cost of acquiring training data, which can vary significantly across different
approaches like IL and RL. Our experiments in the chip floorplanning domain show that while
behavioral cloning’s (BC) performance is competitive with DDQN and PPO (Table 7), the training
sample cost (average energy consumed to train an agent that generates the data) was 48.28 kWh.

Furthermore, this formulation allows researchers to combine the training sample cost with the energy
consumed during training for offline, online, or hybrid methods, providing a total energy cost that
can be directly compared. For example, the offline training of the BC agent for the Ariane netlist
consumed 0.11 kWh. Therefore, the total energy cost for the BC agent would be 48.39 kWh (48.28
kWh for generating the offline data + 0.11 kWh for offline training). This total energy cost can then
be compared with the energy consumed by online methods like DDQN and PPO, which amounted
to 108.20 kWh and 120.53 kWh, respectively (Table 10). In the case of a hybrid method that uses
both offline data and online training, the total energy cost would be calculated by adding the training
sample cost for the offline data to the energy consumed during the online training phase.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Ariane (Training)
BC DDQN PPO

Category Metric Name

Data Cost Training Sample Cost 48.28 0 0

System Energy Consumed (kWh) 0.11 ± 6.45e-04 108.20 ± 4.29 120.53 ± 2.78
GPU Power Usage (W) 211.35 ± 16.76 585.98 ± 172.50 692.94 ± 120.08

Ariane (Inference)
Reliability Dispersion Across Rollouts (IQR) 0.01 0.05 0.01

Risk Across Rollouts (CVaR) -1.23 -1.25 -1.01
System GPU Power Usage (W) 136.91 ± 21.48 69.50 ± 4.60 49.43 ± 30.29

Inference Time (ms) 10.0 ± 0.46 20.0 ± 2.69 20.0 ± 2.68
Mean RAM Usage (GB) 2.19 ± 0.21 2.15 ± 0.30 2.51 ± 0.49
Peak RAM Usage (GB) 2.29 ± 0.01 2.28 ± 0.13 2.71 ± 0.62

Table 7: Metrics for the Ariane Netlist task of CircuitTraining-v0. All metrics are averaged over ten random
seeds. We report mean and standard deviation for metrics where it is applicable. BC results are obtained by
training on the entire intermediate dataset.

5.2 SYSTEM PERFORMANCE FOR TRAINING AND DEPLOYMENT FEASIBILITY

Our experiments in the web navigation domain highlight the importance of considering hardware
constraints and performance requirements of autonomous agents. During training, PPO agents had a
peak RAM usage of 2.3± 0.14 TB (Table 6). This high memory footprint can be attributed to the
need for distributed experiments running hundreds of Google Chrome processes and storing batches
of data, which involves tokenizing the entire DOM7 tree of HTML elements on each web page. Such
memory demands can limit the accessibility of training agents, as not all researchers may have access
to the necessary hardware resources. To put this into perspective, training a variant of the GPT-3
language model with approximately 72 billion parameters would require a similar amount of memory,
assuming each parameter is stored as a 32-bit floating-point number [7].

However, the resource usage of these agents becomes more manageable for deployment. The 120 ms
inference time, when combined with the median round-trip latency of ∼68 ms for a 5G network
[52], results in a total latency of ∼200 ms. This combined latency is still faster than the average
human reaction time of ∼273 ms8, enabling real-time responsiveness during web navigation tasks.
Furthermore, the peak RAM usage of 2.19± 0.09 GB (Table 6) indicates the feasibility of deploying
trained agents directly on consumer-grade devices, such as smartphones, though the inference time
may be slower on-device.

5.3 ROBUST EVALUATION WITH RELIABILITY METRICS

Computer chip designers using autonomous agents rely on the agent to generate initial placements
that they can build upon, so minimizing variability in the agent’s performance is crucial. As shown
in Table 7, the PPO algorithm exhibited lower dispersion across rollouts (IQR of 0.01) compared to
DDQN (IQR of 0.05), indicating that PPO is approximately 5x more stable than DDQN when rolling
out fixed, trained policies. This suggests that PPO would provide more consistent starting points
for designers, enabling them to focus on refining and optimizing the floorplan instead of repeatedly
rolling out the same policy to get similar initial placements. Additionally, PPO demonstrated lower
risk across rollouts (CVaR of −1.01) compared to DDQN (CVaR of −1.25), indicating that in the
worst-performing rollouts, PPO performs about 1.2x better than DDQN on average, reducing the
likelihood of designers starting with poor floorplans that require extensive manual adjustments.

In analyzing the “Dog Pace" task of QuadrupedLocomotion-v0 (Table 8), we observe overlapping
error bars on the returns for PPO and SAC. To better understand their tradeoffs, we use the reliability
metrics. PPO provides a 2x reduction in both short-term and long-term risks compared to SAC,
making PPO more stable. This stability potentially makes PPO a safer option for training quadrupeds

7https://en.wikipedia.org/wiki/Document_Object_Model
8https://humanbenchmark.com/tests/reactiontime/statistics

9

https://en.wikipedia.org/wiki/Document_Object_Model
https://humanbenchmark.com/tests/reactiontime/statistics

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Dog Pace (Training)
BC PPO SAC

Category Metric Name

Application Generalization (100 eps. [all tasks]) 3.99 3.36 5.03
Returns (100 eps.) 7.00 ± 4.68 9.94 ± 15.59 6.96 ± 6.72

Reliability Dispersion Across Runs (IQR) N/A 9.63 ± 7.27 3.61 ± 3.88
Dispersion Within Runs (IQR) N/A 2.22 ± 1.97 2.98 ± 3.64
Long Term Risk (CVaR) N/A 13.00 25.82
Risk Across Runs (CVaR) N/A 13.74 8.55
Short Term Risk (CVaR) N/A 5.81 10.19

Dog Pace (Inference)
Reliability Dispersion Across Rollouts (IQR) 0.52 8.76 4.80

Risk Across Rollouts (CVaR) 0.33 0.46 1.69

Table 8: Metrics for the “dog pace” gait of QuadrupedLocomotion-v0, averaged over ten random seeds. We
report mean and standard deviation for metrics where it is applicable. BC results are obtained by training on the
entire expert dataset.

in the real world, where less sporadic behavior is needed. Conversely, SAC performs 3.7x better than
PPO in the worst-case rollouts on average and demonstrates a 1.8x improvement in dispersion across
rollouts, indicating more consistent gaits during deployment – essential from a safety perspective.

6 LIMITATIONS AND FUTURE WORK

A2Perf includes three domains that cover a diverse range of real-world applications and challenges,
but there is room for expansion to a wider range of tasks. Thanks to A2Perf’s integration with
Gymnasium [59] (previously OpenAI Gym) and the implementation of baselines using TF-Agents
[19], adding new domains and baselines is straightforward, making it easy for researchers to contribute
to the platform.

Future work could expand A2Perf to include multi-agent domains and tasks, reflecting real-world
scenarios where autonomous agents interact with other agents and humans. Additionally, adding
support for measuring system performance on customized hardware platforms would provide more
precise insights into performance in target deployment environments, as current evaluations are
primarily conducted on desktop and server machines. Another area of future work is further standard-
izing evaluations in A2Perf, addressing potential variations due to different hardware setups, Python
versions, and code implementations. These efforts will enhance reproducibility and facilitate more
accurate comparisons across different research environments, further solidifying A2Perf’s role as a
comprehensive benchmark for real-world autonomous agents.

7 CONCLUSION

We need more holistic metrics and representative benchmarks to measure progress. To this end,
we introduced A2Perf, a benchmarking suite that can be used for evaluating autonomous agents
on challenging tasks from domains such as computer chip floorplanning, web navigation, and
quadruped locomotion. A2Perf provides a standardized set of metrics across data cost, application
performance, system resource efficiency, and reliability, enabling a comprehensive comparison
of different algorithms. Our evaluations demonstrate A2Perf’s effectiveness in identifying the
strengths and weaknesses of various approaches to developing autonomous agents. We encourage
the community to contribute new domains, tasks, and algorithms to A2Perf, making it an even more
comprehensive platform for benchmarking autonomous agents in real-world-inspired settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in neural
information processing systems, 34:29304–29320, 2021.

[2] Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement
learning with offline data. In International Conference on Machine Learning, pp. 1577–1594.
PMLR, 2023.

[3] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by
imitating the best and synthesizing the worst. arXiv preprint arXiv:1812.03079, 2018.

[4] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

[7] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[8] Stephanie CY Chan, Samuel Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama.
Measuring the reliability of reinforcement learning algorithms. arXiv preprint arXiv:1912.05663,
2019.

[9] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

[10] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In International Conference on Machine Learning, pp.
1282–1289. PMLR, 2019.

[11] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How many random seeds? statistical
power analysis in deep reinforcement learning experiments. arXiv preprint arXiv:1806.08295,
2018.

[12] Cody A. Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi,
Peter D. Bailis, Kunle Olukotun, Christopher Ré, and Matei A. Zaharia. Dawnbench :
An end-to-end deep learning benchmark and competition. 2017. URL https://api.
semanticscholar.org/CorpusID:3758333.

[13] Erwin Coumans. Motion imitation, 2023. URL https://github.com/erwincoumans/
motion_imitation.

[14] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Machine Learning, 110(9):2419–2468, 2021.

[15] Nathan C. Frey, Baolin Li, Joseph McDonald, Dan Zhao, Michael Jones, David Bestor, Devesh
Tiwari, Vijay Gadepally, and Siddharth Samsi. Benchmarking resource usage for efficient
distributed deep learning, 2022.

[16] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

11

https://api.semanticscholar.org/CorpusID:3758333
https://api.semanticscholar.org/CorpusID:3758333
https://github.com/erwincoumans/motion_imitation
https://github.com/erwincoumans/motion_imitation

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[17] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pp. 2052–2062. PMLR,
2019.

[18] Joshua Greaves, Salvatore Candido, Vincent Dumoulin, Ross Goroshin, Sameera S. Ponda,
Marc G. Bellemare, and Pablo Samuel Castro. Balloon Learning Environment, 12 2021. URL
https://github.com/google/balloon-learning-environment.

[19] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam
Fishman, Ke Wang, Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano Sbaiz, Jamie
Smith, Gábor Bartók, Jesse Berent, Chris Harris, Vincent Vanhoucke, and Eugene Brevdo.
TF-Agents: A library for reinforcement learning in tensorflow. https://github.com/
tensorflow/agents, 2018. URL https://github.com/tensorflow/agents.
[Online; accessed 25-June-2019].

[20] Sergio Guadarrama, Summer Yue, Toby Boyd, Joe Wenjie Jiang, Ebrahim Songhori, Terence
Tam, and Azalia Mirhoseini. Circuit Training: An open-source framework for generating chip
floor plans with distributed deep reinforcement learning. https://github.com/google_
research/circuit_training, 2021. URL https://github.com/google_
research/circuit_training. [Online; accessed 21-December-2021].

[21] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
A suite of benchmarks for offline reinforcement learning. Advances in Neural Information
Processing Systems, 33:7248–7259, 2020.

[22] Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and Dilek Hakkani-Tur. Learning to navigate
the web. arXiv preprint arXiv:1812.09195, 2018.

[23] Izzeddin Gur, Natasha Jaques, Yingjie Miao, Jongwook Choi, Manoj Tiwari, Honglak Lee, and
Aleksandra Faust. Environment generation for zero-shot compositional reinforcement learning.
Advances in Neural Information Processing Systems, 34:4157–4169, 2021.

[24] Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowd-
hery, Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large
language models. arXiv preprint arXiv:2210.03945, 2022.

[25] William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations.
arXiv preprint arXiv:1907.13440, 2019.

[26] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR, 2018.

[27] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[28] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

[29] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

[30] MLCO2 Initiative. Codecarbon. https://github.com/mlco2/codecarbon, 2021.
Accessed: June 1, 2023.

[31] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey
Levine, and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning.
In Conference on Robot Learning, pp. 991–1002. PMLR, 2022.

12

https://github.com/google/balloon-learning-environment
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/google_research/circuit_training
https://github.com/google_research/circuit_training
https://github.com/google_research/circuit_training
https://github.com/google_research/circuit_training
https://github.com/mlco2/codecarbon

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[32] Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement
learning benchmark. Advances in Neural Information Processing Systems, 36, 2023.

[33] Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Hg-
dagger: Interactive imitation learning with human experts. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 8077–8083. IEEE, 2019.

[34] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski.
Vizdoom: A doom-based ai research platform for visual reinforcement learning, 2016.

[35] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[36] Srivatsan Krishnan, Maximilian Lam, Sharad Chitlangia, Zishen Wan, Gabriel Barth-Maron,
Aleksandra Faust, and Vijay Janapa Reddi. Quarl: Quantization for fast and environmentally
sustainable reinforcement learning, 2022.

[37] Youngwoon Lee, Edward S Hu, and Joseph J Lim. Ikea furniture assembly environment for
long-horizon complex manipulation tasks. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6343–6349. IEEE, 2021.

[38] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[39] Shitian Li, Chunlin Tian, Kahou Tam, Rui Ma, and Li Li. Breaking on-device training memory
wall: A systematic survey, 2023.

[40] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations (ICLR), 2018. URL https://arxiv.org/abs/1802.08802.

[41] Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Silvio Savarese, and Li Fei-Fei. Learn-
ing to generalize across long-horizon tasks from human demonstrations. arXiv preprint
arXiv:2003.06085, 2020.

[42] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, et al. Chip placement with deep
reinforcement learning. arXiv preprint arXiv:2004.10746, 2020.

[43] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement
methodology for fast chip design. Nature, 594(7862):207–212, 2021.

[44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[45] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[46] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 113:54–71,
2019. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2019.01.012. URL https:
//www.sciencedirect.com/science/article/pii/S0893608019300231.

[47] David Patterson. How we’re minimizing ai’s carbon footprint. https://blog.google/
technology/ai/minimizing-carbon-footprint/. (Accessed on 06/05/2024).

[48] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network
training, 2021.

13

https://arxiv.org/abs/1802.08802
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://blog.google/technology/ai/minimizing-carbon-footprint/
https://blog.google/technology/ai/minimizing-carbon-footprint/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

[49] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine.
Learning agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784,
2020.

[50] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling,
Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, et al.
Mlperf inference benchmark. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pp. 446–459. IEEE, 2020.

[51] Mary Roszel, Robert Norvill, Jean Hilger, and Radu State. Know your model (kym): Increasing
trust in ai and machine learning. arXiv preprint arXiv:2106.11036, 2021.

[52] Peter Schafhalter, Sukrit Kalra, Le Xu, Joseph E Gonzalez, and Ion Stoica. Leveraging cloud
computing to make autonomous vehicles safer. In 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5559–5566. IEEE, 2023.

[53] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[54] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1134–1141,
2018. doi: 10.1109/ICRA.2018.8462891.

[55] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of
bits: An open-domain platform for web-based agents. In International Conference on Machine
Learning, pp. 3135–3144. PMLR, 2017.

[56] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul
Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for
autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 2446–2454, 2020.

[57] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[58] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin
Riedmiller. Deepmind control suite, 2018.

[59] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan
Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-
Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G.
Younis. Gymnasium, March 2023. URL https://zenodo.org/record/8127025.

[60] Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon,
Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning.
In International Conference on Machine Learning, pp. 34556–34583. PMLR, 2023.

[61] HADO van Hasselt, ARTHUR Guez, and DAVID Silver. Deep reinforcement learning with
double q-learning. arxiv e-prints. arXiv preprint arXiv:1509.06461, 2015.

[62] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[63] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan
Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmen-
tal implications, challenges and opportunities. Proceedings of Machine Learning and Systems,
4:795–813, 2022.

[64] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari
games with limited data. Advances in Neural Information Processing Systems, 34:25476–25488,
2021.

14

https://zenodo.org/record/8127025

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

[65] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Part I

Appendix
A ADDITIONAL EXPERIMENTS

We present an extensive set of additional experiments that showcase A2Perf’s capabilities in evaluating
autonomous agents across various domains and tasks. The results encompass a wide range of metrics,
including data cost, reliability, system performance, and application performance, providing a holistic
view of the strengths and limitations of different algorithmic approaches.

The circuit training domain experiments (Appendix A.1) reveal interesting trade-offs between be-
havioral cloning, DDQN, and PPO in terms of data efficiency, computational requirements, and
performance consistency. Moving to the quadruped locomotion domain (Appendix A.2), we observe
how the reliability metrics shed light on the robustness and worst-case behavior of the agents during
both training and inference phases. The web navigation domain (Appendix A.2) introduces an
additional layer of complexity, with websites of varying difficulty levels. Here, the system perfor-
mance metrics highlight the substantial computational demands, particularly in terms of memory
usage, associated with training web navigation agents. To further facilitate a clear and intuitive
comparison of the algorithms’ performance across all domains and tasks, we have included graphical
visualizations (Appendix A.4) that summarize the key metrics along different evaluation dimensions.

These experiments show A2Perf’s versatility in providing a comprehensive and nuanced evaluation of
autonomous agents operating in diverse and realistic settings. By considering multiple performance
aspects and presenting the results in both tabular and graphical formats, A2Perf enables researchers
and practitioners to gain valuable insights into the behavior and limitations of different algorithmic
choices, ultimately guiding the development of more robust and efficient autonomous agents.

A.1 CIRCUIT TRAINING

This section shows the full set of metrics for the toy macro standard cell and Ariane netlists in
the circuit training domain. The results highlight the differences in data cost, reliability, system
performance, and application performance between behavioral cloning (BC), DDQN, and PPO.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Toy Macro Standard Cell (Training)
BC DDQN PPO

Category Metric Name

Data Cost Training Sample Cost (kWh) 4.44 0 0

Application Generalization (100 eps. [all tasks]) -2.19 -2.20 -2.13
Returns (100 eps.) -0.97 ± 2.27× 10−3 -1.05 ± 0.04 -0.97 ± 8.09× 10−3

Reliability Dispersion Across Runs (IQR) N/A 0.01 ± 0.01 9.07e-03 ± 6.43× 10−3

Dispersion Within Runs (IQR) N/A 8.80× 10−3 ± 0.01 2.51× 10−3 ± 3.61× 10−3

Long Term Risk (CVaR) N/A 1.10 0.04
Risk Across Runs (CVaR) N/A -1.08 -0.99
Short Term Risk (CVaR) N/A 0.03 9.89× 10−3

System Energy Consumed (kWh) 0.02 ± 1.97× 10−4 5.55 ± 2.03 15.37 ± 3.79
GPU Power Usage (W) 188.20 ± 21.98 448.00 ± 200.41 307.05 ± 69.75
Peak RAM Usage (GB) 4.71 ± 0.02 525.99 ± 205.64 675.26 ± 45.30
Wall Clock Time (Hours) 0.10 ± 1.36× 10−3 0.29 ± 0.57 1.79 ± 2.16

Toy Macro Standard Cell (Inference)
Reliability Dispersion Across Rollouts (IQR) 1.68× 10−3 0.09 2.43× 10−3

Risk Across Rollouts (CVaR) -0.97 -1.10 -0.99
System GPU Power Usage (W) 104.97 ± 22.85 59.45 ± 1.43 58.97 ± 1.14

Inference Time (ms) 8.93 ± 0.51 20 ± 2.69 20 ± 2.67
Mean RAM Usage (GB) 1.92 ± 0.42 1.45 ± 0.48 1.99 ± 0.30
Peak RAM Usage (GB) 2.14 ± 0.03 2.10 ± 0.05 2.16 ± 0.07

Table 9: Metrics for the "Toy Macro" netlist task of CircuitTraining-v0. All metrics are averaged over ten
random seeds.

Ariane (Training)
BC DDQN PPO

Category Metric Name

Data Cost Training Sample Cost 48.28 0 0

Application Generalization (100 eps. [all tasks]) -2.18 -2.19 -2.05
Returns (100 eps.) -1.10 ± 0.04 -1.13 ± 0.04 -0.99 ± 7.25× 10−3

Reliability Dispersion Across Runs (IQR) N/A 0.03 ± 0.03 0.04 ± 0.02
Dispersion Within Runs (IQR) N/A 0.02 ± 0.03 4.77× 10−3 ± 4.92× 10−3

Long Term Risk (CVaR) N/A 1.20 0.03
Risk Across Runs (CVaR) N/A -1.17 -1.03
Short Term Risk (CVaR) N/A 0.07 0.01

System Energy Consumed (kWh) 0.11 ± 6.45× 10−4 108.20 ± 4.29 120.53 ± 2.78
GPU Power Usage (W) 211.35 ± 16.76 585.98 ± 172.50 692.94 ± 120.08
Mean RAM Usage (GB) 4.72 ± 0.53 849.37 ± 64.85 834.05 ± 55.90
Peak RAM Usage (GB) 5.25 ± 0.07 889.56 ± 23.44 906.45 ± 68.01
Wall Clock Time (Hours) 0.48 ± 2.61e-03 21.94 ± 0.90 23.95 ± 0.54

Ariane (Inference)
Reliability Dispersion Across Rollouts (IQR) 0.01 0.05 0.01

Risk Across Rollouts (CVaR) -1.23 -1.25 -1.01
System GPU Power Usage (W) 136.91 ± 21.48 69.50 ± 4.60 49.43 ± 30.29

Inference Time (ms) 10.0 ± 0.46 20.0 ± 2.69 20.0 ± 2.68
Mean RAM Usage (GB) 2.19 ± 0.21 2.15 ± 0.30 2.51 ± 0.49
Peak RAM Usage (GB) 2.29 ± 0.01 2.28 ± 0.13 2.71 ± 0.62

Table 10: Metrics for the Ariane Netlist task of CircuitTraining-v0. All metrics are averaged over ten random
seeds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2 QUADRUPED LOCOMOTION

This section reports the metrics for the dog pace, trot, and spin gaits in the quadruped locomotion
domain. The reliability metrics provide insights into the stability and worst-case performance of the
algorithms during training and inference.

Dog Pace (Training)
BC PPO SAC

Category Metric Name

Data Cost Training Sample Cost (kWh) 22.53 0 0

Application Generalization (100 eps. [all tasks]) 3.99 3.36 5.03
Returns (100 eps.) 7.00 ± 4.68 9.94 ± 15.59 6.96 ± 6.72

Reliability Dispersion Across Runs (IQR) N/A 9.63 ± 7.27 3.61 ± 3.88
Dispersion Within Runs (IQR) N/A 2.22 ± 1.97 2.98 ± 3.64
Long Term Risk (CVaR) N/A 13.00 25.82
Risk Across Runs (CVaR) N/A 13.74 8.55
Short Term Risk (CVaR) N/A 5.81 10.19

System Energy Consumed (kWh) 0.11 ± 0.02 32.46 ± 0.26 36.22 ± 2.33
GPU Power Usage (W) 240.64 ± 5.41 280.12 ± 23.69 266.37 ± 9.54
Mean RAM Usage (GB) 3.21 ± 0.24 532.93 ± 14.28 516.24 ± 75.03
Peak RAM Usage (GB) 3.25 ± 0.01 534.26 ± 2.04 545.16 ± 0.50
Wall Clock Time (Hours) 0.46 ± 0.07 18.73 ± 0.19 19.41 ± 2.74

Dog Pace (Inference)
Reliability Dispersion Across Rollouts (IQR) 0.52 8.76 4.80

Risk Across Rollouts (CVaR) 0.33 0.46 1.69
System GPU Power Usage (W) 60.37 ± 1.78 59.11 ± 1.31 61.41 ± 1.96

Inference Time (ms) 2.33 ± 0.54 2.56 ± 0.39 2.52 ± 0.74
Mean RAM Usage (GB) 1.69 ± 0.31 1.81 ± 0.14 1.71 ± 0.30
Peak RAM Usage (GB) 1.82 ± 0.03 1.84 ± 9.05e-03 1.85 ± 0.04

Table 11: Metrics for the "dog pace" gait of QuadrupedLocomotion-v0. All metrics are averaged over ten
random seeds

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Dog Trot (Training)
BC PPO SAC

Category Metric Name

Data Cost Training Sample Cost (kWh) 15.77 0 0

Application Generalization (100 eps. [all tasks]) 3.87 3.09 4.49
Returns (100 eps.) 1.06 ± 0.26 1.49 ± 1.02 3.51 ± 2.88

Reliability Dispersion Across Runs (IQR) N/A 9.07 ± 4.93 0.85 ± 1.29
Dispersion Within Runs (IQR) N/A 0.82 ± 0.84 0.93 ± 1.11
Long Term Risk (CVaR) N/A 6.79 8.46
Risk Across Runs (CVaR) N/A 6.00 2.58
Short Term Risk (CVaR) N/A 2.41 3.20

System Energy Consumed (kWh) 0.12 ± 0.02 16.82 ± 0.29 19.17 ± 0.64
GPU Power Usage (W) 242.12 ± 7.53 277.71 ± 23.47 269.18 ± 10.12
Mean RAM Usage (GB) 3.21 ± 0.25 535.00 ± 18.77 535.99 ± 29.49
Peak RAM Usage (GB) 3.26 ± 0.01 536.47 ± 1.98 544.80 ± 4.39
Wall Clock Time (Hours) 0.46 ± 0.06 18.57 ± 0.23 18.99 ± 6.78

Dog Trot (Inference)
Reliability Dispersion Across Rollouts (IQR) 0.32 0.89 1.25

Risk Across Rollouts (CVaR) 0.63 0.36 1.33
System GPU Power Usage (W) 59.32 ± 1.08 58.91 ± 1.28 59.39 ± 1.23

Inference Time (ms) 2.32 ± 0.49 2.55 ± 0.57 2.45 ± 0.35
Mean RAM Usage (GB) 1.66 ± 0.33 1.76 ± 0.25 1.80 ± 0.17
Peak RAM Usage (GB) 1.82 ± 8.77× 10−4 1.85 ± 0.02 1.85 ± 0.03

Table 12: Metrics for the "dog trot" gait of QuadrupedLocomotion-v0. All metrics are averaged over ten random
seeds.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Dog Spin (Training)
BC PPO SAC

Category Metric Name

Data Cost Training Sample Cost (kWh) 30.17 0 0

Application Generalization (100 eps. [all tasks]) 3.97 2.69 4.61
Returns (100 eps.) 1.54 ± 0.42 3.82 ± 6.22 3.84 ± 1.46

Reliability Dispersion Across Runs (IQR) N/A 7.92 ± 4.60 0.74 ± 0.76
Dispersion Within Runs (IQR) N/A 1.00 ± 1.08 0.84 ± 1.26
Long Term Risk (CVaR) N/A 8.88 14.37
Risk Across Runs (CVaR) N/A 8.29 3.82
Short Term Risk (CVaR) N/A 3.09 2.99

System Energy Consumed (kWh) 0.10 ± 0.04 17.42 ± 0.35 18.88 ± 0.59
GPU Power Usage (W) 216.72 ± 68.63 278.38 ± 22.60 264.46 ± 9.49
Mean RAM Usage (GB) 3.18 ± 0.26 534.56 ± 21.28 531.27 ± 55.64
Peak RAM Usage (GB) 3.23 ± 0.08 536.10 ± 3.03 477.22 ± 172.63
Wall Clock Time (Hours) 0.45 ± 0.08 17.13 ± 6.07 17.02 ± 9.05

Dog Spin (Inference)
Reliability Dispersion Across Rollouts (IQR) 0.37 2.41 1.78

Risk Across Rollouts (CVaR) 0.28 0.12 0.55
System GPU Power Usage (W) 60.10 ± 1.14 59.70 ± 1.22 59.65 ± 1.73

Inference Time (ms) 2.33 ± 0.66 2.45 ± 0.48 2.41 ± 0.22
Mean RAM Usage (GB) 1.68 ± 0.32 1.79 ± 0.22 1.75 ± 0.26
Peak RAM Usage (GB) 1.82 ± 0.03 1.85 ± 0.02 1.84 ± 0.02

Table 13: Metrics for the "dog spin" gait of QuadrupedLocomotion-v0. All metrics are averaged over ten
random seeds.

A.3 WEB NAVIGATION

This section details the evaluation on websites of varying difficulty levels in the web navigation
domain. The system performance metrics underscore the significant computational requirements,
especially in terms of RAM usage, for training web navigation agents.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Difficulty 1, 1 Website (Training)
BC DDQN PPO

Category Metric Name

Data Cost Training Sample Cost (kWh) 14.15 0 0

Application Generalization (100 eps. [all tasks]) -12.94 -11.15 -24.54
Returns (100 eps.) -3.57 ± 2.80 -7.55 ± 5.74 -13.45 ± 0.51

Reliability Dispersion Across Runs (IQR) N/A 0.73 ± 0.63 4.20 ± 1.45
Dispersion Within Runs (IQR) N/A 0.37 ± 0.68 0.57 ± 0.53
Long Term Risk (CVaR) N/A 9.32 12.12
Risk Across Runs (CVaR) N/A -2.75 -13.11
Short Term Risk (CVaR) N/A 1.79 1.86

System Energy Consumed (kWh) 0.04 ± 6.02× 10−4 29.56 ± 7.23 28.82 ± 1.19
GPU Power Usage (W) 125.89 ± 2.53 265.09 ± 21.50 305.15 ± 34.41
Mean RAM Usage (GB) 4.10 ± 0.33 1140.98 ± 580.55 1592.45 ± 388.64
Peak RAM Usage (GB) 4.23 ± 0.04 1931.54 ± 242.31 2305.57 ± 135.48
Wall Clock Time (Hours) 0.31 ± 4.91× 10−3 8.13 ± 5.17 10.50 ± 0.44

Difficulty 1, 1 Website (Inference)
Reliability Dispersion Across Rollouts (IQR) 3.36 11.75 0.50

Risk Across Rollouts (CVaR) -10.65 -13.25 -13.75
System GPU Power Usage (W) 108.61 ± 15.76 59.61 ± 1.41 60.26 ± 1.14

Inference Time (ms) 3.07 ± 0.47 110 ± 9.93 120 ± 9.71
Mean RAM Usage (GB) 1.97 ± 0.32 2.08 ± 0.20 2.12 ± 0.17
Peak RAM Usage (GB) 2.11 ± 0.11 2.18 ± 0.11 2.19 ± 0.09

Table 14: Metrics for "difficulty 1, 1 website" task of WebNavigation-v0. All metrics are averaged over ten
random seeds.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Difficulty 1, 5 Websites (Training)
BC DDQN PPO

Category Metric Name

Data Cost Training Sample Cost (kWh) 13.66 0 0

Application Generalization (100 eps. [all tasks]) -13.34 -11.03 -23.86
Returns (100 eps.) -4.87 ± 3.33 -3.43 ± 4.58 -12.37 ± 3.53

Reliability Dispersion Across Runs (IQR) N/A 0.43 ± 0.55 3.42 ± 1.08
Dispersion Within Runs (IQR) N/A 0.49 ± 0.97 0.75 ± 0.55
Long Term Risk (CVaR) N/A 11.27 11.70
Risk Across Runs (CVaR) N/A -1.26 -12.60
Short Term Risk (CVaR) N/A 2.47 2.05

System Energy Consumed (kWh) 0.04 ± 4.82× 10−4 31.59 ± 5.19 28.48 ± 1.22
GPU Power Usage (W) 126.04 ± 4.03 265.81 ± 22.08 303.28 ± 34.99
Mean RAM Usage (GB) 4.03 ± 0.34 1206.86 ± 466.37 1545.56 ± 427.22
Peak RAM Usage (GB) 4.15 ± 0.11 1928.69 ± 209.62 2227.07 ± 210.77
Wall Clock Time (Hours) 0.30 ± 3.71× 10−3 9.35 ± 4.70 10.45 ± 0.31

Difficulty 1, 5 Websites (Inference)
Reliability Dispersion Across Rollouts (IQR) 5.96 0.29 0.50

Risk Across Rollouts (CVaR) -11.36 -13.46 -13.75
System GPU Power Usage (W) 108.13 ± 16.85 60.87 ± 5.78 60.17 ± 1.67

Inference Time (ms) 3.04 ± 0.44 110 ± 9.83 120 ± 9.21
Mean RAM Usage (GB) 1.97 ± 0.33 2.07 ± 0.32 2.12 ± 0.16
Peak RAM Usage (GB) 2.12 ± 0.03 2.57 ± 0.86 2.19 ± 0.01

Table 15: Metrics for "difficulty 1, 5 websites" task of WebNavigation-v0. All metrics are averaged over ten
random seeds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Difficulty 1, 10 Websites (Training)
BC DDQN PPO

Category Metric Name

Data Cost Training Sample Cost (kWh) 19.71 0 0

Application Returns (100 eps.) -4.68 ± 3.28 -3.14 ± 4.24 -12.73 ± 2.86
Reliability Dispersion Across Runs (IQR) N/A 0.32 ± 0.47 3.67 ± 0.63

Dispersion Within Runs (IQR) N/A 0.42 ± 0.86 0.79 ± 0.53
Long Term Risk (CVaR) N/A 9.47 11.85
Risk Across Runs (CVaR) N/A -1.44 -12.79
Short Term Risk (CVaR) N/A 2.27 1.82

System Energy Consumed (kWh) 0.05 ± 2.41× 10−4 27.19 ± 11.22 20.35 ± 5.77
GPU Power Usage (W) 125.88 ± 2.33 264.98 ± 24.45 304.66 ± 33.77
Mean RAM Usage (GB) 3.56 ± 0.39 1214.88 ± 524.77 1034.85 ± 424.83
Peak RAM Usage (GB) 4.10 ± 0.05 1784.37 ± 641.82 1665.15 ± 395.14
Wall Clock Time (Hours) 0.32 ± 1.43e-03 7.80 ± 5.20 3.10 ± 5.06

Difficulty 1, 10 Websites (Inference)
Reliability Dispersion Across Rollouts (IQR) 5.86 0.25 0.50

Risk Across Rollouts (CVaR) -11.33 -13.28 -13.75
System GPU Power Usage (W) 108.26 ± 16.34 59.95 ± 1.49 59.67 ± 1.57

Inference Time (ms) 3.05 ± 0.45 110 ± 8.42 120 ± 9.90
Mean RAM Usage (GB) 1.97 ± 0.35 2.06 ± 0.27 2.13 ± 0.16
Peak RAM Usage (GB) 2.13 ± 0.04 2.17 ± 0.03 2.20 ± 0.03

Table 16: Metrics for "difficulty 1, 10 websites" task of WebNavigation-v0. All metrics are averaged over ten
random seeds.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.4 RADAR PLOTS FOR EASY VISUAL COMPARISON

These figures provide a graphical representation of the key metrics across all domains and tasks,
enabling a visual comparison of the algorithms’ performance along the different evaluation axes.

GPU Power Usage (W)

Peak RAM Usage (GB)

Wall Clock Time (Hours)

Generalization (100 eps. [all tasks])

Returns (100 eps.)

Dispersion Across Runs (IQR)

Dispersion Within Runs (IQR)

Long Term Risk (CVaR)

Risk Across Runs (CVaR)

Short Term Risk (CVaR)

Energy Consumed (kWh)

Training Sample Cost (kWh)

QuadrupedLocomotion-v0 Dog Spin Training Metrics

Metric Categories
Reliability
System
Application

Algorithms
BC
PPO
SAC

GPU Power Usage (W)

Inference Time (ms)

Peak RAM Usage (GB)

Dispersion Across Rollouts (IQR)

Risk Across Rollouts (CVaR)

QuadrupedLocomotion-v0 Dog Spin Inference Metrics

Figure 1: Graphical representation of metrics for the "dog spin" gait of QuadrupedLocomotion-v0

GPU Power Usage (W)

Peak RAM Usage (GB)

Wall Clock Time (Hours)

Generalization (100 eps. [all tasks])

Returns (100 eps.)

Dispersion Across Runs (IQR)

Dispersion Within Runs (IQR)

Long Term Risk (CVaR)

Risk Across Runs (CVaR)

Short Term Risk (CVaR)

Energy Consumed (kWh)

Training Sample Cost (kWh)

QuadrupedLocomotion-v0 Dog Trot Training Metrics

Metric Categories
Reliability
System
Application

Algorithms
BC
PPO
SAC

GPU Power Usage (W)

Inference Time (ms)

Peak RAM Usage (GB)

Dispersion Across Rollouts (IQR)

Risk Across Rollouts (CVaR)

QuadrupedLocomotion-v0 Dog Trot Inference Metrics

Figure 2: Graphical representation of metrics for the "dog trot" gait of QuadrupedLocomotion-v0

GPU Power Usage (W)

Peak RAM Usage (GB)

Wall Clock Time (Hours)

Generalization (100 eps. [all tasks])

Returns (100 eps.)

Dispersion Across Runs (IQR)

Dispersion Within Runs (IQR)

Long Term Risk (CVaR)

Risk Across Runs (CVaR)

Short Term Risk (CVaR)

Energy Consumed (kWh)

Training Sample Cost (kWh)

QuadrupedLocomotion-v0 Dog Pace Training Metrics

Metric Categories
Reliability
System
Application

Algorithms
BC
PPO
SAC

GPU Power Usage (W)

Inference Time (ms)

Peak RAM Usage (GB)

Dispersion Across Rollouts (IQR)

Risk Across Rollouts (CVaR)

QuadrupedLocomotion-v0 Dog Pace Inference Metrics

Figure 3: Graphical representation of metrics for the "dog pace" gait of QuadrupedLocomotion-v0

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

GPU Power Usage (W)

Peak RAM Usage (GB)

Wall Clock Time (Hours)

Generalization (100 eps. [all tasks])

Returns (100 eps.)

Dispersion Across Runs (IQR)

Dispersion Within Runs (IQR)

Long Term Risk (CVaR)

Risk Across Runs (CVaR)

Short Term Risk (CVaR)

Energy Consumed (kWh)

Training Sample Cost (kWh)

CircuitTraining-v0 Toy Macro Training Metrics

Metric Categories
Reliability
System
Application

Algorithms
BC
DDQN
PPO

GPU Power Usage (W)

Inference Time (ms)

Peak RAM Usage (GB)

Dispersion Across Rollouts (IQR)

Risk Across Rollouts (CVaR)

CircuitTraining-v0 Toy Macro Inference Metrics

Figure 4: Graphical representation of metrics for the "Toy Macro" netlist task of CircuitTraining-v0

GPU Power Usage (W)

Peak RAM Usage (GB)

Wall Clock Time (Hours)

Generalization (100 eps. [all tasks])

Returns (100 eps.)

Dispersion Across Runs (IQR)

Dispersion Within Runs (IQR)

Long Term Risk (CVaR)

Risk Across Runs (CVaR)

Short Term Risk (CVaR)

Energy Consumed (kWh)

Training Sample Cost (kWh)

CircuitTraining-v0 Ariane Training Metrics

Metric Categories
Reliability
System
Application

Algorithms
BC
DDQN
PPO

GPU Power Usage (W)

Inference Time (ms)

Peak RAM Usage (GB)

Dispersion Across Rollouts (IQR)

Risk Across Rollouts (CVaR)

CircuitTraining-v0 Ariane Inference Metrics

Figure 5: Graphical representation of metrics for the "Ariane" netlist task of CircuitTraining-v0

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

GPU Power Usage (W)

Peak RAM Usage (GB)

Wall Clock Time (Hours)

Generalization (100 eps. [all tasks])

Returns (100 eps.)

Dispersion Across Runs (IQR)

Dispersion Within Runs (IQR)

Long Term Risk (CVaR)

Risk Across Runs (CVaR)

Short Term Risk (CVaR)

Energy Consumed (kWh)

Training Sample Cost (kWh)

WebNavigation-v0 Difficulty 1: 1 Website Training Metrics

Metric Categories
Reliability
System
Application

Algorithms
BC
DDQN
PPO

GPU Power Usage (W)

Inference Time (ms)

Peak RAM Usage (GB)

Dispersion Across Rollouts (IQR)

Risk Across Rollouts (CVaR)

WebNavigation-v0 Difficulty 1: 1 Website Inference Metrics

Figure 6: Graphical representation of metrics for the "difficulty 1, 1 website" task of WebNavigation-v0

GPU Power Usage (W)

Peak RAM Usage (GB)

Wall Clock Time (Hours)

Generalization (100 eps. [all tasks])

Returns (100 eps.)

Dispersion Across Runs (IQR)

Dispersion Within Runs (IQR)

Long Term Risk (CVaR)

Risk Across Runs (CVaR)

Short Term Risk (CVaR)

Energy Consumed (kWh)

Training Sample Cost (kWh)

WebNavigation-v0 Difficulty 1: 5 Websites Training Metrics

Metric Categories
Reliability
System
Application

Algorithms
BC
DDQN
PPO

GPU Power Usage (W)

Inference Time (ms)

Peak RAM Usage (GB)

Dispersion Across Rollouts (IQR)

Risk Across Rollouts (CVaR)

WebNavigation-v0 Difficulty 1: 5 Websites Inference Metrics

Figure 7: Graphical representation of metrics for the "difficulty 1, 5 websites" task of WebNavigation-v0

GPU Power Usage (W)

Peak RAM Usage (GB)

Wall Clock Time (Hours)
Returns (100 eps.)

Dispersion Across Runs (IQR)

Dispersion Within Runs (IQR)

Long Term Risk (CVaR)

Risk Across Runs (CVaR)

Short Term Risk (CVaR)
Energy Consumed (kWh)

Training Sample Cost (kWh)

WebNavigation-v0 Difficulty 1: 10 Websites Training Metrics

Metric Categories
Reliability
System
Application

Algorithms
BC
DDQN
PPO

GPU Power Usage (W)

Inference Time (ms)

Peak RAM Usage (GB)

Dispersion Across Rollouts (IQR)

Risk Across Rollouts (CVaR)

WebNavigation-v0 Difficulty 1: 10 Websites Inference Metrics

Figure 8: Graphical representation of metrics for the "difficulty 1, 10 websites" task of WebNavigation-v0

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL SETUP

B.1 TRAINING

We used the Tensorflow Agents [19] library to conduct distributed reinforcement learning experiments
across the three domains: computer chip floorplanning, web navigation, and quadruped locomotion.
Our training setup consisted of one training server (a Google Cloud a2-highgpu-8g instance9)
equipped with four NVIDIA A100 GPUs, and multiple collect servers (Google Cloud n2-standard-96
instances10) with 96 vCPUs running in parallel.

The number of collect jobs running simultaneously varied depending on the specific domain and the
available resources (such as CPU and memory) on the collect machines, which are important for
running the environments efficiently. When using a collect machine with 96 vCPUs, we adjusted the
number of environment instances based on the computational requirements of each domain:

1. Quadruped Locomotion: With 96 vCPUs on the collect machine, we ran 44 quadruped
locomotion environment instances concurrently using Python 3.9.

2. Computer Chip Floorplanning: For the computer chip floorplanning domain, we ran 25
computer chip floorplanning environment instances on a collect machine with 96 vCPUs
using Python 3.10.

3. Web Navigation: When running web navigation experiments on a collect machine with
96 vCPUs, we instantiated 40 web navigation environment instances simultaneously using
Python 3.10.

The behavioral cloning experiments for all three domains used the same setup as the online training
experiments, with one training server equipped with four A100 GPUs.

B.2 INFERENCE

For the inference phase, we used a single machine equipped with one NVIDIA V100 GPU to evaluate
the trained models across all three domains: computer chip floorplanning, web navigation, and
quadruped locomotion. The difference in hardware between the training and inference setups does
not affect the application performance metrics, as these metrics are independent of the hardware
and reflect the effectiveness of the trained models. However, the system performance metrics, such
as inference time and memory usage, may vary depending on the specific hardware used during
inference.

9https://cloud.google.com/compute/docs/gpus#a100-gpus
10https://cloud.google.com/compute/docs/general-purpose-machines#

n2-standard

27

https://cloud.google.com/compute/docs/gpus##a100-gpus
https://cloud.google.com/compute/docs/general-purpose-machines##n2-standard
https://cloud.google.com/compute/docs/general-purpose-machines##n2-standard

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C HYPERPARAMETERS

Hyperparameter BC PPO DDQN
Toy Macro Standard Cell

Batch Size 64 128 256
Learning Rate 1e-4 4e-4 4e-5
Environment Batch Size - 512 512
Number of Epochs - 6 -
Number of Iterations 200 5000 10000
Entropy Regularization - 1e-2 -
Number of Episodes Per Iteration - 32 -
Epsilon Greedy - - 0.3
Replay Buffer Capacity - - 1000000

Ariane
Batch Size 64 128 256
Learning Rate 1e-4 4e-4 4e-5
Environment Batch Size - 512 512
Number of Epochs - 4 -
Number of Iterations 200 250 100000
Entropy Regularization - 1e-2 -
Number of Episodes Per Iteration - 1024 -
Epsilon Greedy - - 0.3
Replay Buffer Capacity - - 10000000

Table 17: Circuit Training Hyperparameters

Hyperparameter BC PPO DDQN
Batch Size 128 128 128
Learning Rate 1e-4 3e-6 3e-6
Entropy Regularization - 1e-2 -
Number of Episodes Per Iteration - 512 -
Environment Batch Size - 512 512
Number of Epochs - 4 -
Number of Iterations 5000 200 50000
Epsilon Greedy - - 0.3
Replay Buffer Capacity - - 1000000
Maximum Vocabulary Size 500 500 500
Latent Dimension 50 50 50
Embedding Dimension 100 100 100
Profile Value Dropout 1.0 1.0 1.0

Table 18: Web Navigation Hyperparameters

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Hyperparameter BC PPO SAC
Batch Size 64 128 256
Learning Rate 1e-4 1e-5 3e-4
Environment Batch Size - 512 512
Number of Epochs - 4 -
Number of Iterations 1000 8000 2000000
Entropy Regularization - 1e-2 -
Number of Episodes Per Iteration - 512 -
Replay Buffer Capacity - - 2000000

Table 19: Quadruped Locomotion Hyperparameters

D DATASET COLLECTION

To collect datasets for each domain and task, we periodically saved the policies at fixed intervals
throughout the training process. We then evaluated all the saved policies on 100 episodes for each
domain and task. Based on these evaluations, we created a distribution of median returns and assigned
an expertise level to each policy as follows:

1. Novice: The median return lies within one standard deviation below the mean.
2. Intermediate: The median return is within one standard deviation above or below the

mean.
3. Expert: The median return is one standard deviation above the mean or higher.

In some cases, certain domains or tasks were too challenging, resulting in no policies of a given skill
level. In such instances, we only provide a novice dataset.

E DATASET INFORMATION

1. Dataset documentation and intended uses:
• The A2Perf datasets consist of data collected from three simulated environments: com-

puter chip floorplanning, web navigation, and quadruped locomotion. The data was
generated by running reinforcement learning policies at various stages of training,
capturing the experiences of these policies interacting with the respective environments.
The datasets are intended for use in offline reinforcement learning, imitation learn-
ing, and hybrid approaches, allowing researchers to evaluate and compare different
algorithms without the need for online data collection.

2. Dataset availability:

• The datasets can be accessed at:
– Circuit Training: https://drive.google.com/drive/folders/
1UMhLlnYmfbnjBPN_JwVy4YXDUahXrWf6

– Quadruped Locomotion: https://drive.google.com/drive/
folders/1n1BJFip-reSPif8Bv3jXAnSOgfQAEje7

– Web Navigation: https://drive.google.com/drive/folders/
13EmCscVatl7Q5EFdWFRpwKlA2yRfonE5

3. Data format and usage:
• The datasets are provided in the widely-used HDF5 format, a data model and file format

designed for efficient storage and retrieval of large datasets. Detailed instructions on
how to read and use the data with the Minari framework are provided at: https:
//minari.farama.org/

4. Licensing:

29

https://drive.google.com/drive/folders/1UMhLlnYmfbnjBPN_JwVy4YXDUahXrWf6
https://drive.google.com/drive/folders/1UMhLlnYmfbnjBPN_JwVy4YXDUahXrWf6
https://drive.google.com/drive/folders/1n1BJFip-reSPif8Bv3jXAnSOgfQAEje7
https://drive.google.com/drive/folders/1n1BJFip-reSPif8Bv3jXAnSOgfQAEje7
https://drive.google.com/drive/folders/13EmCscVatl7Q5EFdWFRpwKlA2yRfonE5
https://drive.google.com/drive/folders/13EmCscVatl7Q5EFdWFRpwKlA2yRfonE5
https://minari.farama.org/
https://minari.farama.org/

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

• The A2Perf datasets are released under the MIT License. The authors confirm that they
bear all responsibility in case of violation of rights.

5. Maintenance and long-term preservation:
• The datasets are hosted on a Google Cloud Bucket maintained by the Farama Founda-

tion, a non-profit organization dedicated to supporting open-source machine learning
projects. This ensures the long-term availability and accessibility of the datasets for the
research community.

F WEBSITE GENERATION & AGENT INTERACTION

To generate the set of websites W , we first assume a target number of websites, denoted as Nwebsites.
Following the approach in Gur et al. [23] (shown in Table 4 of the paper), we consider 42 possible
primitives that can be added to a web page and introduce two additional primitives: a "new page"
primitive and a "stop" primitive, resulting in a total of 44 primitives.

The website generation process begins with an empty web page. We repeatedly sample uniformly
from the 44 primitives and add them to the current page. If the "new page" primitive is selected
during the sampling process, we start adding primitives to a new linked page. If the "stop" primitive is
selected, we conclude the generation of the current website and proceed to generate the next website,
if necessary. This process continues until we have generated the desired number of websites, Nwebsites.
Each website in the resulting set W consists of one or more web pages, with each page containing a
sampled set of primitives.

We define the difficulty of a web page as the probability of a random agent interacting with
the correct primitive(s). The difficulty of page pi is given by − log

(
nactive

nactive+npassive

)
, where

nactive and npassive denote the number of active and passive primitives on the page, respec-
tively. The difficulty of an entire sequence of web pages is determined by summing the dif-
ficulty of all individual pages it contains. Based on these difficulty calculations, we parti-
tion the websites into three difficulty levels. The three levels of difficulty correspond to the
probability thresholds of 50%, 25%, and 10% for levels 1, 2, and 3, respectively. Users
can select a specific difficulty level of web navigation by executing Python commands such
as env = gym.make("WebNavigation-Difficulty-01-v0", num_websites=1),
where the num_websites argument defines the number of websites that are generated for this
environment. At each timestep, the agent can interact with an HTML element on the page, such as
modifying the text field or clicking on the element, with the objective of entering correct information
into forms and clicking "next" or "submit" to advance between web pages.

30

	Introduction
	Related Work
	Evaluation Metrics
	Data Cost
	System Performance
	Reliability
	Application Performance
	Using A2Perf Metrics in Practice

	A2Perf Domains
	Circuit Training (RW1, RW3, RW6)
	Web Navigation (RW1, RW4, RW6, RW7, RW8, RW9)
	Quadruped Locomotion (RW1, RW2, RW3, RW4, RW5, RW6, RW8, RW9)

	Evaluation
	Comparing Across Algorithm Types with Data Cost
	System Performance for Training and Deployment Feasibility
	Robust Evaluation with Reliability Metrics

	Limitations and Future Work
	Conclusion
	Appendix
	I Appendix
	Additional Experiments
	Circuit Training
	Quadruped Locomotion
	Web Navigation
	Radar Plots for Easy Visual Comparison

	Experimental Setup
	Training
	Inference

	Hyperparameters
	Dataset Collection
	Dataset Information
	Website Generation & Agent Interaction

