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Abstract

Sharp wave-ripples (SWRs) are high-frequency (∼ 100–250 Hz) oscillatory bursts1

often observed in hippocampal local field potentials (LFPs), and are involved in2

a wide range of cognitive functions (memory consolidation to off-line and online3

planning). Reconstructing LFPs in the SWR regime is challenging due to the com-4

plexity of signals and the transient nature of these bursts. While many algorithms5

provide reasonable short-term predictions, most fail to reproduce long-term dynam-6

ics while preserving fast transients. In this study, we combine principal component7

analysis (PCA) with dynamic mode decomposition (DMD) to approximate the8

Koopman operator in a reduced latent space, allowing for the efficient reconstruc-9

tion of multi-channel hippocampal LFPs. The Koopman framework shifts the focus10

from state-space trajectories to observable evolution in an infinite-dimensional11

function space, enhancing interpretability and understanding of nonlinear systems.12

Using 200,000 samples, our PCA-DMD framework achieves superior reconstruc-13

tion accuracy compared to state-of-the-art DMD variants. Our results highlight14

PCA-DMD’s robustness in capturing complex neural dynamics and offer a power-15

ful tool for analysis of transient dynamics (e.g., SWR) with significant implications16

for neuroscience research and clinical applications.17

1 Introduction18

Local field potentials (LFPs) reflect the extracellular activity of neuronal ensembles [36, 9, 14, 35],19

providing a mesoscopic representation of circuit dynamics [9, 44, 12, 45]. In the hippocampus,20

LFPs are particularly informative during sharp wave-ripples (SWRs) [20, 19, 28], consisting of brief21

high-frequency oscillations (∼ 100–250 Hz) superimposed on sharp waves (∼ 50–100 ms). SWRs22

reflect synchronous neuronal firing with a characteristic multi-scale dynamics [7, 32, 23, 1, 43, 40],23

which are critical for a wide range of cognitive functions, for instance, episodic memory consolidation24

and planning [20, 27, 8]. Accurate reconstruction of LFPs with SWRs restores latent neural dynamics25

that noise or artifacts can mask. This is important for both basic neuroscience and clinical settings26

where pathological ripples disrupt cognition in epilepsy, schizophrenia, and Alzheimer’s disease [8].27

Beyond recovery, reconstruction also enables the extraction of dynamical features such as Lyapunov28

exponents, Koopman modes, and eigenfunctions, which are valuable for mechanistic analysis and29

signal classification [50]. Prior work has largely emphasized detection and prediction of SWRs,30

often leveraging machine learning (ML) and deep learning (DL) techniques [31, 29]. Representative31

examples include convolutional neural networks (CNN) for automated SWR detection [37], recurrent32

architectures such as RippleNet [15], consensus guidelines distinguishing SWRs from high-frequency33

oscillations [30], and spatiotemporal models differentiating SWRs from epileptiform discharges [34].34

Additional studies focus on feature extraction: topological analyses of SWR waveforms [47], ML35

toolboxes for cross-species analysis [39], artifact removal via SVD-based filtering [11], and dynamical36

network models for EEG/MEG reconstruction [10]. Despite these advances, direct reconstruction of37

LFP time series in the SWR regime remains underexplored. Dynamic mode decomposition (DMD)38

[46] and Koopman operator theory [17] provide a principled data-driven framework to approximate39
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nonlinear dynamics by decomposing spatiotemporal data into coherent modes with interpretable40

frequencies and growth rates. These techniques have uncovered hidden structures in diverse systems,41

such as magnetohydrodynamic plasma states [48], and are well suited for hippocampal dynamics,42

where SWRs originate from recurrent excitatory circuits in CA3 [45]. However, applications of43

DMD to hippocampal LFP reconstruction remain limited [19, 42]. A key challenge is the scale and44

complexity of LFP data: recordings span many samples across multiple channels, and dynamics are45

transient and fairly complex. Many DL models, such as recurrent neural networks (RNNs), struggle46

with LFP-scale data due to exploding/vanishing gradients in long sequences, excessive memory and47

compute requirements, and poor alignment with transient oscillations. Windowing can mitigate48

memory demands by segmenting recordings, but downsampling the signal causes information loss.49

For very long signals it fails to capture dependencies across distant windows, leading to loss of global50

temporal structure. In high-dimensional settings, architectures like Sampled RNNs [4] can change51

the frequency content of the ground-truth signal, creating distorted oscillations that reduce quality in52

the SWR band. Moreover, DL-based approaches generally provide limited interpretability compared53

to Koopman-based and DMD methods, which yield explicit spectral decompositions. Structured54

latent recurrent models, such as shPLRNN [16], also face challenges for long reconstructions. Their55

performance is highly sensitive to hyperparameter choices (e.g., latent dimension and teacher forcing56

parameter). Memory usage further scales poorly with sequence length, limiting applicability to57

large-scale LFP data. Similarly, existing DMD variants—including Classical DMD [24, 46], Sparse58

DMD (SpDMD) [21], multi-resolution DMD (MrDMD) [25], and higher-order DMD (HODMD)59

[26]—struggle to preserve high-frequency content, require large memory, or become numerically60

unstable on long windows. These limitations highlight the need for a scalable and interpretable61

reconstruction method for oscillatory LFP transients.62

In this study, we develop a PCA-DMD framework for multichannel LFP reconstruction, combining63

principal component analysis (PCA) [33] with Koopman-based modeling. PCA projects high-64

dimensional LFP segments into a low-rank subspace, and DMD approximates the Koopman operator65

to capture linear evolution in this latent space. An overlap-add reconstruction ensures temporal66

continuity and retention of transient oscillations. Our pipeline is mathematically related to Hankel-67

/delay-based DMD [3, 49] and HAVOK [5], but differs in three key aspects: (i) we apply PCA as a68

separate pre-compression step on vectorized windows (rather than a single Hankel SVD), (ii) we fit the69

Koopman operator in this PCA latent space for improved stability and reduced regression size, and (iii)70

we reconstruct the full signal using overlap–add with tapering to preserve transient SWR oscillations;71

see also Table 1. To the best of our knowledge, this explicit PCA–latent Koopman–overlap-add72

workflow has not appeared verbatim in prior work. Its application to large-scale hippocampal LFPs73

makes it impactful for both scale and fidelity. Our contributions are: (1) Demonstrating reconstruction74

of hippocampal LFPs up to 200k samples, beyond the practical reach of typical RNN or standard DMD75

approaches. (2) Showing that ablation-guided tuning of window size, step size, and latent dimension76

allows PCA-DMD to preserve SWR oscillations (100–250 Hz). (3) Benchmarking against Classical77

DMD, SpDMD, MrDMD, and HODMD via pyDMD [13, 18], and leveraging advances in Koopman78

analysis [2, 22, 6]. PCA-DMD achieves superior reconstruction accuracy, enhancing the recovery of79

oscillatory transients, which is central to understand their role in replay and decision-making [20].80

2 Data81

We used hippocampal LFP recordings from rodents for SWR detection [35], sourced from [38] The82

dataset includes eight channels of LFP signals, annotated with SWR events, recorded at 30 kHz to83

capture high-frequency oscillations (100-250 Hz). Each channel has 22,326,272 samples, totaling 74484

seconds. For analysis, we utilized a subset of 200k samples, with a maximum of 800k for successful85

reconstruction. Data were preprocessed by segmenting the signal into overlapping windows, with a86

window size of 3,000 samples and a step size of 30 samples determined through an ablation study to87

optimize performance for the applied dynamical systems methods (see Appendix E).88

3 PCA-DMD: A Koopman-based Multichannel LFP Reconstruction89

We propose a PCA-DMD method for reconstructing multichannel LFP signals. The raw LFP90

recordings are first segmented into overlapping windows, then reduced in dimensionality using PCA91

to obtain compact latent representations. A linear Koopman operator (Appendix A ) is subsequently92
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Table 1: DMD variants grouped by SVD workflow and relation to our PCA-DMD.
Method Type Key Notes / Relation
Classical DMD [24] Snapshot-SVD Koopman regression on snapshot basis.
SpDMD [21] Snapshot-SVD Adds sparse mode selection; otherwise same as

Classical.
MrDMD [25] Window-SVD Multi-resolution partitioning; trades global coher-

ence for local detail.
HODMD [26] Window-SVD Delay embedding; captures high-frequency oscilla-

tions but unstable for long windows.
Hankel-DMD [3] Window-SVD Hankel matrix from delays; foundation of HAVOK.
HAVOK [5] Window-SVD Hankel embedding + forcing term; chaotic signals.

Our PCA-DMD Windowing + PCA PCA pre-compression + Koopman in latent space
+ overlap–add reconstruction. Improves stability,
scalability, and transient SWR preservation.

learned in this latent space to capture the temporal evolution of the dynamics across channels. Finally,93

the latent states are mapped back to the original signal space through the inverse PCA projection, and94

the reconstructed windows are stitched together to approximate the full multichannel LFP signal while95

preserving SWR dynamics. Let the multichannel LFP signal be denoted by s = {st}Tt=1, st ∈ Rm,96

where m is the number of channels and T the total number of samples. We segment the signal into97

overlapping windows of length w with step size δ:98

Xi =
[
s⊤i s⊤i+1 · · · s⊤i+w−1

]⊤ ∈ Rw×m, i = 1, 1 + δ, · · · .
Each window is vectorized into xi = vec(Xi) ∈ Rwm, and the N windows together form the dataset99

X =
[
x⊤
1 x⊤

2 · · · x⊤
N

]⊤ ∈ RN×(wm).

We compute a rank-d PCA projection W ∈ R(wm)×d with d ≪ wm. The latent representations are100

Z = XW =
[
z⊤1 z⊤2 · · · z⊤N

]⊤ ∈ RN×d, zi ∈ Rd.

Define the shifted latent pairs as Zpast = [z1 z2 · · · zN−1] and Znext = [z2 z3 · · · zN ].101

We model the temporal evolution in the latent space as zi+1 ≈ Kzi, K ∈ Rd×d where the optimal102

K is obtained via least-squares: K = argminA∈Rd×d ∥Znext −AZpast∥F = ZnextZ
†
past with † the103

Moore–Penrose pseudoinverse. Then, the predicted latent states evolve as ẑi+k = Kkzi. These104

are mapped back to the window space via the inverse PCA projection x̂i = ẑiW
⊤ ∈ Rwm and105

X̂i = unvec(x̂i) ∈ Rw×m. Finally, the reconstructed multichannel signal ŝt ∈ Rm is obtained by106

overlap–add of the windows X̂i, with a tapering function (e.g., Hann) to reduce boundary artifacts.107

See Table 1 for a comparison of our method with other state-of-the-art DMD variants.108

4 Results109

The comparative evaluation in Table 2 shows that PCA-DMD significantly outperforms Classical110

DMD, SpDMD, MrDMD, and HODMD in LFP signal reconstruction. Performance was quantified111

using Kullback–Leibler divergence (KLD) and Hellinger distance (HD); see Appendix D. Visual112

analysis of the heatmaps in Fig. 1 further supports these findings: the PCA-DMD heatmap closely113

mirrors the amplitude patterns of the original signal in all eight channels and time samples, accurately114

capturing spatial (channel-wise) and temporal structures, while the other methods exhibit distortions115

and loss of high-frequency structure. These results underscore the efficacy of combining PCA-based116

dimensionality reduction with linear Koopman operator modeling, positioning our approach as a117

potential method for multi-channel LFP signal reconstruction. Ablation experiments further confirm118

these findings. Reducing the SVD rank from 8 to 5 caused significant degradation in all methods,119

as indicated by higher KLD and HD values. When scaling to 800,000 samples, only PCA-DMD120

preserved high fidelity, closely replicating the original signal’s spatiotemporal patterns, while other121

methods faced computational challenges. For more details, see Appendix F. Moreover, Koopman122

modes are illustrated in Appendix G. These modes offer complementary insights into the LFP signal123

by capturing both its spectral content (oscillatory frequencies) and its temporal dynamics.124
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Figure 1: Comparison of the original signal with reconstructed methods for 200,000 samples.

Table 2: Comparison with State of the Art Methods
Methods KLD HD
Classical DMD 0.8710 0.4067
MrDMD 0.4852 0.2238
HODMD 0.6135 0.3050
SpDMD 14.4061 0.9074
PCA-DMD 0.0761 0.0847

5 Conclusion125

We presented a PCA-DMD framework for multichannel LFP reconstruction in the hippocampal126

SWR regime. On 200k-sample recordings, PCA-DMD consistently outperformed state-of-the-art127

DMD methods in both statistical (KLD) and temporal (HD) measures, demonstrating its capacity128

to recover oscillatory transients and spatiotemporal structure more faithfully. The findings suggest129

that embedding Koopman operator learning into a reduced latent space is a powerful framework130

for uncovering the intrinsic low-dimensional dynamics underlying neural field potentials. A natural131

extension of this work is scaling the framework to reconstruct longer temporal sequences, up to132

the full dataset (∼22M samples), which will be crucial for evaluating stability, generalization, and133

robustness in real-world large-scale recordings.134

Limitations: PCA-DMD’s reliance on linear methods, potentially overlooking nonlinear dynamics135

and other complexities of LFPs [14], which can be further enhanced by incorporating recent develop-136

ments in neural manifold learning [41]. The approach also requires careful hyperparameter tuning137

(window size, step size, latent dimension), and large-scale PCA computations are computationally138

demanding. Despite these constraints, PCA-DMD offers a scalable and interpretable alternative to139

DL approaches for reconstructions of long neural signals with fine-grained transient dynamics.140
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Technical Appendices and Supplementary Material282

The supplementary materials provided in this appendix offer extended information to complement283

the main text, including additional plots of the dataset utilized for LFP reconstruction experiments,284

in-depth overviews of implemented state-of-the-art methods, as well as additional figures, ablation285

studies, and implementation details to enhance reproducibility and provide deeper insights into the286

PCA-DMD framework.287

The PCA-DMD approach for LFP signal reconstruction was evaluated against five state-of-the-art288

DMD methods: SpDMD, Classical DMD, HODMD, and MrDMD. Our method employs overlapping289

windowing of multi-channel LFP data, followed by dimensionality reduction to 8 components290

using PCA and learning a linear Koopman operator via regression to predict subsequent states,291

with full signal reconstruction achieved through weighted averaging of overlapping windows. In292

contrast, the DMD-based methods utilize PyDMD implementations, incorporating data scaling,293

eigenvalue-based Koopman operators, and various decomposition strategies (e.g., sparsity in SpDMD,294

multi-scale analysis in MrDMD), followed by similar windowed reconstruction. Comparative analysis295

demonstrates that our PCA-DMD method achieves superior reconstruction accuracy, as evidenced296

by lower average KLD and HD across channels. Visualizations, including multi-channel signal297

comparison plots and heatmaps of amplitude across time and channels, further confirm that our298

approach more effectively captures the underlying dynamics of LFP signals compared to these299

established DMD techniques.300

A Koopman Operator301

The Koopman operator provides a linear perspective on nonlinear dynamical systems by analyzing302

the evolution of observables (functions of the state) rather than the states themselves. Consider a303

discrete-time system304

ht+1 = f(ht), ht ∈ H ⊆ Rdh . (1)

For an observable ϕ : H → C, the Koopman operator K is defined as305

[Kϕ](h) = ϕ(f(h)).

Although f may be nonlinear, K is always linear (but typically infinite-dimensional), allowing spectral306

methods to be applied to nonlinear dynamics. Koopman eigenfunctions φk and eigenvalues λk satisfy307

φk(ht+1) = λk φk(ht),

and under suitable assumptions the state can be expanded in terms of these eigenfunctions. This leads308

to the Koopman mode decomposition (KMD):309

ht =
∑
k

λt
k ϕλk

(h0) c
Φ
k , (2)

where cΦk are the Koopman modes associated with the observable Φ. Thus, KMD expresses nonlinear310

dynamics as a superposition of modes evolving linearly in time, forming the theoretical foundation311

for data-driven methods such as dynamic mode decomposition (DMD).312

B SOTA Methods and their Results on LFP Reconstruction313

B.1 Classical DMD314

The Classical DMD implementation mirrors the windowing approach, utilizing PyDMD’s DMD with315

an SVD rank of 8 on the transposed windows. Reconstruction involves extracting the real part of the316

DMD-reconstructed data for predictions, deriving a diagonal Koopman matrix from eigenvalues, and317

reconstructing the full signal through overlapping window averaging tailored to the signal length. The318

Classical DMD method for LFP signal reconstruction begins by windowing the signal x(t) ∈ RN319

into overlapping snapshots Xfull = {x(ti : ti+w)}Mi=1, with window size w = 3000 and step δ = 30.320

The transposed snapshot matrix XT
full ∈ Rw×M is decomposed using DMD with SVD rank r = 8,321

solving:322

XT
next = AXT ,
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where X = Xfull[: −1], Xnext = Xfull[1 :], and A is approximated via DMD modes Φ and323

eigenvalues Λ:324

XT
full ≈ ΦΛtb,

with b as the initial amplitude. The predicted snapshots are Xpred = Re(ΦΛb). The full reconstructed325

signal is obtained as:326

xfull(t) =
1

c(t)

M−1∑
i=1

Xpred,i(t− iδ), t ∈ [iδ, iδ + w),

where c(t) counts overlapping windows, and the signal is trimmed to t ∈ [δ,min(N,T − δ)].327

B.2 SpDMD328

For SpDMD, the LFP reconstruction starts with windowing the signal similarly into overlapping329

segments, then applying PyDMD’s SpDMD with an SVD rank of 8 and a sparsity parameter rho330

of 1e-6 directly on the transposed window matrix. The reconstructed data from SpDMD is used331

to predict next snapshots, taking the real part, and a diagonal Koopman matrix is formed from332

the eigenvalues. Full signal reconstruction employs a custom averaging function over overlapping333

windows, adjusted to match the expected signal length.334

SpDMD method for LFP signal reconstruction processes a single-channel signal x(t) ∈ RN by335

forming overlapping windows Xfull = {x(ti : ti + w)}Mi=1, with window size w = 3000 and step336

δ = 30. The transposed snapshot matrix XT
full ∈ Rw×M is decomposed using SpDMD with SVD337

rank r = 8 and sparsity parameter ρ = 10−6, computing modes and eigenvalues via:338

XT
full ≈ ΦΛΦ−1,

where Φ contains SpDMD modes, and Λ is a diagonal matrix of eigenvalues. The predicted339

snapshots are obtained as Xpred = Re(ΦΛb), with b derived from the initial snapshot projection.340

Using X = Xfull[: −1] and Xnext = Xfull[1 :], the full reconstructed signal is computed as:341

xfull(t) =
1

c(t)

M−1∑
i=1

Xpred,i(t− iδ), t ∈ [iδ, iδ + w),

where c(t) is the count of overlapping windows at time t, and the signal is trimmed to t ∈342

[δ,min(N,T − δ)].343

B.3 HODMD344

HODMD for LFP reconstruction incorporates data scaling with StandardScaler before fitting Py-345

DMD’s HODMD with SVD rank 8 and delay d=2 on scaled transposed windows. The real part of346

reconstructed data is inverse-scaled, and predictions are made on shifted windows. Signal rebuilding347

uses the same overlapping averaging method. HODMD method for LFP reconstruction begins by348

windowing the signal x(t) ∈ RN into overlapping snapshots Xfull = {x(ti : ti + w)}Mi=1, with349

window size w = 3000 and step δ = 30, scaled to X̃full = StandardScaler(Xfull). HODMD, with350

SVD rank r = 8 and delay d = 2, is applied to the transposed snapshot matrix X̃T
full ∈ Rw×M ,351

constructing an augmented Hankel matrix and decomposing it as:352

X̃T
full ≈ ΦΛtb,

where Φ and Λ are the DMD modes and eigenvalues, and b is the amplitude vector. The re-353

constructed snapshots X̃rec are inverse-scaled to Xrec. Predictions use X = Xfull[: −1], with354

Xpred = Re(HODMD(StandardScaler(X))T ). The full signal is reconstructed via:355

xfull(t) =
1

c(t)

M−1∑
i=1

Xpred,i(t− iδ), t ∈ [iδ, iδ + w),

where c(t) counts overlapping windows, and the signal is trimmed to t ∈ [δ,min(N,T − δ)].356
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B.4 MrDMD357

MrDMD implementation scales the windowed data and employs PyDMD’s MrDMD with a base358

DMD of SVD rank 8, max level=2, and max cycles=1, fitting on scaled transposed matrices for359

multi-scale decomposition. Reconstructions and predictions use the real part inverse-scaled, with full360

signal assembly via overlapping averages. MrDMD method processes the LFP signal x(t) ∈ RN by361

forming overlapping windows Xfull = {x(ti : ti + w)}Mi=1, with window size w = 3000 and step362

δ = 30, scaled to X̃full = StandardScaler(Xfull). The MrDMD model, with a base DMD of SVD363

rank r = 8, maximum decomposition level L = 2, and maximum cycles C = 1, decomposes the364

transposed snapshot matrix X̃T
full ∈ Rw×M into multi-scale modes:365

X̃T
full ≈

L∑
l=1

C∑
c=1

Φl,cΛ
t
l,cbl,c,

where Φl,c, Λl,c, and bl,c are the modes, eigenvalues, and amplitudes at level l and cycle c. The366

reconstructed snapshots X̃rec are inverse-scaled to Xrec, and predictions use X = Xfull[: −1] and367

Xpred = Re(MrDMD(StandardScaler(X))T ). The full signal is reconstructed as:368

xfull(t) =
1

c(t)

M−1∑
i=1

Xpred,i(t− iδ), t ∈ [iδ, iδ + w),

with c(t) as the overlap count, trimmed to t ∈ [δ,min(N,T − δ)].369

C (Hyper)parameters370

Table 3: Short Forms of Parameters
Parameter Short Form
Sampling Frequency fs
Maximum Samples max_samples
Window Size window_size
Step Size step
Latent Dimension latent_dim
Sparsity Parameter rho
Delay Embeddings d
Maximum Decomposition Levels max_level
Maximum Cycles max_cycles

Table 4: Parameters Used in PCA-DMD, Classical DMD, SpDMD, HODMD, and MrDMD
Parameter PCA-DMD Classical DMD SpDMD HODMD MrDMD
fs 30,000 30,000 30,000 30,000 30,000
max_samples 200,000 200,000 200,000 200,000 200,000
window_size 3,000 3,000 3,000 3,000 3,000
step 30 30 30 30 30
latent_dim 8 8 8 8 8
rho - - 1e-8 - -
d - - - 50 -
max_level - - - - 5
max_cycles - - - - 2

D Evaluation Measures371

D.1 Kullback-Leibler divergence (KLD)372

To evaluate the geometrical agreement between the true and reconstructed LFP signals in PCA-DMD373

and DMD-based methods (Classical DMD, SpDMD, MrDMD, and HODMD), we employed the KLD374
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as a state space divergence metric. Specifically, for each of the eight LFP channels, we estimated375

probability distributions p(x) and q(x) from the trajectories of the true and reconstructed signals,376

respectively, in the observation space. The KLD was computed using histograms with 100 bins377

over the trimmed signal segments to approximate the distributions, with a small regularization term378

(ϵ = 10−10) added to avoid numerical issues. The KLD, averaged across channels, quantifies the379

discrepancy between the true and reconstructed attractor geometries, with lower values indicating380

better fidelity. Mathematically, the state space divergence is defined as:381

KLD(p(x) ∥ q(x)) =

∫
RN

p(x) log
p(x)

q(x)
dx,

where p(x) and q(x) represent the probability densities functions of the true and reconstructed382

trajectories, respectively.383

D.2 Hellinger Distance384

To assess the temporal agreement between the ground truth and reconstructed LFP signals, we utilized385

the (HD) as a temporal measure, bounded between 0 and 1, averaged across all eight dynamical386

variables (channels). For each channel, we computed the power spectra fi(ω) and gi(ω) for the true387

and reconstructed signals, respectively, using histogram-based approximations with 100 bins over388

the trimmed signal segments, normalized to satisfy
∫∞
−∞ fi(ω) dω = 1 and

∫∞
−∞ gi(ω) dω = 1. A389

regularization term (ϵ = 10−10) was applied to ensure numerical stability. The Hellinger distance,390

ranging from 0 (perfect agreement) to 1, was calculated per channel and averaged to produce HD.391

The Hellinger distance for the i-th channel is defined as:392

HD(fi(ω), gi(ω)) =

√
1−

∫ ∞

−∞

√
fi(ω)gi(ω) dω,

where fi(ω) and gi(ω) are the normalized power spectra of the true and reconstructed signals for the393

i-th channel.394

E Dataset395

To provide a broader view of the dataset beyond the analyzed segments, this section includes396

visualizations of the full-length hippocampal LFP recordings, both with and without annotated SWR397

events, as well as the combined eight-channel signals. These plots highlight the large-scale structure398

of the recordings and illustrate the spatial and temporal distribution of SWRs across channels,399

complementing the windowed analysis used for reconstruction.400

Figure 2: Full-length LFP signal.
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Figure 3: Full-length LFP signal with SWR.

Figure 4: All Channels.

Figure 5: All Channels with SWR.

F Ablation Study and Results401

To evaluate the performance of the PCA-DMD, Classical DMD, SpDMD, HODMD, and MrDMD402

methods in analyzing the 8-dimensional system, an ablation study was conducted with consistent403

parameters. The study focuses on comparing the reconstructed signals, Koopman modes, and404
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associated metrics such as KL divergence and Hellinger distance. Visualizations, including original405

vs. reconstructed signal plots, heatmaps of original and reconstructed signals, Koopman spectrum,406

top 5 Koopman modes in both time and complex domains, Koopman operator heatmaps, and the first407

5 principal components, are provided for each method to assess their effectiveness in capturing the408

dynamics of the 8D system. Detailed results, including mode structures and reconstruction accuracy,409

are presented in the following figures and tables. Further experiments reducing the SVD rank from 8410

to 5 resulted in significant degradation of reconstruction quality across all methods, with increased411

KLD and HD reflecting loss of critical dynamic modes. When scaling the reconstruction to 800,000412

samples, only PCA-DMD maintained high fidelity, as visualized in heatmaps that nearly replicated413

the original signal’s spatiotemporal patterns, while other methods struggled with computational414

complexity. Some of the additional results for the implemented methods are presented in the415

following sections.416

G Koopman modes417

G.1 Classical DMD Additional Results418

This section presents the top four eigenmodes in the complex plane. In the time domain, the plots419

show the temporal evolution of the top five modes per channel, with examples provided for the first420

two channels.421
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Figure 8: Four Modes in Complex Plane and Five Modes for first two channels in Time vs Amplitude
(Classical DMD).

G.2 SpDMD Additional Results422

The sparse formulation eliminates unnecessary modes, resulting in fewer; see Fig. 11.423
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Figure 11: Four Modes in Complex Plane and Five Modes for first two channels in Time vs Amplitude
(SpDMD).

G.3 MrDMD Additional Results424

Fig. 14 illustrates the top four eigenmodes in the complex plane and the temporal evolution of the top425

five modes for the first two channels using the MrDMD method.426
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Figure 14: Four Modes in Complex Plane and Five Modes for first two channels in Time vs Amplitude
(MrDMD).

G.4 HODMD Additional Results427

The plot features a star-like pattern with multiple straight lines radiating from a central point, each line428

corresponding to one of the eight channels. HODMD extends the standard DMD by incorporating429

higher-order dynamics, often using techniques like delayed embedding to enhance the representation430

of complex systems where spectral complexity exceeds spatial complexity.431
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Figure 17: Four Modes in Complex Plane and Five Modes for first two channels in Time vs Amplitude
(HODMD).

G.5 PCA-DMD Additional Results432

Principal Component Heatmaps (Spatial Structure): Since PCA-DMD first projects the data into433

a reduced PCA subspace, the analysis is presented in terms of spatial principal components rather434

than eigenvalues in the complex plane. The top five heatmaps show the spatial distribution of the435

first five principal components across channels and time, highlighting the dominant variance patterns436

preserved by PCA.437

Time Domain (Top 5 Modes): The temporal modes reconstructed in the reduced space show438

smoother dynamics, with each mode aligned to a specific principal component. Mode 1 typically439

captures the global trend, while higher modes encode localized oscillations in certain channels.440
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