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Abstract

Sharp wave-ripples (SWRs) are high-frequency (~ 100-250 Hz) oscillatory bursts
often observed in hippocampal local field potentials (LFPs), and are involved in
a wide range of cognitive functions (memory consolidation to off-line and online
planning). Reconstructing LFPs in the SWR regime is challenging due to the com-
plexity of signals and the transient nature of these bursts. While many algorithms
provide reasonable short-term predictions, most fail to reproduce long-term dynam-
ics while preserving fast transients. In this study, we combine principal component
analysis (PCA) with dynamic mode decomposition (DMD) to approximate the
Koopman operator in a reduced latent space, allowing for the efficient reconstruc-
tion of multi-channel hippocampal LFPs. The Koopman framework shifts the focus
from state-space trajectories to observable evolution in an infinite-dimensional
function space, enhancing interpretability and understanding of nonlinear systems.
Using 200,000 samples, our PCA-DMD framework achieves superior reconstruc-
tion accuracy compared to state-of-the-art DMD variants. Our results highlight
PCA-DMD’s robustness in capturing complex neural dynamics and offer a power-
ful tool for analysis of transient dynamics (e.g., SWR) with significant implications
for neuroscience research and clinical applications.

1 Introduction

Local field potentials (LFPs) reflect the extracellular activity of neuronal ensembles [36 9, [14} 35,
providing a mesoscopic representation of circuit dynamics [9, 44, [12, 45]. In the hippocampus,
LFPs are particularly informative during sharp wave-ripples (SWRs) [20, [19} 28]], consisting of brief
high-frequency oscillations (~ 100-250 Hz) superimposed on sharp waves (~ 50-100 ms). SWRs
reflect synchronous neuronal firing with a characteristic multi-scale dynamics [[7, 132} 23} [1, 143l 401,
which are critical for a wide range of cognitive functions, for instance, episodic memory consolidation
and planning [20} 27, 8]]. Accurate reconstruction of LFPs with SWRs restores latent neural dynamics
that noise or artifacts can mask. This is important for both basic neuroscience and clinical settings
where pathological ripples disrupt cognition in epilepsy, schizophrenia, and Alzheimer’s disease [S§]].
Beyond recovery, reconstruction also enables the extraction of dynamical features such as Lyapunov
exponents, Koopman modes, and eigenfunctions, which are valuable for mechanistic analysis and
signal classification [50]]. Prior work has largely emphasized detection and prediction of SWRs,
often leveraging machine learning (ML) and deep learning (DL) techniques [31} 29]. Representative
examples include convolutional neural networks (CNN) for automated SWR detection [37]], recurrent
architectures such as RippleNet [[15]], consensus guidelines distinguishing SWRs from high-frequency
oscillations [30]], and spatiotemporal models differentiating SWRs from epileptiform discharges [34].
Additional studies focus on feature extraction: topological analyses of SWR waveforms [47], ML
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toolboxes for cross-species analysis [39], artifact removal via SVD-based filtering [11]], and dynamical
network models for EEG/MEG reconstruction [10]. Despite these advances, direct reconstruction of
LFP time series in the SWR regime remains underexplored. Dynamic mode decomposition (DMD)
[46] and Koopman operator theory [17] provide a principled data-driven framework to approximate
nonlinear dynamics by decomposing spatiotemporal data into coherent modes with interpretable
frequencies and growth rates. These techniques have uncovered hidden structures in diverse systems,
such as magnetohydrodynamic plasma states [48]], and are well suited for hippocampal dynamics,
where SWRs originate from recurrent excitatory circuits in CA3 [45]. However, applications of
DMD to hippocampal LFP reconstruction remain limited [19,42]. A key challenge is the scale and
complexity of LFP data: recordings span many samples across multiple channels, and dynamics are
transient and fairly complex. Many DL models, such as recurrent neural networks (RNNs), struggle
with LFP-scale data due to exploding/vanishing gradients in long sequences, excessive memory and
compute requirements, and poor alignment with transient oscillations. Windowing can mitigate
memory demands by segmenting recordings, but downsampling the signal causes information loss.
For very long signals it fails to capture dependencies across distant windows, leading to loss of global
temporal structure. In high-dimensional settings, architectures like Sampled RNNs [4] can change
the frequency content of the ground-truth signal, creating distorted oscillations that reduce quality in
the SWR band. Moreover, DL-based approaches generally provide limited interpretability compared
to Koopman-based and DMD methods, which yield explicit spectral decompositions. Structured
latent recurrent models, such as sShPLRNN [[16]], also face challenges for long reconstructions. Their
performance is highly sensitive to hyperparameter choices (e.g., latent dimension and teacher forcing
parameter). Memory usage further scales poorly with sequence length, limiting applicability to
large-scale LFP data. Similarly, existing DMD variants—including Classical DMD [24 46], Sparse
DMD (SpDMD) [21]], multi-resolution DMD (MrDMD) [25]], and higher-order DMD (HODMD)
[26]—struggle to preserve high-frequency content, require large memory, or become numerically
unstable on long windows. These limitations highlight the need for a scalable and interpretable
reconstruction method for oscillatory LFP transients.

In this study, we develop a PCA-DMD framework (Fig. [T) for multichannel LFP reconstruction,
combining principal component analysis (PCA) [33] with Koopman-based modeling. PCA projects
high-dimensional LFP segments into a low-rank subspace, and DMD approximates the Koopman
operator to capture linear evolution in this latent space. An overlap-add reconstruction ensures
temporal continuity and retention of transient oscillations. Our pipeline is mathematically related
to Hankel-/delay-based DMD [3| 49] and HAVOK [3], but differs in three key aspects: (i) we
apply PCA as a separate pre-compression step on vectorized windows (rather than a single Hankel
SVD), (ii) we fit the Koopman operator in this PCA latent space for improved stability and reduced
regression size, and (iii) we reconstruct the full signal using overlap—add with tapering to preserve
transient SWR oscillations; see also Table m To the best of our knowledge, this explicit PCA—latent
Koopman—overlap-add workflow has not appeared verbatim in prior work. Its application to large-
scale hippocampal LFPs makes it impactful for both scale and fidelity. Our contributions are: (1)
Demonstrating reconstruction of hippocampal LFPs up to 200k samples, beyond the practical reach
of typical RNN or standard DMD approaches. (2) Showing that ablation-guided tuning of window
size, step size, and latent dimension allows PCA-DMD to preserve SWR oscillations (100-250 Hz).
(3) Benchmarking against Classical DMD, SpDMD, MrDMD, and HODMD via pyDMD [13}[18]], and
leveraging advances in Koopman analysis [2, 22| 6]]. PCA-DMD achieves superior reconstruction
accuracy, enhancing the recovery of oscillatory transients, which is central to understand their role in
replay and decision-making [20].

2 Data

We used hippocampal LFP recordings from rodents for SWR detection [35]], sourced from [38]] The
dataset includes eight channels of LFP signals, annotated with SWR events, recorded at 30 kHz to
capture high-frequency oscillations (100-250 Hz). Each channel has 22,326,272 samples, totaling 744
seconds. For analysis, we utilized a subset of 200k samples, with a maximum of 800k for successful
reconstruction. Data were preprocessed by segmenting the signal into overlapping windows, with a
window size of 3,000 samples and a step size of 30 samples determined through an ablation study to
optimize performance for the applied dynamical systems methods (see Appendix [E).
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Figure 1: Overview of the PCA—Koopman reconstruction pipeline applied to hippocampal LFP
signals. The raw LFP segment is first divided into short overlapping windows. These windowed
observations are then projected into a lower-dimensional latent space using PCA, providing a
compact representation of the system’s dominant spatial-temporal patterns. The Koopman operator is
subsequently learned in this latent space, enabling linear evolution of the nonlinear neural dynamics.
Finally, the reconstructed signal is obtained by mapping them back to the original signal space. This
pipeline allows efficient long-term reconstruction of LFP dynamics while preserving fast transient
components relevant for sharp wave-ripples.

Table 1: DMD variants grouped by SVD workflow and relation to our PCA-DMD.

Method Type Key Notes / Relation

Classical DMD [24]  Snapshot-SVD Koopman regression on snapshot basis.

SpDMD [21] Snapshot-SVD Adds sparse mode selection; otherwise same as
Classical.

MrDMD [25] Window-SVD Multi-resolution partitioning; trades global coher-
ence for local detail.

HODMD |[26] Window-SVD Delay embedding; captures high-frequency oscilla-
tions but unstable for long windows.

Hankel-DMD [3]] Window-SVD Hankel matrix from delays; foundation of HAVOK.

HAVOK [5] Window-SVD Hankel embedding + forcing term; chaotic signals.

Our PCA-DMD Windowing + PCA PCA pre-compression + Koopman in latent space

+ overlap—add reconstruction. Improves stability,
scalability, and transient SWR preservation.

3 PCA-DMD: A Koopman-based Multichannel LFP Reconstruction

We propose a PCA-DMD method for reconstructing multichannel LFP signals. The raw LFP
recordings are first segmented into overlapping windows, then reduced in dimensionality using PCA
to obtain compact latent representations. A linear Koopman operator (Appendix [A]) is subsequently
learned in this latent space to capture the temporal evolution of the dynamics across channels. Finally,
the latent states are mapped back to the original signal space through the inverse PCA projection, and
the reconstructed windows are stitched together to approximate the full multichannel LFP signal while
preserving SWR dynamics. Let the multichannel LFP signal be denoted by s = {s;}1_;, s; € R™,
where m is the number of channels and 7 the total number of samples. We segment the signal into
overlapping windows of length w with step size ¢:

T .
Xi=[s] sl - slhwd] €RV, i=1,146--.



Each window is vectorized into z; = vec(X;) € R*"™, and the N windows together form the dataset

X=[zf x5 - af] eRNx@m,
We compute a rank-d PCA projection W € R(¥™)*4 with d < wm. The latent representations are
Z=XW=1[2] 2 - zF] eRVX% . eR%
Define the shifted latent pairs as Zp,ast = [21 22 -+ zn—1] and Zpexy = [22 23 -+ 2n].

R%*4 where the optimal

We model the temporal evolution in the latent space as z;+1 ~ Kz;, K €
K is obtained via least-squares: K = argmin gcgaxa || Znext — AZpast||F = Znext ijt with { the
Moore—Penrose pseudoinverse. Then, the predicted latent states evolve as 2,4 = KFz,. These
are mapped back to the window space via the inverse PCA projection 2; = 2,W T € R*™ and
X; = unvec(Z;) € R¥*™. Finally, the reconstructed multichannel signal §; € R™ is obtained by

overlap—add of the windows X;, witha tapering function (e.g., Hann) to reduce boundary artifacts.
See Table[T|for a comparison of our method with other state-of-the-art DMD variants.

4 Results
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Figure 2: Original and reconstructed hippocampal LFP signals using five DMD methodologies. PCA-
DMD achieves the closest match to the ground-truth signal, preserving the underlying dynamics of
sharp wave—ripples. In contrast, HODMD, Classical DMD, MrDMD, and SpDMD show limitations
in capturing the dynamics required for accurate long-term LFP reconstruction.

The comparative evaluation in Table 2] shows that PCA-DMD significantly outperforms Classical
DMD, SpDMD, MrDMD, and HODMD in LFP signal reconstruction. Performance was quantified
using Kullback-Leibler divergence (KLD) and Hellinger distance (HD); see Appendix [D] Visual
analysis of overlay line plots in Fig. 2] and the heatmaps in Fig. [3| further supports these findings:
the PCA-DMD heatmap closely mirrors the amplitude patterns of the original signal in all eight
channels and time samples, accurately capturing spatial (channel-wise) and temporal structures,
while the other methods exhibit distortions and loss of high-frequency structure. These results
underscore the efficacy of combining PCA-based dimensionality reduction with linear Koopman
operator modeling, positioning our approach as a potential method for multi-channel LFP signal
reconstruction. Ablation experiments further confirm these findings. Reducing the SVD rank from 8
to 5 caused significant degradation in all methods, as indicated by higher KLD and HD values. When
scaling to 800,000 samples, only PCA-DMD preserved high fidelity, closely replicating the original
signal’s spatiotemporal patterns, while other methods faced computational challenges. For more
details, see Appendix [F} Moreover, Koopman modes are illustrated in Appendix [G] These modes
offer complementary insights into the LFP signal by capturing both its spectral content (oscillatory
frequencies) and its temporal dynamics.
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Figure 3: Comparison of the original signal with reconstructed methods for 200,000 samples.

Table 2: Comparison with State of the Art Methods

Methods KLD HD

Classical DMD  0.8710  0.4067
MrDMD 0.4852  0.2238
HODMD 0.6135  0.3050
SpDMD 14.4061 0.9074
PCA-DMD 0.0761  0.0847

5 Conclusion

We presented a PCA-DMD framework for multichannel LFP reconstruction in the hippocampal
SWR regime. On 200k-sample recordings, PCA-DMD consistently outperformed state-of-the-art
DMD methods in both statistical (KLD) and temporal (HD) measures, demonstrating its capacity
to recover oscillatory transients and spatiotemporal structure more faithfully. The findings suggest
that embedding Koopman operator learning into a reduced latent space is a powerful framework
for uncovering the intrinsic low-dimensional dynamics underlying neural field potentials. A natural
extension of this work is scaling the framework to reconstruct longer temporal sequences, up to
the full dataset (~22M samples), which will be crucial for evaluating stability, generalization, and
robustness in real-world large-scale recordings.

Limitations: PCA-DMD may overlooks some complexities of LFPs [14], which can be further
enhanced by incorporating recent developments in neural manifold learning [41]]. The approach also
requires careful hyperparameter tuning (window size, step size, latent dimension), and large-scale
PCA computations are computationally demanding. Despite these constraints, PCA-DMD offers a
scalable and interpretable alternative to DL approaches for reconstructions of long neural signals
with fine-grained transient dynamics.
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Technical Appendices and Supplementary Material

The supplementary materials provided in this appendix offer extended information to complement
the main text, including additional plots of the dataset utilized for LFP reconstruction experiments,
in-depth overviews of implemented state-of-the-art methods, as well as additional figures, ablation
studies, and implementation details to enhance reproducibility and provide deeper insights into the
PCA-DMD framework.

The PCA-DMD approach for LFP signal reconstruction was evaluated against five state-of-the-art
DMD methods: SpDMD, Classical DMD, HODMD, and MrDMD. Our method employs overlapping
windowing of multi-channel LFP data, followed by dimensionality reduction to 8 components
using PCA and learning a linear Koopman operator via regression to predict subsequent states,
with full signal reconstruction achieved through weighted averaging of overlapping windows. In
contrast, the DMD-based methods utilize PyDMD implementations, incorporating data scaling,
eigenvalue-based Koopman operators, and various decomposition strategies (e.g., sparsity in SpDMD,
multi-scale analysis in MrDMD), followed by similar windowed reconstruction. Comparative analysis
demonstrates that our PCA-DMD method achieves superior reconstruction accuracy, as evidenced
by lower average KLD and HD across channels. Visualizations, including multi-channel signal
comparison plots and heatmaps of amplitude across time and channels, further confirm that our
approach more effectively captures the underlying dynamics of LFP signals compared to these
established DMD techniques.

A Koopman Operator

The Koopman operator provides a linear perspective on nonlinear dynamical systems by analyzing
the evolution of observables (functions of the state) rather than the states themselves. Consider a
discrete-time system

1= f(), +€HCRM™ (1

For an observable ¢ : H — C, the Koopman operator /C is defined as

(K1) = o(f))-

Although f may be nonlinear, C is always linear (but typically infinite-dimensional), allowing spectral
methods to be applied to nonlinear dynamics. Koopman eigenfunctions ¢, and eigenvalues Ay, satisfy

ok (t+1) = Ak (1),

and under suitable assumptions the state can be expanded in terms of these eigenfunctions. This leads
to the Koopman mode decomposition (KMD):

P =D Moao)Es 2
k

where ¢ are the Koopman modes associated with the observable ®. Thus, KMD expresses nonlinear
dynamics as a superposition of modes evolving linearly in time, forming the theoretical foundation
for data-driven methods such as dynamic mode decomposition (DMD).

B SOTA Methods and their Results on LFP Reconstruction

B.1 Classical DMD

The Classical DMD implementation mirrors the windowing approach, utilizing PyDMD’s DMD with
an SVD rank of 8 on the transposed windows. Reconstruction involves extracting the real part of the
DMD-reconstructed data for predictions, deriving a diagonal Koopman matrix from eigenvalues, and
reconstructing the full signal through overlapping window averaging tailored to the signal length. The
Classical DMD method for LFP signal reconstruction begins by windowing the signal z(¢) € R
into overlapping snapshots Xgy = {z(¢; : t; +w) ﬁl, with window size w = 3000 and step 6 = 30.
The transposed snapshot matrix X1, € R“*M js decomposed using DMD with SVD rank r = 8,
solving:

XT

next

= AX7T,



where X = Xgy[: —1], Xpext = Xgun[l :], and A is approximated via DMD modes ® and
eigenvalues A:

XEy ~ ®A'D,
with b as the initial amplitude. The predicted snapshots are Xrq = Re(®Ab). The full reconstructed
signal is obtained as:

M-1
xfull Z Xpred '3 - ‘ ), t € [26, 7/5 + w)7

where ¢(t) counts overlapping windows, and the signal is trimmed to ¢ € [0, min(N,T — §)].

B.2 SpDMD

For SpDMD, the LFP reconstruction starts with windowing the signal similarly into overlapping
segments, then applying PyDMD’s SpDMD with an SVD rank of 8 and a sparsity parameter rho
of le-6 directly on the transposed window matrix. The reconstructed data from SpDMD is used
to predict next snapshots, taking the real part, and a diagonal Koopman matrix is formed from
the eigenvalues. Full signal reconstruction employs a custom averaging function over overlapping
windows, adjusted to match the expected signal length.

SpDMD method for LFP signal reconstruction processes a single-channel signal x(t) € RY by
forming overlapping windows Xy, = {x( s t; +w)}M,, with window size w = 3000 and step
0 = 30. The transposed snapshot matrix X Gfun € R¥*M js decomposed using SpDMD with SVD
rank 7 = 8 and sparsity parameter p = 10~°, computing modes and eigenvalues via:

X1~ ®AP !,

where ® contains SpDMD modes, and A is a diagonal matrix of eigenvalues. The predicted
snapshots are obtained as X,eq = Re(®Ab), with b derived from the initial snapshot projection.
Using X = Xgy[: —1] and Xpexe = X[l :], the full reconstructed signal is computed as:

M-1
xfull Z Xpred 3 - ‘ ), t € [25, 7/5 + w)7

where c¢(t) is the count of overlapping windows at time ¢, and the signal is trimmed to ¢ €
[0, min(N, T — §)].

B.3 HODMD

HODMD for LFP reconstruction incorporates data scaling with StandardScaler before fitting Py-
DMD’s HODMD with SVD rank 8 and delay d=2 on scaled transposed windows. The real part of
reconstructed data is inverse-scaled, and predictions are made on shifted windows. Signal rebuilding
uses the same overlapping averaging method. HODMD method for LFP reconstruction beglns by
windowing the signal z(t) € RY into overlapping snapshots Xgy = {x(t; : t; + w)}M,, with

window size w = 3000 and step § = 30, scaled to Xfu]] = StandardScaler(Xg,;). HODMD, with

SVD rank r = 8 and delay d = 2, is applied to the transposed snapshot matrix X{, € Rw*M,
constructing an augmented Hankel matrix and decomposing it as:

XT ~ ®A'D,

where ® and A are the DMD modes and eigenvalues, and b is the amplitude vector. The re-

constructed snapshots Xrec are inverse-scaled to X. Predictions use X = Xgy[: —1], with
Xpred = Re(HODMD (StandardScaler(X))?'). The full signal is reconstructed via:

M-1
T (t Z Xpred,i(t —10), t € [i6,10 + w),

where ¢(t) counts overlapping windows, and the signal is trimmed to ¢ € [0, min(N,T — §)].
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B4 MrDMD

MrDMD implementation scales the windowed data and employs PyDMD’s MrDMD with a base
DMD of SVD rank 8, max level=2, and max cycles=1, fitting on scaled transposed matrices for
multi-scale decomposition. Reconstructions and predictions use the real part inverse-scaled, with full
signal assembly via overlapping averages. MrDMD method processes the LFP signal z(t) € RY by
forming overlapping windows Xgy = {z(t; : t; + w)}M,, with window size w = 3000 and step
d = 30, scaled to Xy,; = StandardScaler(Xg,;). The MrDMD model, with a base DMD of SVD
rank r = 8, maximum decomposition level L = 2, and maximum cycles C' = 1, decomposes the
transposed snapshot matrix X7, € R“*M into multi-scale modes:

L C
v T § § t
Xfull ~ élchl,cbl-,m

=1 c=1
where ®; ., A; ., and b; . are the modes, eigenvalues, and amplitudes at level [ and cycle c. The
reconstructed snapshots X, are inverse-scaled to X, and predictions use X = Xg[: —1] and

Xpred = Re(MrDMD(StandardScaler(X))?'). The full signal is reconstructed as:

M—1
1 . e
.%‘fuu(t) = @ Z Xpred,i(t — 16), t e [2(5, 10 + ’LU)7
=1

with ¢(t) as the overlap count, trimmed to ¢ € [6, min(N,T — §)].

C (Hyper)parameters

Table 3: Short Forms of Parameters

Parameter Short Form
Sampling Frequency fs

Maximum Samples max_samples
Window Size window_size
Step Size step

Latent Dimension latent_dim
Sparsity Parameter rho

Delay Embeddings d

Maximum Decomposition Levels max_level
Maximum Cycles max_cycles

Table 4: Parameters Used in PCA-DMD, Classical DMD, SpDMD, HODMD, and MrDMD
Parameter PCA-DMD Classical DMD SpDMD HODMD MrDMD

fs 30,000 30,000 30,000 30,000 30,000
max_samples 200,000 200,000 200,000 200,000 200,000
window_size 3,000 3,000 3,000 3,000 3,000
step 30 30 30 30 30
latent_dim 8 8 8 8 8
rho - - le-8 - -

d - - - 50 -
max_level - - - - 5
max_cycles - - - - 2

D Evaluation Measures

D.1 Kullback-Leibler divergence (KLD)

To evaluate the geometrical agreement between the true and reconstructed LFP signals in PCA-DMD
and DMD-based methods (Classical DMD, SpDMD, MrDMD, and HODMD), we employed the KLD
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as a state space divergence metric. Specifically, for each of the eight LFP channels, we estimated
probability distributions p(x) and ¢(z) from the trajectories of the true and reconstructed signals,
respectively, in the observation space. The KLD was computed using histograms with 100 bins
over the trimmed signal segments to approximate the distributions, with a small regularization term
(e = 10719) added to avoid numerical issues. The KLD, averaged across channels, quantifies the
discrepancy between the true and reconstructed attractor geometries, with lower values indicating
better fidelity. Mathematically, the state space divergence is defined as:

KLD() | ata)) = [ ple)tog 2 ar,
RN q(x)
where p(z) and g(x) represent the probability densities functions of the true and reconstructed
trajectories, respectively.

D.2 Hellinger Distance

To assess the temporal agreement between the ground truth and reconstructed LFP signals, we utilized
the (H D) as a temporal measure, bounded between 0 and 1, averaged across all eight dynamical
variables (channels). For each channel, we computed the power spectra f;(w) and g;(w) for the true
and reconstructed signals, respectively, using hlstogram -based appr0x1mat10ns W1th 100 bins over
the trimmed signal segments, normalized to satisfy [~ fi(w)dw = 1 and [ gi(w)dw = 1. A

regularization term (e = 10~1%) was applied to ensure numerical stability. The Hellinger distance,
ranging from O (perfect agreement) to 1, was calculated per channel and averaged to produce HD.
The Hellinger distance for the ¢-th channel is defined as:

D(fi(w), gs(w)) = \/ - " V@) g@) d,

where f;(w) and g;(w) are the normalized power spectra of the true and reconstructed signals for the
1-th channel.

E Dataset

To provide a broader view of the dataset beyond the analyzed segments, this section includes
visualizations of the full-length hippocampal LFP recordings, both with and without annotated SWR
events, as well as the combined eight-channel signals. These plots highlight the large-scale structure
of the recordings and illustrate the spatial and temporal distribution of SWRs across channels,
complementing the windowed analysis used for reconstruction.

Full LFP Signal)

6000

4000

2000

Amplitude

~2000

-4000

4 100 200 300 400 500 600 700
Time (s)

Figure 4: Full-length LFP signal.
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LFP Signal Visualization - Channel_5 with Ground Truth Intervals
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Figure 5: Full-length LFP signal with SWR.
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Figure 7: All Channels with SWR.

F Ablation Study and Results

To evaluate the performance of the PCA-DMD, Classical DMD, SpDMD, HODMD, and MrDMD
methods in analyzing the 8-dimensional system, an ablation study was conducted with consistent
parameters. The study focuses on comparing the reconstructed signals, Koopman modes, and
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associated metrics such as KL divergence and Hellinger distance. Visualizations, including original
vs. reconstructed signal plots, heatmaps of original and reconstructed signals, Koopman spectrum,
top 5 Koopman modes in both time and complex domains, Koopman operator heatmaps, and the first
5 principal components, are provided for each method to assess their effectiveness in capturing the
dynamics of the 8D system. Detailed results, including mode structures and reconstruction accuracy,
are presented in the following figures and tables. Further experiments reducing the SVD rank from 8
to 5 resulted in significant degradation of reconstruction quality across all methods, with increased
KLD and HD reflecting loss of critical dynamic modes. When scaling the reconstruction to 800,000
samples, only PCA-DMD maintained high fidelity, as visualized in heatmaps that nearly replicated
the original signal’s spatiotemporal patterns, while other methods struggled with computational
complexity. Some of the additional results for the implemented methods are presented in the
following sections.

G Koopman modes

G.1 Classical DMD Additional Results

This section presents the top four eigenmodes in the complex plane. In the time domain, the plots
show the temporal evolution of the top five modes per channel, with examples provided for the first
two channels.
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G.2 SpDMD Additional Results

Time (s)

The sparse formulation eliminates unnecessary modes, resulting in fewer; see Fig. [13]
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Figure 13: Four Modes in Complex Plane and Five Modes for first two channels in Time vs Amplitude

(SpDMD).

G.J3

Fig. [I6]illustrates the top four eigenmodes in the complex plane and the temporal evolution of the top

MrDMD Additional Results

five modes for the first two channels using the MrDMD method.
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G.4 HODMD Additional Results

The plot features a star-like pattern with multiple straight lines radiating from a central point, each line
corresponding to one of the eight channels. HODMD extends the standard DMD by incorporating
higher-order dynamics, often using techniques like delayed embedding to enhance the representation

of complex systems where spectral complexity exceeds spatial complexity.
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Figure 19: Four Modes in Complex Plane and Five Modes for first two channels in Time vs Amplitude
(HODMD).

G.5 PCA-DMD Additional Results

Principal Component Heatmaps (Spatial Structure): Since PCA-DMD first projects the data into
areduced PCA subspace, the analysis is presented in terms of spatial principal components rather
than eigenvalues in the complex plane. The top five heatmaps show the spatial distribution of the
first five principal components across channels and time, highlighting the dominant variance patterns
preserved by PCA.

Time Domain (Top 5 Modes): The temporal modes reconstructed in the reduced space show
smoother dynamics, with each mode aligned to a specific principal component. Mode 1 typically
captures the global trend, while higher modes encode localized oscillations in certain channels.
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