
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CRAFTIUM: A FRAMEWORK FOR CREATING SIN-
GLE AND MULTI-AGENT ENVIRONMENTS FOR OPEN-
ENDED AND EMBODIED AI

Anonymous authors
Paper under double-blind review

ABSTRACT

Advancements in open-ended and embodied AI require highly adaptable and com-
putationally efficient environments. Yet, existing platforms often lack the flexibil-
ity, efficiency, or richness necessary to drive progress in these areas. Research
in fields related to open-endedness, such as unsupervised environment design and
continual reinforcement learning, usually defaults to simplistic 2D environments,
as alternatives are either too rigid or computationally expensive. Conversely, in
embodied AI, the field relies on fully featured video games like Minecraft, which
are rich in content but computationally inefficient, single-agent only, and hinder
the creation of new tasks. This paper introduces Craftium, a framework based on
the open-source Minetest game engine, providing a highly customizable, easy-to-
use, and efficient platform for building rich single and multi-agent Minecraft-like
3D environments. We showcase environments of different complexity and na-
ture: from single and multi-agent reinforcement learning tasks to vast worlds with
many creatures and biomes and customizable procedural task generators. Con-
ducted benchmarks show that Craftium substantially improves the computational
cost of Minecraft-based frameworks, achieving +2K steps per second more.

Figure 1: Examples of the diverse single and multi-agent environments that can be created in
Craftium. From simple reach-the-goal tasks to battling hostile creatures, surviving in procedu-
rally generated dungeons, and exploring vast open worlds filled with animals, monsters, and varied
biomes.

1 INTRODUCTION

Progress in open-ended (Hughes et al., 2024) and embodied AI (Paolo et al., 2024), as well as in
Reinforcement Learning (RL) (Sutton & Barto, 2018) is inherently tied to the environments where
agents are trained, evaluated, and analyzed. Each new insight or advancement in the field is sup-
ported by an environment that enables its emergence and study. A well-known example is the Atari
Learning Environments (ALE) (Bellemare et al., 2013), which undoubtedly contributed to the ad-
vancement of the RL field marking many of its most important milestones. To name a few: the
introduction of the Deep Q-Networks (Mnih et al., 2013), the “infamously difficult Montezuma’s
Revenge” (Bellemare et al., 2016) that inspired many exploration strategies (Ostrovski et al., 2017;
Burda et al., 2019; Badia et al., 2020b), and the first time an agent outperformed humans in all Atari
benchmarks (Badia et al., 2020a).

However, the research in these areas is bound to challenges introduced by the employed environ-
ments, as largely observed throughout the literature. The researcher often faces a dilemma between

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

computationally efficient but simplistic, or substantially slower but rich environments. For instance,
Continual Reinforcement Learning (CRL) (Abel et al., 2023), Unsupervised Environment Design
(UED) (Garcin et al., 2024), and Multi-Agent RL (MARL) (Ying et al., 2023), are greatly affected
by the efficiency of the employed environments as require learning from many tasks or agents. Thus,
in these works, experiments are often limited to simple environments as a consequence of the com-
putational cost of employing more complex alternatives (Rigter et al., 2024; Malagon et al., 2024;
Beukman et al., 2024; Rutherford et al., 2024). For example, Craftax relies on 2D grids (Matthews
et al., 2024), while OMNI-EPIC (Faldor et al., 2024) employs 3D environments of substantially lim-
ited diversity compared to alternatives like MineDojo (Fan et al., 2022) or Habitat 3.0 (Puig et al.,
2024).

Conversely, works on rich and complex environments (Grbic et al., 2021; Earle et al., 2024; Prasanna
et al., 2024; Raad et al., 2024) rely on fully featured video games that have a high computational
cost and are close-source. The best-known of such platforms is Minecraft, which has inspired sev-
eral single-agent environments and benchmarks over the years (Johnson et al., 2016; Guss et al.,
2019; Fan et al., 2022). However, Minecraft is a fully featured and complex 3D game, which makes
it substantially more inefficient than simpler alternatives (Wydmuch et al., 2019; Matthews et al.,
2024). Furthermore, its closed source greatly limits its flexibility, hindering its application to prob-
lems beyond classic RL, like UED, CRL, and MARL scenarios.

Another important issue that specially affects research in these areas is the lack of flexibility of
the environments. Commonly used environments offer no customization or limited possibilities
often restricted to a set of predefined parameters, such as difficulty level or the number of ene-
mies. Among others, these environments include: ALE (Machado et al., 2018), MineRL (Guss
et al., 2019), ProcGen (Cobbe et al., 2020), MineDojo (Fan et al., 2022), Crafter (Hafner, 2022),
and Craftax (Matthews et al., 2024). The lack of flexibility hinders the ability to analyze specific
behavior of agents, obstructing algorithmic comparison beyond pure performance benchmarking,
which has been shown insufficient for RL (Jordan et al., 2024). Although flexible platforms that
allow the creation of new and diverse environments exist, these fall into 2D worlds (Bamford et al.,
2020; Chevalier-Boisvert et al., 2023; Matthews et al., 2024) or depend on complex Domain Spe-
cific Languages (DSL) that difficult their implementation, while still not being 3D, as it is the case
of VizDoom (Wydmuch et al., 2019) and MiniHack (Samvelyan et al., 2021).

In this paper, we present Craftium, a platform for easily creating rich 3D environments for single
and multi-agent embodied and open-ended AI research, thought to be highly customizable and effi-
cient. Unlike most complex environment platforms, that are based on video games (e.g., VizDoom
is based on ZDoom and MiniHack in NetHack), Craftium is based on a game engine: Minetest
(Minetest Team, 2024b). This allows easy creation of rich single and multi-agent voxel environ-
ments1 using a powerful and greatly documented Lua API (Minetest Team, 2024a), instead of much
less popular DSLs. Lua (Ierusalimschy, 2006) is a Python-like, easy-to-use and understand, mature,
and efficient programming language used in many popular tools and projects (e.g., Roblox, World of
Warcraft, and Neovim). In Craftium, Lua is used to expose a complete game engine (i.e., Minetest)
to develop environments. Moreover, Minetest is open-source and has a vibrant community that has
created many games and assets that can be used in Craftium environments (Ward, 2023a), signif-
icantly reducing the development cost of complex scenarios. For instance, all the environments
shown in Figure 1 have been implemented in less than 160 lines of code, comments and whites-
pace included. These environments, later described in Section 14, showcase the versatility of the
presented framework, from RL and MARL tasks of various levels of complexity and different na-
ture, customizable procedural environment generators for UED, CRL, and meta-RL (Yu et al., 2020;
Rimon et al., 2024) to gigantic procedurally generated open worlds (64K×64K×64K blocks) for
research on open-ended (Hughes et al., 2024) and embodied AI (Paolo et al., 2024). Beyond being
flexible, feature-rich, and developer-friendly, we show that Craftium environments run 38× faster
than alternatives based on the original Minecraft game, the only platforms that offer a similar level
of complexity and richness. Furthermore, Craftium implements the popular Gymnasium (Towers
et al., 2024) and PettingZoo (Terry et al., 2021) interfaces the modern standard for RL and MARL
research2 respectively, making it compatible with many other libraries and projects (Raffin et al.,
2021; Huang et al., 2022b; Serrano-Muñoz et al., 2023). Finally, Craftium is fully open source and

1Voxel games use 3D blocks (voxels) to construct and represent the game world, allowing players to modify
the environment by adding or removing blocks. Figure 1 shows examples of these types of games.

2Although can be used for learning paradigms beyond RL (e.g., evolutionary algorithms).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Overview of Craftium’s internal architecture. Components denoted with ×N are repeated
according to the number of agents (one or more).

includes extensive online documentation with many guides, usage examples, tutorials, a detailed
reference, and ready-to-use scripts.3

2 BACKGROUND: MINETEST AND MINECRAFT

Minecraft is a very popular (Gerken, 2023) sandbox game4 where players explore a voxel-based,
procedurally generated 3D world, gather resources, craft tools, and build structures. Although
Minecraft supports partially extending the original game (user extensions are referred to as mods),
this is limited by its close source nature and restrictions to access its underlying logic. Additionally,
the game and its mods are implemented in Java, a programming language not tailored for high-
performance applications and usually not commonly accessible in HPC clusters.

In contrast, Minetest is a voxel-based game engine inspired by Minecraft, serving as a platform for
creating games rather than being a game itself. Unlike Minecraft, Minetest supports modding at
its core, allowing fine-grained real-time access and modification of the internal state of the game
engine. This enables extensive customization of its behavior, facilitating the creation, modification,
and extension of existing games using its powerful Lua API (Minetest Team, 2024a; Ward, 2023b).
In turn, Minetest is implemented in C++, a widely adopted programming language and known for
its high efficiency. Moreover, Minetest is open source and is supported by an active community that
has created hundreds of open free-to-use games and mods (Ward, 2023a), that are seamlessly loaded
in Craftium (as employed in all environments from Section 3.5).

3 CRAFTIUM

Figure 3: Example of a
64x64 pixel RGB image
observation.

Craftium follows the architecture illustrated in Figure 2. It consists of
two main components: the Minetest game engine and the Python envi-
ronment interface. This interface is the bridge between the environment
and agents. Internally, it handles a communication channel per agent,
which connects to Minetest, sending and receiving data such as observa-
tions, actions, or rewards. On the other hand, the Minetest server exe-
cutes the logic of the environment, specified by a file characterizing the
3D world and a script (i.e., mod) that defines its behavior. The Minetest
server also synchronizes the Minetest clients (one per agent), which han-
dle rendering and communication tasks with the Python library. Finally,
note that the original Minetest game engine does not support these fea-
tures, but its open-source nature allowed modifying its code to support
this architecture (see Appendix A for details).

3A link to the online documentation will be provided upon acceptance.
4Sandbox games allow players extensive creative freedom to explore, build, and manipulate the game envi-

ronment with few constraints or predetermined goals.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1 name = craftium_mod
2 description = My env.
3 depends = default

Figure 4: Example configura-
tion file of a mod implement-
ing a Craftium environment.
This example depends on the
default mod that provides
several basic functionalities.

1 minetest.register_on_dignode(function(ps, block)
2 if string.find(block["name"], "tree") then
3 set_reward_once(1.0, 0.0)
4 end
5 end)
6

7 minetest.register_on_dieplayer(function(obj, rn)
8 set_termination()
9 end)

Figure 5: Lua script (i.e., mod) implementing basic environment
mechanics.

In the following, Sections 3.1, 3.2, and 3.3 describe Craftium environments, the creation process,
and the interface to use them. Respectively, Section 3.4 compares the performance of Craftium with
other frameworks. Finally, Section 3.5 showcases the presented framework as a general-purpose
environment creation tool across a variety of use cases and fields concerning autonomous agents.

3.1 OBSERVATIONS, ACTIONS, AND REWARDS

Observations. In Craftium, observations are images from the agent’s point of view. An example
observation is provided in Figure 3. Observations are highly customizable (e.g., size, number of
channels, etc.) and can vary between environments. Moreover, Craftium supports many popular
techniques such as, frame skipping and frame stacking that are commonly used throughout the
literature (Huang et al., 2022a).

Actions. By default, actions are composed of a combination of 21 keyboard actions and a tuple
that defines the movement of the mouse, which is mainly used to control the camera. Keyboard-
related actions are binary variables with a value of 1 if the key is pressed, and 0 otherwise. The
movement of the mouse is defined with the tuple (∆x,∆y) ∈ [−1, 1]2, where ∆x < 0 moves the
mouse to the left in the horizontal axis and ∆x > 0 to the right, similarly, ∆y < 0 moves the mouse
downwards in the vertical axis and ∆y > 0 moves it upwards. Thus, if ∆x = ∆y = 0, the mouse
is not moved. See Appendix B.1 for a detailed description of all the possible actions supported in
Craftium.

The default action space is designed to be versatile, covering as many use cases as possible: from
tasks with complex action sequences (e.g., manual inventory control) to simple navigation environ-
ments with a couple of actions (e.g., forward and lateral movement). However, the default action
space is overly complex for most tasks: the number of possible keyboard action combinations in the
default space is 221. Therefore, Craftium allows reducing the action space to the minimal subset
required to solve the task at hand substantially simplifying the learning process of the agent (see
Appendix B.2).

Rewards. In Craftium, reward functions are defined using Lua scripts (mods are discussed in the
next section). The framework provides a comprehensive set of tools for this purpose, including an
extended version of the Minetest Lua API. This functionality is implemented in a modified version
of the game engine developed specifically for this work, which incorporates additional functions for
setting and retrieving reward values and episode termination flags. An example of these functions
is presented in Section 3.2. A complete list of modifications to the original Minetest game engine
can be found in Appendix A, while additional functions for defining RL environments are detailed
in Appendix C.

3.2 CREATING CUSTOM ENVIRONMENTS

Creating a Craftium environment implies two steps: 1 generating a world: a database with all the
information about the virtual environment where the agent will be placed and will interact with
(Figure 1 shows images of a variety of worlds); and 2 defining the behavior of the environment,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

such as the reward function and conditions for episode termination. The following lines describe
these steps in detail.

1 Minetest offers practically unlimited possibilities for generating worlds. However, creating a
world can be as simple as a few clicks when using one of the many predefined map generators.5 If
finer control over the map generation process is needed, maps can be created using custom scripts.
The procedural environment generator presented in Section 3.5.4 is an example of a complex custom
map generation process.

2 The next step is to define the behavior of the environment. This is done via mods: user-defined
scripts that modify and extend the game engine’s behavior, allowing for the creation of custom
environments, mechanics, and interactions within the 3D world. A mod has a minimum of two files:
a configuration file, and a Lua script.

The configuration file contains the mod’s metadata. It commonly includes the mod’s name, a de-
scription, and the list of dependencies (see Figure 4). The Lua script is where the environment’s
mechanics are implemented. Figure 5 illustrates an example script that defines the task of chop-
ping as many trees as possible (presented in Section 3.5.1). Line 1 registers a callback function
that is called every time the player (i.e., agent) digs a block. In line 2, this function checks if the
dug block is part of a tree; if the condition is met, line 3 sets the reward to 1 for that timestep
(set reward once and other RL related functions are described in Appendix C). Line 7 regis-
ters another callback function. In this case, the function is run every time the player dies and calls
another function that terminates the episode, in line 8.

Even basic mods, such as the presented example, can be used to generate a wide range of environ-
ments. Furthermore, advanced community-made extensions and games can be easily integrated into
Craftium, significantly expanding its potential. Section 3.5 highlights some of these possibilities.
For detailed instructions on creating Craftium environments please refer to the online documenta-
tion (see Section 1). Finally, note that the creation of Minetest mods is outside the scope of this
paper, as comprehensive resources are already available (Minetest Team, 2024a; Ward, 2023b).

3.3 INTERFACE

1 import gymnasium as gym
2 import craftium
3

4 env = gym.make("Craftium/Room-v0")
5

6 obs, inf = env.reset()
7 for t in range(5000):
8 a = agent(obs)
9 obs, r, tm, tc, inf = env.step(a)

10

11 if tm or tc:
12 obs, inf = env.reset()
13

14 env.close()

Figure 6: Python code illustrating the typical in-
teraction loop between an agent and a Craftium
environment using the Gymnasium interface.

Once created, Craftium environments are
used via the Gymnasium (Towers et al.,
2024) (single-agent) or PettingZoo (Terry
et al., 2021) (multi-agent) interfaces. Both
interfaces are open-source and have become
the standard interface for RL and MARL en-
vironments, providing a unified abstraction
over environments that enables interoperabil-
ity between environments and methods. Just
by implementing these interfaces, Craftium
is already compatible with many existing
tools and projects to train, test, develop, and
analyze many algorithms, including but not
limited to stable-baselines3 (Raffin
et al., 2021), Ray RLlib (Moritz et al., 2018),
CleanRL (Huang et al., 2022b), and skrl
(Serrano-Muñoz et al., 2023).

Figure 6 illustrates an example using the
Gymnasium (single-agent) interface. Pet-
tingZoo employs a very similar interface described in Appendix D. Line 4 loads an example
Craftium environment by name (see Section 3.5). Line 6 initiates an episode, obtaining the first
observation and a Python dictionary with additional information (e.g., elapsed time). Lines 7-12
implement the agent-environment interaction loop. In line 8, the agent selects an action based on
the current observation. The line 9 executes the action specified by the agent, resulting in an obser-
vation, a reward, a truncation flag, a termination flag, and a new information dictionary, respectively.

5Map generators are documented at: https://wiki.minetest.net/Map_generator.

5

https://wiki.minetest.net/Map_generator

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The truncation flag indicates if the maximum number of timesteps allowed by the environment is
reached, while the termination flag determines if the episode has reached a terminal state (e.g., the
player dies). Both flags are checked in line 11, and if one or both of them are true, the episode is
restarted in line 12. Finally, the last line closes the environment after the main loop ends.

3.4 PERFORMANCE

MineDojo VizDoom Craftium
0

500

1000

1500

2000

2500

S
te
p
/s

Figure 7: Average steps per
second obtained with MineDojo,
VizDoom, and Craftium (the
greater the better).

As stated in the introduction, computationally efficient en-
vironments are key for research on autonomous agents in
general. Therefore, this matter has been a focal point of
Craftium’s development. Figure 7 compares the steps (i.e. in-
teractions) per second obtained by Craftium to VizDoom and
MineDojo, well-known environment creation platforms from
the literature. Results show the average of 5 runs in 3 differ-
ent environments per framework, in a machine with a single
NVIDIA A5000 GPU and an Intel Xeon Silver 4309Y CPU.
Craftium achieves very competitive results compared to Viz-
Doom, even though VizDoom is based on ZDoom, which is
not 3D per se.6 Comparing Craftium’s performance to Mine-
Dojo’s, we observe that the presented framework achieves
+2670 steps per second more. One of the main reasons be-
hind this significant difference is that MineDojo relies on
Minecraft, which is implemented in Java, while, Craftium is
based on Minetest, implemented in C++ with low-resource
machines in mind. Moreover, Minetest is open source, al-
lowing us to modify it to efficiently integrate it into our framework (see Appendix A). Contrarily,
MineDojo, which internally uses MineRL (Guss et al., 2019), adds more layers of complexity to
convert the original Minecraft game into an RL environment. Refer to Appendix E for more details
on this analysis.

3.5 ILLUSTRATIVE EXAMPLES

0.0 0.2 0.4 0.6 0.8 1.0
×107

0

2

4

6

8

10

E
p

is
o
d

ic
 R

e
tu

rn

ChopTree

0.2 0.4 0.6 0.8 1.0
×107

0.1

0.2

0.3

0.4

0.5

SpidersAttack

Step

E
p

is
o
d

ic
 R

e
tu

rn

Step

Figure 8: Episodic return curves
of PPO in the ChopTree and
SpidersAttack tasks. Results ag-
gregate 5 different runs per task:
average is denoted with lines and
the standard error with the contour.

Much like game engines are tools for creating new games,
Craftium is a general-purpose platform for developing envi-
ronments. Therefore, this section highlights the potential of
Craftium across various use cases: from single and multi-
agent RL tasks (Sections 3.5.1 and 3.5.2 respectively) to
open-world environments for large multimodal model-based
agents (Section 3.5.3), and environment generators for CRL
(Section 3.5.4). These examples are purely illustrative and
are not presented as benchmarks. The aim is to demonstrate
the framework’s capabilities and provide accessible, well-
documented foundations for building custom environments
tailored to specific research needs.

3.5.1 EXAMPLE 1: CLASSIC SINGLE-AGENT RL

This section provides examples of using Craftium to create
single-agent environments for RL. We implement five tasks
of diverse nature: simple environments for testing RL algo-
rithms, sparse reward and exploration scenarios, and a chal-
lenging survival task. For simplicity, all tasks share the same
64× 64 pixel RGB image observation space. Moreover, the
default action space described in Section 3.1 is simplified to
only use the necessary actions to solve each task, see Ap-
pendix B.2. Refer to Appendix F.1 for figures and extended
descriptions of the environments.

6See https://en.wikipedia.org/wiki/Doom_(1993_video_game).

6

https://en.wikipedia.org/wiki/Doom_(1993_video_game)

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 10: The leftmost picture shows an overview of the map for the open-world environment
example. Each pixel in the map’s picture corresponds to a single block (voxel). The map shows an
area of 1.6K×1.6K blocks from the vast 64K×64K×64K blocks area that agents can explore. The
color of each pixel is used to denote different biomes, some of which are visualized in the rightmost
figures. The rightmost images provide a closer visualization of the included forests, cliffs, deserts,
villages, underwater wreckage, monsters, etc.

To complement this example, Figure 8 demonstrates how environments of varying levels of difficulty
can be designed within Craftium. The figure shows the results obtained by the Proximal Policy
Optimization (PPO) algorithm (Schulman et al., 2017) in two of the presented tasks. In the ChopTree
task, the high episodic return values indicate that PPO successfully solves the task, chopping more
than 6 trees on average (a reward of +1 is given for every chopped tree). In the SpidersAttack
scenario the agent has to survive hostile spiders. In this case, a reward value of 1 is given for every
defeated spider, and 0 otherwise. As can be seen in the figure, although the episodic return value
increases over time, the final average value is below 0.5. This indicates that the trained agent does
not survive a single spider in half of the episodes, showing that it is a considerably more challenging
task compared to the previous one. See Appendix F.1 for further details and experimental results in
the rest of the tasks.

3.5.2 EXAMPLE 2: MULTI-AGENT REINFORCEMENT LEARNING

0.0 0.2 0.4 0.6 0.8 1.0
Step ×106

0.5

1.0

1.5

2.0

Ep
iso

di
c

Re
tu

rn

Total Agent 1 Agent 2

Figure 9: Average and standard er-
ror episodic return curves across 5
runs in the multi-agent combat en-
vironment. The blue line indicates
the total episodic return of both
agents, while the gray lines show
the values separately.

The previous section focuses on single-agent scenarios for
RL, now, we focus on MARL, showcasing Craftium’s multi-
agent features. For this purpose, we develop a one vs one
multi-agent combat environment in Craftium. Likewise the
single-agent tasks from the previous section, the environ-
ment employs a 64× 64 RGB image observation space and
a simplified discrete action space. In this case, agents are re-
warded (+1) when punching other agents and penalized on
damage (-0.1).

To illustrate a use case, we train the agents using self-play
(Crandall & Goodrich, 2005), a popular method for this type
of competitive scenarios (Silver et al., 2017; 2018; Jiang
et al., 2024). Results are presented in Figure 9, where the
policy has been trained to play against itself using PPO. The
increasing episodic return curve in the figure shows how the
policy learns to fulfill the task. Refer to Appendix F.2 for
figures and more details on the environment and the learn-
ing method.

3.5.3 EXAMPLE 3: OPEN-WORLD ENVIRONMENTS

This section introduces an open-world environment as an example of a complex scenario for em-
bodied AI similar to MineDojo. The environment employs the open-source VoxeLibre game for
Minetest, which is greatly inspired by Minecraft, sharing many similarities (Fleckenstein et al.,
2024). VoxeLibre provides a rich and vast environment with many complex interactions, differ-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Start

Tools

Hunt

Defend

pigchicken cowsheep

zombie skeleton spider cave
spider

wood (x2) stone (x3) iron (x3) diamond

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

400

LLava-Agent

PPO+LSTM Mean
Maximum

M
a
x
.
E
p
.
R

e
t.

Steps (%)

Figure 11: The leftmost diagram depicts the skills tree of the open-world environment example
described in Section 3.5.3. The rightmost plot shows the results of PPO+LSTM and LLava-Agent
(zero-shot) obtained in terms of average and best maximum episodic return values obtained in 10
repetitions per method. Refer to Appendix F.3 for further details.

Figure 12: Episodic return curves of a baseline trained from scratch and FT-L2 over a series of 10
different environments created using the procedural generator from Section 3.5.4. Environments are
illustrated above their corresponding curves (simplified 2D top-views), with the robot indicating the
initial position of the agent, the diamond (the objective), and different enemies. See Appendix F.5
for details and larger visualizations of the environments.

ent biomes, animals, plants, or hostile creatures. This section also serves as an example of how
community-made Minetest games can be integrated into Craftium.

The leftmost picture of Figure 10 shows an overview of the specific world map generated for this
environment, where colors indicate different biomes: dark green for forest biomes, light brown for
sand desert, white for artic biomes, etc. The rightmost images showcase the complexity and richness
of this environment. Figure 11 presents the skills tree developed for this environment, showing the
hierarchical sequence of skills that the agent can develop to reach more complex goals. Every time
the agent unlocks a skill of the tool branch (e.g., collect two wood blocks) it receives a reward and
new tools (e.g., wood pickaxe and sword), while the objective switches to the next skill (e.g. collect
two stone blocks). Regarding the hunt and defend branches, the agent receives a reward according
to the difficulty of hunting the animal or defeating the monster (refer to Appendix F.3 for details).

To complete this example, Figure 11 compares the achievements obtained by PPO (using LSTM-
based memory) and an agent based on the open-source large multimodal model LLaVa (Liu et al.,
2024a) version 1.6 (Liu et al., 2024b) (zero-shot: with no finetuning to this specific task). Re-
sults show that the LLaVa-Agent unlocks the collect wood and stone stages, while PPO only com-
pletes the first stage. Both methods successfully hunt animals and fight some monsters, indicated
by the smaller increases in the best episodic return values in the figure. This example demonstrates
Craftium’s usage beyond RL, using it to analyze and evaluate the ability of large multimodal model-
based agents to leverage world knowledge to approach complex open-world tasks.

3.5.4 EXAMPLE 4: PROCEDURAL ENVIRONMENT GENERATION FOR CRL

In CRL, agents face a sequence of environments, interacting with one at a time and limited by a
timestep budget, where methods are expected to leverage prior knowledge to solve incoming tasks
efficiently. Commonly employed settings rely on hand-crafted sequences, with a small number of
environments, or use repetition for generating larger sequences, e.g., Wołczyk et al. (2021) and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Popular environment frameworks compared by: number of playable dimensions, proce-
dural generation capabilities, environment creation, whether environments can be programmatically
implemented (and not through predefined configuration options), Gymnasium support, multi-agent,
and open-world capabilities. We specify the language if a framework allows programmatic imple-
mentation of environments, and a red cross otherwise.

FRAMEWORK DIMS. PROC. GEN. ENV. CREAT. PROG. DEF. GYMNASIUM MARL OP. WORLD

ALE (Bellemare et al., 2013) 2D ✘ ✘ ✘ ✔ ✔ ✘
DM LAB (Beattie et al., 2016) 3D ✘ ✔ Lua ✘ ✘ ✘
AI2-THOR (Kolve et al., 2017) 3D ✔ ✔ ✘ ✘ ✔ ✘
VIZDOOM (Wydmuch et al., 2019) 2.5D ✘ ✔ ZScript ✔ ✔ ✘
MINERL (Guss et al., 2019) 3D ✔ ✘ ✘ ✘ ✘ ✔
NLE (Küttler et al., 2020) 2D ✔ ✘ ✘ ✘ ✘ ✔
PROCGEN Cobbe et al. (2020) 7 2D ✔ ✔ ✘ ✔ ✘ ✘
MINIHACK (Samvelyan et al., 2021) 2D ✔ ✔ des-file format ✘ ✘ ✘
MINEDOJO (Fan et al., 2022) 3D ✔ ✔ ✘ ✘ ✘ ✔
HABITAT 3.0 (Puig et al., 2024) 3D ✔ ✔ ✘ ✘ ✔ ✘
CRAFTAX (Puig et al., 2024) 2D ✔ ✘ ✘ ✘ ✘ ✔

CRAFTIUM 3D ✔ ✔ Lua ✔ ✔ ✔

Tomilin et al. (2023). Consequently, this section leverages Craftium’s versatility to implement a
procedural environment generator that automatically produces a sequence of increasingly difficult
environments for CRL (see Figure 12). The generator, given some input parameters, randomly
generates labyrinthic 3D dungeons populated with hostile enemies. In these environments, the agent
has to survive and reach its objective: a diamond. Every time the agent reaches the objective,
a reward value of 100 is provided, of 1 when defeating an enemy, and of 0 otherwise. Further
information on the generator and the environments is provided in Appendix F.4.

To complement this example, Figure 12 shows the results of an agent trained from scratch in each
environment (referred to as the baseline) and an agent that finetunes the model learned in the pre-
vious task, referred to as FT-L2 (fine-tuning with L2 regularization) (Gaya et al., 2023; Wołczyk
et al., 2024). As can be observed, FT-L2 greatly outperforms the baseline in some of the envi-
ronments. This demonstrates how procedural processes can be implemented in Craftium to generate
environment sequences for CRL that show knowledge transferability. Note that this generator can be
extended beyond CRL to other scenarios such as meta-learning, open-endedness, and UED (Dennis
et al., 2020; Team et al., 2021; Bauer et al., 2023; Rigter et al., 2024)

4 RELATED WORK

Table 1 includes a comparative overview of popular environment frameworks of the RL, open-ended,
and embodied AI literature. The following lines provide a more extensive discussion of this analysis.

As stated in the introduction, a wide range of environments have been proposed for developing
and evaluating autonomous agents. However, many of these environments are adaptations of video
games (Bellemare et al., 2013; Wydmuch et al., 2019; Guss et al., 2019; Küttler et al., 2020) not
originally designed for research. As a result, they offer limited customization, often restricted to
predefined parameters (e.g., number of enemies). Examples include ALE (Machado et al., 2018),
MineRL (Guss et al., 2019), and NLE (Küttler et al., 2020). The lack of flexibility hinders their use in
various research scenarios, such as designing custom environments to study catastrophic forgetting
or analyzing specific behaviors of open-ended learning systems.

These limitations have long been recognized, and several frameworks have been proposed that al-
low the creation of completely new environments. For example, VizDoom (Wydmuch et al., 2019)
allows defining environments using ZScript, and MiniHack (Samvelyan et al., 2021) employs the
des-file format for the same purpose. Both, ZScript and the des-file format are Do-
main Specific Langauges (DSL) tailored to the games they originate from (ZDoom and NetHack
respectively). However, DSLs are often purpose-specific and lack the flexibility and functionality of
general-purpose programming languages. For instance, the des-file format is not a program-

7Although the original project is unmaintained, the table considers the community rewrite available at
https://github.com/Farama-Foundation/Procgen2.

9

https://github.com/Farama-Foundation/Procgen2

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ming language per se, just a language to define NetHack levels. Additionally, DSLs often differ
significantly from mainstream programming languages, which limits their usability and adoption.

Some frameworks offer customization through the programming languages they are implemented
in, avoiding the limitations of DSLs. For example, Griddly (Bamford et al., 2020) and MiniGrid
(Chevalier-Boisvert et al., 2023) offer Python APIs for creating 2D grid-like environment. While
grid environments are fast to simulate, they lack the complexity and diversity of more advanced
environments like MineRL and VizDoom. Although more complex tasks could be implemented in
these frameworks, it would require significant development effort for researchers. Regarding 3D
environments, MiniWorld (Chevalier-Boisvert et al., 2023) offers a similar API to MiniGrid, but
suffers from the same issues regarding the implementation of richer environments.

The field of embodied AI for robotics has long recognized the importance of visually complex sce-
narios, which include popular frameworks such as AI2-THOR (Kolve et al., 2017) and Habitat 3.0
(Puig et al., 2024). However, these works focus on accurate physical modeling and photorealism
while having limited diversity (mostly including indoor household scenarios) and a lack of open-
world environments. For higher-level cognitive tasks that do not require accurate physics modeling
or photorealism, the field has popularly adopted Minecraft: an extremely popular game, with rich
content, diverse open worlds, and complex game mechanics. Some examples are the Malmo (John-
son et al., 2016) project and MineRL (Guss et al., 2019) that wraps Minecraft in a Python interface.
However, they lack support for task customization or the creation of new environments. More re-
cently, MineDojo (Fan et al., 2022) has greatly improved customization within Minecraft-based
environments. Nevertheless, environment creation is constrained by predefined parameters, making
scenarios like those in Section 3.5 infeasible to implement (see Appendix G for details) and lacking
multi-agent support, which hinders its adoption in this growing field.

5 CONCLUSION

Designing new environments and modifying existing ones is crucial for advancing research in open-
ended and embodied AI, RL, MARL, and autonomous agents in general. However, many established
environments provide limited or no options for customization (Bellemare et al., 2013; Johnson et al.,
2016; Guss et al., 2019; Küttler et al., 2020; Matthews et al., 2024). Although some works offer tools
for developing environments, they rely on restrictive DSLs (Wydmuch et al., 2019; Samvelyan et al.,
2021) or simplistic 2D worlds (Bamford et al., 2020; Chevalier-Boisvert et al., 2023). Conversely,
rich and complex 3D environments like MineDojo (Fan et al., 2022) allow limited customization,
have no multi-agent support, and are built on closed-source and computationally expensive games
like Minecraft.

This work presents Craftium, an easy-to-use and flexible framework for creating rich 3D environ-
ments. Craftium’s versatility is showcased in Section 3.5, which shows its application to train and
analyze single and multi-agent RL algorithms, implement open-world environments for complex
embodied agent tasks, and used to procedurally generate environments for CRL. Unlike many al-
ternatives built on top of existing video games, Craftium is based on Minetest, a fully-featured
open-source game engine. This analogy is also translated to the presented framework, as it is not
a benchmark but a general-purpose tool for creating environments. By leveraging the extensive
and well-documented Minetest Lua API (Minetest Team, 2024a; Ward, 2023b), Craftium enables
nearly limitless possibilities for the development of custom single and multi-agent environments.
Additionally, Minetest has a vibrant community that has produced numerous games and extensions
(Ward, 2023a), which can be easily integrated into Craftium environments (see Section 3.5.3). More-
over, its efficient implementation significantly reduces the computational cost of other alternatives.
As shown in Section 3.4, Craftium achieves over 2K timesteps per second more than MineDojo,
and performs competitively with VizDoom, even though VizDoom is not fully 3D. Craftium also
implements the widely-adopted Gymnasium (Towers et al., 2024) and Petting Zoo (Terry et al.,
2021) interfaces, making it compatible with numerous existing tools and projects, such as, Moritz
et al. (2018); Huang et al. (2022b); Serrano-Muñoz et al. (2023) and Raffin et al. (2021). Finally,
Craftium is open source and provides extensive documentation, including many practical examples
from which users can build environments for their particular research needs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt, and Satinder
Singh. A definition of continual reinforcement learning. In Proceedings of the 2023 Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In Proceedings of the 2020 International Conference on Machine Learning (ICML), 2020a.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
give up: Learning directed exploration strategies. In Proceedings of the 2020 International Con-
ference on Learning Representations (ICLR), 2020b.

Chris Bamford, Shengyi Huang, and Simon Lucas. Griddly: A platform for ai research in games.
arXiv preprint arXiv:2011.06363, 2020.

Jakob Bauer, Kate Baumli, Feryal Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg,
Michael Chang, Natalie Clay, Adrian Collister, Vibhavari Dasagi, Lucy Gonzalez, et al. Human-
timescale adaptation in an open-ended task space. In International Conference on Machine Learn-
ing (ICML) of 2023, volume 202, pp. 1887–1935. PMLR, 2023.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind Lab. arXiv preprint
arXiv:1612.03801, 2016.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Proceedings of the 20216 Advances
in Neural Information Processing Systems (NeurIPS), 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

Michael Beukman, Samuel Coward, Michael Matthews, Mattie Fellows, Minqi Jiang, Michael D
Dennis, and Jakob Nicolaus Foerster. Refining minimax regret for unsupervised environment
design. In Proceedings of the 2024 International Conference on Machine Learning (ICML),
2024.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In Proceedings of the 2019 International Conference on Learning Representations
(ICLR), 2019.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modu-
lar & customizable reinforcement learning environments for goal-oriented tasks. arXiv preprint
arXiv:2306.13831, 2023.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2020.

Jacob W Crandall and Michael A Goodrich. Learning to compete, compromise, and cooperate in
repeated general-sum games. In Proceedings of the 2005 International Conference on Machine
Learning (ICML), pp. 161–168, 2005.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment de-
sign. In Proceedings of the 2020 Advances in Neural Information Processing Systems (NeurIPS),
2020.

Sam Earle, Filippos Kokkinos, Yuhe Nie, Julian Togelius, and Roberta Raileanu. Dreamcraft: Text-
guided generation of functional 3d environments in minecraft. In Proceedings of the 2024 Inter-
national Conference on the Foundations of Digital Games (FDG), 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. OMNI-EPIC: open-endedness via
models of human notions of interestingness with environments programmed in code. arXiv
preprint arXiv:2405.15568, 2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. MineDojo: Building open-ended em-
bodied agents with internet-scale knowledge. Advances in Neural Information Processing Systems
(NeurIPS) of 2022, 35:18343–18362, 2022.

Lizzy Fleckenstein, Wuzzy, davedevils, and contributors. Voxelibre, a voxel-based sandbox game for
minetest. https://git.minetest.land/VoxeLibre/VoxeLibre, 2024. Accessed:
2024-10-01.

Samuel Garcin, James Doran, Shangmin Guo, Christopher G Lucas, and Stefano V Albrecht.
DRED: Zero-shot transfer in reinforcement learning via data-regularised environment design. In
Proceedings of the 2024 International Conference on Machine Learning (ICML), 2024.

Jean-Baptiste Gaya, Thang Doan, Lucas Caccia, Laure Soulier, Ludovic Denoyer, and Roberta
Raileanu. Building a subspace of policies for scalable continual learning. In Proceedings of
the 2023 International Conference on Learning Representations (ICLR), 2023.

Tom Gerken. Minecraft becomes first video game to hit 300M sales. https://www.bbc.com/
news/technology-67105983, 2023. Accessed: 2024-10-01.

Djordje Grbic, Rasmus Berg Palm, Elias Najarro, Claire Glanois, and Sebastian Risi. Evocraft:
A new challenge for open-endedness. In Proceedings of the 2021 Applications of Evolution-
ary Computation: 24th International Conference, EvoApplications 2021, pp. 325–340. Springer,
2021.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. MineRL: A large-scale dataset of minecraft demonstrations.
arXiv preprint arXiv:1907.13440, 2019.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. In Proceedings of the 2022
International Conference on Learning Representations (ICLR), 2022.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and
Weixun Wang. The 37 implementation details of proximal policy optimization. In
ICLR Blog Track, 2022a. URL https://iclr-blog-track.github.io/2022/03/
25/ppo-implementation-details/. https://iclr-blog-track.github.io/2022/03/25/ppo-
implementation-details/.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. CleanRL: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022b.

Edward Hughes, Michael D Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
Shi, Tom Schaul, and Tim Rocktäschel. Position: Open-endedness is essential for artificial super-
human intelligence. In Proceedings of the 2024 International Conference on Machine Learning
(ICML), 2024.

Roberto Ierusalimschy. Programming in Lua. Roberto Ierusalimschy, 2006.

Yuhua Jiang, Qihan Liu, Xiaoteng Ma, Chenghao Li, Yiqin Yang, Jun Yang, Bin Liang, and
Qianchuan Zhao. Learning diverse risk preferences in population-based self-play. In Proceedings
of the 2024 AAAI Conference on Artificial Intelligence, 2024.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The Malmo platform for artifi-
cial intelligence experimentation. In Proceedings of the 2016 International Joint Conference on
Artificial Intelligence (IJCAI), volume 16, pp. 4246–4247, 2016.

Scott M. Jordan, Adam White, Bruno Castro Da Silva, Martha White, and Philip S. Thomas. Po-
sition: Benchmarking is limited in reinforcement learning research. In Proceedings of the 2024
International Conference on Machine Learning (ICML), 2024.

12

https://git.minetest.land/VoxeLibre/VoxeLibre
https://www.bbc.com/news/technology-67105983
https://www.bbc.com/news/technology-67105983
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. AI2-THOR: An interactive 3D environ-
ment for visual AI. arXiv preprint arXiv:1712.05474, 2017.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. Advances in Neural
Information Processing Systems (NeurIPS) of 2020, 33:7671–7684, 2020.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruc-
tion tuning. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Mikel Malagon, Josu Ceberio, and Jose A Lozano. Self-composing policies for scalable contin-
ual reinforcement learning. In Proceedings of the 2024 International Conference on Machine
Learning (ICML), 2024.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Thomas Jack-
son, Samuel Coward, and Jakob Nicolaus Foerster. Craftax: A lightning-fast benchmark for open-
ended reinforcement learning. In Proceedings of the 2024 International Conference on Machine
Learning (ICML), 2024.

Minetest Team. Minetest Lua modding API reference. https://api.minetest.net/, 2024a.
Accessed: 2024-10-01.

Minetest Team. Minetest’s main page. https://www.minetest.net/, 2024b. Accessed:
2024-10-01.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep Learn-
ing Workshop 2013, 2013.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed frame-
work for emerging AI applications. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI) of 2018, pp. 561–577, 2018.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In Proceedings of the 2017 International Conference on Machine Learning
(ICML), pp. 2721–2730. PMLR, 2017.

Giuseppe Paolo, Jonas Gonzalez-Billandon, and Balázs Kégl. Position: A call for embodied AI. In
Proceedings of the 2024 International Conference on Machine Learning (ICML), 2024.

Sai Prasanna, Karim Farid, Raghu Rajan, and André Biedenkapp. Dreaming of many worlds: Learn-
ing contextual world models aids zero-shot generalization. arXiv preprint arXiv:2403.10967,
2024.

Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Part-
sey, Ruta Desai, Alexander Clegg, Michal Hlavac, So Yeon Min, Vladimı́r Vondruš, Theophile
Gervet, Vincent-Pierre Berges, John M Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakr-
ishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, and
Roozbeh Mottaghi. Habitat 3.0: A co-habitat for humans, avatars, and robots. In Proceedings of
the 2024 International Conference on Learning Representations (ICLR), 2024.

13

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://api.minetest.net/
https://www.minetest.net/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian Bolton,
Bethanie Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, et al. Scaling instructable
agents across many simulated worlds. arXiv preprint arXiv:2404.10179, 2024.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-Baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Marc Rigter, Minqi Jiang, and Ingmar Posner. Reward-free curricula for training robust world mod-
els. In Proceedings of the 2024 International Conference on Learning Representations (ICLR),
2024.

Zohar Rimon, Tom Jurgenson, Orr Krupnik, Gilad Adler, and Aviv Tamar. MAMBA: an effective
world model approach for meta-reinforcement learning. In Proceedings of the 2024 International
Conference on Learning Representations (ICLR), 2024.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, Saptarashmi
Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange, Shimon Whiteson,
Bruno Lacerda, Nick Hawes, Tim Rocktaschel, Chris Lu, and Jakob Nicolaus Foerster. Jax-
MARL: Multi-agent rl environments in jax. In NeurIPS 2024 Datasets and Benchmarks Track,
2024.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel. MiniHack the planet:
A sandbox for open-ended reinforcement learning research. Datasets and Benchmarks Track of
the 2021 NeurIPS, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Simon Bøgh, and Nestor Arana-Arexolaleiba.
skrl: Modular and flexible library for reinforcement learning. Journal of Machine Learning Re-
search, 24(254):1–9, 2023.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go
without human knowledge. Nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2018.

Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob
Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-ended
learning leads to generally capable agents. arXiv preprint arXiv:2107.12808, 2021.

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. PettingZoo: Gym
for multi-agent reinforcement learning. Proceedings of the 2021 Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Tristan Tomilin, Meng Fang, Yudi Zhang, and Mykola Pechenizkiy. Coom: a game benchmark
for continual reinforcement learning. Proceedings of the 2023 Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Andrew Ward. Contentdb: A content database for minetest mods, games, and more. https:
//content.minetest.net/, 2023a. Accessed: 2024-10-01.

Andrew Ward. Minetest modding book. https://rubenwardy.com/minetest_
modding_book/en/index.html, 2023b. Accessed: 2024-10-01.

Maciej Wołczyk, Michał Zajac, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual
world: A robotic benchmark for continual reinforcement learning. Proceedings of the 2021 Ad-
vances in Neural Information Processing Systems (NeurIPS), 34:28496–28510, 2021.

Maciej Wołczyk, Bartłomiej Cupiał, Mateusz Ostaszewski, Michał Bortkiewicz, Michał Zajkac,
Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Fine-tuning reinforcement learning models
is secretly a forgetting mitigation problem. In Proceedings of the 2024 International Conference
on Machine Learning (ICML), 2024.

Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. ViZDoom Competitions: Playing
Doom from Pixels. IEEE Transactions on Games, 11(3):248–259, 2019.

Donghao Ying, Yunkai Zhang, Yuhao Ding, Alec Koppel, and Javad Lavaei. Scalable primal-dual
actor-critic method for safe multi-agent rl with general utilities. In Proceedings of the 2023
Advances in Neural Information Processing Systems (NeurIPS), 2023.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-World: A benchmark and evaluation for multi-task and meta reinforcement learn-
ing. In proceedings of the 2020 Conference on Robot Learning (CoRL), 2020.

A MODIFICATIONS TO MINETEST

Although Minetest is an extremely flexible game engine with extensibility built into its core, adapt-
ing it to be a platform for RL environment creation required modifying the game engine’s source
code. As Minetest is a large C++ project with thousands of files, modifications have been thought-
fully limited to as few changes as possible to ensure seamless updates to new versions of Minetest
and improve maintainability. Most of the introduced code is limited to a single craftium.h and a
few modifications to the client.cpp file. These modifications have allowed the implementation
of features required for training RL agents in Minetest:

• Implementation of a client that connects to the Python process with the agent’s implemen-
tation. This is the communication channel from which Minetest sends RGB frames and
other timestep data to Python, and Python sends the next actions to be executed.

• Executing agent’s actions as keyboard and mouse commands in Minetest. All actions are
translated as virtual keyboard keypresses or mouse movements (for moving the camera and
controlling the inventory).

• Extensions to the Minetest Lua API to incorporate vital functionalities for RL environ-
ments. Extensions include 5 new Lua functions that implement functions such as setting
the episode termination flag or sending reward values.

• Minetest has a client/server architecture, where the server runs the world’s logic and the
client interfaces with the player (e.g., game control and rendering). However, the asyn-
chronous nature of this architecture introduced many problems to most RL agent training
scenarios, as the server could update the world many times while the client was waiting for
the agent to return an action. This causes many reproducibility issues and behaviors such
as monsters attacking the player while the client is waiting for the agent’s response. For
this purpose, Craftium introduces synchronous client/server updates. This ensures that the
server waits for the client to be updated before continuing with the next update, preventing
the mentioned issues.

15

https://content.minetest.net/
https://content.minetest.net/
https://rubenwardy.com/minetest_modding_book/en/index.html
https://rubenwardy.com/minetest_modding_book/en/index.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ACTION SPACE DETAILS

B.1 DEFAULT ACTION SPACE

The default action space of Craftium environments is composed of combinations of 21 keyboard
actions and mouse movements on the horizontal and vertical axes. Keyboard actions are binary
values, where 1 translates to a key press and 0 if not used. Available keyboard commands are listed
and described in Table 2. Note that these actions are a subset of the default keyboard controls that
Minetest offers8 and its selection is inspired by the action space of MineRL (Guss et al., 2019).
Mouse movements are defined by a tuple (horizontal and vertical movements) of real values in the
[−1, 1] interval (see Section 3.1).

Table 2: List of available keyboard actions in Craftium environments, their corresponding key in the
default Minetest controls, and their description.

ACTION KEY DESCRIPTION

Forward W Move the player forward.
Backward S Move the player backward.
Left A Move the player left.
Right D Move the player right.
Jump Space Jump and move up.
Aux 1 E Run faster.
Sneak Shift Sneak, move downwards.
Zoom Z Zoom in at the center of the camera.
Dig Left mouse button Puch if using a weapon or mine if using a tool.

Place Right mouse button Use the pointed object if usable, otherwise
attempt to build at the pointed block.

Drop Q Drop the wielded item.
Inventory I Show/hide inventory.
Slot [1-9] 0-9 Select the item in the [0-9] position of the hotbar.

B.2 ACTION WRAPPERS

By default, Craftium environments have a large action space with discrete (binary) and continu-
ous values (see Section 3). However, many tasks do not require the complete default action space
and can be greatly simplified by considering only the relevant actions to solve the specific task
that the environment defines. Consequently, Craftium provides tools for customizing the action
space of environments by using Gymnasium Wrappers.9 Specifically, Craftium implements two
wrappers:BinaryActionWrapperand DiscreteActionWrapper.

BinaryActionWrapper allows selecting the subset of keyboard actions (see Table 2 for the
complete list) to use in the new action space. This wrapper also simplifies the continuous mouse
movement actions by discretizing them into four binary actions: move the mouse left, right, up,
and down. The magnitude of these movements can be chosen by the developer. For example, this
wrapper allows simplifying the default {0, 1}21 ∪ [0, 1]2 action space into a {0, 1}3 space where
binary values correspond to: move forward, move mouse right, and move mouse left.

DiscreteActionWrapper allows selecting the subset of keyboard actions and discretizes the
mouse movement similarly to the previous wrapper. However, in this case, actions are not binary
vectors but a single discrete value. Thus, actions can not be combined as in the case of the previ-
ous wrapper. Following the previous example, instead of simplifying the default action space into
{0, 1}3 this wrapper defines the new space as {0, 1, 2}, where 0 corresponds to move forward, 1
moves the mouse to the right, and 2 moves it to the left.

8Some controls like pausing the game or opening the chat have been excluded. For additional information
visit: https://wiki.minetest.net/Controls.

9Refer to Gymnaium’s documentation for more information: https://gymnasium.farama.org/
api/wrappers/action_wrappers/.

16

https://wiki.minetest.net/Controls
https://gymnasium.farama.org/api/wrappers/action_wrappers/
https://gymnasium.farama.org/api/wrappers/action_wrappers/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C EXTENSIONS TO THE MINETEST LUA API

Minetest counts with an extensive and powerful Lua API (Minetest Team, 2024a) that can be used to
modify the behavior of the game engine and create mods or entire games (Ward, 2023a). However,
Minetest lacks of functionalities to define RL environments by itself. Therefore, Craftium distributes
a modified version of the game engine (see Appendix A) that includes additional functionalities in
the Lua API to make it possible to implement RL environments from Minetest mods. Table 3 lists
and describes the new functions added to the Lua API.

Table 3: List of the new functions added to the Minetest Lua API. The “—” character is used to
indicate that a function takes no arguments.

NAME PARAMETERS DESCRIPTION

set_reward float
Sets the reward value to the given value until another call to a
function that modifies the reward is made.

get_reward — Returns the reward value of the current timestep, and nil if
not set.

set_reward_once float, float
Sets the reward to the first parameter only for the current
timestep, resetting it to the second parameter afterwards.

set_termination — Sets the termination flag to true for the current timestep.
get_termination — Returns a 1 if the termination flag is set to true, 0 otherwise.

D USING CRAFTIUM THROUGH THE PETTINGZOO (MULTI-AGENT)
INTERFACE

1 from craftium import pettingzoo_env
2

3 env = pettingzoo_env.env(
4 env_name="Craftium/MultiAgentCombat-v0"
5)
6

7 env.reset()
8

9 for agent_id in env.agent_iter():
10 observation, reward, termination, truncation, info = env.last()
11

12 if termination or truncation:
13 break
14

15 action = agents[agent_id](observation)
16 env.step(action)
17

18 env.close()

Figure 13: Python code illustrating an example multi-agent scenario using the PettingZoo interface
in Craftium.

Figure 13 shows an example use case of the PettingZoo10 API in Craftium for multi-agent environ-
ments. Note that PettingZoo is greatly inspired by Gymnasium and shares many similarities and
design choices.11

Likewise the Gymnasium example from Figure 6, the first lines (1-5) instantiate a Craftium environ-
ment by name. In this case, Craftium/MultiAgentCombat-v0 is loaded, corresponding to the multi-
agent environment example showcased in Section 3.5.2. Then, line 7 resets the environment to the
initial state, initializing Minetest for the first time internally. Next, lines 9-16 define the main agent-
environment interaction loop. As defined in line 9 the loop cycles through the agents (two agents

10More information at: https://pettingzoo.farama.org/api/aec/.
11In fact, both projects are developed under the same Farama foundation, see https://farama.org/.

17

https://pettingzoo.farama.org/api/aec/
https://farama.org/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

for this specific environment). Line 10 obtains the observation, reward, termination/truncation flags,
and the information dictionary (similarly to the Gymnasium example). Next, lines 12-13 check if the
episode should terminate. If the episode continues, line 15 selects the action for the current agent,
and line 16 executes it, running a single environment step for the current agent. Finally, 18 closes
the environment, shutting down Minetest and removing any temporal files.

E DETAILS ON THE PERFORMANCE BENCHMARK

Due to the page limit constraint of the paper, this section provides additional details on the environ-
ment performance comparison presented in Section 3.4.

To complement the results illustrated in Figure 7, Table 4 provides the exact average and stan-
dard deviation values. The measurements aggregate the results of 5 different runs of 1K steps in
3 environments per framework. Note that all environments considered for this experiment were
single-agent, as MineDojo does not support multi-agent scenarios12 and VizDoom does not provide
multi-agent environments (although technically supports this setting).13 The environments were:
speleo, room, and spiders attack for Craftium (see Appendix F.1); VizdoomHealthGathering-v0,
VizdoomCorridor-v0, and VizdoomDefendCenter-v0 for VizDoom; and harvest milk, creative:255,
and Harvest for MineDojo. In all cases, observations were RGB images, without frameskip, and
actions were selected uniformly at random. In the case of MineDojo and Craftium environments
observation size was set to 64× 64 pixels, and to 320× 240, as the latter resolution is not available
for VizDoom environments.

As can be observed in Table 4, Craftium achieves substantially higher, +38%, steps per second
than the Minecraft alternative, MineDojo. The reasons for such a significant performance gap are
many, as both frameworks are complicated systems with many interacting components. One of
the most significant differences is the choice of implementation language: MineDojo is based on
Minecraft, which is implemented in Java 8, while Craftium relies on Minetest, implemented in C++
and known to perform significantly higher than Java.14 Another relevant aspect is that Minecraft is
a complete game, that has grown in complexity over the years, and this complexity directly affects
to the environments implemented on top of it. As it is a close source game, the developer is not
allowed to modify its source code to remove irrelevant parts of the game for the environment at
hand for the sake of computational efficiency. Contrarily, Minetest is open source and exposes
a highly flexible Lua API to modify its behavior. This allows building environments with only
the relevenat components for the task at hand. Along the same line, the open-source nature of
Minetest allowed its modification to tightly integrate it with the proposed framework. For example,
to incorporate a system to execute the actions sent from the Python interface as keyboard and mouse
commands. Conversely, Minecraft does not allow modifications to its source code, which requires
MineRL and MineDojo15 to include many layers of complexity to adapt the Minecraft game to the
RL setting. Most notably, Minecraft is a game and is not intended to run on a server without a
monitor. Therefore, MineRL and MineDojo use an external tool, Xvfb16. to emulate a monitor
without showing any screen output, which causes significant performance drawbacks. This also
implies that the X11 windowing system17 is installed, which is not often the case in HPC clusters.

F DETAILS ON THE ILLUSTRATIVE EXAMPLES

Due to the size limitations of the main paper, this section includes additional information on the
illustrative examples shown in Section 3.5.

12Revelant discussion at (accessed November 2024): https://github.com/MineDojo/
MineDojo/issues/15.

13For more details on the multi-agent capabilities of VizDoom (accessed November 2024): https://
github.com/Farama-Foundation/ViZDoom/issues/546.

14For example, see the performance comparison at https://benchmarksgame-team.pages.
debian.net/benchmarksgame/fastest/gpp-java.html.

15Note that MineDojo is based on MineRL. Refer to the work by Fan et al. (2022) for details.
16See https://en.wikipedia.org/wiki/Xvfb.
17See https://en.wikipedia.org/wiki/X_Window_System_core_protocol.

18

https://github.com/MineDojo/MineDojo/issues/15
https://github.com/MineDojo/MineDojo/issues/15
https://github.com/Farama-Foundation/ViZDoom/issues/546
https://github.com/Farama-Foundation/ViZDoom/issues/546
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/gpp-java.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/gpp-java.html
https://en.wikipedia.org/wiki/Xvfb
https://en.wikipedia.org/wiki/X_Window_System_core_protocol

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Average and standard deviation values obtained in the environment framework performance
comparison conducted in Section 3.4.

FRAMEWORK STEP/S

CRAFTIUM 2746.69±230.41
VIZDOOM 2091.91±59.03
MINEDOJO 71.87±11.82

(a) Chop tree. (b) Small room. (c) Room. (d) Speleo. (e) Spiders attack.

Figure 14: Visualizations of the example environments for classic single-agent RL.

F.1 ENVIRONMENTS FOR CLASSIC SINGLE-AGENT RL

All tasks share the same observation space of 64 × 64 pixel RGB images. In all cases, the action
space has been simplified into a discrete space a ∈ {0, 1, 2, . . .} as described in Section 3.1 (see
Appendix B.1 for details). The simplified action space also introduces a nop action (do nothing) to
all tasks. The following lines describe the five tasks introduced in this section.

Chop tree. The agent is placed in a dense forest, equipped with a steel axe (see Figure 14a). Every
time the agent chops a tree, a positive reward of +1 is given, 0 otherwise. Therefore, the task is to
chop as many trees as possible until episode termination. Available actions are nop, move forward,
jump, dig (used to chop), and move the mouse left, right, up, and down. Episodes terminate when
2K timesteps are reached.

Room and small room. These tasks present the same objective in different scenarios. In both
cases, the agent is placed in one half of a closed room with a red block in the other half of the room.
The objective is to reach this block as fast as possible. The difference between both tasks is the
size of the room (see Figures 14c and 14b). The reward is constant, all timesteps have a reward
value of -1, and the episode terminates when the agent reaches the block. To avoid solving the
task by memorization, the initial position of the agent and the red block are randomized in every
new episode. Available actions are: move forward, move mouse left, and move mouse right. The
timestep budget is 1K in SmallRoom, and 2K for the variant with the larger room. Four actions are
available: nop, move forward, and move the mouse right and left.

Speleo. The agent is located in a closed cave illuminated with torches (see Figure 14d). The task
is to reach the bottom of the cave as fast as possible. For this purpose, the reward at each timestep
is the negative altitude (Y-axis position) of the agent. Therefore, the reward increases as the agent
goes deeper into the cave. Actions are nop, move forward, jump, and move the mouse left, right, up,
and down. Episodes terminate if the agent dies (falling from a great height) or if 3K timesteps are
reached.

Spiders attack. The agent is placed in a large cage together with hostile spiders (see Figure 14e),
it is equipped with a steel sword and the objective is to survive. In the beginning, there is a single
spider in the cage, but every time all spiders are defeated, a new round starts with one more spider
than in the previous one (until 5 spiders). The reward of defeating a siper is +1. Actions are: nop,
move forward, move left, move right, jump, attack, and move mouse left, right, up, and down.
Finally, episodes terminate if the agent dies or if the 4K timestep limit is reached.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 5: Episodic return values obtained by PPO compared to a random agent across the environ-
ments. Results show the average and standard deviation values of 5 random seeds.

ENV. PPO RND

Chop Tree 2.08±2.6 0.00±0.00
Room -459.42±3.33 -495.62±46.73
Small Room -180.37±16.53 -250.00±0.00
Speleo -4160.22±0.26 -4498.97±10.67
Spiders Attack -0.30±0.05 0.00±0.00

0.0 0.2 0.4 0.6 0.8 1.0
×107

0

2

4

6

8

10

E
p

is
o
d

ic
 r

e
tu

rn

Chop tree Small room Room Spiders attackSpeleo

Steps
0.0 0.2 0.4 0.6 0.8 1.0

×107

490

480

470

460

450

440

430

420

0.0 0.2 0.4 0.6 0.8 1.0
×107

240

220

200

180

160

140

120

0.0 0.2 0.4 0.6 0.8 1.0
×107

4600

4500

4400

4300

4200

0.2 0.4 0.6 0.8 1.0
×107

0.1

0.2

0.3

0.4

0.5

Figure 15: Episodic return curves obtained by PPO in all of the tasks from Section 3.5. Lines
aggregate the average values of 5 different seeds per task, while the contour denotes the standard
error of the results.

Complementing the examples from Section 3.5.1, Figure 15 provides the episodic return curves of
PPO in all of the presented tasks, while Table 5 compares these results with a randomly acting agent.
In both cases, results aggregate 5 runs per task, where PPO was trained for 10M timesteps in each.
These experiments are mere examples to complement Section 3.5.1, and thus, no hyperparameter
tuning was performed to improve the obtained results. Moreover, the performance in some of the
tasks might be substantially improved if more training timesteps are considered.

Regarding the PPO algorithm, we employed the high-quality implementations from CleanRL Huang
et al. (2022b). Specifically, the PPO implementation for Atari environments was adapted to Craftium
environments, as both observation spaces consist of RGB images and action spaces are discrete (in
the case of the environments presented in Section 3.5.1). Moreover, this implementation already
considers many details shown to benefit PPO (Huang et al., 2022a). The hyperparameters and CNN
network architecture were set according to their default values in the original PPO implementation
from CleanRL.18

F.2 MULTI-AGENT COMBAT

This section describes the multi-agent environment example from Section 3.5.2 in detail. As can
be seen in Figure 16, the scenario consists of a completely flat world, where two agents are
placed in a closed jail. Both agents have no items or tools available, and cannot escape the jail.
Similarly to the classic single-agent RL task (see Section 3.5.1 and Appendix F.1), observations
are 64 × 64 RGB images, and the action space consists of a simplified discrete space using the
DiscreteActionWrapper from Appendix B.2. Specifically, the discrete action space consists
of the following actions: nop, forward, left, right, jump, attack, and move the mouse right or left.
An agent gets a positive reward (+1) when punching other agents and (-0.1) on damage (i.e., losing
one health point). Finally, episodes terminate if the number of health points (initialized to 20) of any
of the agents is zero, or the maximum number of timesteps (2K by default) is reached.

Regarding the self-play method employed in Figure 9, we employ exactly the same CNN archi-
tecture and PPO algorithm implementation as in the single-agent environment examples from Ap-
pendix F.1 (refer to the last part of this appendix for details). In this case, as we employ self-play
(Silver et al., 2017), both agents share the same internal NN-based policy, which is updated ev-
ery 128 steps. Finally, the agents were trained for 1M timesteps using grayscale versions of the
observations and frame staking of 4 frames, resulting in a 4× 64× 64 pixel observation space.

18Souce code of the original PPO implementation: https://github.com/vwxyzjn/cleanrl/
blob/38c313f8326b5049fe941a873e798485bccf18e5/cleanrl/ppo_atari.py.

20

https://github.com/vwxyzjn/cleanrl/blob/38c313f8326b5049fe941a873e798485bccf18e5/cleanrl/ppo_atari.py
https://github.com/vwxyzjn/cleanrl/blob/38c313f8326b5049fe941a873e798485bccf18e5/cleanrl/ppo_atari.py

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 16: Screenshot of the illustrative multi-agent environment from Section 3.5.2.

F.3 OPEN WORLD

In Section 3.5.3 we introduce an open-world environment. In this environment, the agent has to
survive and gather resources in an open world based on the open-source VoxeLibre (Fleckenstein
et al., 2024) game for Minetest. The environment is designed to have three different tracks: tools,
hunt, and defend.

The first, the Tools track, consists of 4 different milestones: collect two wood blocks, three stone
blocks, three iron blocks, and finally, a diamond block. When the agent unlocks one of the stages
(i.e. tasks) it receives a reward and a new set of tools to employ to solve the next task. The reward for
completing each of the stages is 128, 256, 1024, and 2048 respectively. Moreover, when the agent
unlocks a new stage, it receives a sword and a pickaxe of the material of the completed stage. For
example, if the agent unlocks the wood stage (collect two wood blocks), a wood sword and pickaxe
are automatically added to its inventory. To simplify solving the first stage of this track, the initial
inventory of the agent is composed of a stone axe and 256 torches. The stone axe allows the agent to
more easily chop trees to collect wood, while it also serves to defend from enemies (i.e. monsters)
and hunt animals.

Conversely, the Hunt and Defend tracks are non-sequential. The agent is expected to develop skills
to handle increasingly complex scenarios rather than progressing linearly (although this could also
be the case). In these tracks, a reward is provided to the agent every time it puches an enemy or
an animal. In the case of enemies, the reward value is equal to the damage caused by the tool,
while in the case of the animals, this value is reduced to half. The motivation behind this particular
reward function is the following. If the agent defeats an enemy or hunts an animal, the episodic
return obtained by the agent is linear to the life of the enemy or animal. Moreover, the agent is also
encouraged to use the correct tool for these tasks. For example, using a sword to fight a monster will
provide more reward than using a torch or pickaxe for the same task.

In Minetest, the time of day of the game is linked to the real clock time, where the day/night cycle
lasts for 20 minutes by default.19 In consequence, in this environment the time of day is set ac-
cording to the global timestep to maintain consistency and avoid relaying in real clock time while
training agents. If the latter is not considered, the time of day experienced by the agents could vary
depending on the time required by the agent to select an action, which greatly varies depending on
its implementation and architecture.

The following lines provide details on the methods used in the experiment from Section 3.5.3. Note
that in both cases, the action space of the agents was composed of 18 discrete actions, defined
using DiscreteActionWrapper from Appendix B.2. The actions are: nop, move forward,
backward, left, and right, jump, sneak, dig, place, slot 1, slot 2, slot 3, slot 4, slot 5, move the mouse

19Additional information at https://wiki.minetest.net/Time_of_day.

21

https://wiki.minetest.net/Time_of_day

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

right, left, up, and down. Slot [1, . . . , 5] corresponds to the actions of selecting the tool or object in
that position of the inventory (i.e. often referred to as the hotbar).

PPO+LSTM. This method is based on the popular PPO algorithm while employing a convolu-
tional neural network to encode observations and an LSTM module providing memory capabilities
to the agent. As the experiments described in Appendix F.1, this agent is based on CleanRL’s PPO
implementations, in this case in PPO+LSTM for Atari games.20 Similarly, hyperparameters were
kept fixed (not optimized), as the purpose of this experiment is to serve as example. Finally, the ob-
servation space for this agent was set to 84×84 of greyscale images using 4 observations for frame
stacking.

LLaVa-Agent. This agent is based on the open-source large multimodal model (LMM) LLaVa by
Liu et al. (2024a), specifically version 1.6 (Liu et al., 2024b). This agent is not intended as a new
proposal for LMM for embodied AI, but just as an example of how LMMs can be employed within
Craftium environments to solve general tasks by leveraging their world knowledge. For this purpose,
LLaVa has been directly employed with no fine-tuning for the open-world environment. Specifically,
at each timestep, LLaVa is provided with the current observation (512×512 pixel RGB image) and
a short prompt describing the current task. The prompt also includes a list of all available actions,
where LLaVa is asked to choose one. Then, the action that the agent is going to take is selected by
parsing the result of the model. A random action is chosen if a parsing error occurs, although we
observed that this barely happens. The employed prompt is:

You are a reinforcement learning agent in the Minecraft game. You will be pre-
sented with the current observation, and you have to select the next action with
the ultimate objective to fulfill your goal. In this case, the goal <objective>.
You should fight monsters and hunt animals just as a secondary objective and
survival. Available actions are: do nothing, move forward, move backward,
move left, move right, jump, sneak, use the tool, place, select hotbar slot 1, se-
lect hotbar slot 2, select hotbar slot 3, select hotbar slot 4, select hotbar slot 5,
move camera right, move camera left, move camera up, move camera down.
From now on, your responses must only contain the name of the action you will
take, nothing else.

Note the <objective> placeholder, this is replaced with the text corresponding to the current
objective: “is to chop a tree”, “is to collect stone”, “is to collect iron”, or “is to find diamond
blocks”. This text is automatically placed every time the agent unlocks a stage of the Tools branch
of the skills tree.

Details of Figure 11. The figure aggregate results from 10 different random seeds for the
PPO+LSTM method, and from 10 runs LLaVa-Agent, where each of the latter runs was constrained
by a 1-hour limit (≈ 7000 prompting iterations per run). Consequently, the X-axis has been set to
the training time percentage to accommodate both cases and for the sake of proper visualization.
Finally, the Y-axis shows the best and average maximum episodic return value obtained for each
method in each (normalized) training step. This choice is motivated to properly visualize when a
method unlocks one of the milestones from the skills tree.

F.4 PROCEDURAL ENVIRONMENT GENERATION

The procedural environment generation example employs a random dungeon generator implemented
for this work. Although the generator can randomly create a vast number of different environments,
their ultimate goal is the same. In these environments, the agent is randomly placed (equipped with
a sword) in a room and has to navigate a labyrinthic dungeon full of hostile enemies (monsters) to
reach the diamond. This process is divided into two steps: 1 randomly generate the dungeon’s map,
represented in ASCII (defined in Appendix F.4.1), and 2 build the 3D environment from the map.

20The original implementation can be found at: https://github.com/vwxyzjn/cleanrl/blob/
38c313f8326b5049fe941a873e798485bccf18e5/cleanrl/ppo_atari_lstm.py.

22

https://github.com/vwxyzjn/cleanrl/blob/38c313f8326b5049fe941a873e798485bccf18e5/cleanrl/ppo_atari_lstm.py
https://github.com/vwxyzjn/cleanrl/blob/38c313f8326b5049fe941a873e798485bccf18e5/cleanrl/ppo_atari_lstm.py

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1 This first step is accomplished by the RandomMapGen Python class, which implements the
dungeon generation algorithm. Given some input parameters, RandomMapGen returns an ASCII
representation of the generated map. Internally, RandomMapGen first creates the rooms, places
the enemies, and locates the objective and the agent’s initial position (the agent and the objective
are never located in the same room). Then, an iterative algorithm based on repelling forces is used
to place the rooms such that none of them intersects with any other. Secondly, it computes the
minimum number of corridors needed to create a map where all rooms are reachable. Finally, it
rasterizes the map into its ASCII representation using Bresenham’s line algorithm.21

The complete list of parameters that RandomMapGen accepts is the following:

• Number of rooms of the dungeon.
• Minimum and maximum sizes of the rooms. The final size is randomly selected between

this range.
• A dispersion parameter in the [0, 1] range that controls the distance between the rooms.
• Minimum and maximum number of monsters per room. If the minimum is set equal to the

maximum, the number of monsters per room is fixed.
• The probability of each monster type of being located in one room. RandomMapGen

considers up to 4 types of different monsters. Monster types are denoted as: a, b, c, or d.
The specific monster that will be considered for each type is defined by the user in step 2 .

• A boolean flag indicating whether monsters can appear in the room selected for the agent’s
initial position.

2 Once the ASCII map is created, a mod is used to generate the final 3D dungeon inside Minetest.
This mod iterates over the characters that compose the map and places the blocks and enemies
(referred to as mobs in Minetest and gaming terminology, not to be confused with mods) accordingly.
The configuration parameters of the mod are the following:

• The ASCII map generated in step 1 (or via another process).
• Names of the monsters for types a, b, c, or d. Available monsters are described in the

documentation of the mobs monsters project.22

• The material used for the construction of the dungeons.23

• The name of the object to use as the objective (a diamond by default).24

• The reward of reaching the objective (100 by default).
• The reward of defeating a single monster (1 by default).

F.4.1 THE ASCII MAP FORMAT

The ASCII map format has been intentionally designed to be human-readable and to facilitate the
implementation of custom procedures to create them (or even specified by hand). The format con-
sists of 9 possible characters, listed and described in Table 6. As can be seen in Figure 17a, maps are
divided into layers, divided by the “-” (dash) character. The first layer is commonly employed to
define the floor of the dungeons, while the second defines the walls and the positions of all characters
and the objective, the rest of the layers are used for determining the height of the walls.

F.5 ENVIRONMENT SEQUENCE FOR CONTINUAL RL

In Section 3.5.4, the procedural environment generation is applied to CRL by defining a sequence
of related and increasingly difficult scenarios. Similarly to the examples from Section 3.5.1, the
baseline and FT-L2 methods are based on the PPO implementations from CleanRL, specifically the

21See https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm.
22Accesible at: https://codeberg.org/tenplus1/mobs_monster.
23List of some available materials: https://wiki.minetest.net/Games/Minetest_Game/

Nodes.
24List of some available items: https://wiki.minetest.net/Games/Minetest_Game/

Items.

23

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
https://codeberg.org/tenplus1/mobs_monster
https://wiki.minetest.net/Games/Minetest_Game/Nodes
https://wiki.minetest.net/Games/Minetest_Game/Nodes
https://wiki.minetest.net/Games/Minetest_Game/Items
https://wiki.minetest.net/Games/Minetest_Game/Items

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 6: List of characters that comprise the ASCII map format and their meaning.

Character Meaning

(whitespace) Air block.
Construction block. Used for the floor and walls.
@ The initial position of the agent.
O Position of the objective.
a, b, c, d Location of a monster of type a, b, c, or d
- New layer.

##########
##########
##########
##########
##########

#####
#####
##########
##########
##########
##########
##########

-
##########
#
@
#
#

#
#
#####
#
O
b
##########

-
##########
#
#
#
#

#
#
#####
#
#
#
##########

(a) ASCII map representation. (b) Resulting 3D dungeon environment.

Figure 17: Example ASCII map format of a dungeon environment and the resulting 3D scenario in
the Craftium environment. Note the 3D characterizations of the spider (denoted with a in the ASCII
map) and the diamond (O in the ASCII map).

Atari ones. Where the difference between the baseline and FT-L2, is that the latter fine-tunes the
model learned in the previous task and uses L2 regularization during training, while the baseline
always learns a model from scratch. FT-L2 was selected for this example as it has shown significant
forward knowledge transfer capabilities in other works (Gaya et al., 2023; Wołczyk et al., 2024;
Malagon et al., 2024). As can be seen in Figure 12, FT-L2 substantially improves the results of the
baseline in the 4th, 7th, and 8th environments, showing considerable forward knowledge transfer
between different environments.

Figure 18 provides a larger 2D visualization of the environments, not included in the main paper for
page limit constraints. Observing this figure we see that the first two environments employ the same
map. This is intended, as the training time in each environment is low (1M timesteps), thus the first
two environments offer CRL methods a way to learn to reach their objective before more difficult
tasks arrive.

Regarding the observation and action spaces, they have been kept constant across the sequence. The
observation space is set to 64×64 pixel greyscale images, with 4 frames for frame stacking, and the
same quantity for frame skipping (Huang et al., 2022a). The action space consists of a set of 10

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 18: Overview of all the maps generated for the CRL environment sequence in Section 3.5.4.
Note that these are 2D representations of the environments and that the actual environments are
3D (as can be seen in Figure 17b). The robot indicates the initial position of the agent, while the
yellow characters indicate sand monsters, and the black characters denote spiders. Maps have been
enumerated with their corresponding position in the CRL sequence.

discrete actions: nop, move forward, left, and right, jump, attack, move the mouse right, left, and
down. Finally, episodes terminate if the health of the agent is exhausted or 5K timesteps are reached.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

G DETAILS ON THE ENVIRONMENT CREATION CAPABILITIES OF CRAFTIUM
AND MINECRAFT-BASED FRAMEWORKS

Craftium not only significantly outperforms the computational efficiency of Minecraft-based frame-
works (as demonstrated in Section 3.4), but also provides an extremely flexible interface for creating
new environments via the Minetest Lua API. The flexibility and versatility of this API is demon-
strated by the rich and complex environments that can be created with it, see Figure 11, thanks
to the wide range of mods created by the community (see Ward (2023a) for examples). This sec-
tion focuses on showcasing some code examples that directly compare the flexibility of Craftium’s
Minetest Lua API with the MineDojo API to create new environments. Note that we only com-
pare Craftium to MineDojo as it is, currently, the only Minecraft-based framework that allows the
creating of custom environments.

One major limitation of the MineDojo’s API is that although it allows for spawning different
Minecraft entities (mobs and items) in a given location, the behavior, aspect, and other properties of
the entities are those of Minecraft (the default ones), and cannot be changed. Figure 19 shows how
MineDojo allows spawning entities. On the other hand, Craftium leverages the Minetest Lua API,
which allows access to the internal state of the game engine, allowing to change any aspect of it in
real time. This is illustrated with an example code in Figure 21 and Figure 22 that show how many
properties and behaviors of entities can be modified in Craftium.

Another crucial difference between Craftium’s and MineDojo’s APIs is the map generation capa-
bilities. MineDojo limits map generation to some predefined scenarios (only 5) and biomes. Fig-
ure 20 shows the map customization capabilities of MineDojo. On the other hand, Craftium, via the
Minetest Lua API, allows the user to define any type of custom biome, and combine them in any
way.25 In Figure 23 we showcase a simple example of defining a custom desert biome in Craftium
using the Minetest Lua API. Note that Craftium users can employ any of the vast number of biomes
already implemented by the community (some of them illustrated in Figure 11).26

1 env.spawn_mobs("spider", [5, 0, 5])

Figure 19: MineDojo. Although MineDojo allows for spawning entities in some position, lacks the
capability for modifying the behavior of entities in any way.

1 env = minedojo.make("open-ended", specified_biome="desert")

Figure 20: MineDojo. MineDojo only allows defining worlds from a set of predefined biomes and
scenarios.

1 local mob_def = minetest.registered_entities["mobs_monster:zombie"]
2 mob_def.on_punch = function(self, hitter)
3 hitter:set_hp(hitter:get_hp() + 5)
4 end

Figure 21: Craftium. Example code demonstrating how the behavior of entities can be modified in
Craftium. In this case, the definition of zombies is changed to increase the health of the agent by 5
when successfully attacking a zombie.

25More information and tutorials at https://rubenwardy.com/minetest_modding_book/en/
advmap/biomesdeco.html.

26Examples at https://content.luanti.org/packages/?tag=mapgen.

26

https://rubenwardy.com/minetest_modding_book/en/advmap/biomesdeco.html
https://rubenwardy.com/minetest_modding_book/en/advmap/biomesdeco.html
https://content.luanti.org/packages/?tag=mapgen

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1 mobs:register_mob("craftium:my_spider", {
2 docile_by_day = false,
3 group_attack = true,
4 type = "monster",
5 passive = false,
6 attack_type = "dogfight",
7 reach = 2,
8 damage = 3,
9 hp_min = 25,

10 hp_max = 25,
11 armor = 200,
12 walk_velocity = 3,
13 run_velocity = 6,
14 jump = false,
15 on_die = function(self, pos)
16 -- Set reward to 1.0 for a single timestep then reset to 0.0
17 set_reward_once(1.0, 0.0)
18 -- Spawn more spiders
19 num_spiders = num_spiders + 1
20 for i=1,num_spiders do
21 spawn_monster({ x = 3.7 - i, y = 4.5, z = 0.0 })
22 end
23 end
24 })
25

26 local monster = mobs:add_mob(pos, {
27 name = "craftium:my_spider",
28 ignore_count = true,
29 })

Figure 22: Craftium. Example of a completely custom spider type. Note that we only show a few
options of those available: group attack capabilities, health, reach, attach type, armor, velocity, etc.
Moreover a custom behavior is defined to set the reward and spawn more spiders when the spider
dies.

1 -- Register a custom biome (e.g., desert)
2 minetest.register_biome({
3 name = "custom_desert",
4 node_top = "default:sand",
5 depth_top = 1,
6 node_filler = "default:stone",
7 })
8

9 -- Generate a random landscape with different biomes
10 minetest.register_on_generated(function(minp, maxp, blockseed)
11 if math.random() > 0.5 then
12 minetest.set_biome_area(minp, maxp, "custom_desert")
13 end
14 end)

Figure 23: Craftium. Example showing how custom biomes can be created and used in Craftium.

27

	Introduction
	Background: Minetest and Minecraft
	Craftium
	Observations, actions, and rewards
	Creating custom environments
	Interface
	Performance
	Illustrative examples
	Example 1: classic single-agent RL
	Example 2: Multi-Agent Reinforcement Learning
	Example 3: Open-world environments
	Example 4: Procedural environment generation for CRL

	Related work
	Conclusion
	Modifications to minetest
	Action space details
	Default action space
	Action wrappers

	Extensions to the minetest lua api
	Using Craftium through the PettingZoo (multi-agent) interface
	Details on the performance benchmark
	Details on the illustrative examples
	Environments for classic single-agent RL
	Multi-agent combat
	Open world
	Procedural environment generation
	The ASCII map format

	Environment sequence for Continual RL

	Details on the environment creation capabilities of Craftium and Minecraft-based frameworks

