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ABSTRACT

In this work, we propose a unified representation for Super-Resolution (SR) and
Image Compression, termed Factorized Fields, motivated by the shared principles
between these two tasks. Both SISR and Image Compression require recovering
and preserving fine image details—whether by enhancing resolution or recon-
structing compressed data. Unlike previous methods that mainly focus network
architecture, our proposed approach utilizes a basis-coefficient decomposition to
explicitly capture multi-scale visual features and structural components in images,
addressing the core challenges of both tasks. We first derive our SR model, which
includes Coefficient Backbone and Basis Swin Transformer for generalizable Fac-
torized Fields. Then, to further unify these two tasks, we leverage the strong
information-recovery capabilities of the trained SR modules as priors in the com-
pression pipeline, improving both compression efficiency and detail reconstruction.
Additionally, we introduce a merged-basis compression branch that consolidates
shared structures, further optimizing the compression process. Extensive experi-
ments show that our unified representation delivers state-of-the-art performance,
achieving an average relative improvement of 204.4% in PSNR over the baseline
in Super-Resolution (SR) and 9.35% BD-rate reduction in Image Compression
compared to the previous SOTA.

1 INTRODUCTION

Single Image Super-Resolution (SISR) aims to reconstruct high-quality images from low-resolution
counterparts. Specifically, the key lies in accurately restoring fine details and reconstructing the
correct arrangement of visual features. Thus, geometric correspondences or repetitive patterns, such
as stripes, grids, or textures, are commonly used for evaluation due to their rich details that are
crucial to image fidelity. Early CNN-based approaches Lim et al. (2017b); Dong et al. (2014)laid
the foundation for SISR, which was later enhanced with GAN-based methods Ledig et al. (2017a)
for improved perceptual realism. Follow-up Transformer-based networks Chen et al. (2021) address
non-local dependencies, with subsequent Swin Transformer-based approaches sparking tremendous
advancements Conde et al. (2022)Chen et al. (2023d)Chen et al. (2024), which then inspire more
and more complex, delicate designs of heavy network architectures in SISR. However, these prior
works have primarily focused on network architecture design rather than addressing the capability of
representation. The visual patterns and the inherent nature of image content structure that play an
influential role in SISR have not been explicitly considered in the representation learning process.
This raises a critical question: beyond a simple network output, can we derive a formulation that
more effectively captures these patterns and aligns with the goals of SISR?

On the other hand, image compression serves as a fundamental task in low-level vision applications,
where the traditional compression standards Joint Video Experts Team (JVET) (2023); Wallace
(1992); Taubman & Marcellin (2013) lay the ground work. The emerging learned image compression
models Chamain et al. (2021); Ballé et al. (2018a); Guo-Hua et al. (2023); Liu et al. (2023a); Minnen
et al. (2018); Cheng et al. (2020), compression algorithms of which mostly follow the pixel-space
transform coding Chamain et al. (2021); Goyal (2001)paradigm, then introduce neural networks to
further optimize compression efficiency by learning more compact latent representations and improv-
ing reconstruction quality. Specifically, they convert pixels into compact representations through a
transform module, which eliminates the redundancy to reduce the bit cost in the subsequent entropy
coding process. However, the core challenge of image compression is to accurately reconstruct the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

information lost during compression and quantization. In other words, the models are to recover the
impaired components in images, which can essentially be viewed as reconstructing a high-quality
image from its ‘low-resolution’ version, much like Super-Resolution.

Based on the aforementioned analysis, it becomes clear that although Super-Resolution and Image
Compression appear to be two distinct tasks, they share mutual similarities in two key aspects: (1)
Both tasks require models to restore fine details from low-quality image content, as well as implicitly
capture and reconstruct repetitive structural elements. (2) Both aim to conserve image quality, either
by enhancing resolution or efficiently compressing data without significant loss of perceptual fidelity.

Hence, inspired by recent advances in decomposition fields and matrices factorization in 3D scene
modeling Chen et al. (2022a); Müller et al. (2022); Chan et al. (2021); Fridovich-Keil et al. (2023);
Cao & Johnson (2023); Chen et al. (2023a); Gao et al. (2023), we propose a unified representation,
Factorized Fields, with generalizable Coefficient Backbone and Basis Transformer. This approach
explicitly captures multi-scale visual features and repetitive structural components in images through a
basis-coefficient decomposition. The resulting representation strikes a balance between being compact
and information-rich, enabling the resolution of structural ambiguities and the precise modeling of
image details through a multi-frequency formulation. In the meantime, such a formulation imposes a
factorization constraint during model training, which not only enhances the quality of single-image
super-resolution (SISR) but also reduces distortion and improves compression efficiency by explicitly
modeling structural elements. On top of these, to leverage the robust information-recovering capability
of SR models, we integrate such priors with Image Compression models, whose knowledge of detail
compensation further refines the lost key elements.

Finally, we propose merging the bases by introducing an additional compression branch, consolidating
multiple bases into one alongside multi-image transmission. This approach leverages the mutual
information across multiple images, reducing the need for redundant transmissions and refining the
basis structure. The main contributions of this paper are summarized as follows:

• We propose Factorized Fields, a unified representation that explicitly models multi-scale
visual features and structural components for both super-resolution and image compression.

• We integrate super-resolution with image compression by introducing SR prior during
decompression to compensate for lost details and developing a merged-basis compression
branch for multi-image compression.

• We demonstrate state-of-the-art performance on benchmarks for both super-resolution and
image compression through extensive experiments.

2 RELATED WORKS

Super-Resolution (SR). Image super-resolution is critical in computer vision, focusing on recover-
ing high-resolution (HR) images from low-resolution (LR) inputs. Following the foundational studies,
CNN-based strategies Dong et al. (2014)Lim et al. (2017b)Zhou et al. (2020)Sun et al. (2022)Kim
et al. (2016) were initially introduced with modeling techniques such as residual learning Ledig et al.
(2017b)Liu et al. (2020)Tong et al. (2017)Zhang et al. (2018b)Zhang et al. (2018a)Chih-Chung Hsu
(2023)Lim et al. (2017a) , or recursive learning Chen et al. (2024)Tai et al. (2017). Besides, subse-
quent research also sheds light on GAN-base methodsLedig et al. (2017a)Ledig et al. (2017b)Wang
et al. (2019)Wang et al. (2021) to enhance realisticity and detail quality. However, the inductive
bias of CNN-based networks by restricting spatial locality hinders the capture of long-range depen-
dency from images, which is alleviated by Transformer-based SISR networks Chen et al. (2021)Li
et al. (2021). Afterward, SwinIRLiang et al. (2021) is proposed to combine spatial locality and
non-local information by Swin TransformerLiu et al. (2021) with window attention and achieve
breakthrough improvement in SISR. Following SwinIR’s success, several works have built upon its
frameworkConde et al. (2022)Zhu et al. (2023)Zhang et al. (2024a) to reach better image quality
as well as solve information bottleneckChih-Chung Hsu (2023). Hybrid approaches CRAFT (Li
et al., 2023) merge the benefits of convolutional and transformer structures to further elevate SR
performance. For better feature aggregation, DAT (Chen et al., 2023d) and HAT (Chen et al., 2023b)
integrate spatial and channel information using attention mechanisms to enhance their representation
capabilities. Moreover, RGT (Chen et al., 2024) introduces a unique recursive-generalization self-
attention mechanism that efficiently captures comprehensive spatial details with a linear increase in
computational complexity.
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Figure 1: The correlation between coordinate transformation and downsampling. (a) The
sawtooth transformation example with k = 2. (b) The PixelUnShuffle downsample. (c) To explicitly
model the information for sampling with a sawtooth, we rearrange the feature map in a dilation-like
manner in the downsample layer of the Basis Swin Transformer. This way, the feature sampled would
capture the information in the original layout correctly.

Image Compression (IC). Deep learning has significantly advanced image compression, offering
superior compression ratios and image quality compared to traditional methods like JPEG Wallace
(1992) and JPEG-2000 Taubman & Marcellin (2013). Early CNN-based approaches Chamain et al.
(2021); Ballé et al. (2018b); Guo et al. (2022) have been surpassed by transformer-based models
Koyuncu et al. (2022); Zhu et al. (2022); Wu et al. (2021); Duan et al. (2023), which leverage
spatio-channel attention for better performance. GAN-based methods Mao et al. (2023a;b); Feng
et al. (2021); Rippel & Bourdev (2017) have further contributed to real-time adaptive compression.
Recently, ELIC He et al. (2022) introduced efficient compression with unevenly grouped space-
channel contextual adaptive coding, while LIC TCM Liu et al. (2023a) integrated transformers
and CNNs to capture both global and local image features. The eContextformer Koyuncu et al.
(2024) introduced patch-wise, checkered, and channel-wise grouping techniques for parallel context
modeling with a shifted window spatial-channel attention mechanism. GroupedMixer Li et al. (2024)
proposed a transformer-based entropy model with token mixers for inner and cross-group context
modeling. Meanwhile, Wavelet Conditional Diffusion Song et al. (2024) introduced a wavelet-based
model with uncertainty-aware loss, balancing high perceptual quality with low distortion.

In summary, while recent super-resolution and image compression advances focus on increasingly
complex architectures, our work takes a different approach. We propose Factorized Fields, a unified
framework that models visual and structural features, offering a more comprehensive solution to
enhance performance in both tasks.

3 METHODS

In this section, we first briefly introduce the background of the factor fields Chen et al. (2023a), their
properties, and also the preliminary of Learned Image Compression in Sec. 3.1. Inspired by factor
fields, we next explain the motivation and how we derive our Factorized Fields for enhanced image
reconstruction quality in Sec. 3.2. We then describe how to adapt the formulation to Super-Resolution
in Sec. 3.3. Finally, we show how to incorporate such representation with image(s) compression and
how we integrate Super-Resolution and Image Compression in Sec. 3.4.

3.1 PRELIMINARIES

Factor Fields. The concept of decomposition fields or factorized matrices in the reconstruction of
2D images or 3D scenes has shown superior rendering quality and improved efficiency recently Chen
et al. (2022a); Gao et al. (2023); Müller et al. (2022); Fridovich-Keil et al. (2023); Cao & Johnson
(2023); Chan et al. (2021), while Chen et al. (2023a) first proposed a unified representation called
factor fields. For a 1D signal s(x), the factor fields formulation is:

ŝ(x) = c(x)T b(γ(x)), (1)

3
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where c(x) = (c1(x), ..., cN (x))T are spatial-varying coefficient fields, b(x) = (b1(x), ..., bN (x))T

are basis functions, and γ(x) is a coordinate transformation. The coefficient and basis are queried by
sampling with the coordinates x. This generalizes to Q-dimensional signals:

ŝ(x) = P(c(x)⊙ b(γ(x))), (2)

where P is a projection function and ⊙ denotes the element-wise product. In practice, for multi-
dimensional coefficients:

ŝ(x) = P
(

ConcatNi=1

{
ci(x)⊙ bi(γi(x))

})
. (3)

This formulation allows the same basis to be applied at multiple spatial locations while varying the
coefficients, especially when γ is a periodic function.

Learned Image Compression. Following (Minnen & Singh, 2020; Ballé et al., 2018a), a learned
image compression model with a channel-wise entropy model can be formulated as:

z = ha(y;ϕh), y = ga(x;ϕ),

{Xmean, Xscale} = hs(ẑ; θh), ẑ = Q(z)

ŷ = {Q(y0 − µ0) + µ0, ..., Q(yt − µt) + µt}, 0 <= t < l, µt = ei(ŷ<i, Xmean))

x̂ = gs(y; θ), y = Refineθr (µ0, ..., µt, ŷ).
(4)

The encoder ga transforms the raw image x into a latent representation y. A hyper-prior encoder ha
further processes y to output z, capturing spatial dependencies. z is quantized to ẑ, which is decoded
by hs to produce features Xmean and Xscale, used to estimate the mean µ and variance σ of y. The
latent y is divided into l slices, and each quantized around computed means µt. These means are
derived from earlier quantized slices and Xmean by a slice network ei. The quantized slices form ŷ.
For decompression, ŷ is refined using Refineθr based on µt and ŷ to produce y, approximating the
original y. Finally, gs reconstructs the decompressed image x̂ from y. The model is trained using a
Lagrangian multiplier-based rate-distortion optimization:

L = R(ŷ) +R(ẑ) + λ ·D(x, x̂), (5)

where R(ŷ) and R(ẑ) denote bit rates, D(x, x̂) is the distortion term (calculated by MSE), and λ
balances compression efficiency and image fidelity. In our experiments, we follow Liu et al. (2023a),
modifying only gs to demonstrate our representation’s effectiveness.

3.2 FORMULATION OF FACTORIZED FIELDS

As discussed in Sec. 1, the key to superior rendering quality in image regression tasks of both Image
Compression and Super-Resolution lies in the capability of the representation to capture accurate
structural distribution and fine visual details. Meanwhile, transformations such as Fourier Transform
or Wavelet Transform have long been used to model multi-frequency information Fuoli et al. (2021);
Korkmaz et al. (2024) to express different implicit functions in images; however, such methods often
suffer from under-expression due to the pre-defined and limited frequency bands or restriction from
its formulation. Thus, we seek a representation that explicitly incorporates and fits multi-scale and
multi-frequency components and yet is highly flexible and learnable according to individual features
in an image.

Inspired from recent success on such decomposition fields Fridovich-Keil et al. (2023); Chen et al.
(2023a; 2022a); Müller et al. (2022); Cao & Johnson (2023); Chan et al. (2021), we primarily built
our Factorized Fields framework on factor fields Chen et al. (2023a) from Eq. 3:

Î(x) = P
(

ConcatNi=1

{
ci(x)⊙ bi(γi(x))

})
. (6)

Note that Î denotes the approximated images, and x ∈ R2 are the pixel coordinates.

Such formulation has several key properties: First of all, by decomposing the images into basis
frequencies, we can learn the implicit functions of an image and capture the mutual dependencies
between pixels and across spatial composition; meanwhile, since the basis and coefficient are specific
to every single image and both learnable in all spatial dimensions, the restriction on a limited number
of basis (we use N = 6 in all of our experiments) can be alleviated. Finally, as in Chen et al.
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Figure 2: The overall pipeline of image super-resolution with our Factorized Fields. Given a
low-resolution image ILR, we first extract coefficient feature mapXcoeff with the coefficient backbone,
which is then decoded into coefficient and passed through the basis Swin Transformer for basis,
separately. Finally, as in Eq. 8, the coefficient and basis are sampled, multiplied, and decoded for final
high-resolution output IHR, where s, H , W denote the scale factor, height, and width respectively.

(2023a), of all the tested coordinate transformation γ in Eq. 3 sawtooth γ(x) = x mod k, k ∈ R
performs mostly the best in image regression tasks. We can easily observe that such transformation
implicitly captures patch-like frequency information as shown in Fig. 1a, and thus, we propose that
by leveraging the inter-patch information from the sawtooth coordinate transformation, the visual
correspondence between spatial locations can be effectively represented.

However, in practice, we sample the basis via bilinear or bicubic sampling due to memory constraints,
i.e., the feature size is less than image height and width, and this poses a severe problem: These
nearby sampled pixel features are actually linear or based on cubic interpolation with respect to the
basis, and such inductive bias hinders the representation of non-linearity in images. To resolve this,
we propose a modified version, our Factorized Fields:

Î(x) = P
(

ConcatNi=1

K

j=1

{
ci(x)⊙ ψ(αj · bi(γi(x)))

})
, ψ ∈ {sin, cos}, αj ∈ R. (7)

Here, inspired by the Fourier Series, with a scalar α which can be viewed as increasing to sampling
frequency and a transformation function ψ to add to implicit non-linearity functions and modulation
of product, our complete Factorized Fields method stands out by the fact that such formulation
significantly enhances the ability to represent complex non-linear structures in images and effectively
composes high-frequency components between pixels.

3.3 SUPER-RESOLUTION WITH FACTORIZED FIELDS

We represent a super-resolved image using our Factorized Fields, where coefficients and basis are
generated by networks Fcoeff and Fbasis from a low-resolution Image:

ÎSR(x) = P
(

ConcatNi=1

K

j=1

{
cLR
i (x)⊙ ψ(αj · bLR

i (γi(x)))
})
, (8)

where cLR
i (x) = Conv(Fcoeff(ILR))i(x) and bLR

i (x) = Fbasis(Fcoeff(ILR))i(γi(x)). Note that we sam-
ple the outputs Conv(Fcoeff(ILR)) and Fbasis(Fcoeff(ILR)) with coordinates x and γ(x), respectively.

Our model comprises three main components: Coefficient Backbone, Basis Swin Transformer, and
Factorized Fields Reconstruction. As shown in Fig. 2, the process begins with ILR ∈ R3×H×W .
The Coefficient Backbone extracts features Xcoeff ∈ RCc×Hc×Wc , which are then used to generate
coefficients c through convolution and pixel shuffle operations, and fed into the Basis Swin Trans-
former to produce a multi-scale basis b = {b1, ..., bN}, bi ∈ RCbi

×Hbi
×Wbi . The coefficients and

basis are combined to reconstruct ISR ∈ R3×sH×sW using Eq. 8, where s is the scale factor. In our
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Figure 3: The illustration of our joint image-compression and super-resolution framework
compared with the traditional compression-only method. (a) Traditional learning-based compres-
sion methods (b) Our approach surpasses (a) by incorporating our Super-Resolution (SR) Module
from Sec.3.3 as information-recovery prior, detailed in Sec. 3.4.1. (c) Expanding on (b), Sec. 3.4.2
introduces a multi-image compression strategy that utilizes both our SR Module and a Basis Merging
Transformer to capture shared structure.

experiments, γi(x) is a Sawtooth function: γi(x) = x mod ki, with ki ∈ R. We optimize model
parameters using an L1 loss function. To demonstrate our method’s effectiveness, we use existing SR
methods Chen et al. (2023c;d); Zhang et al. (2024a) as the Coefficient Backbone. For the Basis Swin
Transformer, we employ Swin Transformer BlocksLiu et al. (2022) with a series of downsampling
operations. We use a dilation-like downsampling technique (Fig. 1(c)) to accommodate the sawtooth
sampling pattern. The final basis is refined using additional upsampling and convolution layers.

3.4 IMAGE COMPRESSION WITH FACTORIZED FIELDS AND SUPER-RESOLUTION

Image Compression, at its core, is to strike a balance between the amount of information contained
in the latent bits and the final image quality. However, as discussed in Sec. 1, 2, and 3.2, most
recent works draw emphasis on how to retrieve implicit elements through designing different archi-
tectures, such as analysis transforms and entropy models Koyuncu et al. (2024); Li et al. (2024), or
decompression modules Song et al. (2024); Duan et al. (2023), while this paper aims at addressing
the representation itself to better capture the structural correlations and thus acheive better image
quality through explicit modeling of freqeuncy components and Factorized Fields formulation as in
Eq. 7. In addition, with our trained SR model described in Sec. 3.3, it intuitively serves as a strong
prior for information recovery, i.e., it contains extensive knowledge of how to reconstruct missing
details and enhance image quality by leveraging learned patterns from the training data. Thus, since
Super-Resolution and Image Compression share the core principle of reconstructing and enhancing
image details from low-quality sources, we can effectively integrate this prior into the compression
pipeline. In the following, we respectively present the proposed joint framework for the single and
multi-image compression tasks.

3.4.1 SINGLE IMAGE COMPRESSION

The overall pipeline is shown in Fig. 3(b). To demonstrate the robustness of our representation and
the effectiveness of the SR prior, the compression and decompression networks greatly follow Liu
et al. (2023a), with only the synthesis transform replaced by our SR pipeline, where the details
can be referenced in Supplementary Materials. In practice, the training is performed in two stages.
After we obtain the trained SR prior, the model is fine-tuned with a lower learning rate alongside the
compression module, which is then trained end-to-end with the loss function defined in Eq. 5.

3.4.2 MULTI-IMAGE COMPRESSION

For each basis bi ∈ RCbi
×Hbi

×Wbi associated with any arbitrary image, we can consider it as
encapsulating the inherent pixel structure. These bases can be combined into a unified generic basis
that captures the structural distribution of images and potentially reduces noise. Given M images

6
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Table 1: Quantitative comparisons on 4× super-resolution with state-of-the-art methods. The
best results are colored red. The models with †are those who use same-task pretraining Chen et al.
(2023c). Please refer to quantitative results in Sec. 4.1 for details.

Params MACs Forward Pass Set5 Set14 B100 Urban100 Manga109

Method (M) (G) Memory (MB) PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
SwinIR (Liang et al., 2021)(ICCV2021W) 28.01 119.68 3,826 32.93 0.9043 29.15 0.7958 27.95 0.7484 27.56 0.8273 32.22 0.9273
ATD (Zhang et al., 2024b)(CVPR2024) 20.26 77.10 6,572 33.14 0.9061 29.25 0.7976 28.02 0.7524 28.22 0.8414 32.65 0.9308
DAT (Chen et al., 2023d))(ICCV2023) 14.80 61.66 4,192 33.15 0.9062 29.29 0.7983 28.03 0.7518 27.99 0.8365 32.67 0.9301
RGT (Chen et al., 2024)(ICLR2024) 13.37 834.25 3,404 33.16 0.9066 29.28 0.7979 28.03 0.7520 28.09 0.8388 32.68 0.9303
HAT† (Chen et al., 2023b)(CVPR2023) 20.77 86.02 3,692 33.18 0.9073 29.38 0.8001 28.05 0.7534 28.37 0.8447 32.87 0.9319
HAT-L† (Chen et al., 2023b)(CVPR2023) 40.84 167.27 6,804 33.30 0.9083 29.47 0.8015 28.09 0.7551 28.60 0.8498 33.09 0.9335

ATD-L* 49.42 184.83 15,582 33.12 0.9062 29.31 0.7985 28.02 0.7514 28.25 0.8422 32.78 0.9309
DAT-L* 43.01 175.42 11,326 33.33 0.9084 29.40 0.8009 28.04 0.7543 28.49 0.8473 33.02 0.9321

ATD-F† (Ours) 45.46 149.87 8,674 33.29 0.9082 29.48 0.8017 28.03 0.7539 28.53 0.8487 33.11 0.9335
DAT-F† (Ours) 40.00 134.42 6,206 33.45 0.9094 29.60 0.8039 28.13 0.7560 28.75 0.8520 33.23 0.9339
HAT-F† (Ours) 45.97 158.79 5,750 33.53 0.9100 29.65 0.8050 28.18 0.7569 28.79 0.8527 33.33 0.9342
HAT-F-ImageNet† (Ours) 45.97 158.79 5,750 33.55 0.9102 29.63 0.8049 28.18 0.7569 28.80 0.8529 33.33 0.9342
HAT-L-F† (Ours) 66.04 240.03 8,888 33.75 0.9116 29.87 0.8091 28.31 0.7597 29.51 0.8637 33.36 0.9343

HAT-F-Basis-First† (Ours) 46.67 161.66 5,696 33.33 0.9085 29.47 0.8015 28.10 0.7554 28.57 0.8494 33.14 0.9336
HAT-F-Concat† (Ours) 45.52 129.05 4,826 33.46 0.9095 29.57 0.8035 28.16 0.7566 28.73 0.8518 33.28 0.9341

HR

FIPER (Ours)DATRGT

SwinIR

ESRGAN

BSRGANBicubic

Full Image

HR

FIPER (Ours)DATRGT

SwinIR

ESRGAN

BSRGANBicubic

Full Image

Figure 4: Visual comparisons on super-resolution (4×).

and their respective bases bni , n ∈ {1, ...,M}, we apply a Basis Merging Transformer Fmerge at each
location to integrate the M elements:

bi(h,w) = Fmerge ({bni (h,w) | n ∈ 1, ...,M}) , 0 ≤ h < Hbi , 0 ≤ w < Wbi . (9)

Here, Fmerge is a standard transformer, similar in architecture to that described in (Oquab et al., 2023).
We treat the bases as tokens and prepend the sequence with a CLS token, concluding the sequence to
form the final merged basis.

Since compression induces error, according to Fig. 3b, the Coefficient feature map Xcoeff generated
with Coefficient Backbone contains misinformation, and Basis Swin Transformer that uses such
features would capture the information wrongfully for the basis and thus amplify error. To solve this,
we exploit the mergeable property of basis, compress and transmit the merged basis independently
along other quantized variables {Q(y, µ), ẑ}, and finally reconstruct the M images with the merged
basis and their individual decoded coefficients. as illustrated in Fig. 3c. This way, we can enjoy less
information loss with basis while maintaining low bit rates.

4 EXPERIMENTS

4.1 IMAGE SUPER-RESOLUTION

Experimental setup. We conduct extensive experiments to validate the effectiveness of our Fac-
torized Fields representation for Super-Resolution tasks. Following the strategy outlined in (Chen
et al., 2023b) and (Chih-Chung Hsu, 2023), we adapt the same-task pretraining approach for all
the Super-Resolution models. Unlike these previous works, we leverage the SA-1B dataset from
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(Kirillov et al., 2023), which includes approximately 10 million images, where we randomly sample
4 million for training, which is much less that of ImageNet (Deng et al., 2009), which is used for
Chen et al. (2023b) and Chih-Chung Hsu (2023) pretraining. Note that we use SA-1B just for its
content-rich and high-resolution images since SA-1B is designed for training segmentation models,
whereas ImageNet focuses primarily on single-class prediction. We further conduct experiments to
compare training performance with SA-1B and ImageNet in Tab. 1. While the performances are
mostly equivalent, we witness faster convergence with SA-1B during training.

To be more focused on the representation itself, we utilize various pre-trained SR models
(SwinIR (Liang et al., 2021), HAT (Chen et al., 2023c), DAT (Chen et al., 2023d), and ATD (Zhang
et al., 2024b)) as the Coefficient Backbone, with a consistent Basis Transformer architecture. Training
involves initializing the Coefficient Backbones from pre-trained SR models and randomly initializing
the Basis Transformers. Models are pre-trained for 300k iterations on the SA-1B dataset. After
pretraining, we use DF2K (DIV2K (Agustsson & Timofte, 2017) + Flickr2K (Lim et al., 2017b)) as
the finetuning dataset following (Conde et al., 2022; Chen et al., 2023b) for 200k iterations.

For pretraining, we utilize AdamW optimizer with learning rate 1e-4, batch size 16, betas (0.9,
0.99), and other parameters set to PyTorch default, while we use learning rate 1e-5 during finetuning.
Throughout training, the input is randomly cropped to 256× 256 and bicubicly resized to 64× 64
for Coefficient Backbone input. As for the hyperparameter of Factorized Fields, the number N of
coefficient and basis is set to 6, and the scalars αj are set to {1, 4, 16, 64} since we want to capture
both base frequency αj = 1 and high frequency αj = 64 information.

Quantitative results. Tab. 1 presents the quantitative comparison between our approach and
state-of-the-art (SoTA) methods. We evaluate the methods using five benchmark datasets, includ-
ing Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010), BSD100 (Martin et al., 2001), Ur-
ban100 (Huang et al., 2015), and Manga109 (Matsui et al., 2017). For quantitative metrics, PSNR
and SSIM are reported. The average relative improvement of 204.4% in PSNR over the baseline
across the five datasets is calculated using the formula (c− b)/(a− b), where b represents the PSNR
of a representative baseline, SwinIR, a represents the PSNR of SOTA, HAT-L, and c represents the
PSNR of our best model, HAT-L-F. This formula measures the relative performance gain of our
model compared to the gap between HAT-L and SwinIR.

To validate the effectiveness of our framework, we employ three different SoTA SR mod-
els—ATD Zhang et al. (2024a), DAT Chen et al. (2023d), and HAT Chen et al. (2023c)—as the
Coefficient Backbone in our pipeline, which we denote as ATD-F, DAT-F, and HAT-F, respectively.
These models exhibit significant improvements when compared to their counterparts ATD-L, DAT-L,
and HAT-L, which possess similar parameter counts. It is important to note that only Chen et al.
(2023c) provides a large-scale model. To maintain fairness, we scale up ATD and DAT to match
this size and train them under the same configuration as our model, including both pretraining and
fine-tuning stages. To ensure an equitable comparison with other methods, we further train another
model, HAT-F-ImageNet, using ImageNet as the pretraining dataset, following the protocols outlined
in Chen et al. (2021; 2023c). The results demonstrate that its performance remains consistent with
only minor perturbations.

Furthermore, in traditional Fourier Series and other image processing methods Wallace (1992), the
basis is typically derived first and then used to compute the coefficients. In contrast, our method
derives the coefficient features first, as illustrated in Fig. 2. To explore this difference, we develop
another variant of our model, denoted HAT-F-Basis-First, where we reverse the order of operations.
In this case, we first pass the image through the Basis Swin Transformer and then use the resulting
basis features and the image input to derive the coefficients. This approach, however, leads to a
gigantic performance drop, showing the importance of the order of the pipeline. Specifically, we
argue that in our pipeline, the Coefficient Backbone functions more as a feature extraction module,
where the refined features facilitate downstream basis extraction.

Lastly, to evaluate the effectiveness of our Factorized Fields, we trained a model named HAT-F-
Concat, which does not apply the formulation in Eq. 7. Instead, it concatenates the basis and
coefficient directly and decodes the resulting features to produce the output. Although this approach
results in reduced performance, which indicates the representation does act as an imperative role
in modeling image information, the Basis Swin Transformer with Sawtooth downsampling still
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Table 2: Comprehensive evaluation for image compression. Using VTM as an anchor for calculat-
ing BD-Rate. Latencies are measured under an NVIDIA GTX 3090 GPU.

Method BD-Rate (%) ↓ Latency(s) Params(M)
Tot Enc ↓ Tot Dec ↓

VTM 0.00 129.21 0.14 -

Xie (MM 21’) -0.78 2.93 6.00 50.0
Cheng (CVPR 22’) 5.44 1.98 4.69 29.6
STF (CVPR 22’) -4.31 0.14 0.13 99.9
ELIC (CVPR 22’) -7.24 0.07 0.09 36.9
TCM (CVPR 23’) -11.74 0.16 0.15 76.7

TCM-HAT-L-F (Ours) -21.09 0.109 0.264 110.34

TCM-HAT-F-multi M=1 (Ours) 27.96 0.232 0.174 131.35
TCM-HAT-F-multi M=2 (Ours) 2.70 0.232 0.174 131.35
TCM-HAT-F-multi M=4 (Ours) -10.11 0.232 0.174 131.35
TCM-HAT-F-multi M=8 (Ours) -16.61 0.232 0.174 131.35
TCM-HAT-F-multi M=16 (Ours) -19.88 0.232 0.174 131.35
TCM-HAT-F-multi M=24 (Ours) -20.97 0.232 0.174 131.35

(a) Kodak (b) CLIC (c) Tecnick
Figure 5: Performance (RD-Curve) evaluation on image compression using different datasets.

contributes to improved reconstruction, even without Factorized-Fields decoding, highlighting its
effectiveness.

Visual comparison. We provide the visual comparison in Fig. 4. The images are randomly sampled
from the DIV2K dataset. Our method faithfully reconstructs the image details, whereas the other
approaches suffer from over-smoothing or hallucinating details absent in the ground truth.

4.2 SINGLE- AND MULTI-IMAGE COMPRESSIONS

Experimental Setup We evaluate our Factorized Fields representation for image compression tasks,
comparing it against state-of-the-art methods. Following our Super-Resolution setting in Experiment
Setup from Sec. 4.1, we use the same set of SA-1B for training. To emphasize our representation, we
initialize compression and decompression modules in Fig.3 from pre-trained Liu et al. (2023a) and
the SR Module from those in Sec. 4.1, we then train the pipeline end to end on 256x256 patches for
200k iterations, with AdamW optimizer (Loshchilov, 2017) with learning rate 1e-5, batch size 16,
betas (0.9, 0.99) and other parameters set to PyTorch default.

We integrate our SR Module with the pre-trained compression module TCM, creating TCM-HAT-F
and TCM-HAT-L-F models. TCM-HAT-F-multi represents the multi-image compression pipeline.
For multi-image compression in Fig. 3(c), we set the Basis Swin Transformer and the Basis Merging
Transformer to be trainable while the other parts remain frozen.

Rate-Distortion Performance Comparison We compare our model with State-of-the-Art learned
end-to-end image compression algorithms, including (Liu et al., 2023b), (Chen et al., 2022b), Zou
et al. (2022), Xie et al. (2021), Cheng et al. (2020), Ballé et al. (2018a), Li et al. (2024), Jiang
et al. (2023), Minnen & Singh (2020), Bellard, Qi et al. (2023), and He et al. (2022). The classical
image compression codec, VVC (Team, 2021), is also tested by using VTM12.1.The rate-distortion
performance on various datasets, including Kodak, Tecnick old test set with resolution 1200×1200,
and CLIC Professional Validation, is shown in Fig. 5.
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Table 3: Comparison of improvements of Factorized Fields. ψ and α are the same in Eq. 8

Metric PSNR ↑ SSIM ↑ LPIPS ↓
Baseline (Chen et al., 2023a) 22.04 0.505 0.5296
Ours 38.44 0.999 0.0385

No ψ to control magnitude 13.46 0.147 0.766
No α for pixel-wise frequency information 21.25 0.537 0.527

Table 4: Validation of the effectiveness of SR prior. The best PSNR in marked in color red.

Method
Kodak CLIC Tecnick

λ = 0.0025 λ = 0.0067 λ = 0.025 λ = 0.0025 λ = 0.0067 λ = 0.025 λ = 0.0025 λ = 0.0067 λ = 0.025

bpp PSNR↑ bpp PSNR↑ bpp PSNR↑ bpp PSNR↑ bpp PSNR↑ bpp PSNR↑ bpp PSNR↑ bpp PSNR↑ bpp PSNR↑
TCMLiu et al. (2023a) 0.1533 30.0834 0.2983 32.5841 0.6253 36.1345 0.1214 31.8207 0.2235 34.2098 0.4503 37.1201 0.1268 32.0588 0.2193 34.3669 0.3981 36.9066
TCM-HAT-F-Scratch 0.1570 30.0857 0.2976 32.5893 0.6211 36.1389 0.1214 31.9421 0.2235 34.2894 0.4503 37.1434 0.1258 32.0632 0.2189 34.3781 0.4001 36.9223
TCM-HAT 0.1567 30.1843 0.2992 32.6454 0.6268 36.2267 0.1220 31.9737 0.2266 34.3319 0.4512 37.2486 0.1262 32.1423 0.2174 34.5124 0.3971 36.9934
TCM-HAT-F 0.1574 30.4012 0.2998 32.8910 0.6276 36.4461 0.1229 32.1917 0.2249 34.4109 0.4512 37.3135 0.1255 32.4591 0.2186 34.7656 0.3975 37.3244

In Tab. 2, our TCM-HAT-L-F model achieved a significant BD-Rate improvement of -21.09%
compared to VTM, outperforming previous state-of-the-art methods. The multi-image compression
approach (TCM-HAT-F-multi) shows increasing performance gains with the number of images
compressed simultaneously, reaching -20.97% BD-Rate improvement for M = 24. The result shows
that direct transmission of bases would indeed reduce the error from Coefficient Backbone to Basis
Swin Transformer and that the distortion increase with M , as the information contained in the merged
basis is limited and merging multiple bases into one would cause increasing information loss.

Our analysis reveals several significant advantages of the FIPER framework in image compression
tasks. The approach demonstrates substantial improvements in compression efficiency across various
benchmark datasets, including Kodak, CLIC, and Tecnick, indicating its broad applicability. No-
tably, the multi-image compression strategy shows particularly promising results for larger image
sets, suggesting scalability benefits. Furthermore, our method maintains competitive latency while
significantly improving compression performance and balancing efficiency and quality.

4.3 ABLATION STUDIES

Effectiveness of Factorized Fields design. We conduct experiments to verify our modification
of Factorized Fields, modified from Eq. 3 to Eq. 7. The quantitative performance reported on
single-image regression is shown in Tab. 3, where each result is measured after 256 iterations.
Compared to baseline results, our refinements in modeling pixel-level frequency have significantly
improved all performance metrics. Additionally, our results demonstrate that the modulation function
ψ and the scalar α are interdependent, each essential to the other’s function.

Influence of SR priors in Image Compression We conduct experiments with various configu-
rations to verify the proposed image compression pipeline’s effectiveness. As shown in Tab. 4, we
present the quantitative performance of models trained with different values of λ in Eq. 5. Specifically,
TCM-HAT refers to substituting our SR Module with the original HAT Chen et al. (2023c) in the
pipeline illustrated in Fig. 3.b. TCM-HAT-F represents our complete pipeline, while TCM-HAT-
F-Scratch denotes the same pipeline but with the SR Module initialized randomly. Our results
demonstrate that integrating SR priors with image compression improves performance, and our
proposed representation further enhances results. This highlights the robustness of our Factorized
Fields in capturing fine details in image regression tasks.

5 CONCLUSION

We proposed Factorized Fields, a representation that models implicit structures and patterns by
decomposing images into multi-frequency components. This approach addresses challenges in Super-
Resolution and Image Compression by restoring details and preserving visual fidelity. We integrate
SR priors with Image Compression for improved information recovery and introduce a basis merging
technique for enhanced rendering quality across multiple images. Experiments demonstrate state-of-
the-art performance in both SISR and Image Compression benchmarks, addressing limitations of
previous methods.
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A ARCHITECTURE DETAILS

Figure 6: Detailed architecture of Super-Resolution Modules
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Figure 7: Detailed architecture of Compression Pipeline in Fig.3(b).

Super-Resolution The architecture of our Super-Resolution modules is shown in Fig.6. We extract
the feature map Xcoeff of Coeff Backbone after the last layer, before upsampling. The hidden
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dimension of Basis Swin Transformer is set to 384 with 8 heads in attention, and each blocks contains
2 Swinv2 Layers with window attention. The sawtooth-aware downsample reduces the height and
width by half, where upsample scalar of Pixelshuffle for each basis output is set to 4.

Image Compression The architecture of our Image Compression pipeline of Fig.3(b) is shown in
Fig.7. We extract intermediate features with height and width 128 and convolve with stride 2 for SR
Module input.

B VISUALIZATION

HR FIPER (ours)DATRGTBicubic SwinIR

Figure 8: Visual comparisons on super-resolution (4×).
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