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Abstract
Enhancing cryogenic electron microscopy (cryo-
EM) 3D density maps at intermediate resolution
(4-8 Å) is crucial in protein structure determi-
nation. Recent advances in deep learning have
led to the development of automated approaches
for enhancing experimental cryo-EM density
maps. Yet, these methods are not optimized for
intermediate-resolution maps and rely on map
density features alone. To address this, we pro-
pose CryoSAMU, a novel method designed to en-
hance 3D cryo-EM density maps of protein struc-
tures using structure-aware multimodal U-Nets
and trained on curated intermediate-resolution
density maps. We comprehensively evaluate
CryoSAMU across various metrics and demon-
strate its competitive performance compared to
state-of-the-art methods. Notably, CryoSAMU
achieves significantly faster processing speed,
showing promise for future practical applications.
Our code is available at https://github.
com/chenwei-zhang/CryoSAMU.

1. Introduction
Cryogenic electron microscopy (Cryo-EM) has become one
of the most prevalent techniques in structural biology for de-
termining protein structures, thereby accelerating structure-
based drug discovery (Renaud et al., 2018; Merk et al.,
2016). Cryo-EM projects a series of 2D images, which are
then reconstructed into 3D electron density maps, providing
voxelized representations of proteins. While cryo-EM 3D
maps serve as the basis for molecular structure determina-
tion, using raw maps is usually not possible as they often
lack contrast due to various factors, including molecular
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motion and heterogeneity, imaging artifacts, and incoher-
ent averaging of image data (Rosenthal, 2019). To address
these limitations, various approaches have been developed
to enhance map quality by sharpening or modifying map
densities (Terwilliger et al., 2018b; Kimanius et al., 2016;
Ramı́rez-Aportela et al., 2020; Sanchez-Garcia et al., 2021;
Dai et al., 2023; Maddhuri Venkata Subramaniya et al.,
2023; He et al., 2023). Traditional methods rely on B-factor
correction, which can be applied globally (Terwilliger et al.,
2018b; Kimanius et al., 2016) and locally (Kaur et al., 2021;
Ramı́rez-Aportela et al., 2020). However, these methods
struggle with maps exhibiting varying signal-to-noise ratios
and lacking prior knowledge (e.g. local resolution) (He
et al., 2023).

With recent advancements in deep learning (DL), fully data-
driven methods have been developed to automatically en-
hance raw cryo-EM maps for protein structure modeling.
Leveraging neural networks such as convolutional neural
networks (CNNs) (LeCun & Bengio, 1995), generative ad-
versarial networks (GANs) (Creswell et al., 2018), and
Transformers (Vaswani et al., 2017), these methods achieved
promising results in map enhancement. Yet, they are not
optimized for intermediate-resolution maps (i.e., 4-8 Å (He
et al., 2023)) and rely solely on a single modality—the den-
sity map itself—during neural network training, overlook-
ing other relevant modalities such as structural information.
This limitation restricts their ability to generalize across di-
verse protein structures and prevents them from fully lever-
aging complementary biological information. To address
these shortcomings, we thus introduce CryoSAMU, a novel
approach that combines 3D map features with structural
embeddings derived from the pretrained protein language
model ESM-IF1 (Hsu et al., 2022) to enhance 3D Cryo-EM
density maps with Structure-Aware Multimodal U-Nets.
Our main contributions are:

• We propose the first multimodal network that integrates
structural information into a 3D U-Net model using
cross-attention mechanisms for cryo-EM map enhance-
ment.

• We develop a self-attention-based post-processing pro-
cedure for ESM-IF1’s structural embeddings, effec-
tively preserving both chain and residue relationships
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while maintaining structural integrity.

• We train CryoSAMU on a curated dataset of joint den-
sity maps at intermediate resolution and associated
protein structures, optimizing it for map enhancement.

• We benchmark CryoSAMU against state-of-the-art ap-
proaches across various evaluation metrics over diverse
tested samples. We achieve competitive level of perfor-
mance but with significantly faster processing speeds
(approximately 4.2 to 16.7 times), making our method
well-suited for large-scale and practical applications.

• Our ablation study demonstrates significant improve-
ment brought from integrating structural information.

2. Related Work
2.1. Existing map enhancement methods

Conventional map enhancement (sharpening) approaches,
including Phenix Autosharpen (Terwilliger et al., 2018b)
and RELION postprocessing (Kimanius et al., 2016), are
based on global B-factor correction. This technique en-
hances the amplitude of high-frequency Fourier components
in raw cryo-EM maps. However, global B-factor-based
methods encounter difficulties with maps exhibiting hetero-
geneous local resolutions, often leading to over- or under-
sharpening in specific regions. Despite local B-factor-based
sharpening algorithms (Kaur et al., 2021; Ramı́rez-Aportela
et al., 2020) have been developed to alleviate this limitation,
these methods still suffer from poor accuracy in estimating
the local resolution of maps, which is crucial for precise
local B-factor sharpening.

DeepEMhancer (Sanchez-Garcia et al., 2021) is a pioneer-
ing DL-based fully automatic method that leverages a 3D
U-Net model to mimic local sharpening effects and enhance
map features. Subsequently, CryoFEM (Dai et al., 2023)
that employs convolutional neural networks (CNNs) and
EM-GAN (Maddhuri Venkata Subramaniya et al., 2023)
that utilizes generative adversarial networks (GANs) have
been introduced to further enhance cryo-EM maps. Most
recently, with the emergence of vision transformers, EM-
Ready (He et al., 2023), which adopts a Swin transformer
architecture (Liu et al., 2021), has shown superior perfor-
mance in enhancing map quality for accurate protein struc-
ture modeling.

2.2. Protein large language models

The advancement of protein large language models (pLLMs)
has enabled unprecedented insights into protein structure,
function, and evolution (Rives et al., 2021; Lin et al., 2023;
Hayes et al., 2025; Hsu et al., 2022; Brandes et al., 2022;
Heinzinger et al., 2023; Dauparas et al., 2022). In analogy
to human texts, protein sequences are treated as “biological

texts” and input into pLLMs to capture contextual informa-
tion inherent in the sequences. Notable examples of such
models include the ESM family (Rives et al., 2021; Lin
et al., 2023; Hayes et al., 2025), which are pretrained on
vast datasets of protein sequences using the masked lan-
guage modeling strategy, allowing them to develop rich
representations that encapsulate evolutionary information.

Addressing the inverse problem of predicting protein se-
quences from given structures, ESM-IF1 (Hsu et al., 2022)
has been developed. Trained on 12 million protein structures
derived from AlphaFold2 (Jumper et al., 2021), ESM-IF1
predicts protein sequences from backbone atom coordinates.
It is specifically designed to encode both sequence and struc-
tural information, including backbone geometry, side chain
orientations, and secondary structure elements. These traits
make ESM-IF1 a compelling choice for generating structure-
aware embeddings that complement the map-only modality.

3. Method
3.1. Dataset of protein structures and density maps

Our dataset was built with a set of cryo-EM density maps
at resolutions from 4.0 Å to 7.9 Å from the EMDB data-
bank (Lawson et al., 2016) and their associated protein
structures from the PDB databank (Berman et al., 2002).
To ensure that density maps are properly aligned with their
corresponding PDB structures, we excluded maps and PDBs
from the dataset if: (i) maps contain extensive regions with-
out or misaligned corresponding PDB structures; (ii) maps
contain other macromolecules except proteins; (iii) PDB
structures contain backbone atoms only and/or unknown
residues. Furthermore, to enhance training efficiency, we
measured the correlation between map-PDB pairs using
ChimeraX (Pettersen et al., 2004), and removed pairs with
correlation score lower than 0.65 to filter out incomplete
mappings. To avoid data redundancy, we measured the se-
quence identity between PDB structures, and retained only
one if identity is greater than 30 %. As a result, a total of
384 pairs of cryo-EM maps and associated PDB structures
remained. Among these data, 247 (∼65 %), 62 (∼15 %),
and 75 (∼20 %) map-PDB pairs were selected as training,
validation, and test sets, respectively. Details are listed in
Supplementary Tables S1 to S3.

3.2. Multimodal representations of protein structures

Generating 3D target maps from protein structures For
input experimental maps (denoted as ExpMaps) in train-
ing and validation sets, we simulated the corresponding
target maps (denoted as TgtMaps) from associated pro-
tein structures using the StructureBlurrer package
in TEMPy2 (Cragnolini et al., 2021). The simulation was
performed with a grid interval of 1 Å and a resolution cut-
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Figure 1. Overview of the CryoSAMU framework. a Generating protein multimodal representations: structure features are derived from
a frozen pretrained ESM-IF1 model with self-attention weighting for a fixed-size representation; map voxel features are simulated via
resolution-lowering point spread function and partitioned into smaller cubes. b The CryoSAMU architecture. The experimental map is
partitioned into smaller cubes and processed by a U-Net with residual blocks and linear attention modules. Structural embeddings are
integrated into the bottleneck layer with cross-attention mechanism. The output cubes are reconstructed into the full-size enhanced map.
The illustrated protein complex is a CX3CL1-US28-G11iN18-scFv16 in TL-state (PDB-7RKF, EMDB-24496, reported resolution of 4.00
Å) (Tsutsumi et al., 2022).

off at 2 Å, based on the convolution of atom points with
resolution-lowering point spread functions. Given a PDB
structure with M atoms, the simulated density ρ at grid
point x is calculated by:

ρ(x) =

M∑
i=1

θZie
−k|x−ri|2 , (1)

where Zi and ri refer to the atomic number and the position
vector of the i-th heavy atom, respectively. Here, θ is a
scaling factor and k is defined based on resolution (He et al.,
2023; 2022).

Resampling 3D maps We first resampled both ExpMaps
and TgtMaps to 1 Å/voxel since the cryo-EM maps vary in
voxel size. Subsequently, we normalized the density values

to a range of 0 to 1 using the 99.9th percentile density value
of each map. Due to GPU memory constraints, we parti-
tioned ExpMaps and TgtMaps into smaller 3D subvolume
pairs (denoted as exp.3D-images and tgt.3D-images) with
size of 64×64×64, the largest feasible size that allows for a
sufficient batch size (See Figure 1a.). To mitigate boundary
artifacts during truncation, we applied zero-padding of 64
voxels on each side along all dimensions. As a result, a
total of 29829 exp-tgt image pairs were yielded for network
training and 4642 for validation.

Generating structural embeddings We employed ESM-
IF1 (Hsu et al., 2022) to generate protein structural embed-
dings, which will serve as an additional modality for net-
work training. Specifically, we derived the embeddings by
first extracting backbone coordinates (N, Cα, and C atoms)
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from a PDB file, ensuring that only standard residues with
complete backbone information are included. We then fed
these coordinates into ESM-IF1 to generate embeddings for
each protein chain. Since the lengths of chains varied, we
applied zero-padding to standardize the embeddings.

Fixed-size representation with attention weighting Fol-
lowing the generation of embeddings, we implemented
self-attention weighting to create fixed-size representations
while preserving the intrinsic relationships between chains
and residues. To this end, we computed attention weights
based on embedding similarity to identify the most informa-
tive regions. Specifically, given a PDB structure containing
C chains and R residues per chain, its structural embedding
derived from ESM-IF1 is denoted as E ∈ RC×R×d, where
d = 512 is the embedding dimension. We carried out the
refinement process in several steps. First, we computed
chain-level embeddings by averaging across residues:

Echain =
1

R

R∑
j=1

E:,j,:, Echain ∈ RC×d. (2)

Next, we computed the similarity matrix to determine the
relative importance of each chain:

S = Echain ·ET
chain, S ∈ RC×C , (3)

where each element Sij represents the similarity between
chain i and chain j: Sij = Echain,i ·ET

chain,j . To derive atten-
tion weights, we applied a column-wise softmax function to
S:

Wij =
exp(Sij)∑C
k=1 exp(Sik)

. (4)

We then aggregated these weights across chains to assign a
single importance weight per chain:

wi =
1

C

C∑
j

Wij , i = 1, 2, . . . , C. (5)

These weights w = [w1,w2, ..,wC ] reflect the relative im-
portance of each chain, and we leveraged them to aggregate
chain-level embeddings into a unified representation:

Epooled =

C∑
i=1

wiEi,:,:, Epooled ∈ RR×d. (6)

We further measured the importance of each residue in
Epooled using a residue-level similarity matrix. Following the
same procedure as the chain-level weighting, we obtained a
scalar weight αj for each residue j, where j = 1, 2, . . . , R.
Finally, we applied min-max normalization and resampled
the embedding Epooled based on the attention weights to a
fixed-size representation, Efinal ∈ RL×d, where L = 800.
When the input length R > L, we selected the top-L

residues with the highest attention weights. Conversely,
when R < L, we sorted the residues by their attention
weights and repeated them ⌈L/R⌉ times to reach the target
length, ensuring each resulting embedding maintains rich
representations and consistent dimensions. Compared to
simple averaging or top-L residue selection, we note that
this hierarchical attention strategy preserves the distinct con-
tributions of each residue through explicit weighting, and
can capture biologically informative patterns across diverse
protein complexes.

3.3. The model architecture

We proposed a structure-aware multimodal 3D U-Net, as
depicted in Figure 1b. The network contains an encoder, bot-
tleneck, and decoder, interconnected by skip connections.

Encoder The input to the encoder is a 3D volume with a
single channel. The encoder comprises four hierarchical lay-
ers. The first three layers each consist of two residual blocks,
with each block incorporating a group normalization, a SiLU
activation (Elfwing et al., 2018), and a dropout (p=0.2), fol-
lowed immediately by a linear self-attention module with
4 heads (Katharopoulos et al., 2020) to capture long-range
(global) dependencies across voxels. The channel depth
progressively increases as features are abstracted. In the
fourth layer, only residual blocks are employed, producing
a higher-level feature representation without the addition of
attention modules.

Bottleneck At the bottleneck layer, the feature representa-
tion is first refined by a residue block and then by a linear
self-attention module. Subsequently, a cross-attention block
is introduced to fuse and align the volumetric features with
structural embeddings using multi-head attention with 4
heads, where queries are derived from the volume features
and keys/values from structural embeddings. This process
enables structural conditioning while preserving spatial rela-
tionships. A second residual block is then applied to further
fuse the combined features from both modalities.

Decoder The decoder follows a symmetric architecture
to the encoder. Feature maps are progressively upsampled
using nearest-neighbor interpolation combined with 3D con-
volutions, and skip connections incorporate corresponding
features from the encoder. Finally, a group normalization, a
SiLU activation, and a concluding 3D convolution project
the processed features to a single output channel.

3.4. Network training and inference

Protein structural embeddings provide an additional modal-
ity containing structure information, serving as key-value
pairs in the attention mechanism when training. However,
since these embeddings are unavailable during validation
and inference, we implemented a specialized mode in which
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the network bypasses the cross-attention operation. In this
mode, the network relies exclusively on feedforward trans-
formations with residual connections. This design aligns
with the well-established principle of conditional training,
where auxiliary modalities, despite not available at infer-
ence, are used during training to improve the quality and
generalization of learned representations from the primary
input (Shen et al., 2023). Moreover, this design also main-
tains consistency between training and validation/inference
phases while preserving the feature representations.

Training During training, CryoSAMU accepts an exp.3D-
image and its corresponding structural embedding as input
and generates an enhanced 3D image (denoted as pred.3D-
image). Previous studies have shown that L1 loss performs
well in similar tasks (Sanchez-Garcia et al., 2021; Dai et al.,
2023). However, to improve training stability in the pres-
ence of noisy data and outliers that are common in cryo-EM
maps, we employed the smooth L1 loss to encourage the
generator to minimize the difference between the output
pred.3D-image, X , and the target tgt.3D-image, Y :

SmoothL1Loss(X,Y ) =

{
0.5(X − Y )2, if |X−Y |<1,

|X − Y | − 0.5, otherwise.
(7)

Moreover, to enhance the network’s robustness, we em-
ployed TorchIO (Pérez-Garcı́a et al., 2021) for data augmen-
tation, including random Gaussian noise, anisotropy, and
blurring.

Inference During inference, the input experimental map
was first zero-padded and divided into smaller cubes (64×
64× 64), following the same strategy used for training data.
Each cube was then individually processed by the trained
neural network to generate the enhanced cube. These en-
hanced cubes were subsequently reassembled to reconstruct
the map as its original dimensions. To prevent loss of spatial
information and ensure smooth transition between cubes,
only the central 50× 50× 50 voxels from each enhanced
cube were used in the final reconstruction, following the
method proposed by Si et al. (Si et al., 2020).

Implementation The network was implemented in Py-
Torch 2.6.0 with CUDA 12.4, running under Python 3.12.8.
Training was conducted using a distributed data parallel
(DDP) strategy across two computational nodes connected
via NVLink, with each node equipped with four NVIDIA
A100 GPUs of 40 GB VRAM. This setup supported a max-
imum batch size of 18 per GPU. The network was trained
over 95 epochs, requiring approximately 63 computational
hours. The AdamW (Loshchilov & Hutter, 2017) optimizer
was used with an initial learning rate of 0.0001, along with
a cosine annealing learning rate scheduler. To improve
training performance while maintaining accuracy, automatic
mixed precision training was applied. Additionally, gra-

dient clipping (set to 0.5) was applied to prevent gradient
explosion.

4. Experiments and Results
We conducted a comprehensive study to assess the perfor-
mance of CryoSAMU using a test set of 75 intermediate-
resolution cryo-EM density maps and associated PDB struc-
tures across a wide range of evaluation metrics.

4.1. Visualization and quantification of map
enhancement

We first visualized a CryoSAMU-enhanced map alongside
its associated deposited map using UCSF ChimeraX (Pet-
tersen et al., 2004). For a fair comparison, both sets of
maps were illustrated with the same volume, which requires
contour level adjustments owing to differences in their vol-
ume ranges. Specifically, we first presented the deposited
map at its recommended contour level and volume, then
adjusted the contour level of the corresponding CryoSAMU-
enhanced map to match the recommended volume. In addi-
tion, we also visualized both maps at a higher contour level
with the same volume.

As displayed in Figure 2b, CryoSAMU significantly sup-
pressed noise in the lip nanodisc regions (highlighted by
dashed boxes in Figure 2a) of the deposited map for EMDB-
24496 (PDB-7RKF). Moreover, the deposited map at a
smaller volumes missed certain structural regions corre-
sponding to the protein structures, as highlighted by black
boxes in Figure 2a. In contrast, the CryoSAMU-enhanced
maps exhibited better alignment with the corresponding pro-
tein structures, revealing more structural details, as demon-
strated by black boxes in Figure 2b. Similar visual results
were observed for another protein structure (see Supplemen-
tary Figure S1). Furthermore, residue-level real-space corre-
lation coefficient (RSCC) measurements (Afonine et al.,
2018) in Figure 2c suggested significant improvements.
Specifically, Chains A, B, and C exhibit RSCC increases
compared to the deposited map, with correlations rising
from 0.835 to 0.860, 0.848 to 0.865, and 0.801 to 0.836,
respectively. In addition, 84.9%, 73.5%, and 90.6% of re-
siudes in Chains A, B, and C, respectively, showcased higher
RSCC scores. Consistent RSCC improvements were also
observed in other samples (see Supplementary Figure S2).

4.2. Benchmark I: improvement of real and Fourier
space correlations

We then benchmarked CryoSAMU against other state-of-
the-art methods, including Autosharpen (Terwilliger et al.,
2018b), DeepEMhancer (Sanchez-Garcia et al., 2021),
and EMReady (He et al., 2023), in terms of both real-
space and reciprocal-space (i.e., Fourier-space) correla-
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Figure 2. Visual and quantitative comparison of deposited (blue) and CryoSAMU-enhanced (green) maps, with superimposed correspond-
ing PDB structures (brown). a, b: Maps are shown at two contour levels. Left: recommended contour level (volume = 85.74e3). Right:
higher contour level (volume = 22.57e3). c: RSCC comparisons between deposited and CryoSAMU-enhanced maps. The example protein
is a CX3CL1-US28-G11iN18-scFv16 in TL-state (PDB-7RKF, EMDB-24496, reported resolution of 4.00 Å) (Tsutsumi et al., 2022).

Metric Deposit Autosharpen DeepEMhancer EMReady CryoSAMU(ours)
CryoSAMU
(w/o struct.)

CC box ↑ 0.731 0.679 0.618 0.862 0.834 0.751
CC peaks ↑ 0.750 0.722 0.611 0.774 0.753 0.698
CC volume ↑ 0.594 0.542 0.534 0.729 0.691 0.571
FSC05 ↓ 6.124 6.147 5.283 4.668 5.108 6.434

Table 1. Comparison of different methods across various metrics. See Section 4.2.

tions, across a test set of 75 primary maps. For real-space
correlation, we computed three correlation metrics using
phenix.map model cc (Afonine et al., 2018) for each
map-model pair (where the model refers to a protein struc-
ture): CC box, CC volume, and CC peaks. These metrics
differ based on the choice of map regions used in the calcu-
lations. CC box considers the entire map. CC volume and
CC peaks focus on regions with the highest density values.
However, CC volume selects grid points only around atomic
centers, while CC peaks selects points located anywhere
within the volume. For all three metrics, higher values
indicate better map performance. For Fourier-space corre-
lation, we computed Fourier shell correlation (FSC) using
phenix.mtriage (Afonine et al., 2018), and reported
the unmasked map-model FSC05 values. FSC values are
typically represented as a function of the inverse map reso-
lution, where lower value indicates better map resolution.

The average real-space CC and FSC values are listed in
Table 1. According to the violin plots shown in Figure 3,
CryoSAMU-enhanced maps demonstrated significant im-
provements over the deposited maps in terms of CC box
and CC volume, with average values increasing from 0.731
to 0.834 and from 0.594 to 0.691, respectively. The average
CC peaks score showed a slightly increase from 0.750 to
0.753. These results indicate that CryoSAMU effectively
enhances deposited maps in both the entire region and the
highest-density regions. In contrast, maps processed by Au-
tosharpen and DeepEMhancer exhibited lower scores across
all three metrics. EMReady showed slightly better improve-
ments than CryoSAMU across all three metrics. For FSC05
scores, CryoSAMU outperformed the deposited map, Au-
tosharpen, and DeepEMhancer, achieving an average value
of 5.108 Å. However, it slightly underperformed compared
to EMReady, which achieved an average value of 4.668 Å.
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Figure 3. The violin plots for comparison of different methods
across four evaluation metrics (see Section 4.2) over 75 test sam-
ples.

These results demonstrate that both CryoSAMU and EM-
Ready consistently enhance the deposited maps in terms of
correlations in both real and Fourier spaces.

a b

dc

Figure 4. a-b: The polar plots for comparison of protein struc-
tures constructed from deposited (blue) and CryoSAMU-enhanced
(green) maps, using metrics of (a) residue coverage and (b) se-
quence match. c-d: The box-whisker plots for comparison of
different methods across two evaluation metrics over 20 test sam-
ples. See Section 4.3.

4.3. Benchmark II: improvement of protein structure
modeling

As the goal of enhancing cryo-EM density maps is to
improve the performance of protein structure modeling
from density maps (i.e., map interpretability), we bench-
marked protein structures constructed from CryoSAMU-
enhanced maps against those processed by other meth-
ods. Specifically, we used a standard structure model-

ing tool, known as phenix.map to model (Terwilliger
et al., 2018a), to construct protein structures from 20 maps
enhanced by the different tested methods. These maps
were randomly selected from the test dataset to ensure that
they were not exposed during training, as listed in Sup-
plementary Table S4. To evaluate these structures, we
used phenix.chain comparison (Terwilliger et al.,
2018a) to compare the constructed structures against their
corresponding ground-truth PDB protein structures. We
reported two metrics: residue coverage and sequence match.
The residue coverage indicates the fraction of residues in
the query structure that match the corresponding residues in
the target structure within 3.0 Å, regardless of residue type.
The sequence match indicates the percentage of matched
residues that share identical residue types between the query
and target structures.

Method
Residue

Coverage(%) ↑
Sequence

Match(%) ↑
Deposit 31.71 8.42
Autosharpen 16.00 8.13
DeepEMhancer 24.31 10.0
EMReady 31.61 11.38
CryoSAMU(ours) 38.03 9.33
CryoSAMU(w/o struct.) 8.08 8.13

Table 2. Comparison of average residue coverage and sequence
match across different methods.

The average metric scores from all methods are listed in
Table 2. Figure 4a and b provide a detailed comparison
for each individual test examples in terms of residue cov-
erage and sequence match, respectively. The polar plots
clearly showcase that after CryoSAMU enhancement, 19
out of 20 samples exhibited an improvement in residue cov-
erage on deposited maps, with the average score increasing
from 31.71% to 38.03%; and 55% of samples exhibited an
improvement in sequence match, with the average score
increasing from 8.42% to 9.33%. Furthermore, we bench-
marked CryoSAMU against other methods, as shown in
Figure 4c and d. CryoSAMU achieved the highest residue
coverage score among all methods, although its correlation
scores were slightly lower than those of EMReady. The se-
quence match score of CryoSAMU was slightly lower than
EMReady and DeepEMHancer, while still better than the
deposited maps. We hypothesize that the performance dif-
ferences observed across metrics reflect a fundamental trade-
off between local voxel-level agreement and global model-
building capability. Correlation metrics primarily capture
local agreement between predicted and reference densities
at individual voxels, while residue coverage assesses the
method’s ability to generate interpretable structures suitable
for atomic model reconstruction. The integration of struc-
tural embeddings in CryoSAMU appears to enhance the
continuity and interpretability of generated density maps,

7
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thereby improving atomic model reconstruction capabilities.
This improvement in global structural quality may come at
the cost of slightly reduced point-to-point correlations, sug-
gesting that CryoSAMU prioritizes biologically meaningful
structural features over perfect local density matching to
achieve better performance in protein structure modeling.

4.4. Benchmark III: processing time

To evaluate the scalability of CryoSAMU in practice, we
recorded the time required to generate each enhanced map
of all 75 test samples and compared it against the process-
ing time of other methods. Figure 5 shows the wall-clock
time plotted against the volume size of input experimental
maps, ranging from the order of 106 to 108 Å

3
. For a fair

comparison, all methods were run on the same workstation
equipped with an AMD Ryzen Threadripper 2950X Pro-
cessor of 32 CPUs and an NVIDIA GeForce RTX 2080
Ti of 12 GB VRAM. Each method was executed with the
maximum batch size that our GPU can accommodate: ap-
proximately 12 for DeepEMhancer, 64 for EMReady, and 24
for CryoSAMU. CryoSAMU (shown in green) displayed the
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Figure 5. The scatter plot of map processing time against map
volume. Each dot represents the processing time for an individual
map based on its volume. The shaded area around the regression
line denotes the confidence interval of the regression estimate.

minimum processing time across maps of varying volumes.
Its weak linear dependency on map volume and tight confi-
dence interval around its fit line indicate that CryoSAMU
has both optimal scalability and consistent performance. In
contrast, DeepEMhancer exhibited a strong linear correla-
tion between processing time and map volume, indicating
poor scalability as volume size increases. EMReady showed
a wider confidence interval in its linear fit, reflecting high
variability in processing time. Notably, several outliers at
lower volumes showed significantly longer processing time
compared to other methods. For a significantly large map
with a volume size of 1.25 × 108 Å

3
, CryoSAMU took

only 116.48 seconds for generating an enhanced map, while

Autosharpen DeepEMhancer EMReady CryoSAMU
138±118 544±517 441±500 32±23

Table 3. Average processing time in seconds of different methods.

Autosharpen, DeepEMHancer, and EMReady took 552.19,
2963.10, and 1731.719 seconds, respectively. Table 3 lists
the average processing time for each method. CryoSAMU
achieved an average processing time of 32.49 seconds, ap-
proximately 13.6 times faster than EMReady, while generat-
ing comparably enhanced maps. These results suggest that
CryoSAMU scales efficiently with increasing map volume,
making it a promising tool for practical applications.

4.5. Ablation study

We finally conducted an ablation study to evaluate the
impact of integrating structural modality. We compared
CryoSAMU with (w/) and without (w/o) structural embed-
dings using 75 test samples for correlation evaluation and
20 test samples for protein structure modeling assessment.
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Figure 6. Pairwise comparison of enhanced/deposited ratios for
CryoSAMU (w/) and (w/o). Each point represents a single map.
Point colors encode the deposited map quality.

Figure 6 shows that CryoSAMU (w/) outperforms
CryoSAMU (w/o) in both CC box and FSC05, with im-
provements of 98.7% and 77.3%, respectively, as indicated
by scatter points above the diagonal line. Moreover, the
most significant gains (points far from 1.0) were observed
in poorer-quality deposited maps (colored in purple), which
tend to have lower deposited CC box or higher FSC05 val-
ues. Table 1 lists the average real- and Fourier-space metrics,
indicating that incorporating structural embeddings derived
from ESM-IF1 led to a significant improvement of map
enhancement, as also reported in Figure 3. In terms of
protein structure modeling, residue coverage significantly
raised from 8.08% to 38.03%, while sequence match raised
from 8.13% to 9.33% with the integration of structural em-
beddings. This suggests that structural information helps
complement map regions with poor resolutions, artifacts, or
noise, thereby increasing the completeness (higher residue
coverage) and improving accuracy (higher sequence match)
during structure modeling. These findings underscore the
importance of integrating structural modality to enable the
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network to develop structural awareness beyond learning
solely from 3D density maps.

5. Conclusion and Discussion
In this work, we introduce CryoSAMU, the first structure-
aware multimodal network for enhancing cryo-EM density
maps at intermediate resolution of protein structures. Our
approach combines 3D map features with corresponding
structural features through cross-attention mechanisms. No-
tably, structural embeddings are used solely as auxiliary su-
pervision during training to guide the model toward learning
biologically-grounded and structure-aware representations
from the density maps, which aligns well with the princi-
ple of conditional training (Shen et al., 2023). In addition,
we develop a self-attention weighting algorithm to produce
fixed-size representations of structural embeddings derived
from the pretrained ESM-IF1 model, preserving inter-chain
and residue relationships while maintaining structural in-
tegrity. Our benchmark results demonstrate that CryoSAMU
preforms competitively with existing cutting-edge methods,
closely approaching the performance of EMReady, the cur-
rent leading tool for cryo-EM density map enhancement.
Notably, CryoSAMU achieves the fastest processing speed
among all tested methods, positioning it as a promising solu-
tion for large-scale and practical applications. Furthermore,
our ablation study reveals that incorporating an additional
structural modality significantly boosts CryoSAMU’s per-
formance across all evaluation metrics, suggesting a new
avenue for future cryo-EM research to explore the effective
integration of multimodal data during network training.

Despite CryoSAMU demonstrating superior performance in
enhancing cryo-EM maps, its current architecture—based
on residual convolutions within a U-Net framework—is
primarily designed to capture local information. In prac-
tice, capturing global context and long-range dependencies
across map voxels could further improve performance. This
could be addressed by adopting more hierarchical archi-
tectures, such as the Swin Transformer (Liu et al., 2021),
which facilitates feature extraction over larger receptive
fields. Moreover, incorporating supplementary loss terms,
such as the Structural Similarity Index Measure (SSIM)
loss, could mitigate overfitting and enhance training effi-
ciency (He et al., 2023). These will be explored in our
future work. Furthermore, we plan to explore other cutting-
edge pLLMs for structural embeddings, such as ESM3—a
multimodal generative language model that offers signif-
icantly improved structural representations (Hayes et al.,
2025). Unlike structure-based models, ESM3 accepts amino
acid sequences as input, which are more readily available.
Additionally, we aim to expand our dataset by including
high-resolution maps, which could increase the robustness
of the model and further elevate its performance.
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Suomivuori, C.-M., Panova, O., Waghray, D., Kato, H. E.,
Velasco, A., et al. Atypical structural snapshots of human
cytomegalovirus gpcr interactions with host g proteins.
Science advances, 8(3):eabl5442, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Xu, C., Lu, P., Gamal El-Din, T. M., Pei, X. Y., Johnson,
M. C., Uyeda, A., Bick, M. J., Xu, Q., Jiang, D., Bai,
H., et al. Computational design of transmembrane pores.
Nature, 585(7823):129–134, 2020.

11



CryoSAMU

A. Supplementary Material

Recommend:
volume = 34.37e3             volume = 34.37e3
contour level =  0.0175     contour level =  0.5828

High contour:
volume = 8867                volume = 8867
contour level =  0.030     contour level =  0.91831

Deposited CryoSAMU

d

Deposited

a b c

CryoSAMU

Figure S1. Visualizations of deposited (blue) and CryoSAMU-enhanced (green) maps. The corresponding PDB structures (brown) are
superimposed on the maps. a: Human Dispatched-1 (PDB-6XE6, EMDB-22144, reported resolution of 4.53 Å) (Chen et al., 2020). a-b:
Maps displayed at the recommended contour level. c-d: Maps displayed at a higher contour level. Visualizations were produced by UCSF
ChimeraX (Pettersen et al., 2004). The protein structure modeling completeness and accuracy improved after CryoSAMU enhancement.
For instance, residue coverage increased from 53.5% to 64.5%, as well as sequence match increased from 6.1% to 7.7%.
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Figure S2. The real-space correlation coefficient (RSCC) comparison between deposited and CryoSAMU-enhanced maps. Top: a
transmembrane nanopore TMH4C4 (PDB-6M6Z, EMDB-30126, reported resolution of 5.9 Å) (Xu et al., 2020). Bottom: a yeast
cytoplasmic exosome (PDB-5G06, EMDB-3366, reported resolution of 4.2 Å) (Liu et al., 2016). In the first example of PDB-6M6Z, both
Chain B and Chain D exhibited significant RSCC improvements compared to the deposited maps, increasing from 0.706 to 0.768 and
from 0.739 to 0.777, respectively. In addition, 85.2% of residues in Chain B and 70.9% of residues in Chain D showed an increase in their
RSCC scores. In the second example of PDB-5G06, the average RSCC scores increased from 0.601 to 0.635 for Chain B, with 82.9% of
240 residues showing improvement; and increased from 0.581 to 0.615 for Chain E, with 76.2% of 265 residues perform better.
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PDB ID EMDB ID Res. (Å) PDB ID EMDB ID Res. (Å) PDB ID EMDB ID Res. (Å)
6VU8 21388 4.14 6BO4 7118 4 6RWA 10036 4
6ROW 4975 4.5 6T6V 10387 4.5 3J1P 5410 6.5
6U9F 20696 4.35 6AJ2 9631 4 5JZT 8187 7.4
5WSN 6685 4.3 7KXY 23067 4.4 6D3R 7793 4.3
6VFI 21173 4.5 6WYK 21967 4 6LXE 30006 4.2
6NY1 8994 4.2 8I4T 35183 5.2 6ZPO 11342 4
8BTZ 16244 5.39 7JGG 22326 4.9 7BG4 12170 4.2
7KSR 23024 4.1 6ZN2 11309 4.3 6VFK 21185 4.3
7YR6 34047 4.8 6WCZ 21618 4 6C14 7328 4.5
6M66 30114 4.1 6JI1 9832 4.1 2Y9J 1874 6.4
6IXH 9747 4 6V8P 21108 4.1 7CG3 30349 5.1
7Q3Y 13797 4.34 7R7T 24304 4.5 6GZV 0103 4
6EL1 3885 6.1 7PTS 13636 5.71 6NYB 0541 4.1
7Y1Q 33570 5.03 7O24 12698 4.8 5UZ7 8623 4.1
6Y5K 10700 4.2 5KEL 8240 4.3 6VEJ 21363 4.3
3J2W 5577 5 5NG5 3636 6.5 7PTX 13642 4.03
6BOA 7122 4.2 7ELE 31182 4.9 5LVC 4112 4.2
5ZQZ 6940 4.2 6R3B 4717 4.5 6ALF 8585 4.05
6PW9 20501 4 6N1Q 9317 5.2 6BVF 7294 4
6SIH 10210 4.7 6F2D 4173 4.2 6SCT 0126 4.69
6S5T 10100 4.15 7O42 12716 4.1 7OZ3 13119 4.46
7BGJ 12181 6.9 6ZYY 11581 4.4 6OMA 20122 7.2
6MZC 9298 4.5 5LY6 4118 4.5 7KAL 22774 4
6P6F 20261 4.5 6UZ2 20950 4.2 6NT8 0505 6.5
7MO7 23919 4.8 6W1C 21509 5.3 7ND2 12273 4
8EKI 28204 4.5 7L30 23147 4.4 7YMX 33946 4.44
5FLC 3213 5.9 6TEB 10479 4.1 6U9E 20695 4.2
7BE9 12154 4.2 6OFJ 20047 4.5 5FN2 3237 4.2
6WBI 21590 4.4 7NTF 12588 5.32 7FIF 31595 6.5
6UCV 20729 4.1 7K1V 22630 4.6 6XPE 22286 4.1
6JSH 9881 5.1 6ZPI 11340 4.5 6V85 21095 4.4
5ZAL 6905 4.7 6BP7 7125 4.9 7AL3 11815 4.8
5OF4 3802 4.4 6M1D 30041 4.5 6OLM 20117 4.4
3J9P 6267 4.2 5H64 6668 4.4 8BAH 15948 4.13
7A1D 11606 4.19 5LC5 4032 4.35 6H3L 0135 4.2
6K9K 9949 7.8 6RGL 4876 5.4 2YEW 1886 6
6PPB 20432 4.3 6G2D 4342 5.4 7B6E 12053 4.5
8GP3 34188 4.8 6OKR 20102 4.2 4UQQ 2685 7.6
6Z0S 11022 5.7 6CE7 7461 7.4 6D83 7453 4.3
6UC2 20725 4.5 7KS3 23015 5.8 6D7L 7823 4
7Q55 13826 5.7 5OAF 3773 4.1 6S2E 10088 4.2
6O2M 0608 6.3 6JT0 9883 4 6LBA 0868 4.1
6ZQJ 11366 4.2 6XYE 10649 4.3 6OCE 20017 4.9
7K2V 22647 6.6 7KEU 22233 5 6HZ5 0311 4.2
7QJ0 14005 5.32 7B6D 12052 4.3 6POF 20414 4.3
6SSM 10298 4.3 6VEF 21156 4.08 5XMK 6734 4.2
5Y3R 6803 6.6 6X0V 21985 4.5 6MRW 9214 4.3
6EGX 3866 4.1 7ZJ4 14740 4.43 8J5Z 35996 4.75
7JW1 22513 4.2 4BTG 2364 4.4 5FKX 3204 6.1
7CA3 30323 4.5 6R5K 4728 4.8 6S8F 10120 4
6BBM 7076 4.1 6E15 8954 5.1 5N8Y 3602 4.7
5W1R 8751 4.4 6W1S 21514 4.02 5VFR 8665 4.9
7CTF 30463 4.8 7B6H 12054 5.4 7MOB 23923 5
6KNB 0723 6.9 6KLE 0709 4.5 8S91 40234 4.3
5LJO 4061 4.9 6CFZ 7469 4.5 5GRS 9537 5.4
6C21 7332 5.2 5TQW 8436 5.6 6UWM 20924 5.9
7ZC6 14622 4.27 5KGF 8246 4.54 6OGD 20053 4.4
7KTT 23029 4.17 5Z1F 6875 4.8 6YTV 10924 4.4
6U8Y 20692 4 8FTK 29439 4.56 7PTQ 13633 4.08
8HMF 34898 4.6 8POG 17791 4.15 7R0J 14223 4.23
8I9J 35274 6.39 5OYG 3861 4.1 5OWX 3856 5.2
4PT2 5917 4.6 6B5B 7055 5.2 7DN5 30781 4.11
6TQE 10549 4.3 6V69 21060 4.2 6DVW 8919 4.3
8I6Q 35203 4.23 6LT4 0967 4.5 7MDI 23773 4.3
8C1C 16378 4.1 6D6V 7821 4.8 7YL9 33215 4.7
6I2T 4400 5.7 8FNW 29328 6.73 7VH1 31983 4.2
8CA1 16515 4.3 5Y5Y 6811 4.7 7SQT 25394 4
6ZGD 11202 4.1 5N9Y 3605 4.2 5YYS 6859 4.2
5VHW 8685 7.8 6SGY 10188 4.6 5YZ0 6862 4.7
6ZLU 11274 4.2 8ECI 28016 4 6PWP 20510 4.1
8A5Y 15199 4.9 5FVM 3329 6.1 6V9I 21121 5.2
6U1S 20613 7.6 6ZVT 11470 7 6VXH 21437 4
6V9H 21120 4.1 8HEU 34692 4.6 7R9E 24324 4
6C05 7322 5.15 6TGB 10497 5.5 6EZ8 3984 4
7Q5S 13846 4.47 3J94 6204 4.2 7DXK 30912 4.1
6ZPG 11338 4.6 7NBN 12260 7 5TCP 8398 4.3
7D7R 30610 4 6SZA 10351 6 7DL2 30708 4.4
6LQI 0946 4.5 5WC0 8794 4.4 8GAA 29849 4.24
6PYH 20524 4.3 6W4P 21536 6.6 6A69 6987 4.1
6OJ3 20086 4.5 6SHS 10204 4.4 6CA0 7439 5.75
6VOA 21259 4 6HCG 0193 4.3 6OUA 20200 4.2
6ZY4 11549 4.1 3IZI 5245 6.7 6PSN 20459 4.6
5J8V 8073 4.9

Table S1. List of all EMDB/PDB examples in training sets.
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CryoSAMU

PDB ID EMDB ID Resolution (Å) PDB ID EMDB ID Resolution (Å)
5MDX 3491 5.3 7JTH 22473 4
6RKW 4913 6.6 6QD0 4515 4.5
7OZ1 13118 4 6E0H 8948 4.1
3J17 5376 4.1 8C0V 16372 4.1

5ZFU 6927 6.7 8JNS 36450 4.2
6B40 7046 4.3 6VFJ 21174 5.35
5ZSU 6952 4.3 7CCS 30341 6.2
3J22 5465 6.3 6QVB 4646 4.3
5G4F 3436 7 5MKF 3524 4.2
6FSZ 4301 4.6 6V3G 21036 4

6QXM 4669 4.1 6R22 4707 5.5
6TSW 10567 4 6XJX 22216 4.6
6YRK 10890 4.1 6POD 20412 4.05
5FJ9 3179 4.6 6AYE 7018 4.1
6HS7 0264 4.6 3J7V 6034 4.6
5GQH 9535 4.5 4V1W 2788 4.7
5KBT 8230 6.4 7AHE 11784 4.1
6N52 0346 4 6WCJ 21611 6.3
6CES 7464 4 6M5V 30094 4.5
5O8O 3761 6.8 6BX3 7303 4.3
6R4O 4721 4.2 5G5L 3439 4.8
7Y59 33613 4.51 6Q0X 20555 4.2
7E8G 31018 4.5 3J6X 5942 6.1
3IYJ 5155 4.2 7RD8 24415 5.64
7ZZZ 15042 4.1 3JBC 5888 6.5
6M6A 30117 5 5FJ6 3186 7.9
7JPU 22423 5 6TY3 10615 6.3
6IBC 4447 4.4 6NI2 9375 4
6JXA 9892 4.3 6OR5 9032 4
6NT5 0502 4.1 7BST 30166 4.37

6DMW 7967 4.4 5ZBO 6746 4.1

Table S2. List of all EMDB/PDB examples in validation sets.
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CryoSAMU

PDB ID EMDB ID Resolution (Å) PDB ID EMDB ID Resolution (Å)
6FO0 4286 4.1 5OFO 3776 4.6
7ZDZ 14678 4.3 6YTK 10917 4.07
6MHU 9118 4 6V0B 20986 4.1
6ZXL 11524 4.2 6GDG 4390 4.1
6PO3 20408 4.28 5V5S 8636 6.5
6XE9 22145 4.3 6ZYX 11579 4.3
3J9T 6284 6.9 6CHS 7476 4.3

6WAZ 21582 4.1 5FWP 3340 7.2
6VJY 21220 4.3 6ND1 0440 4.1
6Z2J 11041 4 5TWV 8470 6.3
7U2B 26311 4.1 6GY6 0088 4
8OSF 17151 4 5I08 8069 4
8C0W 16373 4.7 8EDG 28034 4.64
6GTE 0063 4.07 7RYZ 24749 4.15
5G06 3366 4.2 6S6T 10105 4.1
6UT7 20868 4.3 6YTX 10925 6.23
7F5A 31463 6.4 7E2I 30958 4.07
6K4M 9915 4.5 6PEK 20327 4.2
7KDV 22830 4.59 6VK0 21222 4.1
6SO5 10266 4.2 5ONV 3835 4.1
6XE6 22144 4.5 3JC5 6535 4.7
6C5V 7344 4.8 7P16 13157 4.3
6RVY 10018 4.1 6PUR 20479 4.4
5XJY 6724 4.1 5IOU 8097 7
6HV8 0287 4.4 7KVC 23046 4.7
7K9L 22754 4.9 6R7Z 4748 5.14
6JPQ 9870 4.4 8POC 17788 4
6R7Y 4747 4.2 3JCL 6526 4
6L2T 0814 4.1 5ZBG 6911 4.4
6FE8 4241 4.1 8CLS 16718 4
6E10 8951 4.16 8IGG 35432 4.09
7K08 22589 4.7 6M6Z 30126 5.9
6EZO 4162 4.1 3J5L 5771 6.6
6R9T 4772 6.2 6POS 20418 4.12
8F6R 28889 4 6PQX 20455 4.6
6ZPH 11339 6.9 6HRB 0258 4
6U1N 20612 4 7D0G 30533 5
7RKF 24496 4

Table S3. List of all EMDB/PDB examples in test sets.
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CryoSAMU

PDB ID EMDB ID Resolution (Å)
7ZDZ 14678 4.3
5XJY 6724 4.1
6C5V 7344 4.8
6MHU 9118 4
8C0W 16373 4.7
6VJY 21220 4.3
6UT7 20868 4.3
6PO3 20408 4.28
6HV8 0287 4.4
6RVY 10018 4.1
6SO5 10266 4.2
6ZXL 11524 4.2
6GTE 0063 4.07
7K9L 22754 4.9
6XE9 22145 4.3
7F5A 31463 6.4
8OSF 17151 4
5G06 3366 4.2
6XE6 22144 4.5
6Z2J 11041 4

Table S4. List of all EMDB/PDB examples for protein structure modeling.
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