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ABSTRACT
Real-world data consistently exhibits a long-tailed distribution, of-
ten spanning multiple categories. This complexity underscores the
challenge of content comprehension, particularly in scenarios re-
quiring Long-Tailed Multi-Label image Classification (LTMLC). In
such contexts, imbalanced data distribution and multi-object recog-
nition pose significant hurdles. To address this issue, we propose a
novel and effective approach for LTMLC, termed Category-Prompt
Refined Feature Learning (CPRFL), utilizing semantic correlations
between different categories and decoupling category-specific vi-
sual representations for each category. Specifically, CPRFL initial-
izes category-prompts from the pretrained CLIP’s embeddings and
decouples category-specific visual representations through inter-
action with visual features, thereby facilitating the establishment
of semantic correlations between the head and tail classes. To mit-
igate the visual-semantic domain bias, we design a progressive
Dual-Path Back-Propagation mechanism to refine the prompts by
progressively incorporating context-related visual information into
prompts. Simultaneously, the refinement process facilitates the pro-
gressive purification of the category-specific visual representations
under the guidance of the refined prompts. Furthermore, taking
into account the negative-positive sample imbalance, we adopt
the Asymmetric Loss as our optimization objective to suppress
negative samples across all classes and potentially enhance the
head-to-tail recognition performance. We validate the effectiveness
of our method on two LTMLC benchmarks and extensive experi-
ments demonstrate the superiority of our work over baselines.

CCS CONCEPTS
• Computing methodologies → Computer vision; Image repre-
sentations; • Networks→ Network architectures.

KEYWORDS
Multi-label classification, Long-tailed recognition, Visual-language
pretrained models, Category-specific features, Interaction attention
network, Prompt refined feature learning

1 INTRODUCTION
With the rapid development of deep networks, recent years have
witnessed significant progress in computer vision, especially in
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image classification tasks [19, 26, 45, 47]. This progress greatly re-
lies on many mainstream balanced benchmarks (e.g., CIFAR [25],
ImageNet ILSVRC [12], MS COCO [31]), which have two key char-
acteristics: 1) they provide a relatively balanced and sufficient num-
ber of samples across all classes, and 2) each sample belongs to
only one category. However, in real-world applications, the distri-
bution of different categories often follows a long-tailed pattern
[34, 57], where deep networks tend to underperform on tail classes.
Meanwhile, unlike the classical single-label classification, practical
scenarios frequently involve images associated with multiple la-
bels [9, 27, 32, 50], adding complexity and challenge to the task. To
address these issues, an increasing number of works focus on the
problem of Long-Tailed Multi-Label image Classification (LTMLC)
[8, 16, 29, 52].

As the samples of tail classes are relatively scarce, mainstream
methods for solving LTMLC focus on addressing the head-to-tail
imbalance by employing various strategies, such as resampling the
number of samples for each category [2, 3, 43, 52], re-weighting
the loss for different categories [4, 11, 16, 51], and decoupling the
learning of representation and classification head [23, 58]. For ex-
ample, the Decoupling approach [23] designs four distinct sampling
strategies evaluated for representation learning of long-tailed data.
Similarly, Label-Distribution-Aware Margin (LDAM) [4] enforces
class-dependent margin factors for different classes based on their
training label frequencies. Although these methods have made
significant contributions, they have often overlooked two crucial
aspects. Firstly, it is of great importance to consider the seman-
tic correlations between the head and tail classes in long-tailed
learning. Leveraging such correlations can substantially improve
the performance of tail classes with the support of head classes.
Secondly, real-world images often encompass a variety of objects,
scenes, or attributes, adding complexity to the classification task.
The aforementioned methods typically consider extracting the vi-
sual representation of images from a global perspective. However,
this global visual representation contains mixed features from mul-
tiple objects, hindering effective feature classification for each cat-
egory. Therefore, how to explore semantic correlations between
categories and extract local category-specific features in long-tailed
data distributions remains a critical area of research.

Recently, Visual-Language Pretrained (VLP) models [40, 41, 59,
60] have been successfully adapted to various downstream visual
tasks. For instance, CLIP [41], pretrained on billions of samples
of image-text pairs, contains abundant linguistic knowledge from
the Natural Language Processing (NLP) corpora in its text encoder.
The text encoder demonstrates substantial potential in encoding
semantic context representations within the text modality. Hence,
it is feasible to leverage CLIP’s text embedding representations
to encode the semantic correlations between the head and tail
classes. Furthermore, in numerous studies, CLIP’s text embedding
has been successfully employed as semantic prompts to decouple
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local category-specific visual representations from global mixed
features [7, 27, 32].

To tackle the challenges inherent in Long-Tailed Multi-Label
Classification (LTMLC), we propose a novel and effective approach
namedCategory-PromptRefined FeatureLearning (CPRFL). CPRFL
leverages CLIP’s text encoder to extract category semantics, thereby
enabling the establishment of semantic correlations between the
head and tail classes. This is achieved through the robust semantic
representation capabilities of CLIP’s text encoder. Subsequently,
the extracted category semantics are utilized to initialize prompts
for all categories, which interact with visual features in order to
discern context-related visual information specific to each cate-
gory. Such visual-semantic interaction can effectively decouple
category-specific visual representations from the input samples.
However, these initial prompts lack visual-context information,
resulting in a significant data bias between the semantic and vi-
sual domains during information interaction. In essence, the initial
prompts may not be precise, thereby compromising the quality of
category-specific visual representations. To mitigate this issue, we
introduce a progressive Dual-Path Back-Propagation mechanism
to iteratively refine the prompts. This mechanism progressively
accumulates context-related visual information into the prompts.
Concurrently, the category-specific visual representations are pu-
rified under the guidance of the refined prompts, enhancing their
relevance and accuracy. Finally, to further address the negative-
positive imbalance problem inherent in multiple categories, we
incorporate the Re-Weighting (RW) strategy, commonly utilized in
such scenarios. Specifically, we employ the Asymmetric Loss (ASL)
[42] as our optimization objective, which effectively suppresses
negative samples across all classes and potentially improves head-
to-tail category performance in LTMLC tasks.

The contributions of our work can be summarized as follows:

• We propose a novel prompt-learning approach termed Cat-
egory Prompt Refined Feature Learning (CPRFL), for Long-
Tailed Multi-Label image Classification (LTMLC). CPRFL
leverages CLIP’s text encoder to extract category semantics,
harnessing its powerful semantic representation capability.
This facilitates the establishment of semantic correlations
between the head and tail classes. The extracted category
semantics serve as category-prompts to enable the decou-
pling of category-specific visual representations. To the best
of our knowledge, this is the first work to utilize category
semantic correlations to mitigate the head-to-tail imbalance
problem in LTMLC, offering a pioneering solution tailored
to the distinctive characteristics of the data.

• We design a progressive Dual-Path Back-Propagation mech-
anism aimed at refining the category-prompts by progres-
sively incorporating context-related visual information into
prompts during visual-semantic interaction. By employing
a series of dual-path gradient back-propagations, we effec-
tively counteract the visual-semantic domain bias stemming
from the initial prompts. Simultaneously, the refinement
process facilitates the progressive purification of category-
specific visual representations.

• We conduct experiments on two LTMLC benchmarks, in-
cluding the publicly available datasets COCO-LT and VOC-
LT . Extensive experiments not only validate the effective-
ness of our approach but also highlight its significant supe-
riority over the recent state-of-the-art approaches.

2 RELATEDWORK
2.1 Long-Tailed Visual Recognition
Real-world data often follows a long-tailed distribution, presenting
a significant challenge for traditional models due to the imbalanced
class distributions. Common methods to address this challenge in-
clude direct resampling of training samples to balance category
distribution, which may result in over-fitting of the tail categories
[2, 3, 18, 43]. Another strategy involves loss re-weighting based
on label frequencies of training samples to rebalance the uneven
positive gradients among classes [4, 11, 21, 51]. More recently, re-
searchers have explored some techniques like transfer learning
[34, 61] and self-supervised learning [22, 56] to address imbalanced
class distribution. As the Vision-Language Pretrained (VLP) models
like CLIP [41] exhibit strong zero-shot adaptation performance,
some strategies have been proposed to adapt them to downstream
long-tailed learning tasks [13, 35, 44, 48]. These VLP-based methods
incorporate additional language data to generate auxiliary confi-
dence scores and fine-tune the CLIP-based model on long-tailed
data. However, the enhanced performance of tail classes in these
methods is largely attributed to CLIP’s image encoder, which has
been pretrained on a vast dataset containing many tail samples.
This reliance on the image encoder may inadvertently leverage
prior exposure to a large amount of visual data. In our work, we
specifically utilize only CLIP’s text encoder to extract category
semantics, allowing us to avoid this potential bias and establish a
more robust method for addressing the long-tailed problem.

2.2 Multi-Label Image Classification
For the Multi-Label image Classification (MLC) tasks, early solu-
tions involved training separate binary classifiers for each label
[49]. Consequently, recent research addresses the MLC problem by
utilizing category semantics to model label semantic correlations.
CNN-based methods [6, 15, 50, 60] utilize Recurrent Neural Net-
works (RNNs) to extract features sensitive to label dependencies,
implicitly capturing these dependencies. Similarly, statistical co-
occurrence graphs are constructed to leverage Graph Convolutional
Network (GCNs) for representing label correlations [7, 9, 36, 54].
For example, SSGRL [7] incorporates category semantics to guide
learning semantic-specific representations and explores their in-
teractions via a graph propagation mechanism. With the rise of
Transformer across various computer vision tasks, Transformer-
based methods [27, 32, 38] utilize the core attention mechanisms in
Transformer [33] to explore label correlations. For instance, C-Tran
[27] leverages category semantics extracted from word embedding
to facilitate visual-semantic interaction within the Transformer.
However, these methods often have complex designs and may not
generalize well to LTMLC. Recently, VLP models [41] have been
adapted for downstream MLC tasks to address few-shot and zero-
shot problems [1, 17, 20]. Neglecting the imbalanced distribution of
samples, they either have poor generalization on the LTMLC tasks.
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Figure 1: Overall framework of our CPRFL for long-tailed multi-label image classification. Overall, our approach consists
of two sub-networks: Prompt Initialization (PI) network and Visual-Semantic Interaction (VSI) network. The initial prompts
𝑃 are extracted from CLIP’s text embedding within the PI network, and then these prompts are employed to interact with
visual features 𝐹 within the VSI network, facilitating the decoupling of category-specific visual representations 𝑃 ′. Finally, we
compute the similarities between category-specific features 𝑃 ′ and corresponding prompts 𝑃 to obtain the prediction probability
for each category and utilize a progressive Dual-Path Back-Propagation mechanism to refine the prompts. To further address
the negative-positive imbalance problem inherent in multiple categories, we incorporate a Re-Weighting (RW) strategy.

2.3 Long-Tailed Multi-Label Image
Classification

In recent years, research on addressing class imbalance in multi-
label settings has been relatively limited. Similar to re-weighting
strategies, Wu et al. [52] propose a distribution-balanced (DB) loss
to slow down the optimization rate of negative labels based on
binary-cross-entropy loss. Based on DB loss, Lin et al. [29] aim
to flexibly adjust the training probability and further reduce the
probability gap between positive and negative labels. To adapt re-
sampling strategies to multi-label settings, Chen et al. [8] introduce
a group sampling strategy, while Guo et al. [16] adopt collaborative
training on both uniform and re-balanced samplings to alleviate
the class imbalance. Additionally, a prompt-tuning method [53]
has been proposed to adapt pretrained CLIP [41] to LTMLC. How-
ever, these methods may partly compromise the performance of the
head classes while improving tail classes. In this paper, we utilize
pretrained CLIP’s text embedding to extract category semantics
and guide visual-semantic information interaction, which explicitly
establishes semantic correlations between the head and tail classes
and decouple category-specific visual representations,leading to
synchronous improvements in head-to-tail performance in LTMLC.

3 METHODS
3.1 Overview
In this section, we introduce the proposed CPRFL approach, con-
sisting of two sub-networks, i.e., Prompt Initialize (PI) network and
Visual-Semantic Interaction (VSI) network. Firstly, we leverage the
pretrained CLIP’s text embedding to initialize category-prompts
within the PI network, utilizing category semantics to encode se-
mantic correlations between different categories. Subsequently,
these initialized prompts interact with extracted visual features us-
ing a Transformer encoder within the VSI network. This interaction
process facilitates the decoupling of category-specific visual repre-
sentations, enabling the framework to discern context-related visual
information associated with each category. Finally, we compute the
similarity between the category-specific features and their corre-
sponding prompts at the category level to obtain the prediction prob-
ability for each category. To mitigate the visual-semantic domain
bias, we employ a progressive Dual-Path Back-Propagation mecha-
nism guided by category-prompt learning to refine the prompts and
progressively purify the category-specific visual representations
over the training iterations. To further address negative-positive im-
balance issue, we optimize the framework adopting a Re-Weighting
strategy (i.e., an Asymmetric loss (ASL) [42]), which helps sup-
press negative samples across all classes. Fig. 1 illustrates the entire
pipeline of the proposed CPRFL approach.
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Feature Extraction. Given an input image 𝑥 from the dataset 𝐷 ,
we first utilize a backbone network to extract local image features
𝑓 𝑥
𝑙𝑜𝑐

∈ Rℎ×𝑤×𝑑0 , where 𝑑0, ℎ,𝑤 denote the number of channels,
height and width, respectively. In this paper, we employ a con-
volutional network such as ResNet-101 [19] and obtain the local
features by removing the last pooling layer. After that, we add a
linear layer 𝜑 to project the features from dimension 𝑑0 to 𝑑 into
a visual-semantic joint space to match the dimension of category-
prompts:

F = 𝜑 (𝑓 𝑥
𝑙𝑜𝑐

) = {𝑓1, 𝑓2, ..., 𝑓𝑣} ∈ R𝑣×𝑑 , 𝑣 = ℎ ×𝑤. (1)

Utilizing the local features, we conduct visual-semantic informa-
tion interaction between them and the initial category-prompts to
discern category-specific visual information.

Semantic Extraction. Formally, the pretrained CLIP [41] com-
prises an image encoder 𝑓 (•) and a text encoder 𝑔(•). For our
purpose, we solely utilize the text encoder to extract category se-
mantics. Specifically, we adopt a classic predefined template “a
photo of a [CLASS]” as the input text for the text encoder. Then the
text encoder maps the input text (class 𝑖 , 𝑖 = 1, ..., 𝑐) to the text em-
bedding W = 𝑔(𝑖) = {𝑤1,𝑤2, ...,𝑤𝑐 } ∈ R𝑐×𝑚 ,where 𝑐 represents
the number of classes, and𝑚 denotes the dimension length of the
embedding.This extracted text embedding serves as the category
semantics for initializing the category-prompts.

3.2 Category-Prompt Initialization
In order to bridge the gap between the semantic and visual do-
mains, recent work [27, 50] has attempted to project semantic word
embeddings into a visual-semantic joint space using linear layers.
Instead of emloying linear layers for this projection directly, we
opt for nonlinear structures to handle category semantics derived
from pretrained CLIP’s text embedding. This approach allows us to
achieve a more sophisticated projection from the semantic space to
the visual-semantic joint space.

Specifically, we design a Prompt Initialize (PI) network, which
consists of two fully connected layers followed by a nonlinear acti-
vation function. Through the nonlinear transformation performed
by the PI network, we map the pretrained CLIP’s text embedding
W to the initial category-prompts P = {𝑝1, 𝑝2, ..., 𝑝𝑐 } ∈ R𝑐×𝑑 .
Eq. 2 illustrates the entire initialization process:

P = 𝐺𝐸𝐿𝑈 (W𝑊1 + 𝑏1)𝑊2 + 𝑏2, (2)

where𝑊1,𝑊2, 𝑏1, 𝑏2 denote the weight matrices and bias vectors of
the two linear layers, and𝐺𝐸𝐿𝑈 represents the nonlinear activation
function. Here,𝑊1 ∈ R𝑚×𝑡 ,𝑊2 ∈ R𝑡×𝑑 , 𝑡 = 𝜏 × 𝑑 and 𝜏 is the
expansion coefficient controlling the dimension of hidden layers.
Typically, 𝜏 is set to 0.5 in our experiments, and we will investigate
its impact further in the supplementary material.

The PI network plays a crucial role in extracting category seman-
tics from the pretrained CLIP’s text encoder, leveraging its powerful
semantic representation capability to establish semantic correla-
tions between different categories without relying on ground-truth
labels. By initializing category-prompts with category semantics,
the PI network facilitates the projection from the semantic space
to the visual-semantic joint space. Additionally, the nonlinear de-
sign of our PI network enhances the visual-semantic interaction

capacity of the extracted category-prompts, thereby improving the
subsequent visual-semantic information interaction.

3.3 Visual-Semantic Information Interaction
With the widespread adoption of Transformer in the field of com-
puter vision, as evidenced by recent works [10, 27, 32] showcasing
the capability of typical attention mechanisms to enhance the in-
teraction between visual-semantic cross-modal features, we are
motivated to design a Visual-Semantic Interaction (VSI) network.
This network incorporates a Transformer encoder, which takes as
input the initial category-prompts and visual features. The Trans-
former encoder performs visual-semantic information interaction to
discern context-related visual information specific to each category.
This interaction process effectively decouples category-specific vi-
sual representations, thereby facilitating better feature classification
for each category.

To facilitate visual-semantic information interaction between
category-prompts and visual features, we concatenate the initial
category-prompts P ∈ R𝑐×𝑑 with the visual features F ∈ R𝑣×𝑑 ,
forming a combined set of embeddings 𝑍 = (F ,P) ∈ R(𝑣+𝑐 )×𝑑 .
These embeddings are then input to the VSI network for the visual-
semantic information interaction. Within the VSI network, each
embedding 𝑧𝑖 ∈ 𝑍 undergoes calculation and updating through the
multi-head self-attention mechanism inherent to the Transformer
encoder. Notably, we focus solely on updating the category-prompts
P, as these represent the decoupling part of category-specific vi-
sual representations. The attention weight 𝛼𝑝

𝑖 𝑗
and the subsequent

updating process are computed as follows:

𝛼
𝑝

𝑖 𝑗
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑊𝑞𝑝𝑖 )𝑇 (𝑊𝑘𝑧𝑖 )/

√
𝑑

)
, (3)

𝑝𝑖 =
∑︁
𝑗=1

(𝛼𝑝
𝑖 𝑗
𝑊𝑣𝑧 𝑗 ), (4)

𝑝′𝑖 = 𝐺𝐸𝐿𝑈 (𝑝𝑖𝑊𝑟 + 𝑏3)𝑊𝑜 + 𝑏4, (5)
where𝑊𝑞,𝑊𝑘 ,𝑊𝑣 are the query, key, and value weight matrices,
𝑊𝑟 ,𝑊𝑜 are transformation matrices, and 𝑏3, 𝑏4 are bias vectors.
To streamline the complexity of the VSI network, we opt for one
single layer of Transformer encoders without stacking. The re-
sulting output of the VSI network and the category-specific vi-
sual features are denoted as 𝑍 ′ = {𝑓 ′1 , 𝑓

′
2 , ..., 𝑓

′
𝑣 , 𝑝

′
1, 𝑝

′
2, ..., 𝑝

′
𝑐 } and

P′ = {𝑝′1, 𝑝
′
2, ..., 𝑝

′
𝑐 }, respectively. Within the self-attention mecha-

nism described in Eq. 3, each category-prompt embedding compre-
hensively considers its attention towards all local visual features and
other category-prompt embeddings. This comprehensive attention
mechanism effectively discerns context-related visual information
from the samples, leading to the decoupling of category-specific
visual representations.

3.4 Category-Prompt Refined Feature Learning
Following the interaction between visual features and initial prompts
via the VSI network, the resulting output P′ serves as category-
specific features for classification. In traditional Transformer-based
methods [10, 27, 32], the specific output features obtained from the
Transformer are typically projected onto the label space using lin-
ear layers for final classification. Different from these methods, we
employ the category-prompts P as the classifier and compute the

4
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Figure 2: The refined learning process for category-prompts and category-specific features. We employ a progressive Dual-Path
Back-Propagation mechanism to refine the prompts and progressively purify the category-specific visual representations over
the training iterations. The depth of color represents the accuracy of the features, and the darker the color, the higher the
accuracy.

similarity between the category-specific features and the category-
prompts to conduct classification within the feature space. The
classification probability 𝑠𝑖 for class 𝑖 can be calculated by Eq. 6:

𝑠𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑝′𝑖 · 𝑝𝑖 ) . (6)

In the context of the unique data characteristics intrinsic to the
multi-label setting, we compute the dot-product similarity between
the category-specific feature vector of each category and the corre-
sponding prompt vector to determine the probability, which com-
putes absolute similarity. We deviate from the traditional similarity
pattern using relative measurement between category-specific fea-
ture vector of each category and all prompt vectors. The reason
is to mitigate the computational redundancy incurred by calcu-
lating similarity between the feature vector of each category and
unrelated category prompts, which is unnecessary.

The initial prompts lack crucial visual-context information, lead-
ing to a substantial data bias between the semantic and visual
domains during information interaction. This discrepancy results
in imprecise initial prompts, consequently affecting the quality of
category-specific visual representations. To mitigate this issue, we
introduce a progressive Dual-Path Back-Propagation mechanism
guided by category-prompt learning. This mechanism involves two
paths of gradient optimization during model training (shown in Fig-
ure 2a): one path through the VSI network and another path directly
to the PI network. The former path also optimizes the VSI network
to enhance its ability for visual-semantic information interaction.
By employing a series of dual-path gradient back-propagations, the
prompts are gradually refined over the training iterations, allowing
for the progressive accumulation of context-related visual infor-
mation. Concurrently, the refined prompts guide the generation
of more accurate category-specific visual representations, leading
to the progressive purification of category-specific features. We
term this entire process “Prompt Refined Feature Learning”, and
it will be iteratively conducted until convergence, as illustrated in
Figure 2b.

3.5 Optimization
To further address the negative-positive sample imbalance inherent
in multiple categories, we integrate the Re-Weighting (RW) strategy,
commonly utilized in such scenarios. Specifically, we adopt the
Asymmetric Loss (ASL) [42] as our optimization objective, which is
a variant of focal loss [30] with different 𝛾 values for positive and
negative samples. Given an input image 𝑥𝑖 , our model predicts its
final category probabilities 𝑆𝑖 = {𝑠𝑖1, 𝑠

𝑖
2, ..., 𝑠

𝑖
𝑐 } and its ground truth

is 𝑌𝑖 = {𝑦𝑖1, 𝑦
𝑖
2, ..., 𝑦

𝑖
𝑐 }. We train the whole framework using ASL as

shown in Eq. 7:

L𝑐𝑙𝑠 = L𝐴𝑆𝐿 =
∑︁
𝑥𝑖 ∈𝑋

𝑐∑︁
𝑗=1

{
(1 − 𝑠𝑖

𝑗
)𝛾+

𝑙𝑜𝑔(𝑠𝑖
𝑗
), 𝑠𝑖

𝑗
= 1,

(𝑠𝑖
𝑗
)𝛾−

𝑙𝑜𝑔(1 − 𝑠𝑖
𝑗
), 𝑠𝑖

𝑗
= 0,

(7)

where 𝑐 is the number of classes. 𝑠𝑖
𝑗
is the hard threshold in ASL,

denoted as 𝑠𝑖
𝑗
= 𝑚𝑎𝑥 (𝑠𝑖

𝑗
− 𝜇, 0). 𝜇 is a threshold used to filter out

negative samples with low confidence. By default, we set𝛾+ = 0 and
𝛾− = 4 in our experiments. In our framework, ASL effectively sup-
presses negative samples across all classes, potentially improving
head-to-tail category performance in LTMLC tasks.

4 EXPERIMENTS
4.1 Experimental Setup

Datasets. Following the settings outlined in [52], we conduct
experiments on two datasets for long-tailed multi-label visual recog-
nition: VOC-LT and COCO-LT. These two datasets are artificially
sampled from two well-known multi-label recognition benchmarks:
Pascal VOC [14] and MS-COCO [31], respectively.

VOC-LT is created from the 2012 train-val set of Pascal VOC,
following the guidelines provided in [52]. The training set comprises
1,142 images annotated with 20 class labels. The number of images
per class varies from 4 to 775. To simulate a long-tailed distribution,
all classes are categorized into three groups based on the number
of training samples per class: head classes (more than 100 samples),
medium classes (20 to 100 samples), and tail classes (less than 20
samples). After splitting, the ratio of head, medium, and tail classes
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Table 1: The mAP (%) performance of the proposed CPRFL and comparison methods on two long-tailed multi-label datasets.
We present the mAP results on overall, head, medium, and tail classes. “CPRFL-GloVe” denotes our CPR with GloVe word
embedding, and “CPR-CLIP” denotes our CPRFL with CLIP-RN50 ’s text embedding. Bold indicates the best scores.

Datasets VOC-LT COCO-LT
Methods total head medium tail total head medium tail
ERM 70.86 68.91 80.20 65.31 41.27 48.48 49.06 24.25
RW 74.70 67.58 82.81 73.96 42.27 48.62 45.80 32.02

ML-GCN [9] 68.92 70.14 76.41 62.39 44.24 44.04 48.36 38.96
OLTR [34] 71.02 70.31 79.80 64.95 45.83 47.45 50.63 38.05
LDAM [4] 70.73 68.73 80.38 69.09 40.53 48.77 48.38 22.92

CB Focal [11] 75.24 70.30 83.53 72.74 49.06 47.91 53.01 44.85
BBN [58] 73.37 71.31 81.76 68.62 50.00 49.79 53.99 44.91

DB Focal [52] 78.94 73.22 84.18 79.30 53.55 51.13 57.05 51.06
ASL [42] 76.40 70.70 82.26 76.29 50.21 49.05 53.65 46.68
LTML [16] 81.44 75.68 85.53 82.69 56.90 54.13 60.59 54.47

CDRS+AFL [46] 78.96 73.35 85.03 78.63 55.35 52.45 59.48 52.46
Bilateral-TPS [28] 81.58 75.88 84.11 83.95 56.38 55.93 58.26 54.29

PG Loss [29] 80.37 73.67 83.83 82.88 54.43 51.23 57.42 53.40
COMIC [55] 81.53 73.10 89.18 84.53 55.08 49.21 60.08 55.36
CAE-Net [5] 81.61 74.00 85.35 85.28 57.64 52.37 61.18 57.63

CPRFL-GloVe(ours) 85.14 82.50 90.42 83.17 65.18 65.12 69.97 58.91
CPRFL-CLIP(ours) 86.28 81.84 90.51 86.43 66.69 66.35 70.99 61.33

becomes 6:6:8. To evaluate the model’s performance, we employ
the VOC 2007 test set, which consists of 4,952 images.

Similarly, COCO-LT is derived from the MS-COCO 2017 dataset
using a comparable approach. The training set of COCO-LT com-
prises 1,909 images annotated with 80 class labels. The number of
images per class ranges from 6 to 1,128. The distribution of head,
medium, and tail classes in COCO-LT is set to 22:33:25. The per-
formance evaluation is conducted on the MS-COCO 2017 test set,
which contains 5,000 images.

Implementation Details. For the pretrained CLIP models, we
adopt CLIP ResNet-50 or ViT-Base/16 [41] and use the correspond-
ing CLIP Transformer as the text encoder. For network optimization,
we use the Adam optimizer [24] with a weight decay of 1𝑒 − 4 and
the training epochs are set to 30. The batch size is 32, and the learn-
ing rates for COCO-LT, and VOC-LT are empirically initialized with
1𝑒 − 5, 5𝑒 − 5. We use mean average precision (mAP) as the evalu-
ation metric to assess the performance of long-tailed multi-label
visual recognition across all classes. More implementation details
can be found in the supplementary material.

4.2 Experimental Results
To validate the effectiveness of our proposed method, we compare
it with previous state-of-the-art methods on two long-tailed multi-
label datasets. The state-of-the-art methods include popular long-
tailed learning methods and multi-label algorithms, i.e., Empirical
Risk Minimization (ERM), a smooth version of Re-Weighting (RW)
using the inverse proportion to the square root of class frequency,
ML-GCN [9], OLTR [34], LDAM [4], Class-Balanced (CB) Focal [11],
BBN [58], Distribution-Balanced (DB) Focal [52], ASL [42]. We also
compare our CPRFL with previous LTMLC methods, including:

• LTML [16]: collaborative training on the uniform and re-
balanced samplings with learnable logit compensation.

• CDRS+AFL [46]: the combination of copy-decoupling re-
sampling strategy and adaptive weighted focal loss.

• Bilateral-TPS [28]: the modification of a bilateral structure
that samples both the original and proposed sampling dis-
tributions to represent tail classes.

• Probability Guided (PG) Loss [29]: an improved version of
DB focal that can flexibly adjust the training probability
and further reduce the probability gap between positive
and negative labels.

• COMIC [55]: an end-to-end learning framework that cor-
rects missing labels, adaptively modifies the attention to
different samples, and balances the classifier on head-to-tail
learning.

• CAE-Net [5]: a class-aware embedding network that learns
robust class-based representations.

For the proposed CPRFL, we present the results using different
text embeddings for fair comparisons, i.e., GloVe word embedding
[39] (“CPRFL-Glove”) and CLIP’s text embedding (“CPRFL-CLIP”).
Notably, we don’t compare our CPRFL with previous CLIP-based
methods, because the superior performances of tail classes in these
methods may be due to the image encoder pretrained on large-scale
datasets, which may potentially involve a considerable number of
tail-category samples and thereby lead to an unfair comparison.
Table 1 illustrates the mAP performance of different methods. Ex-
perimental results show that our proposed method outperforms pre-
vious methods by a large margin. Specifically, our proposed CPRFL
achieves outstanding results, with total mAP scores of 86.28% and
66.69% on VOC-LT and COCO-LT, respectively. Compared to the
previous SOTA method (CAE-Net), CPRFL exhibits notable im-
provements of approximately 4.67% and 9.05% in total mAP on
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Table 2: The mAP (%) performance of the proposed CPRFL
with different multi-label classification losses on two long-
tailed multi-label datasets. Bold indicates the best scores.

Dataset VOC-LT
Loss Functions total head medium tail

BCE 79.60 82.37 88.95 70.52
MLS 80.75 82.44 90.37 72.26

CB Focal [11] 83.87 80.32 90.48 81.54
DB No-Focal [52] 84.27 82.64 89.06 81.89
DB Focal [52] 86.18 81.81 90.01 86.30
ASL [42] 86.28 81.84 90.51 86.43

Dataset COCO-LT
Loss Functions total head medium tail

BCE 59.62 61.48 66.09 49.47
MLS 59.91 63.36 66.19 48.59

CB Focal [11] 64.20 64.50 69.36 57.12
DB No-Focal [52] 64.28 64.31 69.62 57.21
DB Focal [52] 65.12 63.74 69.97 59.91
ASL [42] 66.69 66.35 70.99 61.33

VOC-LT and COCO-LT. Moreover, CPRFL excels in all three class
subsets (head, medium, and tail classes), with particularly notewor-
thy gains observed in tail classes, achieving a remarkable 3.7% mAP
increase on COCO-LT. In VOC-LT, performance enhancements are
primarily observed in both head and medium classes. These results
fully demonstrate the efficacy of CPRFL in achieving synchronous
improvements in head-to-tail recognition performance.

4.3 Ablation Study
To thoroughly investigate the impact of each component within
the proposed CPRFL framework, we conducted a series of ablation
studies on the influence of classification loss, category semantics
used for prompt initialization, and the components of CPRFL.

Multi-Label Classification Loss. To further address the negative-
positive sample imbalance problem, we adopt the Asymmetric Loss
(ASL) [41] as the multi-label classification loss, which effectively
suppresses negative samples across all classes. In this part, we
compare several classification losses for optimizing our CPRFL ap-
proach, including Binary Cross-Entropy Loss (BCE), Multi-Label
Soft Margin Loss (MSL), Class-Balanced Focal Loss (CB Focal) [11],
Distribution-Balanced Loss (DB Focal) [52], a No-Focal version of
DB Loss, and ASL [41]. Table 2 lists the comparison results on VOC-
LT and COCO-LT. The results demonstrate that ASL consistently
outperforms other classification losses for the LTMLC tasks. This
superior performance can be attributed to ASL’s ability to account
for the dominance of negative-positive imbalance across all classes
in LTMLC, a key aspect that the other losses do not adequately
address.

Category Semantics for Prompt Initialization. We further
conduct a comparative analysis of CPRFL’s performance with var-
ious types of category semantics for prompt initialization to ex-
plore whether the notable improvement of our approach is primar-
ily attributed to the powerful pretrained linguistic knowledge in

Figure 3: The mAP (%) performance with various types of
category semantics for prompt initialization on COCO-LT
dataset.

CLIP. Specifically, we evaluate three different word embeddings, i.e.,
Randn (random initialization embedding), Word2Vec [37], GloVe
[39], and CLIP-RN50, CLIP-ViT16. The results on COCO-LT are pre-
sented in Figure 2. From the figure, it is clear that CPRFL utilizing
CLIP outperforms the Word2Vec and GloVe embeddings across all
classes. This can be attributed to CLIP’s multi-modal pre-training,
which enhances the alignment of semantic embedding with visual
concepts and strengthens the representation ability of category
semantics. Additionally, our CPRFL with Randn embedding (63.9%)
surpasses all previous state-of-the-art methods (57.6%) as reported
in Table 1. This suggests that even without leveraging CLIP’s pre-
trained semantic knowledge, our CPRFL approach still outperforms
other methods in the LTMLC tasks.

Components Analysis of CPRFL. To evaluate the contributions
of various components to our method for long-tailed multi-label
classification, we conduct a series of ablation studies, with the re-
sults summarized in Table 3. Our baseline experiment uses focal
loss [30] and achieves mAP performances of 73.88% on VOC-LT
and 49.46% on COCO-LT. Our CPRFL framework comprises two
key components: Visual-Semantic Interaction (VSI) and Prompt
Initialization (PI). VSI leverages category-semantic prompts to de-
couple category-specific visual representations from samples, while
PI establishes semantic correlations between different categories
using CLIP. Adding these two components leads to significant im-
provements across head, medium, and tail classes, and the overall
mAP outperforms the baseline by 10.34% on VOC-LT and 14.80%
on COCO-LT. We attribute these gains to the Dual-Path Back-
Propagation mechanism guided by this two components, which
can refine the category-prompts and enhance visual-semantic inter-
action, thereby progressively purifying category-specific features
during iterative training. Additionally, integrating VSI, PI with the
Re-Weighting (RW) strategy further improves mAP performance,
particularly for the tail classes, with increases of 4.27% on VOC-LT
and 4.13% on COCO-LT.
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Table 3: The ablation analysis on different components of the proposed CPRFL. Here “VSI” denotes Visual-Semantic Interaction,
“PI” denotes Prompt Initialization, “RW” denotes Re-Weighting strategy, “avg.△” denotes average performance improvement.
Bold indicates the best scores.

VSI PI RW VOC-LT avg.△ COCO-LT avg.△total head medium tail total head medium tail
Baseline 73.88 69.41 81.43 71.56 49.46 49.80 54.77 42.14√

83.87 80.32 90.53 81.54 +9.99 63.87 63.55 69.01 57.36 +14.40√ √
84.24 80.78 90.47 82.16 +10.34 64.27 64.30 69.62 57.20 +14.80√ √ √
86.28 81.84 90.51 86.43 +12.20 66.69 66.35 70.99 61.33 +17.30

GT: {person, dog, horse}

(a)

GT: {car, aeroplane, bus}

(b)

Figure 4: Visualization examples of Top-3 predicated categories by ResNet-50, CLIP and our CPRFL.

4.4 Qualitative Analysis
To better understand how our method handles long-tailed multi-
label data, we conduct qualitative experiments using ResNet-50,
CLIP, and our proposed CPRFL. Figure 4 visualizes the top-3 cate-
gory predictions from these different models, with CPRFL demon-
strating superior performance, particularly for the tail classes. In
Figure 4a, ResNet-50 solely recognizes the head class [person] but
fails to classify the tail class [horse], which is a common challenge
faced by visual models lacking semantic guidance. The emergence
of CLIP is a great remedy for this issue, owing to its strong semantic
linguistic supervision. However, CLIP relies on global visual repre-
sentations from the image encoder and lacks the ability to decouple
category-specific features, which may lead to overlooking small
objects. In contrast, our CPRFL not only provides more accurate
category predictions but also achieves higher prediction scores for
the tail class [horse]. This is due to CPRFL’s ability to leverage
semantic correlations between the head and tail classes, like [per-
son] and [horse], to boost the prediction probability for [horse].
Additionally, by effectively decoupling category-specific features,
our method can recognize small objects such as [dog], a medium
class. As a result, our proposed CPRFL demonstrates significant

advantages in addressing the intricate challenges of head-to-tail
imbalance and multi-object recognition.

5 CONCLUSION
To tackle the challenges of head-to-tail imbalance and multi-object
recognition in long-tailed multi-label image classification, we pro-
pose a novel and effective approach, termed Category-Prompt Re-
fined Feature Learning (CPRFL). CPRFL capitalizes on CLIP’s text
encoder to extract category semantics, leveraging its robust seman-
tic representation capability. This allows for the establishment of
semantic correlations between the head and tail classes. The derived
category semantics are then utilized as category-prompts, facili-
tating the decoupling of category-specific visual representations.
Through a series of dual-path gradient back-propagations, we refine
these prompts to effectively mitigate the visual-semantic domain
bias. Simultaneously, the refinement process aids in purifying the
category-specific visual representations under the guidance of the
refined prompts. To our knowledge, this is the pioneering work to
leverage category semantic correlations for mitigating head-to-tail
imbalance in LTMLC, offering an innovative solution tailored to
the unique characteristics of the data.
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