
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING-BASED MECHANISM DESIGN: TRUTH-
FUL, EXPRESSIVE AND EFFICIENT CONTINUUM AP-
PROACHES FOR UTILITY MAXIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Mechanism design is a crucial topic at the intersection of computer science and
economics. This paper addresses the automated mechanism design problem by
leveraging machine learning and neural networks. The objective is to design a
truthful, expressive and efficient mechanism that maximizes the platform’s ex-
pected utility, given that the players’ types are drawn from a pre-specified distri-
bution. We present a general mechanism design model that captures two critical
features: hidden information and strategic behavior. Subsequently, we propose
the PFM-Net framework, which parameterizes the menu mechanism class by
function approximation and identifies an optimal mechanism through ingenious
optimization techniques. We also provide both theoretical and empirical justifi-
cations for the advantages of our approach. Experimental results demonstrate the
effectiveness of PFM-Net over traditional and learning-based baselines, enabling
the PFM-Net framework to serve as a new paradigm for automated mechanism
design.

1 INTRODUCTION

Designing a truthful mechanism that maximizes the platform’s expected utility is a fundamental
problem in computational economics, with important application in market design and resource
allocation (Börgers et al., 2015; Golowich et al., 2018). In a typical mechanism design problem,
the market consists of two kinds of players: platforms (sellers) and customers (buyers), both with
given utility functions. The utility functions are determined by the item price, item allocation and
the player’s own value of items. Typically, the mechanism is required to possess truthfulness (or
equivalently, “strategy-proof” & “DSIC and IR”) (Likhodedov & Sandholm, 2005) such that the
customers have the incentive to report their types honestly and are always willing to participate.

The seminal work of (Myerson, 1981) solved the optimal strategy of selling one item with indepen-
dent bidder valuations, yet analytical results have been limited to specific simple settings thereafter
(Manelli & Vincent, 2006; Giannakopoulos & Koutsoupias, 2014). The machine learning approach
to this problem has become the mainstream method, which can be classified into three categories.
VCG-based approaches (Sandholm & Likhodedov, 2015) define a parameterized class of truthful
mechanisms and then optimize within this class. Regret-based approaches (Dütting et al., 2019;
Ivanov et al., 2022) capture a broad class of mechanisms by incorporating untruthfulness (i.e., re-
gret) as a penalty in the loss function to optimize the mechanism. Discretization-based approaches
(Duan et al., 2024b; Wang et al., 2024b), including menu-based and mixed integer programming-
based methods, discretize the allocation or type space to approximate the optimal mechanism while
preserving truthfulness.

Each of these existing approaches has notable drawbacks. VCG-based methods are inherently lim-
ited in expressive power, making them insufficient to find the optimal mechanism. Regret-based
methods suffer from untruthfulness, which makes outcomes unpredictable and the mechanism po-
tentially unstable. Discretization-based approaches often needs an exponential number of param-
eters to capture the full type space or allocation space, which becomes prohibitively expensive even
for problems with moderate size.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our Contributions In this paper, we close the joint gaps of truthfulness, full expressive power
and efficiency in general multi-player mechanism design. We propose a machine learning-based
framework called PFM-Net (Parameterized Full-Menu Network) to derive the optimal mechanism.

To achieve this, we first construct a general mechanism design setting in a quasi-linear context,
which generalizes auction settings and other scenarios, such as welfare-maximizing platforms. We
then characterize truthful mechanisms within this setting, demonstrating that the class of truthful
mechanisms is equivalent to the class of menu mechanisms with convex pricing functions, substan-
tially generalizing the results of Rochet (1987) and Hammond (1979).

Building on this characterization, we utilize representations of convex functions, such as PICNN
(Amos et al., 2017) and GroupMax (Warin, 2023), to construct the pricing network. We also derive
a training procedure to train the optimal parameterized function, with the objective function formu-
lated as a penalized utility function of the platform. Experimental results validate the effectiveness
of PFM-Net framework, by demonstrating that such framework obtain the ability to capture the
non-trivial component even in the moderate-sized problems while other methods fail, highlighting
its superior performance in moderate-sized problems and its empirical success in avoiding the curse
of dimensionality and enabling the PFM-Net framework to serve as a new paradigm for automated
mechanism design1.

2 PROBLEM SETTING

The model In this paper, we consider a generalized mechanism design model in the quasi-
linear context. There are n players, m items as well as one platform in this model. Denote
[n] = {1, 2, ..., n} as the players set and [m] = {1, 2, ...,m} as the items set. Each player i has
her hidden type ti ∈ Ti ⊆ Rm, and the type space Ti for player i is public knowledge, assuming
to be convex and compact.2 We denote T = ×i∈[n]Ti for simplicity. The j’th element of ti, tij ,
represents the player i’s preference for item j. Specifically, let xi ∈ Rm be the allocation of items to
player i. The valuation of the bundle xi to player i when her type is ti, vi(xi; ti) = ⟨ti,xi⟩+ci(xi),
where ci : Xi → R is a publicly-known, continuous and differentiable-almost-everywhere regular-
ization term, and Xi is the feasible allocation set of player i. By this form, we only assume that the
“hidden part” in valuations, ⟨ti,xi⟩, is bi-linear on the allocations and hidden types. Note that in
this model, the elements in both allocations and types can be positive or negative. 3

The allocations would bring utilities to the platform as well. Denote x = {xi}i∈[n] and t =
{ti}i∈[n] as the allocation profile and type profile of players. We assume no hidden information
of the platform, but we allow that the platform’s valuation v0(x, t) may depend on type profile t, in
addition to the allocation profile x. Function v0(x; t) is assumed to be continuous and differentiable-
almost-everywhere on x as well.

Quasi-linear utilities We assume quasi-linear utilities for all players as well as the platform. It
means that one-unit of utility can be arbitrarily transformed among players and the platform through
one-unit of money paid to or charged from players.4 Denote pi ∈ R as the payment charged from
(pi > 0) or paid to (pi < 0) player i, the quasi-linear utilities for player i and platform are,

ui(xi, pi; ti) = vi(xi; ti)− pi, i ∈ [n], u0(x,p; t) = v0(x; t) + γ
∑
i∈[n]

pi,

where v0(x; t) is the valuation of platform when the allocation is x given the player types t, and
γ ≥ 0 is a parameter representing how the platform evaluates different outcomes with respect to
money and valuations. Both v0 and γ are public knowledge, thus excluded from the inputs of u0. The

1We leave further related works to Appendix A.
2A set in Euclidean space is compact if and only if it is closed and bounded.
3A positive allocation means the platform allocates the item to the player; while a negative allocation means

the platform buys the item from the player. A positive type means the item are “good” for the player such that
it increases the valuation of players owing the item; while a negative type means the item are “bad” for player,
e.g., pollution, risk and so on.

4In the mechanism design literature, quasi-linear utilities and the allowance of money transfer are often
indispensable for implementation of truthful mechanisms. (Nisan et al., 2007, §9.3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

formulation of the platform’s utility generalizes the social-welfare-oriented platform (v0(x; t) =∑
i∈[n] vi(xi; ti), γ = 0) or revenue-oriented platform (v0(x; t) ≡ 0, γ = 1), as well as the affine

combination of social-welfare and revenue. Throughout this paper, we assume that all players and
the platform are expected utility maximizers.

Allocation constraints We allow hard constraints that represent the feasible allocation set to each
player. Let Xi ⊆ Rm be a convex, non-empty set that describes the feasible allocations for player
i. It means that when the platform assigns allocations x to players, the platform should guarantee
that xi ∈ Xi, for all i ∈ [n]. Xi = Rm means there is no constraint on allocating to player i.
Denote X = ×i∈[n]Xi as the possible allocation set. Note that this model implicitly means that the
constraints are endogenous from players, rather exogenous from the platform. 5 We require two
technical assumptions: 0 ∈ Xi and ci(0) = 0,∀i. It means that 0 is an outside option for all players,
with utility normalized to 0. But we also note that these assumptions can be removed without loss
of generality.

Truthful direct mechanisms We focus on truthful direct mechanisms in this study. Revelation
principle states that focusing on this type of mechanisms is without loss of generalities (Myer-
son, 1979). In other words, restricting on direct mechanisms do not lose expressiveness. Be-
low we omit the input (t1, ..., tn) sometimes when the context is clear. According to convention,
(t1, ..., ti−1, t

′
i, ti+1, ..., tn) is abbreviated as (t′i, t−i) and (t1, ..., tn) is abbreviated as t. We first

present the formal definitions of direct mechanisms for completeness.
Definition 2.1 (Direct Mechanisms). A direct mechanism Md = (x,p) consists of an allocation
rule x : T → X and a payment rule p : T → Rn. The mechanism works as follows,

Step 1. The platform requests all players for their types at the same time, and receive the players’
report t = (t1, ..., tn) ∈ T .

Step 2. The allocations to players are computed by x(t). Each player i is allocated with bundle xi.

Step 3. The payments (or payoffs) of players are computed by p(t). Each player i is charged by pi
(or paid −pi) amount of money.

We say a direct mechanism is truthful, if it satisfies two conditions: individual rationality (IR) and
incentive compatibility (IC):

vi(xi(t); ti)− pi(t) ≥0, ∀t ∈ T , i ∈ [n] (IR)

vi(xi(t); ti)− pi(t) ≥vi(xi(t
′
i, t−i); ti)− pi(t

′
i, t−i), ∀t ∈ T , t′i ∈ Ti, i ∈ [n] (IC)

The IR condition states that, players are always happy to participate on this mechanism. The RHS in
(IR) means that the utility of outside option for each player is ⟨ti,0⟩+ ci(0) = 0. The IC condition
states that, truthful telling is a dominant strategy for each player. For simplicity, we abbreviate
truthful direct mechanism as truthful mechanism later on this paper.

Our goal The goal of this problem is to find a truthful mechanism that maximizes the expected
utility of the platform. Regarding the expectation, we assume that the platform holds a prior
over the (possibly correlated) joint distribution of players’ types, i.e., F ∈ ∆(T). Similar with
many learning-based algorithm, we do not require the full knowledge of the distribution F . In-
stead, the minimum requirement is an access to a sampling oracle, that enables i.i.d. samples of
{tk}k∈[K]

i.i.d.∼F with arbitrary sample size K ≥ 1, which would be utilized by our algorithm.

Formally, the platform’s optimization problem is stated as follows.
max

x:T →X
p:T →Rn

Et∼F [u0(x(t),p(t); t)] s.t. (IC), (IR)

Automated mechanism design Since the control variables in this problem is infinitely-
dimensional6, finding an analytical optimal solution becomes extremely hard. In this paper, we

5More discussions about allocation constraints are provided in Appendix F.1
6Specifically, the control variables are x(·) and p(·) in mechanism design problem, which are functions on

a continuous domain and thus infinitely-dimensional.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

follow the framework of automated mechanism design (Sandholm, 2003), which parameterizes the
mechanism, as a parameterized class, and find the optimal mechanism within this class.

Formally, let θ ∈ Rnθ be the parameters represented in the allocation rule and payment rule. The
mechanism is then represented as x(t; θ) and p(t; θ), where x(·; ·) and p(·; ·) are determined only
by network architecture. The problem then reduces to finding the optimal parameter θ,

max
θ∈Rnθ

Et∼F [u0(x(t; θ),p(t; θ); t)] s.t. (IC), (IR)

Desirable properties Before the formal contents, we shall emphasize what desirable properties
an ideal approach should possess: potentially exact truthfulness, full expressive power and ef-
ficiency in moderate-size problem. More discussions on these properties are presented in Ap-
pendix F.2.

3 CHARACTERIZATION OF TRUTHFUL MECHANISMS

As is inspired by Wang et al. (2024b) and Dütting et al. (2024), we focus on the menu mecha-
nism class in this paper. We will show that a specific class of menu mechanism characterizes the
class of truthful mechanisms in this section. Due to space limits, the formal definition of the menu
mechanism is leaved to Appendix B.

For completeness, we briefly introduce menu mechanisms in few words. Consider a mecha-
nism design problem with one player, with type space T and feasible allocation set X . A menu
Mm = (Xm, pm) specifies a subset of feasible allocation, ∅ ̸= Xm ⊆ X , and a pricing rule,
pm : Xm → R. The mechanism discloses the menu to the player at first, then the player buy the
utility-maximizing allocation x ∈ Xm and pay pm(x) money, which depends on her private type
t ∈ T . The case of multi-players is similar. In that case, the platform plays the mechanism with
each player independently, with the only difference that the mechanism to each player i can depend
on the types of all other players t−i.

With a little abuse of notations, we also call Mm as a menu mechanism with menu Mm. If Xm =
X always hold, such menu mechanism is called full-menu mechanism. Since the properties of
truthfulness and full expressiveness are originally defined for direct mechanisms, it naturally leads to
a question that, can we extend such properties to menu mechanisms? Though not intuitive, we shall
emphasize that a menu mechanism Mm can be easily transformed into a direct mechanism Md.
The insight is following: as long as the platform knows the exact types of players, the platform can
simulate the player’s behaviors as if players’ are rationally playing the game. The formal definition
is also leaved to Appendix B.

As we can transform each menu mechanism to a direct mechanism, we shall regard them as the
“equivalent” mechanism, then consider the properties of menu mechanisms as the properties of
“equivalent direct mechanisms”. To begin with, we firstly give some definitions that define the
equivalence relation between menu mechanisms and direct mechanisms. Note that it’s easy to verify
below-defined equivalence relation forms an equivalent class in set theory.

Definition 3.1 (Equivalent mechanisms).

• We say two direct mechanisms Md
1 and Md

2 are equivalent, if their allocation rules and pay-
ment rules are equal on the domain T , except a set of probability zero. (The probability is
measured by F .)

• We say two menu mechanisms Mm
1 and Mm

2 are equivalent, if after we transform Mm
i into

direct mechanisms Md
i as above, Md

1 and Md
2 are equivalent. 7 We can similarly define

equivalent relation between a menu mechanism and a direct mechanism.

• Let MM be a class of (direct or menu) mechanisms. Denote {−i} = {1, 2}\{i}, we call a pair
of mechanism class MM

1 and MM
2 are equivalent, if for any i ∈ {1, 2} and any mechanism

Mi ∈ MM
i , there is another M−i ∈ MM

−i such that Mi and M−i are equivalent.

7Note that it does not indicate that the pricing functions in Mm
1 and Mm

2 are equivalent, as there can be
dummy candidates.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Note that when two mechanism classes are equivalent, these classes have exactly same expressive
power. With more abuse of notations, we regard an equivalent class of direct mechanisms or menu
mechanisms as same mechanism, denoted by M.

Before the formal statement, we also give some technical definitions that will be used to characterize
the mechanism class.

Definition 3.2 (pricing rule decomposition). Under the situation with one player, allocation con-
straint X and regularity cost c(x), we say a full-menu mechanism Mm = ⟨X , pm⟩ satisfies pricing
rule decomposition, if following holds for some fm : X → R,

• pm(x) = c(x) + fm(x)

• fm(x) is convex.

Under the situation with n players, allocation constraint {Xi}i∈[n] and regularity cost {ci(x)}i∈[n],
we say a full-menu mechanism Mm = {Mm

i } satisfies pricing rule decomposition, if Mm
i satisfies

pricing rule decomposition for all player i, whatever t−i is. (Note that Mm
i may depend on t−i.)

Definition 3.3 (no-buy-no-pay). Under the situation with one player, we say a full-menu mechanism
Mm = ⟨X , pm⟩ satisfies no-buy-no-pay, if pm(0) ≤ c(0) = 0.

Under the situation with n player, we say a full-menu mechanism Mm = {Mm
i } satisfies no-buy-

no-pay, if Mm
i satisfies no-buy-no-pay for all player i, whatever t−i is.

Now we give a formal statement to show the IC properties for menu mechanisms. Specifically, we
have following characterization for these mechanism classes (multi-player version):

Theorem 3.4. Following mechanism classes are equivalent: 8

• The class MD,IC of direct mechanisms Md = (x,p) with IC property,

• The class MM of menu mechanisms Mm, where Mm = {Mm
i }i∈[n] and Mm

i = {Xm
i , pmi },

• The class MFM,p of full-menu mechanisms Mf , where Mf = {Mf
i }i∈[n] and Mf

i =

{Xi, p
f
i }, satisfying pricing rule decomposition.

The above theorem states that, when we focus on designing IC mechanisms, restricting mechanism
within the menu mechanism class MM (or full-menu mechanism class with pricing rule decom-
position, MFM,p) is without loss of generality. Next we will show that the IR constraints can be
resolved in a similar way.

Theorem 3.5. Following mechanism classes are equivalent:

• The class MD,T of truthful direct mechanisms Md = (x,p) (IC & IR),

• The class MFM,pn of full-menu mechanisms Mf , where Mf = {Mf
i }i∈[n] and Mf

i =

{Xi, p
f
i }, satisfying pricing rule decomposition and no-buy-no-pay.

4 METHODOLOGY

Inspired by Theorem 3.5, we only need to find the optimal mechanism within the mechanism class
MFM,pn, without considering truthfulness constraints. The property of full expressive power has
also been preserved.

Mechanism representation The only degrees of freedom in MFM,pn lies in the flexible pricing
rule. We begin with parameterizing the pricing rule (i.e., parameterizing the full-menu mechanism).
Denote MPFM as the class of Parameterized Full-Menu mechanisms, Θ as the set of parameters
to parameterize this class (e.g., weights and bias in a neural network) and θ ∈ Θ as a parameter

8Hammond (1979) derived the relation between IC mechanism and menu mechanism, while Rochet (1987)
derived the convex utility function in truthful mechanism, we argue that our characterization results are different
from theirs and in fact more general. See Appendix A for more details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: The overview of our algorithm. In the training process, we first sample a sufficiently large
data set from the given player type distribution. Our characterization demonstrates the pricing func-
tion f to be convex, therefore a representation of convex function is chosen to express f . We train the
mechanism by alternately optimizing the platform and players’ objective function, while gradually
increasing the penalty of difference between the two allocation matrices to reach platform-player
consensus (which represents the full mechanism) and the convergence of parameter optimization.
In the testing step, we fix the near-optimal mechanism parameters θ∗ and test the sampled players
utilities as the final result.

instance. Specifically, the pricing rule is parameterized as follows,

pi(xi; t−i; θ) =ci(xi) + fi(xi; t−i; θ)

By pricing rule decomposition, we know that an optimal fi(xi; t−i; θ) should be convex on xi

within MFM,pn, therefore, we also restrict fi(xi; t−i; θ) to be convex within MPFM .

To do this, we need an expressive convex representation of convex function class. There are many
such options for this goal. We implement maximum-of affine functions (MoA, Balázs et al. (2015)),
log-sum-exp functions (LSE, Kim & Kim (2022)), Partial Input Convex Neural Networks (PICNN,
Amos et al. (2017)), Group Max neural networks (GroupMax, Warin (2023)). See more details in
Appendix G.2.

Notice that no-buy-no-pay property requires that fi(0; t−i; θ) ≤ 0. To resolve this requirement, we
hard-code this constraint within MPFM . A general way is to replace fi(xi; t−i; θ) with

f̂i(xi; t−i; θ) = fi(xi; t−i; θ)− fi(0; t−i; θ),

where the second term in RHS represents a normalization constant. We can easily verify that
f̂i(0; t−i; θ) = 0. Other hard-coding approaches for specific models are represented in appendix
Appendix G.2.

Learning-based algorithm We leave the derivations of our algorithm to Appendix E. Figure 1
briefly present the procedure of our algorithm (both training and inference).

Real-time inference After learning the mechanism θ∗, the ultimate goal for this mechanism
is to operate effectively on an unseen type profile t. To achieve this, we can directly com-
pute the utility-maximizing allocations for each player i by optimizing her utility: x∗

i ∈
argmaxxi∈Xi

ui(xi; pi(xi; t−i; θ
∗); ti), and charge payment pi(x∗

i ; t−i; θ
∗) for player i.

5 JUSTIFICATION OF PFM-NET

In this section, we justify the advantages of PFM-Net both theoretically and empirically.

Truthfulness. The truthfulness of MPFM is a direct corollary of Theorem 3.5. as MPFM ⊆
MFM,pn.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Universal approximation properties. We show the universal approximation property of MPFM

in this part. We leave the formal definition of universal approximators to Appendix B.2.

Kim & Kim (2022) studied the universal approximator properties of parameterized MoA functions
for approximating convex functions. A straightforward argument shows that even we restricting
f(0) ≤ 0, the universal approximation property remains valid:
Proposition 5.1. The mechanism class MPFM is a universal approximator for the mechanism class
MFM,pn, if the pricing functions are represented by MoA, LSE, GroupMax, or GroupLSE.

However, what truly concerns us is not the convex pricing function itself, but the expected utility
of the platform. Next, we demonstrate that if the full-menu mechanism class M1 is a universal ap-
proximator for another full-menu mechanism class M under the L∞ norm, then the expected utility
retains the universal approximation property as well. We begin with some technical definitions.
Definition 5.2 (Non-degenerate distribution). Let X be a full-dimensional subspace of Rd. We say
that D is a non-degenerate distribution over X , if for any subset X0 ⊆ X , we have Prx∼D[x ∈
X0] > 0 indicates that µ(X0) > 0, where µ(·) is Lebesgue measure.
Definition 5.3 (Maximum expected utility). Let M be a mechanism class represented by convex
function p(x; t) ∈ M, T and X are compact subset of Euclidean spaces Rd, t ∼ D be some non-
degenerate distribution over T , and v0(x; t), λ ≥ 0 are the valuation and the quasi-linear parameter
of the platform. We define the maximal expected utility within class M, MEU(M), as follows,

MEU(M) = sup
p∈M

x:T →X

Et∼D [v0(x(t); t) + λ · p(x(t); t)] (1)

subject to the constraints:

x(t) ∈ argmax
x∈X

⟨x, t⟩ − p(x; t), ∀t ∈ T

The formal statement is follows:
Theorem 5.4. Assume that M1 is a universal approximator of M under following technical con-
ditions,

1. v0(x; t) is continuous on X and T (thus continuous consistently).

2. The pricing function p(x, t) is ε1-strongly convex on x for some ε1 > 0, when p ∈ M.

Then, MEU(M1) = MEU(M).

Theorem 5.4 indicates that using convex representations such as MoA, LSE, GroupMax, and Grou-
pLSE does not result in any loss of expected utility of platform, since the objective of mechanism
design problem is a specific form of Equation (1). Although we assume the strong convexity of the
optimal pricing rule p(xi; t−i), we note that this is only a technical condition, which is not strong
because ε1 can be chosen so small that strong convex function can be arbitrary close to any convex
function in bounded domain. We believe that the theorem also holds even if this condition is moved.

Efficiency in expressive power In this section, we examine whether a reasonable number of pa-
rameters can approximate a wide range of full-menu mechanisms with a small error. It is clear that
the entire class of convex functions can not be fully approximated well by polynomial number of
parameters and suffer from curse of dimensionality inevitably with smoothness prior only (Bengio
et al., 2005).

Thus, we shift to an alternative solution concept. We argue that our method could practically ex-
hibit greater expressive power compared to existing approaches. We compare our approaches to
discretization-based methods (e.g., Wang et al. (2024b)) and AMA-based methods (e.g., Curry et al.
(2023)).

COMPARISON WITH DISCRETIZATION-BASED METHODS It is widely believed that realistic high-
dimensional problems often exhibit favorable structures that can be effectively captured using sub-
exponential numbers of parameters. One promising approach is to leverage network structures,
and neural networks are commonly regarded as an ideal tool for approximating high-dimensional
functions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Our methods utilize the PICNN and GroupMax network architectures to approximate the pric-
ing function. However, it remains unclear how to effectively combine network architectures with
discretization-based approaches.9 Without the flexibility of network architectures, discretization-
based approaches are particularly susceptible to the curse of dimensionality (Bellman, 1966).

COMPARISON WITH AMA-BASED METHODS An AMA mechanism is determined by positive
weights w = (w1, ..., wn) ∈ Rn

+ of players as well as a shift function λ(x) on allocations. The
formal definition of how AMA mechanism would work in our model is leaved to Appendix B.3. We
have following comparison:
Proposition 5.5. Consider an AMA mechanism MAMA with positive weights w1, . . . , wn and a
shift function λ(x). Assume more that an oracle OAMA of AMA mechanism exists that can run the
mechanism MAMA under input t. Formally, OAMA receives MAMA (or equivalently, w and λ)
and t as inputs, and output the resulting allocation x and payment p.

Given any AMA mechanism MAMA, we can explicitly construct a full-menu mechanism MF with
pricing functions {pfi (xi; t−i)}i∈[n], that receives type profile t, outputs the full menu pi : Xi →
R, i ∈ [n], and is equivalent to MAMA.

Additionally, querying {pi(xi)}i∈[n] at some point x ∈ X needs polynomial-time computation and
O(n) black-box queries of the oracle OAMA.

Proposition 5.5 states that, our framework can efficiently simulate AMA mechanisms.

In the reverse direction, it is well-known that the AMA mechanism class lacks full expressive power
(Carbajal et al., 2013). Given that PFM-Net exhibits full expressive power, there must exist an
instance of PFM-Net that cannot be expressed by an AMA mechanism.

6 EXPERIMENTS

In this section, we conduct empirical experiments that evaluate the effectiveness of PFM-Net. The
pricing functions are parameterized by MoA , PICNN (Amos et al., 2017) and GroupMax (Warin,
2023).

6.1 BASELINES METHODS

We present the manually defined baselines and learning-based baselines we compared in this part.
The manually defined baselines include,

1. VCG (Vickrey, 1961): The most classical mechanism with strong versatility.
2. Item-wise Myerson: Item-wise Myerson is a auction baseline used in Dütting et al. (2019),

that sells the m items independently and optimally to the players.
3. Bundle-OPT: this mechanism bundles all items together at a specific price when selling items

to buyers. The price is parameterized, and the optimal price is selected for each setting by
one-dimensional grid search. This mechanism is particularly effective when there is only one
player in the game. This baseline is also used in Curry et al. (2023).

The learning-based baselines include:

1. Lottery-AMA (Curry et al., 2023): Lottery-AMA is an AMA-based approach that sets bidder
weights, along with the discretization of the allocation menu and shift values, as learnable
parameters. We also made appropriate extensions to fit it into our actual experimental setting.

2. UM-GemNet: An extension of GemNet (Wang et al., 2024b) that can fit our generalized mech-
anism design setting. GemNet is a menu-based approach that discretes the menu for each bid-
der, which is computed by a fully-connected neural network taking others’ types as input. 10

9Although GemNet incorporates a network, we emphasize that their network is solely used to output a set
of allocation points to form the menu. The menu itself inherently discretizes the allocation space.

10We point out that in original implementation of GemNet, there is an integer-programming based transfor-
mation after the training of GemNet, which is used to transform GemNet such that it’s menu compatible. We
do not incorporate this transformation in our implementations of both UM-GemNet and PFM-Net.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: The experimental results of selling multiple goods to one buyer. The distribution t ∼
U([0, 1]m). Sm represents the experiments of selling m goods. The values represent the expected
utility of the seller, with the maximum value on bold.

Methods & Settings S2 S3 S5 S10 S15 S20

PICNN-1 0.5472 0.8695 1.5740 3.4527 5.4444 7.5291
GroupMax-1 0.5476 0.8751 1.5746 3.4568 5.4567 7.5784
GroupMax-3 0.5468 0.8705 1.5774 3.4838 5.5525 7.6225

UM-GemNet 0.5442 0.8726 1.5560 3.4411 5.4284 7.5167
Lottery-AMA 0.5402 0.7952 1.0932 - - -

Item-wise Myerson 0.5000 0.7500 1.2500 2.5000 3.7500 5.0000
Bundle-OPT 0.5441 0.8599 1.5557 3.4491 5.4543 7.5290

OPT 0.5491 0.8757 - - - -

Note that all of these baseline models were originally implemented in the context of auction set-
tings. In our experiments, we made slight modifications to the implementations of lottery-AMA and
GemNet to ensure their applicability to scenarios that extend beyond traditional auction problems.

6.2 EXPERIMENTAL SETTINGS

6.2.1 SELLING TO SINGLE BUYER

In this experiment, we consider the problem of selling m items to a single buyer. The bidder’s type
distribution is ti.i.d.U([0, 1]m). The buyer has an allocation constraint of X = [0, 1]m, meaning
that the quantity of each item purchased cannot exceed 1. Both the buyer and the platform have
no intrinsic valuation for the allocations, i.e., v0(x) = c1(x) = 0,∀x. Therefore, the platform’s
expected utility is equivalent to its expected revenue. We denote Sm as the problem involving m
items in this setting.

We implement MoA, 1-layer PICNN, 1-layer GroupMax, and 3-layer GroupMax architectures
within PFM-Net. As baselines, we also implement UM-GemNet and lottery-AMA as learning-
based baselines, alongside two simple baselines: item-wise Myerson and Bundle-OPT. We compare
the performance of these methods for m = 2, 3, 5, 10, 15, 20.

The expected revenues for different settings are presented in Table 1, with the optimal value for each
setting highlighted in bold. Note that optimal values (OPT) have only been found in special cases,
namely for two or three items by Manelli & Vincent (2006). The OPT for two items is computed
analytically, while for three items it is computed numerically with random 1, 000, 000 samples.

The MoA-based PFM-Net and lottery-AMA do not perform well for larger-scale problems, so some
results are omitted.

6.2.2 SOCIAL PLANNER OF A MARKET

In this experiment, we consider the problem faced by a social planner aiming to maximize social
welfare by designing a market. Let there be n agents and m goods in a market. The agents’ types
are generated independently and identically distributed (i.i.d.) from either a uniform distribution
U([−1, 1]) or a normal distribution N (0, 1). We denote PF

n,m as the problem with n agents and m
goods, where the types are i.i.d. from distribution F . Specifically, F = U represents the uniform
distribution, and F = N represents the normal distribution.

We set the allocation constraint for each agent as Xi = [−1, 1]m, indicating that each agent can either
buy or sell the goods in the market, with a maximum amount of 1. We incorporate a regularity term
to describe diminishing marginal utility, i.e., each agent has a regularization term ci(x) = − 1

2∥x∥
2

for allocation x. Specifically, the utility of agent i is given by:

ui(xi; ti; pi) = vi(xi; ti)− pi, vi(xi; ti) = ⟨xi, ti⟩ −
1

2
∥xi∥2

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: The experimental results of social planners in a market. PF
n,m represents a society with

n agents, m items and types are i.i.d. distributed from distribution F . F = N represents normal
distribution with mean 0 and standard deviation 1, and F = U represents uniform distribution in
[−1, 1]. Allocation constraints of players are Xi = [−1, 1]m. The utility of the platform is the
social welfare, minus a penalty capturing the disobey of market clearance. The values represent the
expected utility of the social planner, with the maximum value on bold.

Methods & Settings PU
1,5 PN

1,5 PU
2,5 PN

2,5 PU
3,5 PN

3,5

GroupMax-1 0.3853 1.1399 1.0165 2.6812 1.6512 4.2900

UM-GemNet 0.3261 0.9013 0.8949 2.4251 1.4367 3.7948
VCG 0 0.8603 0 1.7188 0 2.5846

OPT 0.4167 1.2348 1.1101 - - -

The social planner is oriented towards maximizing social welfare and therefore has no direct utility
over monetary exchanges. The market must also satisfy the market clearance condition, which
requires that the total quantity of each item remains unchanged before and after the mechanism. In
our model, we assume that the social planner incurs a quadratic cost for any violation of the market
clearance condition. Specifically, the utility of the social planner is:

u0(x; t;p) =

n∑
i=1

vi(xi; ti)−
1

2

m∑
j=1

(
n∑

i=1

xij

)2

where the term 1
2 (
∑n

i=1 xij)
2 represents the platform’s effort cost when the total surplus or demand

of item j is
∑n

i=1 xij .

We compare the performance of 1-layer GroupMax, GemNet, and VCG in settings with 5 items and
1, 2, or 3 players, under both uniform and normal distribution assumptions. The expected utilities
for the different settings are presented in Table 2, with the optimal value for each setting highlighted
in bold.

6.3 EXPERIMENTAL ANALYSIS

Selling to single buyer We find that the performance of all methods exceeds the strong baseline of
Bundle-OPT when m ≤ 5, except for lottery-AMA. This is not surprising, as Bundle-OPT involves
only a single parameter, making it an easy baseline to learn. In the case of m = 2, these methods
also nearly approach the optimal mechanism. However, when m ≥ 5, we observe that UM-GemNet
performs very similarly to Bundle-OPT. In comparison, the 3-layer GroupMax significantly out-
performs both UM-GemNet and Bundle-OPT, suggesting that the GroupMax network learns some
nontrivial components beyond the simple mechanism of selling the full bundle at a fixed price,
whereas UM-GemNet does not. These findings support our conjecture that UM-GemNet, as well
as other discretization-based methods, are vulnerable to problems of moderate size. More in-depth
analysis of the “non-trivial components” in the learned pricing rule is provided in Appendix G.3.

Social planner of a market The performance of GroupMax exceeds that of GemNet and VCG
across all settings. We derive the optimal solution (OPT) in cases where the analytical optimal
solution exists. Additionally, we find that the value with n ≥ 2 players is greater than n times the
value with a single player, except in the case of VCG. This observation is due to the insight that if
one player wants to buy an item (i.e., t > 0), and another player is willing to sell it (i.e., t < 0),
they can reach an agreement that enhances social welfare. Specifically, in all scenarios, the value
obtained by PFM-Net with n players exceeds n times the optimal value achieved with a single player.
In a demonstration of the pricing rule of GroupMax in Appendix G.3, we randomly selected three
type profiles and examined the learned pricing rule for player 1. We observed that the pricing rule
significantly changes with the types of other players, indicating that PFM-Net successfully learns a
conditional pricing rule based on the other players’ types.11

11A more detailed analysis of both experiments is provided in Appendix G.3.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Albert, Vincent Conitzer, and Peter Stone. Automated design of robust mechanisms. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5
(4-5):185–196, 1993.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International confer-
ence on machine learning, pp. 146–155. PMLR, 2017.

Gábor Balázs, András György, and Csaba Szepesvári. Near-optimal max-affine estimators for con-
vex regression. In Artificial Intelligence and Statistics, pp. 56–64. PMLR, 2015.

Maria-Florina F Balcan, Tuomas Sandholm, and Ellen Vitercik. Sample complexity of automated
mechanism design. Advances in Neural Information Processing Systems, 29, 2016.

Richard Bellman. Dynamic programming. science, 153(3731):34–37, 1966.

Yoshua Bengio, Olivier Delalleau, and Nicolas Roux. The curse of highly variable functions for
local kernel machines. Advances in neural information processing systems, 18, 2005.

Michael Benisch, Norman M Sadeh, and Tuomas Sandholm. Methodology for designing reasonably
expressive mechanisms with application to ad auctions. In IJCAI, pp. 46–52, 2009.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France, Au-
gust 22-27, 2010 Keynote, Invited and Contributed Papers, pp. 177–186. Springer, 2010.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Tilman Börgers, Daniel Krähmer, and Roland Strausz. An Introduction to the Theory of Mechanism
Design. Oxford University Press, 07 2015. ISBN 9780199734023.

Giuseppe C Calafiore, Stephane Gaubert, and Corrado Possieri. Log-sum-exp neural networks and
posynomial models for convex and log-log-convex data. IEEE transactions on neural networks
and learning systems, 31(3):827–838, 2019.

Juan Carlos Carbajal, Andrew McLennan, and Rabee Tourky. Truthful implementation and prefer-
ence aggregation in restricted domains. Journal of Economic Theory, 148(3):1074–1101, 2013.

Michael Curry, Tuomas Sandholm, and John Dickerson. Differentiable economics for randomized
affine maximizer auctions. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, pp. 2633–2641, 2023.

Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos. Strong duality for a multiple-
good monopolist. In Proceedings of the Sixteenth ACM Conference on Economics and Computa-
tion, pp. 449–450, 2015.

Zhijian Duan, Jingwu Tang, Yutong Yin, Zhe Feng, Xiang Yan, Manzil Zaheer, and Xiaotie Deng.
A context-integrated transformer-based neural network for auction design. In International Con-
ference on Machine Learning, pp. 5609–5626. PMLR, 2022.

Zhijian Duan, Haoran Sun, Yurong Chen, and Xiaotie Deng. A scalable neural network for dsic
affine maximizer auction design. Advances in Neural Information Processing Systems, 36, 2024a.

Zhijian Duan, Haoran Sun, Yichong Xia, Siqiang Wang, Zhilin Zhang, Chuan Yu, Jian Xu,
Bo Zheng, and Xiaotie Deng. Scalable virtual valuations combinatorial auction design by combin-
ing zeroth-order and first-order optimization method. arXiv preprint arXiv:2402.11904, 2024b.

Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa Ravindranath.
Optimal auctions through deep learning. In International Conference on Machine Learning, pp.
1706–1715. PMLR, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David C Parkes, and Sai Srivatsa Ravindranath.
Optimal auctions through deep learning: Advances in differentiable economics. Journal of the
ACM, 71(1):1–53, 2024.

Yiannis Giannakopoulos and Elias Koutsoupias. Duality and optimality of auctions for uniform
distributions. In Proceedings of the fifteenth ACM conference on Economics and computation,
pp. 259–276, 2014.

Noah Golowich, Harikrishna Narasimhan, and David C. Parkes. Deep learning for multi-facility
location mechanism design. IJCAI’18. AAAI Press, 2018. ISBN 9780999241127.

Mingyu Guo, Hideaki Hata, and Ali Babar. Optimizing affine maximizer auctions via linear pro-
gramming: an application to revenue maximizing mechanism design for zero-day exploits mar-
kets. In PRIMA 2017: Principles and Practice of Multi-Agent Systems: 20th International Con-
ference, Nice, France, October 30–November 3, 2017, Proceedings 20, pp. 280–292. Springer,
2017.

Peter J Hammond. Straightforward individual incentive compatibility in large economies. The
Review of Economic Studies, 46(2):263–282, 1979.

Dmitry Ivanov, Iskander Safiulin, Igor Filippov, and Ksenia Balabaeva. Optimal-er auctions through
attention. Advances in Neural Information Processing Systems, 35:34734–34747, 2022.

Jinrae Kim and Youdan Kim. Parameterized convex universal approximators for decision-making
problems. IEEE Transactions on Neural Networks and Learning Systems, 35(2):2448–2459,
2022.

Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear program-
ming. Journal of the ACM (JACM), 58(6):1–24, 2011.

Ron Lavi, Ahuva Mu’Alem, and Noam Nisan. Towards a characterization of truthful combinatorial
auctions. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceed-
ings., pp. 574–583. IEEE, 2003.

Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Two simplified proofs for roberts’ theorem. Social
Choice and Welfare, 32(3):407–423, 2009.

Alexander Likhodedov and Tuomas Sandholm. Approximating revenue-maximizing combinatorial
auctions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 5, pp. 267–
274, 2005.

Alejandro M Manelli and Daniel R Vincent. Bundling as an optimal selling mechanism for a
multiple-good monopolist. Journal of Economic Theory, 127(1):1–35, 2006.

Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. Econometrica, 70(2):
583–601, 2002.

Roger B Myerson. Incentive compatibility and the bargaining problem. Econometrica: journal of
the Econometric Society, pp. 61–73, 1979.

Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73, 1981.

Harikrishna Narasimhan, Shivani Brinda Agarwal, and David C Parkes. Automated mechanism
design without money via machine learning. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence, 2016.

Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic game theory. 2007.
URL https://api.semanticscholar.org/CorpusID:239540.

Gregory Pavlov. Optimal mechanism for selling two goods. The BE Journal of Theoretical Eco-
nomics, 11(1):0000102202193517041664, 2011.

Kevin Roberts. The characterization of implementable choice rules. Aggregation and revelation of
preferences, 12(2):321–348, 1979.

12

https://api.semanticscholar.org/CorpusID:239540

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jean-Charles Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear
context. Journal of mathematical Economics, 16(2):191–200, 1987.

Tuomas Sandholm. Automated mechanism design: A new application area for search algorithms.
In International Conference on Principles and Practice of Constraint Programming, pp. 19–36.
Springer, 2003.

Tuomas Sandholm and Anton Likhodedov. Automated design of revenue-maximizing combinatorial
auctions. Operations Research, 63(5):1000–1025, 2015.

Weiran Shen, Pingzhong Tang, and Song Zuo. Automated mechanism design via neural networks.
arXiv preprint arXiv:1805.03382, 2018.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of
finance, 16(1):8–37, 1961.

Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business Media,
2010.

Tonghan Wang, Paul Duetting, Dmitry Ivanov, Inbal Talgam-Cohen, and David C Parkes. Deep
contract design via discontinuous networks. Advances in Neural Information Processing Systems,
36, 2024a.

Tonghan Wang, Yanchen Jiang, and David C Parkes. Gemnet: Menu-based, strategy-proof multi-
bidder auctions through deep learning. arXiv preprint arXiv:2406.07428, 2024b.

Xavier Warin. The groupmax neural network approximation of convex functions. IEEE Transactions
on Neural Networks and Learning Systems, 2023.

Andrew Chi-Chih Yao. Dominant-strategy versus bayesian multi-item auctions: Maximum revenue
determination and comparison. In Proceedings of the 2017 ACM Conference on Economics and
Computation, pp. 3–20, 2017.

Hanrui Zhang and Vincent Conitzer. Automated dynamic mechanism design. Advances in Neural
Information Processing Systems, 34:27785–27797, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A Further Related Works 15

B Supplementary Definitions 16

B.1 Menu Mechanisms . 16

B.2 Universal Approximators . 16

B.3 Affine Maximizer Mechanisms . 17

C Supplementary Lemma 17

C.1 A Simplified Version of Envelope Theorem . 17

C.2 Truthfulness of AMM . 18

D Omitted Proofs 19

D.1 Proof of Theorem 3.4 . 19

D.2 Proof of Theorem 3.5 . 21

D.3 Proof of Proposition 5.1 . 22

D.4 Proof of Theorem 5.4 . 22

D.5 Proof of Proposition 5.5 . 23

E Details about Learning Algorithms 25

E.1 Derivation of Learning Algorithms . 25

E.2 Pseudo-codes . 26

F Discussions 27

F.1 Discussions on Model Expressiveness . 27

F.2 Discussions on Mechanism Properties . 28

G More Experimental Details 29

G.1 More Details on Baselines . 29

G.2 Implementation Details . 29

G.3 More Analysis about the Results . 30

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A FURTHER RELATED WORKS

Automated Mechanism Design Automated mechanism design was first proposed by Sandholm
(2003), with various applications including ad auctions (Benisch et al., 2009), combinatorial auc-
tions (Sandholm & Likhodedov, 2015), and mechanism design without money (Narasimhan et al.,
2016). Balcan et al. (2016) explored the sample complexity of automated mechanism design, while
Albert et al. (2017) investigated the robust automated mechanism design problem. Additionally,
Zhang & Conitzer (2021) studied dynamic automated mechanism design.

Differential Economics for Mechanism Design Differential economics aims at parameterizing
differential functions to represent the optimal economic solutions, and find the optimal solution from
gradient, which can be seen as a sub-field of automated mechanism design (Wang et al., 2024a).
Shen et al. (2018) uses the neural network to assist the mechanism design problem. Dütting et al.
(2019) begins with optimal auction design by auction. Ivanov et al. (2022) incorporates transformer
architecture into auction design. Curry et al. (2023) proposes lottery-AMA, which discrete the
platform’s allocation space and optimize an AMA mechanism. Duan et al. (2024b) later studies the
optimal combinatorial auction design within VVCG mechanism class. The most related works with
us should be Wang et al. (2024b), which studies the menu mechanism, with the menu depends on
other players types. The menu discretes each player’s allocation space.

Characterization of Truthful Mechanisms Hammond (1979) showed that menu-based mech-
anism is a sufficient condition for IC, and IC mechanism is in some sense a menu mechanism.
Rochet (1987) showed that an truthful mechanism will induce the utility of player convex on her
type. Though similar to our results, we argue that our characterization in Section 3 is different
from theirs and more general. Compared with Hammond (1979), they mainly focus on the discrete
menu mechanism, and their results has no convexity characterization. Our characterization show the
nature of full-menu and convexity, making the truthful mechanisms and convex full-menu mecha-
nisms “equivalent class” rather than sufficient and necessary condition, making the characterizations
of Hammond (1979) more concise. Compared with Rochet (1987), they studies the convex utility
of truthful mechanism, having no connection on menu mechanism. Our results state that, if we
transform a truthful mechanism into menu mechanism, the pricing rule of the menu is also convex.
These two results have different perspectives, which are complementary to each other.

There are also a plenty of works characterized the relation between truthful mechanisms and VCG-
based mechanisms. Roberts (1979) shows that if the valuation spaces are full domain and player
number is no less than 3, then any implementable mechanism must be an AMA. A simplified proof
is later provided by Lavi et al. (2009). In a general setting of combinatorial auctions, Lavi et al.
(2003) proves that any implementable mechanism should be “almost” AMA. All of their works
studies deterministic mechanism. To the best of our knowledge, there are no full characterization
about the general class of randomized mechanism.

Characterization of Optimal Auctions Since the seminal work of Myerson (1981) for optimally
selling one item to independent buyers, there are only special cases that optimal solution has been
found over the past 40 years (Manelli & Vincent, 2006; Pavlov, 2011; Giannakopoulos & Kout-
soupias, 2014; Daskalakis et al., 2015; Yao, 2017) Among these, Manelli & Vincent (2006) studies
bundling mechanism, showing the condition such that bundling mechanism is optimal among all
truthful mechanisms and deriving the optimal mechanism in selling 2 or 3 uniform items. Gi-
annakopoulos & Koutsoupias (2014) generalizes the results to up to 6 uniform items, though the
optimal mechanism is not analytically given. Yao (2017) studies the optimal mechanism when there
are two items with discrete distributions.

Representing Convex Functions Max-of-Affine (MoA) functions and Log-sum-exp (LSE) func-
tions are well-known functions that are convex by design. Calafiore et al. (2019) demonstrates that
both the maximum-of-affine and log-sum-exp functions are universal approximators for the class
of convex functions under the L∞ norm. Later, Kim & Kim (2022) further shows that conditioned
maximum-of-affine and conditioned log-sum-exp are also universal approximators for the class of
continuous functions that exhibit convexity over partial inputs. Additionally, Warin (2023) proves

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

that GroupMax can represent the maximum-of-affine function12, making both GroupMax and Grou-
pLSE universal approximators as well. Partial input convex neural network (PICNN) has been
proposed by Amos et al. (2017) to represent neural-network based convex functions. However, to
the best of our knowledge, there are no established results confirming whether ICNN or PICNN is a
universal approximator.

B SUPPLEMENTARY DEFINITIONS

B.1 MENU MECHANISMS

We introduce the menu mechanism with one player first, then extend menu mechanisms to multiple
players.

Definition B.1 (Menu mechanism with one player).
Consider a mechanism design problem with one player, with type space T and feasible allocation
set X . A menu Mm = (Xm, pm) specifies a subset of feasible allocation, ∅ ≠ Xm ⊆ X , and a
pricing rule, pm : Xm → R. pm(xm) means that the player will pay pm(xm) to get the bundle
xm ∈ Xm. Note that the menu does not depend on the hidden type of the player. The mechanism
works as follows.

Step 1. The platform presents the menu Mm to the player.

Step 2. After seeing the menu Mm, the utility-maximizing player with type t ∈ T choose the bun-
dle x∗(t) that maximizes her quasi-linear utility and report x∗(t) to the platform. Specifi-
cally,

x∗(t) ∈ argmax
xm∈Xm

u(xm, pm(xm); t) (2)

Step 3. The player and the platform reach a deal of x∗(t). The player need to pay pm(x∗(t)) to the
platform.

Definition B.2 (Menu mechanism with multiple players).

Consider a mechanism design problem with n players, with type space T = ×i∈[n]Ti and feasible
allocation set X = ×i∈[n]Xi. The mechanism works as follows:

Step 1. The mechanism requests the type profile of players t.

Step 2. For each player i, the mechanism construct a menu Mm
i for player i, given t−i.

Step 3. For each player i, the mechanism runs the one-player mechanism with menu Mm
i and

player i.

Specifically, the mechanism defines n conditional menu functions Xm
i : T−i → P(Xi) as well as n

conditional pricing functions pmi : Xm
i (t−i)× T−i → R. The player i will choose

x∗
i (ti; t−i) ∈ argmax

xm
i ∈Xm

i (t−i)

u(xm
i , pmi (xm

i ; t−i); ti)

B.2 UNIVERSAL APPROXIMATORS

We show the definition of universal approximators in this section.

Definition B.3 (L∞ norms between full-menu mechanisms). Let MFM
1 and MFM

2 be two full-
menu mechanisms. We denote the L∞ norm as follows (note that full-menu mechanisms are only

12It is straightforward to see that GroupLSE can represent the log-sum-exp (LSE) function, although Warin
(2023) does not provide explicit results.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

represented by pricing functions),

l∞(MFM
1 ,MFM

2) = max
i∈[n]

sup
t−i∈T−i

sup
xi∈Xi

|p1(xi; t−i)− p2(xi; t−i)|

= max
i∈[n]

sup
t−i∈T−i

sup
xi∈Xi

|f1(xi; t−i)− f2(xi; t−i)|

, where p1(xi; t−i), p2(xi; t−i) are pricing functions of MFM
1 ,MFM

2 , respectively.
Definition B.4 (Universal Approximator). We call full-menu mechanism class M1 a universal ap-
proximator of another full-menu mechanism class M. If following two conditions hold,

1. M1 ⊆ M.

2. Given any M ∈ M and any ε > 0, we can find a full-menu mechanism M1 ∈ M1 such
that l∞(M1,M) < ε.

B.3 AFFINE MAXIMIZER MECHANISMS

We extend the mechanism of affine maximizer auction to fit our model in this section. We call such
mechanism as Affine Maximizer Mechanism (AMM).
Definition B.5 (Affine Maximizer Mechanism). Denote w0 ∈ R, w1, ..., wn ∈ Rn

+ as the weights of
players and λ : X → R as the offset of the allocation. Define the affine social welfare of allocation
x and type profile t as follows,

ASW(x; t) =
∑
i∈[n]

wivi(xi; ti) + λ(x)

ASW−i(x; t−i) =
∑
j ̸=i

wjvj(xj ; tj) + λ(x)

The affine maximizer mechanism works as follows,

Step 1. The mechanism requests the players’ type profile t.

Step 2. Compute x∗ ∈ argmaxx∈X ASW(x; t). Take x∗ as true allocation.

Step 3. For each player i, find t∗i such that maxx∈X ASW(x; t∗i , t−i) get minimum. Denote the
corresponding allocation as x−i. Take x−i as virtual allocation without the participation
of player i.

Step 4. For each player i, compute pi =
1
wi

[
ASW(x−i; t∗i , t−i)−ASW−i(x

∗; t)
]
.

Step 5. For each player i, allocate x∗
i to player i and charge her pi money.

C SUPPLEMENTARY LEMMA

C.1 A SIMPLIFIED VERSION OF ENVELOPE THEOREM

Lemma C.1 (Envelope Theorem (Milgrom & Segal, 2002)). Let f(x, y) be a differential function
and y∗(x) = argmaxy f(x, y). Denote g(x) = f(x, y∗(x)) then,

∂g

∂x
(x) =

∂f

∂x
(x, y)|y=y∗(x)

Proof of Lemma C.1. We know that by integration of nested functions,
∂g

∂x
(x) =

∂f

∂x
(x, y∗(x)) +

∂f

∂y
(x, y∗(x))

∂y∗

∂x
(x)

By argmax property of y∗(x), we know that
∂f

∂y
(x, y∗(x)) = 0

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

which follows the original equality.

This lemma tells that, when we want to compute ∂g
∂x (x), we do not need to compute ∂y∗

∂x (x). We
only need to compute y∗(x).

C.2 TRUTHFULNESS OF AMM

Lemma C.2 (Truthfulness of AMM). The extended affine maximizer mechanism that fits our model
is truthful.

Proof.

Proof of IR Let the notation of ũi(t) and ui(ti; t
′
i; t−i) follows the definitions

in Appendix D.1. Besides, denote x∗(t) ∈ argmaxx∈X ASW(x; t), t∗i (t−i) ∈
argminti∈Ti

maxx∈X ASW(x; t∗i ; t−i) and pi(t) as pi in above definitions (note that
x−i = x∗(t∗i , t−i) in above definitions), respectively. By little computation we derive that,

ũi(t) =vi(x
∗
i (t); ti)− pi(t)

=vi(x
∗
i (t); ti)−

1

wi
[ASW(x∗(t∗i (t−i); t−i); t

∗
i (t−i), t−i)−ASW−i(x

∗(t); t)]

=
1

wi
[ASW(x∗(t); t)−ASW(x∗(t∗i (t−i); t−i); t

∗
i (t−i), t−i)]

Recall that t∗i (t−i) minimizes ASW(x∗(·; t−i); ·, t−i) by definition. Notice that the first term and
second term are the realizations of this function with input ti and t∗i (t−i), respectively. Therefore
ũi(t) ≥ 0, which guarantees IR.

Proof of IC We compute the ui(ti; t
′
i, t−i):

ui(ti; t
′
i, t−i) =vi(x

∗(t′i, t−i); ti)− pi(t
′
i, t−i)

=vi(x
∗(t′i, t−i); ti)

− 1

wi
[ASW(x∗(t∗i (t−i); t−i); t

∗
i (t−i), t−i)−ASW−i(x

∗(t′i, t−i); t
′
i, t−i)]

Notice that ASW(x∗(t∗i (t−i); t−i); t
∗
i (t−i), t−i) does not rely on t′i, therefore, we abbreviate this

term as hi(t−i). Also notice that ASW−i(x; t
′
i, t−i) does not rely on t′i, then,

ui(ti; t
′
i, t−i) =vi(x

∗(t′i, t−i); ti) +
1

wi
ASW−i(x

∗(t′i, t−i); t
′
i, t−i)−

hi(t−i)

wi

=vi(x
∗(t′i, t−i); ti) +

1

wi
ASW−i(x

∗(t′i, t−i); ti, t−i)−
hi(t−i)

wi

=
1

wi
ASW(x∗(t′i, t−i); ti, t−i)−

hi(t−i)

wi

≤ 1

wi
ASW(x∗(ti, t−i); ti, t−i)−

hi(t−i)

wi

=vi(x
∗(ti, t−i); ti) +

1

wi
ASW−i(x

∗(ti, t−i); ti, t−i)−
hi(t−i)

wi

=ui(ti; ti, t−i)

The inequality is because x∗(t) is the maximizer of ASW(x; t).

Above all, we complete the proof.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D OMITTED PROOFS

D.1 PROOF OF THEOREM 3.4

Theorem 3.4. Following mechanism classes are equivalent: 13

• The class MD,IC of direct mechanisms Md = (x,p) with IC property,

• The class MM of menu mechanisms Mm, where Mm = {Mm
i }i∈[n] and Mm

i = {Xm
i , pmi },

• The class MFM,p of full-menu mechanisms Mf , where Mf = {Mf
i }i∈[n] and Mf

i =

{Xi, p
f
i }, satisfying pricing rule decomposition.

Proof. We only need to prove that, for the mechanism in one class, there is a mechanism in another
class such that they are equivalent.

(3) ⇒ (2) Trivial, since a full-menu mechanism satisfying pricing rule decomposition must be a
menu mechanism.

(2) ⇒ (1) Let Mm ∈ MM be a menu mechanism, we tend to show that we can transform Mm

into an equivalent direct mechanism Md such that Md is IC.

We fix player i, player i’s type ti and other players’ types t−i. Then we need to show that player i
has no incentive to deviate from ti in Md.

Denote p(xi; t−i) as the pricing rule of Mm to player i. If player i reports ti, she will get the
allocation

x∗
i ∈ argmax

xi∈Xi

v(xi; ti)− p(xi; t−i)

and pay the price p∗i = p(x∗
i ; t−i). Otherwise, if player i reports t′i, denote that she gets the

allocation x′
i and pays the price p′i = p(x′

i; t−i). We have

ui(x
∗
i ; p

∗
i ; ti) = vi(x

∗
i ; ti)− p∗i ≥ vi(x

′
i; ti)− p′i = ui(x

′
i; p

′
i; ti)

The inequality follows from that x∗
i maximizes v(xi; ti)− p(xi; t−i). Notice that LHS is the utility

of truth-telling and RHS is the utility of deviation. Thus, the IC of Md follows directly.

(1) ⇒ (3) Let Md = (xd,pd) be a mechanism that satisfies IC, we need to construct a full-
menu mechanism Mf with pricing rule {pfi (xi; t−i)}i∈[n] satisfying pricing rule decomposition,
and show that Mf is equivalent with Md.

We introduce two notations here. Denote ui(t
′
i; t) is the utility of player i in Md when the reported

type profile is t and her true type is t′i. Denote ũi(t) = ui(ti; t) is the utility of player i in Md when
she reports the true type.

We first shed light on how we construct pfi (xi; t−i). Notice that the IC condition of Md shows that,

⟨ti,xd
i (t

′
i; t−i)⟩+ ci(x

d
i (t

′
i; t−i))− pdi (t

′
i; t−i) ≤ ⟨ti,xd

i (ti; t−i)⟩+ ci(x
d
i (ti; t−i))− pdi (ti; t−i)

(3)

If we take xd
i (t

′
i; t−i) and pdi (t

′
i; ti) as free variables xi and pi, then Equation (3) becomes,

pi ≥ −ũi(t) + ci(xi) + ⟨ti,xi⟩ (4)

where ũi(t) = vi(x
d
i (t); ti)− pdi (t) = ⟨ti,xd

i (ti; t−i)⟩+ ci(x
d
i (ti; t−i))− pdi (ti; t−i) is constant

w.r.t. xi and pi.
13Hammond (1979) derived the relation between IC mechanism and menu mechanism, while Rochet (1987)

derived the convex utility function in truthful mechanism, we argue that our characterization results are different
from theirs and in fact more general. See Appendix A for more details.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

When ti = t′i, Equation (3) takes equality on two sides. We suspect that Equation (4) should also
take the equality sometimes, therefore, pi should be the minimum value such that Equation (4)
always hold.

Inspired on above, we define

pfi (xi; t−i) = sup
ti∈Ti

−ũi(t) + ci(xi) + ⟨ti,xi⟩

=ci(xi) + sup
ti∈Ti

−ũi(t) + ⟨ti,xi⟩
(5)

Next, we will show that {pfi (xi; t−i)}i∈[n]-represented mechanism Mf is equivalent to (xd,pd)-
represented mechanism Md. To show this, we need to show following statements,

1. pfi (xi; t−i) satisfies pricing rule decomposition,

2. xd
i (t) ∈ argmaxxi∈Xi

vi(xi; ti)− pfi (xi; t−i),

3. pdi (t) = pfi (x
d
i (t); t−i),

where the second condition states that the allocation of Md equals the allocation of Mf , and the
third condition states that they also charge same price to players.

PROVE THE FIRST STATEMENT Notice that

pfi (xi; t−i)− ci(xi) = sup
ti∈Ti

−ũi(ti; t−i) + ⟨ti,xi⟩

is the Fenchel conjugate of −ũi(ti; t−i) w.r.t. ti. Therefore, it’s convex by nature of Fenchel conju-
gate. (Boyd & Vandenberghe, 2004)

PROVE THE THIRD STATEMENT By definition,

pfi (x
d
i (t); t−i) = sup

t′i∈Ti

pdi (t
′
i; t−i) + vi(x

d
i (t); t

′
i)− vi(x

d
i (t

′
i; t−i); t

′
i)

≥pdi (ti; t−i), by letting t′i = ti

(6)

In order to prove the other side, we first observe that, by IC,

ũi(t) ≥ui(ti; t
′
i, t−i)

⇔ vi(x
d
i (t); ti)− pdi (t) ≥vi(x

d
i (t

′
i, t−i); ti)− pdi (t

′
i, t−i)

By switching ti and t′i we get,

vi(x
d
i (t

′
i, t−i); t

′
i)− pdi (t

′
i, t−i) ≥vi(x

d
i (ti, t−i); t

′
i)− pdi (ti, t−i)

⇔ vi(x
d
i (ti, t−i); t

′
i)− vi(x

d
i (t

′
i, t−i); t

′
i) ≤pdi (ti, t−i)− pdi (t

′
i, t−i)

Taking it into Equation (6), we derive,

pfi (x
d
i (t); t−i) = sup

t′i∈Ti

pdi (t
′
i; t−i) + vi(x

d
i (t); t

′
i)− vi(x

d
i (t

′
i; t−i); t

′
i)

≤ sup
t′i∈Ti

pdi (t
′
i; t−i) + pdi (ti, t−i)− pdi (t

′
i, t−i)

=pdi (ti, t−i)

(7)

Together with Equation (6) and Equation (7), we finish this part.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

PROVE THE SECOND STATEMENT We have

vi(x
d
i (t); ti)− pfi (x

d
i (t); t−i)

=vi(x
d
i (t); ti)− pdi (t) = ũi(t)

We need to prove vi(xi; ti)− pfi (xi; t−i) ≤ ũi(t) for all xi ∈ Xi.

Notice that

LHS =vi(xi; ti)− ci(xi)−

(
sup
t′i∈Ti

ũi(t
′
i, t−i) + ⟨t′i,xi⟩

)
≤vi(xi; ti)− ci(xi)− ũi(t)− ⟨ti,xi⟩, let t′i = ti

=ũi(t)

Hence we complete the proof.

D.2 PROOF OF THEOREM 3.5

Theorem 3.5. Following mechanism classes are equivalent:

• The class MD,T of truthful direct mechanisms Md = (x,p) (IC & IR),

• The class MFM,pn of full-menu mechanisms Mf , where Mf = {Mf
i }i∈[n] and Mf

i =

{Xi, p
f
i }, satisfying pricing rule decomposition and no-buy-no-pay.

Proof. The line of this proof follows similar with those in Theorem 3.4. We also let the notations
follow those in proof of Theorem 3.4

(2) ⇒ (1) Let Mf be a full-menu mechanism satisfying pricing rule decomposition and no-buy-
no-pay and Md be corresponding direct mechanism. By Theorem 3.4 we know that Md is IC. We
then show that Md is also IR.

Notice that player i’s utility in Md is

max
xi∈Xi

vi(xi; ti)− pfi (xi; t−i)

≥vi(0; ti)− pfi (0; t−i)

=− pfi (0; t−i) ≥ 0

(1) ⇒ (2) Let Md be a truthful direct mechanism and pfi (xi; t−i) be the pricing rule constructed
in Appendix D.1. By Theorem 3.4 we already know that pfi -represented mechanism satisfies pricing
rule decomposition. For no-buy-no-pay, we have

pfi (0; t−i) = sup
ti∈Ti

−ũi(t) + ci(0) + ⟨ti,0⟩

= sup
ti∈Ti

−ũi(t) ≤ 0

where the inequality comes from IR, which says that truthful telling gives non-negative utility, which
is exactly ũi(t).

Above all, we complete the proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D.3 PROOF OF PROPOSITION 5.1

Proposition 5.1. The mechanism class MPFM is a universal approximator for the mechanism class
MFM,pn, if the pricing functions are represented by MoA, LSE, GroupMax, or GroupLSE.

Proof.

MPFM ⊆ MFM,pn: Whether functions are parameterized by MoA, LSE, GroupMax or
GroupMSE, the function is convex on xi and have no constraints on t−i by nature of the structure of
them. Besides, the no-buy-no-pay constraint satisfies by design. Therefore, MPFM ⊆ MFM,pn.

ε > 0 approximation: Notice that GroupMax can express MoA, GroupLSE can express LSE
and LSE can arbitrarily approximate MoA. We only need to consider the class of MoA.

Kim & Kim (2022) shows that parameterized max-of-affine functions are universal approximators
of functions those are continuous, convex on some input x and have no constraints on other input y.

Fix any ε > 0. Let pi(xi; t−i) be such a convex function that pi(0; t−i) ≤ 0 and pi(xi; t−i; θ) be a
parameterized function such that l∞(pi, pi(·; ·; θ) ≤ ε

2 .

We construct another function qi(xi; t−i; θ) = pi(xi; t−i; θ)− ε
2 . Since pi(xi; t−i; θ) is a realization

of PMA and qi has only constant difference with pi, thus qi is also a realization of PMA.

We have l∞(pi, qi(·; ·; θ)) ≤ l∞(pi(·; ·; θ), qi(·; ·; θ)) + l∞(pi, pi(·; ·; θ)) ≤ ε
2 + ε

2 = ε and
qi(0; t−i; θ) = pi(0; t−i; θ) − ε

2 ≤ pi(0; t−i) +
ε
2 − ε

2 = pi(0; t−i) ≤ 0, that completes the
proof.

D.4 PROOF OF THEOREM 5.4

Theorem 5.4. Assume that M1 is a universal approximator of M under following technical con-
ditions,

1. v0(x; t) is continuous on X and T (thus continuous consistently).

2. The pricing function p(x, t) is ε1-strongly convex on x for some ε1 > 0, when p ∈ M.

Then, MEU(M1) = MEU(M).

Proof. We assume λ = 1 without loss of generality. We denote u(p) the objective function of
p ∈ M in Equation (1). We only need to prove that for any ε > 0 and any p ∈ M, there is p1 ∈ M1

such that u(p1) > u(p) − ε. To do this, we first derive a lemma demonstrating the “continuity”
property of x(t) over l∞ of p(x, t).

Lemma D.1. Let p1(x, t), p2(x, t) be two pricing functions such that l∞(p1, p2) ≤ ε and p1 is ε1-
convex on x, denote x∗

1(t) = argmaxx∈X ⟨x, t⟩−p1(x, t) and x∗
2(t) = argmaxx∈X ⟨x, t⟩−p2(x, t),

then, we have that

∥x∗
1(t)− x∗

2(t)∥ ≤ 2

√
ε

ε1

proof of Lemma D.1. Fix some t ∈ T , by strong concavity we have that for all x ∈ X such that
∥x∗

1(t)− x∥2 > δ with δ = 2
√

ε
ε1

, we have that p1(x, t)− p1(x
∗
1(t)) >

ε1δ
2

2 . Then,

p2(x, t)− p2(x
∗
1(t))

=p2(x, t)− p1(x, t) + p1(x, t)− p1(x
∗
1(t)) + p1(x

∗
1(t))− p2(x

∗
1(t))

>− 2ε+
ε1δ

2

2
≥0

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

It shows that such x cannot be the maximum point of p2(x, t). Therefore, we must have ∥x∗
2(t) −

x∗
1(t)∥2 ≤ δ = 2

√
ε
ε1

, which completes the proof.

Now we continue the original proof. We also need an observation that, by optimality of x1(t),

⟨x1(t), t⟩ − p1(x1(t), t) ≥ ⟨x2(t), t⟩ − p1(x2(t), t)

p1(x2(t); t) ≥ p1(x1(t), t) + ⟨x2(t)− x1(t), t⟩

By consistent continuity of v0(x; t), we know that there exists δ1 > 0 such that ∥x1 − x2∥ ≤ δ1
indicates that v0(x1, t)− v0(x2, t) ≤ ε

2 . Denote δ2 = min{δ1, ε
4T }, where T = maxt∈T ∥t∥2. We

let δ3 =
δ22ε1
4 > 0 such that as long as l∞(p1, p2) ≤ δ3 holds and p1 is ε1-strong convex, we have

∥x2(t)− x1(t)∥ ≤ δ2, Take δ = min{ ε
4 , δ3}, while l∞(p1, p2) ≤ δ holds, we have that

p2(x2(t), t) ≥p1(x2(t), t)−
ε

4

≥p1(x1(t); t) + ⟨x2(t)− x1(t), t⟩ −
ε

4

≥p1(x1(t); t)− T∥x2(t)− x1(t)∥ −
ε

4

≥p1(x1(t); t)−
ε

4
− ε

4

· · · because l∞(p1, p2) ≤ δ3 and then ∥x2(t)− x1(t)∥2 ≤ δ2 ≤ ε

4T

=p1(x1(t); t)−
ε

2
.

Also note that ∥x2(t)− x1(t)∥2 ≤ δ2 ≤ δ1, thus v0(x1(t), t)− v0(x2(t), t) ≤ ε
2 . Summing up the

arguments above, we have that

v0(x2(t), t) + p2(x2(t), t) ≥ v0(x1(t), t) + p1(x1(t), t)− ε.

This concludes the proof.

D.5 PROOF OF PROPOSITION 5.5

Proposition 5.5. Consider an AMA mechanism MAMA with positive weights w1, . . . , wn and a
shift function λ(x). Assume more that an oracle OAMA of AMA mechanism exists that can run the
mechanism MAMA under input t. Formally, OAMA receives MAMA (or equivalently, w and λ)
and t as inputs, and output the resulting allocation x and payment p.

Given any AMA mechanism MAMA, we can explicitly construct a full-menu mechanism MF with
pricing functions {pfi (xi; t−i)}i∈[n], that receives type profile t, outputs the full menu pi : Xi →
R, i ∈ [n], and is equivalent to MAMA.

Additionally, querying {pi(xi)}i∈[n] at some point x ∈ X needs polynomial-time computation and
O(n) black-box queries of the oracle OAMA.

We have extended the AMA mechanism to our model and show that extended AMA is truthful in
Appendix B and Appendix C.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Proof of Proposition 5.5. Denote pf as the pricing rule of the full menu. We construct pfi as follows
given xi and t−i,

t∗i (t−i) ∈ argmin
ti∈T

max
x∈X

ASW(x; ti; t−i)

x−∗(t−i) ∈ argmax
x∈X

ASW(x; t∗i (t−i), t−i)

xi,∗
−i(xi, t−i) ∈ argmax

x−i∈X
ASW(xi,x−i; t) · · · notice that the optimal x−i do not depend on ti

=argmax
x−i∈X

ASW−i(xi,x−i; t−i) + vi(xi; ti)

= argmax
x−i∈X

ASW−i(xi,x−i; t−i)

pfi (xi; t−i) =
1

wi

[
ASW(x−∗(t−i); t

∗
i (t−i), t−i)−ASW−i(xi,x

i,∗
−i(xi, t−i); t−i)

]

Proof of equivalence to AMA Next we show that such mechanism is equivalent to AMA. We
begin with the utility of player i with type ti buying xi:

ui(xi; t) =vi(xi; ti)− pfi (xi; t−i)

=vi(xi; ti)−
1

wi

[
ASW(x−∗; t∗i , t−i)−ASW−i(xi,x

i,∗
−i(xi, t−i); t−i)

]
=ASW(xi,x

i,∗
−i(xi, t−i); t)−

hi(t−i)

wi

≤ASW(x∗(t); t)− hi(t−i)

wi

The inequality follows from that x∗ is the maximizer. When player i choose to buy x∗
i (t), we know

that,

x∗
−i(t) = xi,∗

−i(x
∗
i (t), t−i)

because x∗
−i(t) makes ASW(x∗

i (t),x−i; t) get its maximum w.r.t. x−i. Then, the utility of player i
equals to ASW(x∗(t); t)− hi(t−i)

wi
. It means that utility-maximizing players will definitely choose

x∗(t). The equivalence of price is obvious based on this, thus we complete the proof of equivalence.

O(n) queries of OAMA Notice that the oracle OAMA is a black box and we can only have access
to the output allocation and price.

Now we focus on computing the price pfi (xi; t−i). The first term is ASW(x−∗(t−i); t
∗
i (t−i), t−i).

Since this term has no relation with ti or xi, thus it can be easily derived from AMA. Actually, by
nature of AMA (in Step 4 in Definition B.5), we know that

ASW(x−∗(t−i); t
∗
i (t−i), t−i) = wi · pAMA

i (t) + ASW−i(x
AMA(t); t)

where xAMA and pAMA is the AMA allocation and payment rule, thus can be achieve from OAMA.

A more tricky one is to compute the second term ASW−i(xi,x
i,∗
−i(xi, t−i); t−i). We construct

another society with n − 1 players, except player i, and let λi(x−i) := λ(xi,x−i). Then
xi,∗
−i(xi, t−i) is the allocation in the AMA mechanism with weights w−i and shift λi(x−i).

We can call OAMA with (w−i, λ
i, t−i) to get the output of xi,∗

−i(xi, t−i), and then computing
ASW−i(xi,x

i,∗
−i(xi, t−i); t−i).

Above all, computing the price in given x needs n + 1 = O(n) query of OAMA. The other
computation lies in computing affine social welfare, which can be directed computed in polynomial
time.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E DETAILS ABOUT LEARNING ALGORITHMS

E.1 DERIVATION OF LEARNING ALGORITHMS

In this part, we derive the learning procedure to this problem.

To begin with, we present the optimization problem as follows,

max
θ∈Θ

x∗
i (ti;t−i;θ),i∈[n]

Et∼F [u0(x
∗(t; θ),p(x∗(t; θ); t; θ); t)]

s.t. x∗
i (ti; t−i; θ) ∈ argmax

xi∈Xi

ui(xi, pi(xi; t−i; θ); ti) ∀t ∈ T ,∀i ∈ [n]
(8)

The algorithm control the pricing rule (represented by θ) as well as the simulated players’ utility-
maximizing behaviors x∗

i (·; t−i; θ) for all i. x∗(t; θ) is short for {x∗
i (ti; t−i; θ)}i∈[n] and p(x; t; θ)

is short for {pi(xi; t−i; θ)}i∈[n]

The first step is to sample B size of i.i.d. samples from distribution F . 14 We denote tk as the k’th
sample, T B = {tk}1≤k≤B as the set of samples and U(T B) as the uniform distribution on these
samples. We then optimize the experience expected utility:

max
θ∈Θ

x∗
i (ti;t−i;θ),i∈[n]

Et∼U(T B)[u0(x
∗(t; θ),p(x∗(t; θ); t; θ); t)]

s.t. x∗
i (ti; t−i; θ) ∈ argmax

xi∈Xi

ui(xi, pi(xi; t−i; θ); ti) ∀t ∈ T B ,∀i ∈ [n]
(9)

Since there are only finite values of t in T B , we use {xk
i }k∈[B] to represent x∗

i (t
k
i ; t

k
−i; θ). Then,

the problem becomes,

max
θ∈Θ

{xk∈X}k∈[B]

1

B

B∑
k=1

[
u0(x

k,p(xk; tk; θ); tk)
]

s.t. xk
i ∈ argmax

xi∈Xi

ui(xi, pi(xi; t
k
−i; θ); t

k
i) ∀k ∈ [B],∀i ∈ [n]

(10)

Notice that the constraint we need to tackle is function maximizer constraint, to resolve this con-
straint, the second step is to utilize the method of envelope theorem (Milgrom & Segal, 2002).

To show how envelope theorem works, we first rewrite the maximizer constraint into equality con-
straint as follows,

ui(x
k
i , pi(x

k
i ; t

k
−i; θ); t

k
i) = max

xi∈Xi

ui(xi, pi(xi; t
k
−i; θ); t

k
i) ∀k ∈ [B],∀i ∈ [n]

We denote xk∗
i (θ) as the maximizer of the right-hand side (RHS). To address any violation of this

equality, we introduce a ReLU penalty function, with the penalty intensity controlled by a hyper-
parameter λ > 0. Consequently, the problem formulation becomes:

max
θ∈Θ

{xk∈X}k∈[B]

OBJ(θ, {xk};λ) = 1

B

B∑
k=1

[
u0(x

k,p(xk; tk; θ); tk)
]

−λ · 1

B

B∑
k=1

n∑
i=1

ReLU

(
ui

(
xk∗
i (θ), pi(x

k∗
i (θ); tk−i; θ); t

k
i

)
− ui

(
xk
i , pi(x

k
i ; t

k
−i; θ); t

k
i

))
(11)

14This step can be done because we assume an oracle that can sample arbitrary size i.i.d. samples.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

As is commonly done in learning-based algorithms (Amari, 1993; Bottou, 2010), we only need to
compute the first-order derivatives with respect to θ and {xk} to optimize OBJ(θ, {xk}). While the
derivative with respect to xk is straightforward, the derivative with respect to θ is more challenging
because xk∗

i (θ) depends on θ. The most significant challenge is that the function xk∗
i (θ) is unknown;

even if we can obtain xk∗
i (θ) for a specific θ through optimization, computing ∂xk∗

i

∂θ (θ) seems to be
infeasible.

However, according to the envelope theorem (Milgrom & Segal, 2002), when computing
∂ui

∂θ (xk∗
i (θ), pi(x

k∗
i (θ); tk−i; θ); t

k
i), we can treat xk∗

i (θ) as a constant. In other words,

∂ui

∂θ
(xk∗

i (θ), pi(x
k∗
i (θ); tk−i; θ); t

k
i) =

∂ui

∂θ
(xk∗

i , pi(x
k∗
i ; tk−i; θ); t

k
i)|xk∗

i =xk∗
i (θ)

For completeness, an insightful proof of a simplified version of the envelope theorem is provided in
Appendix C.

Building on this, it suffices to obtain a good estimate of xk∗
i (θ) in this algorithm.

To achieve this, the third step is to define xk∗
i as an approximation of xk∗

i (θ), which we can opti-
mize through the optimization procedure as follows.

max
{xk∗∈X}k∈[B]

OBJ∗(xk∗) =
1

B

B∑
k=1

n∑
i=1

[
ui(x

k∗
i , pi(x

k∗
i ; tk−i; θ); t

k
i)
]

For a specific instance of (θ, {xk}k∈[B], {xk∗}k∈[B]), if the two optimization problems achieve
their optima simultaneously (when we consider the optimization problem w.r.t. some variables, fix
the other variables constant), then θ is guaranteed to be the optimal mechanism representation in
equation Equation (11). Moreover, if x = x∗, then θ is the optimal mechanism representation in
original problem Equation (9).

Building on this, we can see that the problem is analogous to finding the equilibrium of a multiple-
agents Stackelberg game (Von Stackelberg, 2010). In this game, the principle first chooses θ, rep-
resenting the platform’s penalized expected utility. After seeing θ, agents side will selects x∗ to
optimize OBJ∗(x∗; θ), which corresponds to the players’ expected utility. The principle’s utility is
then designated by OBJ(θ, {x∗})
In our algorithm, we optimize these two objective functions concurrently. A simple illustration of
our algorithm has been provided in Figure 1 in the main body.

After the training process, we left x and x∗ behind, only denote θ∗ as the learned mechanism
representation.

E.2 PSEUDO-CODES

In this section, we present the pseudo-codes of our training and inference procedure.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 1: Training procedure
Input: number of players and items (n,m), the oracle for i.i.d. samples O
Output: mechanism parameters θ

1 Define hyper-parameters: sample size B, batch size B0, mechanism iteration T0, platform
allocation iteration T1, player allocation iteration T2, epoch T

2 Sample B i.i.d. samples t1, ..., tB from distribution F with oracle O
3 Initialize mechanism parameters θ, platform allocation x = {xk

i }1≤k≤B,1≤i≤n, player
allocation x∗ = {xk,∗

i }1≤k≤B,1≤i≤n, penalty intensity λ
4 for t = 1, ..., T do
5 Optimizing platform’s objective:
6 for t0 = 1, ..., T0 do
7 Randomly sample B0 batch of data on the sample points {(tk,xk,xk,∗)}k∈B

8 Fix x,x∗, compute OBJ(x, θ;x∗), using B0 samples of data
9 Optimize θ through gradient of OBJ(x, θ;x∗) for one iteration

10 end
11 for t1 = 1, ..., T1 do
12 Fix θ,x∗, compute OBJ(x, θ;x∗) on all samples
13 Optimize x through gradient of OBJ(x, θ;x∗) for one iteration
14 end
15

16 Optimizing player’s objective:
17 for t2 = 1, ..., T2 do
18 Fix θ, compute OBJ∗(x∗; θ) on all samples
19 Optimize x∗ through gradient of OBJ∗(x∗; θ) for one iteration
20 end
21

22 increase λ moderately
23 end
24 return mechanism parameters θ.

Algorithm 2: Inference procedure
Input: mechanism θ, a type profile of players t
Output: the allocation x ∈ X and price p ∈ Rn on the type profile

1 Define hyper-parameters: the iteration time T for optimizing allocation
2 Initialize allocation x. for t = 1, ..., T do
3 Optimizing players’ utility:
4 Compute the players’ utilities over x, OBJ(x; θ)
5 Optimize x through gradient of OBJ(x; θ) for one iteration
6 end
7 compute players’ payments: pi = p(xi; t−i; θ), i ∈ [n] return players’ allocations x, players’

payments p

F DISCUSSIONS

F.1 DISCUSSIONS ON MODEL EXPRESSIVENESS

One deficiency of the model is that, the model expressiveness is limited since we assume X =
×i∈[n]Xi, but it is not always the case. As an example, in the traditional auction model, the auc-
tioneers’ allocation space is X = ∆n, assuming there is n − 1 bidders, since items can not be
over-allocated. However, ∆n can not be written as Cartesian product ×i∈[n]Xi. We call such con-
straint as platform’s hard allocation constraint.

Our argument is following: such hard constraint can be model into the platform’s valuation. As
long as X is convex (this is satisfied in auction problem), we can rewrite the platform’s valuation as

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

follows,

v̂0(x; t) =

{
v0(x; t) if x ∈ X
−∞ if x /∈ X (12)

We can verify that such valuation v̂0(x; t) is still convex. Although such model does not capture the
allocation constraint directly, we know that an optimal mechanism will never choose the allocation
x /∈ X . Therefore, as long as we achieve the optimal mechanism in this model, we immediately
achieve the optimal mechanism of the original problem with platform’s hard constraint X .

It naturally leads another question is that, such v̂0 is not continuous thus hard to optimize. Our next
argument is that, we can make a continuous approximation to v̂0(x; t), which makes the optimiza-
tion easier. Specifically, we let

ṽ0(x; t) =

{
v0(x; t) if x ∈ X
v0(proj(x,X); t)−M · proj(x,X) if x /∈ X (13)

As long as v0 is L-Lipschitz (this is again satisfied in auction problem), choose M ≥ L will make
v0 concave, continuous and have full domain ×i∈[n]Xi. As long as M is large enough, the optimal
mechanism in Equation (13) can be arbitrary close to the optimal mechanism in Equation (12),
therefore approximate the optimal mechanism of original problem.

However, it’s not known whether the optimal mechanism of Equation (13) equals the optimal mech-
anism of Equation (12) in general, for some constant of M . If this statement is true, we believe that
such generalized model with flexible platform valuations can be seen as an equivalent model when
platform has hard allocation constraint. The only partial results are that, the statement is true for the
auction setting, if there is only 1 bidder or only 1 item.

F.2 DISCUSSIONS ON MECHANISM PROPERTIES

We discuss the three properties we emphasized in Section 2.

• Potentially exact truthfulness. The approach should return a mechanism that meets po-
tentially exact truthfulness. Since it’s hard to verify whether a mechanism is truthful, we
often require that any mechanism that can be represented within the parameterized mech-
anism class should be potentially exact truthful. The potentially exact truthfulness means
that there is no endogenous factor that makes the mechanism untruthful, e.g., the forced and
unreasonable allocation and payment rule. Exogenous factors are acceptable. For example,
exogenous factors consist of: floating-point error in computation; irrational behaviors of
players when maximizing their utilities; the non-existence of optimal choice when utilities
without an upper bound (it can potentially appear in a poor-initialized mechanism). In a
nutshell, potentially exact truthfulness requires that players have no reason to complaint
about the untruthfulness of the mechanism structure. The regret-minimization-based mod-
els (e.g., RegretNet) do not satisfy this property, as the regret can not minimized to be zero.
(Dütting et al., 2019; Duan et al., 2022)

• Full expressive power. The optimal mechanism can be expressed or approached with
arbitrarily small error within the parameterized mechanism class. Since the agnosticism of
the optimal mechanism, we often require that any truthful mechanism can be approached
with arbitrarily small error within the parameterized mechanism class. The AMA-based
model does not satisfy this property, for bounded representative power of AMA model.
(Curry et al., 2023; Duan et al., 2024a;b)

• Efficiency in moderate-size problem. As the problem size (the number of players and
items) increases, there is only polynomial time scale-up for achieving a good-enough mech-
anism in practice. The menu-based approaches (Wang et al., 2024b; Curry et al., 2023;
Shen et al., 2018; Duan et al., 2024a) or programming-based approaches (Wang et al.,
2024b; Lavi & Swamy, 2011; Guo et al., 2017) need a discretization on allocation space or
type space, indicating an exponentially sample complexity in the worst case.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

G MORE EXPERIMENTAL DETAILS

G.1 MORE DETAILS ON BASELINES

G.1.1 UM-GEMNET

The input of GemNet (Wang et al., 2024b) with n bidders and m items is v−i ∈ R(n−1)×m. We
generalize this network’s structure to n = 1 by the two following approaches:

• Removing the term that penalizes item over-allocation in the original loss function.
• Using n = 2 in actual training and divide the testing result by 2. With the previously

mentioned change of loss function form, the allocations of the two bidders in the case are
independent, thus the two symmetric bidders make decisions separately. Hence we obtain
a valid result without making large changes to the original GemNet structure.

We use a menu size K = 300 if the number of items is less than 5, and K = 1000 if otherwise.
The network has two hidden linear layers, and the activation function is Leaky-ReLU. The opti-
mizer is Adam, with learning rate 3× 10−4. The softmax temperature when choosing among menu
allocations is initialized as 128 and doubles every 500 epochs until the maximum value of 2560.
With a minibatch of size 215, the training time is 63.55s per 1000 iterations in the 5-item setting and
355.69s per 1000 iterations, respectively (this increase of time is largely due to enlarging the menu
from 300 to 1000).

Every 100 epochs, we evaluate the network with 105 samples to check convergence. The converged
network is tested on a set of 16 × 16384 ≈ 2.6 × 105 samples. We observe that the network
converges after ≈ 3000 epochs, and the test performance of ≫ 5000 (for example , 20000) epochs
are not significantly different from that of less than 5000, in a few cases lower.

G.1.2 LOTTERY-AMA

We implement the ”additive valuation” and ”lottery allocations” auction setting of the original
method in (Curry et al., 2023). The lottery auctions candidates are generated via item-wise sigmoid
instead of item-wise softmax. We still use the two-player training setting in UM-GemNet G.1.1.
The learning rate of Adam optimizer is 0.01, and the mechanism is evaluated every 100 epochs with
the same validation size as UM-GemNet. We choose the best result among five candidates of lottery
allocation size |A| ranging from 2048 to 16384. The training time is ≈ 15s per 1000 iterations with
|A| = 2048,m = 2. This method fails to outperform simpler baselines such as item-wise Myerson
significantly, when the item number is larger than 5, so the results are omitted.

G.2 IMPLEMENTATION DETAILS

Network architecture Every network in our experiments is designed as a fully connected net-
work. In the selling experiment, the hidden dimension of neurons d = 256 · m when the network
is 1 hidden layer and d = 32 · m when the network is no less than 2 hidden layers. Networks
in MoA as well as LSE are always chosen to be with depth 3. PICNN and GroupMax are im-
plemented with depth 1 and 3. When we move to the social planner experiment, the hidden di-
mension of neurons is decreased to d = 128 · m and the network is fixed to be 1-hidden layer.
The positive parameters in neural networks are hardcoded by a softplus function element-wisely:
softplus(x) = log(1 + exp(x)), which maps real numbers onto positive numbers. The convex ac-
tivation functions are chosen as leaky relu with negative slope 0.01, while other activation functions
are chosen as GeLU.

Training procedures We use Adam optimizer and initial learning rate 3 · 10−4 to optimize all the
network parameters and fixed learning rate 3 ·10−2 to optimize all the non-network parameters. The
learning rate of networks is decayed to ≈ 3 · 10−6 in the training procedure, with each time divided
by 2. β are chosen (0.9, 0.9) for non-network parameters and (0.9, 0.999) for network parameters.

The penalty weight λ in the platform’s objective is set with initial value 5, gradually increasing to the
maximum value 32. In the first 50 epochs, λ increases ∆λ = 0.02 in each epoch, and ∆λ increases
to 0.03 in later epochs.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

When we begin with the training procedure, we first sample K = 65536 i.i.d. data, the full proce-
dure only acts on these data. We conduct T1 = 300 epochs for cold start, since both the allocation
and the network are initialized and far from optimal. In each epoch in cold start, we train θ 16 times,
train x 8 times and train x∗ 32 times. The penalty weight does not change in cold start. After cold
start, we continue training T2 = 1000 epochs which we call “hot start”. In each epoch in hot start,
we train θ only 4 times, train x 8 times and train x∗ only 32 times. When we train θ, we use a
random batch with size 2048.

We also validate the models during training. In hot training periods, we save a model per 10 epochs
in the first 200 epochs and per 20 epochs in the remaining epochs. We use 65536 sample to validate
the model and choose the model with largest platform expected utility on those samples.

Inference In the inference period, we use Adam optimizer with learning rate 0.3 and β =
(0.9, 0.9). Since the objective function for players is concave, finding the optimal point x∗ is a
computationally tractable problem. We optimize x with the target of objective function with 500
iterations to simulate the optimal strategies of players. Although it may cause some errors, these
errors are at the magnitude ≈ 10−10, which is sufficiently small that they have negligible errors to
the estimation of platform’s expected utility.

When testing a model, we use 218 = 262144 samples to achieve an estimation of expected utility
of platform, the standard deviation of estimation error is ≈ 10−3 times the estimation. Thus it’s
unlikely that our method outperforms baselines due to random errors.

Hard-code of fi(xi; t−i) ≤ 0 In MoA model, the no-buy-no-pay constraint can be hard-coded as
follows,

fi(0; t−i; θ) = max
j∈[K]

bj(t−i; θ) ≤ 0

bj(t−i; θ) ≤0,∀j.

To hardcode bj(t−i; θ) ≤ 0, We apply a softplus function to the network output: softplus(x) =
log(1 + exp(x)), then take the negation.

Complexity Analysis of these networks In this section, we analyze the computational complexity
of our approach. Let n and m represent the number of players and items, respectively. The number
of training epochs (300 + 1000 = 1300), iterations per epoch (approximated as 4 + 8 + 32 = 44),
and the sampling data size (65536) are fixed across different experimental settings. The number
of neurons in each network layer is set proportional to m, with constant scaling factors (32 for
more than 2-layer network and 256 for 1-layer network). We also need to compute the pricing rule
for all n players. Consequently, the total computational cost within our framework scales as nm2.
Given that the problem description size is O(nm), the training cost scales quadratically with respect
to the problem size, which demonstrates the potential to solve large-size problems. The constant
coefficient in O(nm2) approximates as 65536× 1300× 44× 256 ≈ 1× 1012.

G.3 MORE ANALYSIS ABOUT THE RESULTS

Zero utility of VCG in Table 2 We derive that when using VCG mechanism, the expected utility
of platform might be 0 in some case, which corroborate with the results in Table 2 that VCG utility
is 0.

Recall that VCG mechanism maximizes the social welfare:
∑

i∈[n] vi(xi; ti) =
∑

i∈[n]⟨xi, ti⟩ −
1
2∥xi∥2. Let us take the allocation constraints behind for a short time, then the optimal xi should be
chosen at xi = ti. Therefore, VCG mechanism will result at xi = ti, then, the platform utility will

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

become

u0(x; t;p) =
∑
i∈[n]

vi(xi; ti)−
1

2

∑
j∈[m]

(
∑
i∈[n]

xij)
2

=
∑
i∈[n]

⟨ti, ti⟩ −
1

2
∥ti∥2 −

1

2

∑
j∈[m]

∑
i∈[n]

t2ij +
∑
i1 ̸=i2

ti1,jti2,j


=− 1

2

∑
j∈[m]

∑
i1 ̸=i2

ti1,jti2,j

By i.i.d. property of tij and E[tij] = 0 in each setting, we immediately derive that

Et[u0(x
V CG; t;pV CG)] = 0

which demonstrates that if allocation constraint always does not bind, then the platform utility of
VCG mechanism should be 0. In the case of t ∼ U [−1, 1] distribution, allocation constraint does
not bind indeed.

The optimal value of some results Since the utility function does not depend on p, from the above
part we know that, if we derive the optimal allocation and allocation constraints do not bind, and
additionally the allocation rule xi(t) is implementable (i.e., there is a pricing rule pi(t) that make
the mechanism truthful), then, xi(t) must be the optimal allocation that maximizes the platform
utility.

Assume the allocation constraints do not bind, by first order condition, we get that,

∂u0

∂xi
= 0,∀i ∈ [n]

It means that
ti − xi −

∑
i∈[n]

xi = 0 (14)

Add Equation (14) for all i, we know that

(n+ 1)
∑
i∈[n]

xi =
∑
i∈[n]

ti

Taking into Equation (14), we know that the optimal allocation should satisfy:

xi =
n

n+ 1
ti −

1

n+ 1

∑
j ̸=i

tj (15)

In uniform distribution ti ∈ [−1, 1]m. As long as n = 2, we also have that xi ∈ [−1, 1]m, then
allocation constraints do not bind and Equation (15) forms the optimal solution. As long as n ≥ 3,
allocation constraints might bind in some case, and the solution become intriguing.

In the n = 1 case, the optimal solution can also be found for all distribution, only by doing a
projection on xi into [−1, 1]m. We present a numerical solution of the optimal value in the Gaussian
distribution case.

We also note that above-defined xis are increasing in ti, which make the allocation rule imple-
mentable.

A demonstration of pricing rule In this part, we present some pricing rules in different settings.
The model we choose in this part is the best model among validation.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

PRICING RULE FOR SELLING GOODS TO ONE BUYER Figure 2 represent the pricing rule learned
by PFM-Net with 1-layer GroupMax and 3-layer GroupMax architecture, in the setting of selling
m = 3 items to one buyer. The x-axis represents the allocation on the first item, i.e., x1 = x, while
the y-axis represents the allocation on the second and third item, i.e., x2 = x3 = y. The pricing rule
is almost piece-wise linear, thus we can approximately take the pricing rule as a bundle mechanism
that sells all items at a price ≈ 1.2, sells one items at a price ≈ 0.8, and sells two items at the
price ≈ 1.4. Notice that if a player want to buy two items then she must want to buy all items more.
Therefore, the mechanism actually do not sell two items, only bundle all items together or sell single
item independently. Buyer will get a cheaper average price if she choose to buy the full bundle. This
result coincides with the existing finding that optimal mechanism may sometimes bundle all items
with a lower price sometimes. The pricing rule of 3-layer GroupMax has a similar regularity. The
only difference is that, the price of selling two items is very high in 3-layer GroupMax.

We need to point out that in the characterization of optimal mechanism in selling 3 items (Gian-
nakopoulos & Koutsoupias, 2014), there has small probability that the platform sells exactly 2 items
to the player. Our experiments show that if we give up selling exactly 2 items, we will not lose too
much.

Figure 3 represent the pricing rule learned by PFM-Net with 1-layer PICNN, 1-layer GroupMax
and 3-layer GroupMax architecture, in the setting of selling m = 20 items to one buyer. The x-axis
represents the allocation on the first 10 items, i.e., xi = x for 1 ≤ i ≤ 10, while the y-axis represents
the allocation on the last 10 items, i.e., xi = y for 11 ≤ i ≤ 20. The pricing rule is almost piece-
wise linear again. The mode in 1-layer PICNN and 1-layer GroupMax is similar: selling both full
bundle and separate bundle, but selling full bundle at a cheaper average price. 3-layer GroupMax
again refuses to sell the bundle that consists of exactly 10 items.

PRICING RULE FOR SOCIAL PLANNER OF A MARKET Figure 4 represent the pricing rule learned
by PFM-Net with 1-layer GroupMax architecture, in the setting of social planner with n = 2 players
and m = 5 items. The x-axis represents the allocation on the first 2 items, i.e., xi = x for 1 ≤ i ≤ 2,
while the y-axis represents the allocation on the last 3 items, i.e., xi = y for 3 ≤ i ≤ 5. The pricing
rule is non-concave and non-convex, since the pricing rule consists of a convex part f(xi; θ, t−i)
and a regularization part ci(xi), which is concave in this setting.

We randomly sample 3 type profiles, and generate the pricing rule given the player 2’th type. We
find that the pricing rule for some player highly depends on the other players’ types. Consider the
case when player 2’s type is high on some good, meaning that player 2 is willing the buy the good,
it will encourage player 1 to sell the good. Therefore, the social planner want to subsidize player 1
if she really sell the good. The opposite direction is vice versa.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) The demonstration of pricing rule learned by 1-layer GroupMax, in the setting of
selling m = 3 items to one buyer.

(b) The demonstration of pricing rule learned by 3-layer GroupMax, in the setting of
selling m = 3 items to one buyer.

Figure 2: The demonstration of pricing rule learned by 1-layer GroupMax and 3-layer GroupMax,
in the setting of selling m = 3 items to one buyer.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a) The demonstration of pricing rule learned by 1-layer PICNN, in the setting of selling
m = 20 items to one buyer.

(b) The demonstration of pricing rule learned by 1-layer GroupMax, in the setting of
selling m = 20 items to one buyer.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

(c) The demonstration of pricing rule learned by 3-layer GroupMax, in the setting of
selling m = 20 items to one buyer.

Figure 3: The demonstration of pricing rule learned by 1-layer PICNN, 1-layer GroupMax and 3-
layer GroupMax, in the setting of selling m = 20 items to one buyer.

(a)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

(b)

(c)

Figure 4: The demonstration of pricing rule learned by 1-layer GroupMax, in the setting of social
planner with 2 players and 5 items.

36

	Introduction
	Problem Setting
	Characterization of Truthful Mechanisms
	Methodology
	Justification of PFM-Net
	Experiments
	Baselines Methods
	Experimental Settings
	Selling to Single Buyer
	Social planner of a market

	Experimental Analysis

	Further Related Works
	Supplementary Definitions
	Menu Mechanisms
	Universal Approximators
	Affine Maximizer Mechanisms

	Supplementary Lemma
	A Simplified Version of Envelope Theorem
	Truthfulness of AMM

	Omitted Proofs
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of

	Details about Learning Algorithms
	Derivation of Learning Algorithms
	Pseudo-codes

	Discussions
	Discussions on Model Expressiveness
	Discussions on Mechanism Properties

	More Experimental Details
	More Details on Baselines
	Implementation Details
	More Analysis about the Results

