Under review as a conference paper at ICLR 2025

LEARNING-BASED MECHANISM DESIGN: TRUTH-
FUL, EXPRESSIVE AND EFFICIENT CONTINUUM AP-
PROACHES FOR UTILITY MAXIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Mechanism design is a crucial topic at the intersection of computer science and
economics. This paper addresses the automated mechanism design problem by
leveraging machine learning and neural networks. The objective is to design a
truthful, expressive and efficient mechanism that maximizes the platform’s ex-
pected utility, given that the players’ types are drawn from a pre-specified distri-
bution. We present a general mechanism design model that captures two critical
features: hidden information and strategic behavior. Subsequently, we propose
the PFM-Net framework, which parameterizes the menu mechanism class by
function approximation and identifies an optimal mechanism through ingenious
optimization techniques. We also provide both theoretical and empirical justifi-
cations for the advantages of our approach. Experimental results demonstrate the
effectiveness of PFM-Net over traditional and learning-based baselines, enabling
the PFM-Net framework to serve as a new paradigm for automated mechanism
design.

1 INTRODUCTION

Designing a truthful mechanism that maximizes the platform’s expected utility is a fundamental
problem in computational economics, with important application in market design and resource
allocation (Borgers et al., 2015; Golowich et al., 2018). In a typical mechanism design problem,
the market consists of two kinds of players: platforms (sellers) and customers (buyers), both with
given utility functions. The utility functions are determined by the item price, item allocation and
the player’s own value of items. Typically, the mechanism is required to possess truthfulness (or
equivalently, “strategy-proof” & “DSIC and IR”) (Likhodedov & Sandholm, 2005) such that the
customers have the incentive to report their types honestly and are always willing to participate.

The seminal work of (Myerson, 1981) solved the optimal strategy of selling one item with indepen-
dent bidder valuations, yet analytical results have been limited to specific simple settings thereafter
(Manelli & Vincent, 2006; Giannakopoulos & Koutsoupias, 2014). The machine learning approach
to this problem has become the mainstream method, which can be classified into three categories.
VCG-based approaches (Sandholm & Likhodedov, 2015) define a parameterized class of truthful
mechanisms and then optimize within this class. Regret-based approaches (Diitting et al., 2019;
Ivanov et al., 2022) capture a broad class of mechanisms by incorporating untruthfulness (i.e., re-
gret) as a penalty in the loss function to optimize the mechanism. Discretization-based approaches
(Duan et al., 2024b; Wang et al., 2024b), including menu-based and mixed integer programming-
based methods, discretize the allocation or type space to approximate the optimal mechanism while
preserving truthfulness.

Each of these existing approaches has notable drawbacks. VCG-based methods are inherently lim-
ited in expressive power, making them insufficient to find the optimal mechanism. Regret-based
methods suffer from untruthfulness, which makes outcomes unpredictable and the mechanism po-
tentially unstable. Discretization-based approaches often needs an exponential number of param-
eters to capture the full type space or allocation space, which becomes prohibitively expensive even
for problems with moderate size.

Under review as a conference paper at ICLR 2025

Our Contributions In this paper, we close the joint gaps of truthfulness, full expressive power
and efficiency in general multi-player mechanism design. We propose a machine learning-based
framework called PFM-Net (Parameterized Full-Menu Network) to derive the optimal mechanism.

To achieve this, we first construct a general mechanism design setting in a quasi-linear context,
which generalizes auction settings and other scenarios, such as welfare-maximizing platforms. We
then characterize truthful mechanisms within this setting, demonstrating that the class of truthful
mechanisms is equivalent to the class of menu mechanisms with convex pricing functions, substan-
tially generalizing the results of Rochet (1987) and Hammond (1979).

Building on this characterization, we utilize representations of convex functions, such as PICNN
(Amos et al., 2017) and GroupMax (Warin, 2023), to construct the pricing network. We also derive
a training procedure to train the optimal parameterized function, with the objective function formu-
lated as a penalized utility function of the platform. Experimental results validate the effectiveness
of PFM-Net framework, by demonstrating that such framework obtain the ability to capture the
non-trivial component even in the moderate-sized problems while other methods fail, highlighting
its superior performance in moderate-sized problems and its empirical success in avoiding the curse
of dimensionality and enabling the PFM-Net framework to serve as a new paradigm for automated
mechanism design'.

2 PROBLEM SETTING

The model In this paper, we consider a generalized mechanism design model in the quasi-
linear context. There are n players, m items as well as one platform in this model. Denote
[n] = {1,2,...,n} as the players set and [m] = {1,2,...,m} as the items set. Each player ¢ has
her hidden type t; € 7; C R™, and the type space 7; for player i is public knowledge, assuming
to be convex and compact.” We denote 7 = Xie[n)Ti for simplicity. The j’th element of £;, t;;,
represents the player ¢’s preference for item j. Specifically, let ; € R™ be the allocation of items to
player i. The valuation of the bundle x; to player ¢ when her type is t;, v;(x;; t;) = (t;, ;) +c;(x;),
where ¢; : X; — R is a publicly-known, continuous and differentiable-almost-everywhere regular-
ization term, and X; is the feasible allocation set of player ¢. By this form, we only assume that the
“hidden part” in valuations, (t;, x;), is bi-linear on the allocations and hidden types. Note that in
this model, the elements in both allocations and types can be positive or negative. 3

The allocations would bring utilities to the platform as well. Denote * = {x;};c[n) and t =
{ti}ic[n) as the allocation profile and type profile of players. We assume no hidden information
of the platform, but we allow that the platform’s valuation vg(x, t) may depend on type profile ¢, in
addition to the allocation profile . Function vy (x;) is assumed to be continuous and differentiable-
almost-everywhere on x as well.

Quasi-linear utilities We assume quasi-linear utilities for all players as well as the platform. It
means that one-unit of utility can be arbitrarily transformed among players and the platform through
one-unit of money paid to or charged from players.* Denote p; € R as the payment charged from
(p; > 0) or paid to (p; < 0) player ¢, the quasi-linear utilities for player ¢ and platform are,

ui(@i, piits) = vi(wi;ti) —pi, i € [n], wo(®, p;t) = vo(w;t) + z i
1€[n]

where vg(; t) is the valuation of platform when the allocation is x given the player types t, and
~v > 0 is a parameter representing how the platform evaluates different outcomes with respect to
money and valuations. Both vy and ~ are public knowledge, thus excluded from the inputs of ug. The

"We leave further related works to Appendix A.

2A set in Euclidean space is compact if and only if it is closed and bounded.

3 A positive allocation means the platform allocates the item to the player; while a negative allocation means
the platform buys the item from the player. A positive type means the item are “good” for the player such that
it increases the valuation of players owing the item; while a negative type means the item are “bad” for player,
e.g., pollution, risk and so on.

“In the mechanism design literature, quasi-linear utilities and the allowance of money transfer are often
indispensable for implementation of truthful mechanisms. (Nisan et al., 2007, §9.3)

Under review as a conference paper at ICLR 2025

formulation of the platform’s utility generalizes the social-welfare-oriented platform (vo(x;t) =
Zie[n] vi(@;;t;), v = 0) or revenue-oriented platform (v (x;t) = 0, v = 1), as well as the affine
combination of social-welfare and revenue. Throughout this paper, we assume that all players and
the platform are expected utility maximizers.

Allocation constraints We allow hard constraints that represent the feasible allocation set to each
player. Let X; C R™ be a convex, non-empty set that describes the feasible allocations for player
1. It means that when the platform assigns allocations @ to players, the platform should guarantee
that ; € A, for all ¢ € [n]. X; = R™ means there is no constraint on allocating to player i.
Denote X = X;¢[,)X; as the possible allocation set. Note that this model implicitly means that the
constraints are endogenous from players, rather exogenous from the platform. °> We require two
technical assumptions: 0 € X; and ¢;(0) = 0, Vi. It means that O is an outside option for all players,
with utility normalized to 0. But we also note that these assumptions can be removed without loss
of generality.

Truthful direct mechanisms We focus on truthful direct mechanisms in this study. Revelation
principle states that focusing on this type of mechanisms is without loss of generalities (Myer-
son, 1979). In other words, restricting on direct mechanisms do not lose expressiveness. Be-
low we omit the input (¢, ..., t,) sometimes when the context is clear. According to convention,
(t1, .., ti—1, 5, tiy1, ...,) is abbreviated as (¢;,¢_;) and (¢1, ..., t,) is abbreviated as t. We first
present the formal definitions of direct mechanisms for completeness.

Definition 2.1 (Direct Mechanisms). A direct mechanism M¢ = (z,p) consists of an allocation
rule : 7 — X and a payment rule p : 7 — R"™. The mechanism works as follows,

Step 1. The platform requests all players for their types at the same time, and receive the players’
report t = (t1,...,t,) € T.

Step 2. The allocations to players are computed by x(¢). Each player ¢ is allocated with bundle x;.

Step 3. The payments (or payoffs) of players are computed by p(t). Each player ¢ is charged by p;
(or paid —p;) amount of money.

We say a direct mechanism is truthful, if it satisfies two conditions: individual rationality (IR) and
incentive compatibility (IC):

vi(xi(t); ti) — pi(t) >0, Vte T,ie [n] (IR)
vi(xi () t;) — pi(t) >vi(xs ()5 t:) — pi(t, t4), Vte T,t, €T i€ [n (IC)

The IR condition states that, players are always happy to participate on this mechanism. The RHS in
(IR) means that the utility of outside option for each player is (¢;, 0) 4 ¢;(0) = 0. The IC condition
states that, truthful telling is a dominant strategy for each player. For simplicity, we abbreviate
truthful direct mechanism as truthful mechanism later on this paper.

Our goal The goal of this problem is to find a truthful mechanism that maximizes the expected
utility of the platform. Regarding the expectation, we assume that the platform holds a prior
over the (possibly correlated) joint distribution of players’ types, i.e., F € A(T). Similar with
many learning-based algorithm, we do not require the full knowledge of the distribution F. In-
stead, the minimum requirement is an access to a sampling oracle, that enables i.i.d. samples of

{tF} kel K]i'ri\'g']: with arbitrary sample size K > 1, which would be utilized by our algorithm.

Formally, the platform’s optimization problem is stated as follows.

;;;Tl%% Einr [uo(z(t), p(t);8)] s.t. (IC),(IR)

Automated mechanism design Since the control variables in this problem is infinitely-
dimensional®, finding an analytical optimal solution becomes extremely hard. In this paper, we

>More discussions about allocation constraints are provided in Appendix F.1
SSpecifically, the control variables are 2(-) and p(-) in mechanism design problem, which are functions on
a continuous domain and thus infinitely-dimensional.

Under review as a conference paper at ICLR 2025

follow the framework of automated mechanism design (Sandholm, 2003), which parameterizes the
mechanism, as a parameterized class, and find the optimal mechanism within this class.

Formally, let # € R™ be the parameters represented in the allocation rule and payment rule. The
mechanism is then represented as x(t; 6) and p(t; 6), where x(-;) and p(-; -) are determined only
by network architecture. The problem then reduces to finding the optimal parameter 6,

max B¢ [uo(2(t;0),p(t:0);t)] st (1), (IR)

Desirable properties Before the formal contents, we shall emphasize what desirable properties
an ideal approach should possess: potentially exact truthfulness, full expressive power and ef-
ficiency in moderate-size problem. More discussions on these properties are presented in Ap-
pendix F.2.

3 CHARACTERIZATION OF TRUTHFUL MECHANISMS

As is inspired by Wang et al. (2024b) and Diitting et al. (2024), we focus on the menu mecha-
nism class in this paper. We will show that a specific class of menu mechanism characterizes the
class of truthful mechanisms in this section. Due to space limits, the formal definition of the menu
mechanism is leaved to Appendix B.

For completeness, we briefly introduce menu mechanisms in few words. Consider a mecha-
nism design problem with one player, with type space 7 and feasible allocation set X. A menu
M™ = (X™, p™) specifies a subset of feasible allocation,) # X™ C X, and a pricing rule,
p™ : X™ — R. The mechanism discloses the menu to the player at first, then the player buy the
utility-maximizing allocation & € X™ and pay p™(«) money, which depends on her private type
t € T. The case of multi-players is similar. In that case, the platform plays the mechanism with
each player independently, with the only difference that the mechanism to each player ¢ can depend
on the types of all other players t_;.

With a little abuse of notations, we also call M™ as a menu mechanism with menu M™. If X™ =
X always hold, such menu mechanism is called full-menu mechanism. Since the properties of
truthfulness and full expressiveness are originally defined for direct mechanisms, it naturally leads to
a question that, can we extend such properties to menu mechanisms? Though not intuitive, we shall
emphasize that a menu mechanism M™ can be easily transformed into a direct mechanism MY
The insight is following: as long as the platform knows the exact types of players, the platform can
simulate the player’s behaviors as if players’ are rationally playing the game. The formal definition
is also leaved to Appendix B.

As we can transform each menu mechanism to a direct mechanism, we shall regard them as the
“equivalent” mechanism, then consider the properties of menu mechanisms as the properties of
“equivalent direct mechanisms”. To begin with, we firstly give some definitions that define the
equivalence relation between menu mechanisms and direct mechanisms. Note that it’s easy to verify
below-defined equivalence relation forms an equivalent class in set theory.

Definition 3.1 (Equivalent mechanisms).

+ We say two direct mechanisms M¢ and M9 are equivalent, if their allocation rules and pay-
ment rules are equal on the domain 7, except a set of probability zero. (The probability is
measured by F.)

* We say two menu mechanisms M7* and M%" are equivalent, if after we transform M into
direct mechanisms M¢ as above, M¢ and M$ are equivalent. 7 We can similarly define
equivalent relation between a menu mechanism and a direct mechanism.

¢ Let MM be a class of (direct or menu) mechanisms. Denote {—i} = {1,2}\{i}, we call a pair
of mechanism class M2 and M3? are equivalent, if for any i € {1,2} and any mechanism
M; € MM, there is another M _; € M™. such that M; and M _; are equivalent.

"Note that it does not indicate that the pricing functions in M* and M3" are equivalent, as there can be
dummy candidates.

Under review as a conference paper at ICLR 2025

Note that when two mechanism classes are equivalent, these classes have exactly same expressive
power. With more abuse of notations, we regard an equivalent class of direct mechanisms or menu
mechanisms as same mechanism, denoted by M.

Before the formal statement, we also give some technical definitions that will be used to characterize
the mechanism class.

Definition 3.2 (pricing rule decomposition). Under the situation with one player, allocation con-
straint X and regularity cost c(x), we say a full-menu mechanism M™ = (X, p™) satisfies pricing
rule decomposition, if following holds for some [: X — R,

* p"(x) = cx) + [(2)
o f™(x) is convex.
Under the situation with n players, allocation constraint {X;};c,) and regularity cost {c; () }ic[n)»

we say a full-menu mechanism M™ = { M"} satisfies pricing rule decomposition, if M[" satisfies
pricing rule decomposition for all player ¢, whatever ¢_; is. (Note that M* may depend on ¢t_;.)

Definition 3.3 (no-buy-no-pay). Under the situation with one player, we say a full-menu mechanism
M™ = (X, p™) satisfies no-buy-no-pay, if p(0) < ¢(0) = 0.

Under the situation with n player, we say a full-menu mechanism M™ = { M} satisfies no-buy-
no-pay, if M satisfies no-buy-no-pay for all player ¢, whatever t_; is.

Now we give a formal statement to show the IC properties for menu mechanisms. Specifically, we
have following characterization for these mechanism classes (multi-player version):

Theorem 3.4. Following mechanism classes are equivalent:
o The class MP1C of direct mechanisms M® = (z, p) with IC property,
* The class MM of menu mechanisms M™, where M™ = {M"};c[n and M7 = {X;™, pI"},

s The class MEMP of full-menu mechanisms M/, where MJ = {sz}ie[n] and /\/lf =
{X;, p{ }, satisfying pricing rule decomposition.

The above theorem states that, when we focus on designing IC mechanisms, restricting mechanism

within the menu mechanism class M™ (or full-menu mechanism class with pricing rule decom-

position, MFM:P) is without loss of generality. Next we will show that the IR constraints can be
resolved in a similar way.

Theorem 3.5. Following mechanism classes are equivalent:

s The class MP'T of truthful direct mechanisms M = (x,p) (IC & IR),

s The class MEMP of full-menu mechanisms MY, where M7 = {sz}ie[n] and ./\/lf =
{X;, p{ }, satisfying pricing rule decomposition and no-buy-no-pay.

4 METHODOLOGY

Inspired by Theorem 3.5, we only need to find the optimal mechanism within the mechanism class
MFEMpn “without considering truthfulness constraints. The property of full expressive power has
also been preserved.

Mechanism representation The only degrees of freedom in M M:P™ lies in the flexible pricing
rule. We begin with parameterizing the pricing rule (i.e., parameterizing the full-menu mechanism).
Denote MPFM 3 the class of Parameterized Full-Menu mechanisms, © as the set of parameters
to parameterize this class (e.g., weights and bias in a neural network) and § € © as a parameter

$Hammond (1979) derived the relation between IC mechanism and menu mechanism, while Rochet (1987)
derived the convex utility function in truthful mechanism, we argue that our characterization results are different
from theirs and in fact more general. See Appendix A for more details.

Under review as a conference paper at ICLR 2025

Parameterized Mechanism Players’ Objective: OBJ*(z";6) Players azz{locatlons
[BSCETE 00 e ——
| i Plaver Dataset | Pricing function f(£;6) | 1
— e : Representations Optimize alternately Penalize on difference
o] sample {4, e | mm e [t
® L p, Pi 0 iGroup! | b
i MoA | 1 | PICNN
Max : 5 .
el | sl el Platform’s Objective: OBJ(z,0; 2°) S [Eetiomnsaccations

Testing K__ P :

Player H ———>» Take as known constants
t~F Trained Mechanism Players’ Objective Players’ allocations :

o > Pricing function £(t;0°) OBJ*(z;6%) z* : Optimization variables
: Mechanism variables

Figure 1: The overview of our algorithm. In the training process, we first sample a sufficiently large
data set from the given player type distribution. Our characterization demonstrates the pricing func-
tion f to be convex, therefore a representation of convex function is chosen to express f. We train the
mechanism by alternately optimizing the platform and players’ objective function, while gradually
increasing the penalty of difference between the two allocation matrices to reach platform-player
consensus (which represents the full mechanism) and the convergence of parameter optimization.
In the testing step, we fix the near-optimal mechanism parameters 8* and test the sampled players
utilities as the final result.

instance. Specifically, the pricing rule is parameterized as follows,
pi(@it_i;0) =ci(z;) + fi(zit-i;0)

By pricing rule decomposition, we know that an optimal f;(x;;t_;;0) should be convex on x;
within ME M7 therefore, we also restrict fi(x;;t_;; 6) to be convex within MPFM

To do this, we need an expressive convex representation of convex function class. There are many
such options for this goal. We implement maximum-of affine functions (MoA, Balézs et al. (2015)),
log-sum-exp functions (LSE, Kim & Kim (2022)), Partial Input Convex Neural Networks (PICNN,
Amos et al. (2017)), Group Max neural networks (GroupMax, Warin (2023)). See more details in
Appendix G.2.

Notice that no-buy-no-pay property requires that f;(0;¢_;;6) < 0. To resolve this requirement, we
hard-code this constraint within M”F M A general way is to replace f;(x;;t_;;6) with

fi(zist_s;0) = fi(mit—i0) — f:(0;t_530),

where the second term in RHS represents a normalization constant. We can easily verify that

fi(O; t_;;60) = 0. Other hard-coding approaches for specific models are represented in appendix
Appendix G.2.

Learning-based algorithm We leave the derivations of our algorithm to Appendix E. Figure 1
briefly present the procedure of our algorithm (both training and inference).

Real-time inference After learning the mechanism 6*, the ultimate goal for this mechanism
is to operate effectively on an unseen type profile . To achieve this, we can directly com-
pute the utility-maximizing allocations for each player ¢ by optimizing her utility: =] €
argmax,, ¢y, Ui (€:; pi(x:;t—;0%); t;), and charge payment p;(x;;t_;; 0*) for player i.

S JUSTIFICATION OF PFM-NET

In this section, we justify the advantages of PFM-Net both theoretically and empirically.

Truthfulness. The truthfulness of MM is a direct corollary of Theorem 3.5. as MPFM C
MFM,pn'

Under review as a conference paper at ICLR 2025

Universal approximation properties. We show the universal approximation property of MM

in this part. We leave the formal definition of universal approximators to Appendix B.2.

Kim & Kim (2022) studied the universal approximator properties of parameterized MoA functions
for approximating convex functions. A straightforward argument shows that even we restricting
f(0) <0, the universal approximation property remains valid:

Proposition 5.1. The mechanism class MT¥M is a universal approximator for the mechanism class

MEMPrif the pricing functions are represented by MoA, LSE, GroupMax, or GroupLSE.

However, what truly concerns us is not the convex pricing function itself, but the expected utility
of the platform. Next, we demonstrate that if the full-menu mechanism class M is a universal ap-
proximator for another full-menu mechanism class M under the L., norm, then the expected utility
retains the universal approximation property as well. We begin with some technical definitions.

Definition 5.2 (Non-degenerate distribution). Let X be a full-dimensional subspace of R?. We say
that D is a non-degenerate distribution over X, if for any subset Xy C X, we have Pr,.plz €
Xo] > 0 indicates that p(Xp) > 0, where 4(-) is Lebesgue measure.

Definition 5.3 (Maximum expected utility). Let M be a mechanism class represented by convex
function p(x;t) € M, T and X are compact subset of Euclidean spaces R?, t ~ D be some non-
degenerate distribution over T, and vg(; t), A > 0 are the valuation and the quasi-linear parameter
of the platform. We define the maximal expected utility within class M, MEU(M), as follows,
MEU(M) = sup, Einp [vo(a(t);1) + A - p(z(t); t)] (D
wp7§—>X

subject to the constraints:

x(t) € argmax(x,t) — p(x;t), VteT
reX

The formal statement is follows:

Theorem 5.4. Assume that M* is a universal approximator of M under following technical con-
ditions,

1. vo(x;t) is continuous on X and T (thus continuous consistently).
2. The pricing function p(x,t) is €1-strongly convex on x for some €1 > 0, when p € M.

Then, MEU(M*') = MEU(M).

Theorem 5.4 indicates that using convex representations such as MoA, LSE, GroupMax, and Grou-
pLSE does not result in any loss of expected utility of platform, since the objective of mechanism
design problem is a specific form of Equation (1). Although we assume the strong convexity of the
optimal pricing rule p(«;; t_;), we note that this is only a technical condition, which is not strong
because ;1 can be chosen so small that strong convex function can be arbitrary close to any convex
function in bounded domain. We believe that the theorem also holds even if this condition is moved.

Efficiency in expressive power In this section, we examine whether a reasonable number of pa-
rameters can approximate a wide range of full-menu mechanisms with a small error. It is clear that
the entire class of convex functions can not be fully approximated well by polynomial number of
parameters and suffer from curse of dimensionality inevitably with smoothness prior only (Bengio
et al., 2005).

Thus, we shift to an alternative solution concept. We argue that our method could practically ex-
hibit greater expressive power compared to existing approaches. We compare our approaches to
discretization-based methods (e.g., Wang et al. (2024b)) and AMA-based methods (e.g., Curry et al.
(2023)).

COMPARISON WITH DISCRETIZATION-BASED METHODS It is widely believed that realistic high-
dimensional problems often exhibit favorable structures that can be effectively captured using sub-
exponential numbers of parameters. One promising approach is to leverage network structures,
and neural networks are commonly regarded as an ideal tool for approximating high-dimensional
functions.

Under review as a conference paper at ICLR 2025

Our methods utilize the PICNN and GroupMax network architectures to approximate the pric-
ing function. However, it remains unclear how to effectively combine network architectures with
discretization-based approaches.” Without the flexibility of network architectures, discretization-
based approaches are particularly susceptible to the curse of dimensionality (Bellman, 1966).

COMPARISON WITH AMA-BASED METHODS An AMA mechanism is determined by positive
weights w = (wy,...,wy,) € R of players as well as a shift function \(x) on allocations. The
formal definition of how AMA mechanism would work in our model is leaved to Appendix B.3. We
have following comparison:

Proposition 5.5. Consider an AMA mechanism M*MA with positive weights wy, . .., w, and a
shift function \(x). Assume more that an oracle O4M4 of AMA mechanism exists that can run the
mechanism MAMA under input t. Formally, OAMA receives MAMA (or equivalently, w and \)
and t as inputs, and output the resulting allocation x and payment p.

Given any AMA mechanism MAMA we can explicitly construct a full-menu mechanism M* with
pricing functions {p{ (i5t—3)}icin), that receives type profile t, outputs the full menu p; : X; —
R,i € [n], and is equivalent to MAMA,

Additionally, querying {p;(x;)}ic[n) at some point x € X needs polynomial-time computation and
O(n) black-box queries of the oracle OAMA,

Proposition 5.5 states that, our framework can efficiently simulate AMA mechanisms.

In the reverse direction, it is well-known that the AMA mechanism class lacks full expressive power
(Carbajal et al., 2013). Given that PFM-Net exhibits full expressive power, there must exist an
instance of PFM-Net that cannot be expressed by an AMA mechanism.

6 EXPERIMENTS

In this section, we conduct empirical experiments that evaluate the effectiveness of PFM-Net. The
pricing functions are parameterized by MoA , PICNN (Amos et al., 2017) and GroupMax (Warin,
2023).

6.1 BASELINES METHODS

We present the manually defined baselines and learning-based baselines we compared in this part.
The manually defined baselines include,

1. VCG (Vickrey, 1961): The most classical mechanism with strong versatility.

2. Item-wise Myerson: Item-wise Myerson is a auction baseline used in Diitting et al. (2019),
that sells the m items independently and optimally to the players.

3. Bundle-OPT: this mechanism bundles all items together at a specific price when selling items
to buyers. The price is parameterized, and the optimal price is selected for each setting by
one-dimensional grid search. This mechanism is particularly effective when there is only one
player in the game. This baseline is also used in Curry et al. (2023).

The learning-based baselines include:

1. Lottery-AMA (Curry et al., 2023): Lottery-AMA is an AMA-based approach that sets bidder
weights, along with the discretization of the allocation menu and shift values, as learnable
parameters. We also made appropriate extensions to fit it into our actual experimental setting.

2. UM-GemNet: An extension of GemNet (Wang et al., 2024b) that can fit our generalized mech-
anism design setting. GemNet is a menu-based approach that discretes the menu for each bid-
der, which is computed by a fully-connected neural network taking others’ types as input. '

° Although GemNet incorporates a network, we emphasize that their network is solely used to output a set
of allocation points to form the menu. The menu itself inherently discretizes the allocation space.

1%We point out that in original implementation of GemNet, there is an integer-programming based transfor-
mation after the training of GemNet, which is used to transform GemNet such that it’s menu compatible. We
do not incorporate this transformation in our implementations of both UM-GemNet and PFM-Net.

Under review as a conference paper at ICLR 2025

Table 1: The experimental results of selling multiple goods to one buyer. The distribution ¢ ~
U([0,1)™). S, represents the experiments of selling m goods. The values represent the expected
utility of the seller, with the maximum value on bold.

Methods & Settings Sa S3 S5 S1o0 Sis S20
PICNN-1 0.5472 0.8695 1.5740 3.4527 5.4444 7.5291
GroupMax-1 0.5476 0.8751 1.5746 3.4568 5.4567 7.5784
GroupMax-3 0.5468 0.8705 1.5774 3.4838 5.5525 7.6225
UM-GemNet 0.5442 0.8726 1.5560 3.4411 5.4284 17.5167
Lottery-AMA 0.5402 0.7952 1.0932 - - -
Item-wise Myerson ~ 0.5000 0.7500 1.2500 2.5000 3.7500 5.0000
Bundle-OPT 0.5441 0.8599 1.5557 3.4491 54543 7.5290
OPT 0.5491 0.8757 - - - -

Note that all of these baseline models were originally implemented in the context of auction set-
tings. In our experiments, we made slight modifications to the implementations of lottery-AMA and
GemNet to ensure their applicability to scenarios that extend beyond traditional auction problems.

6.2 EXPERIMENTAL SETTINGS
6.2.1 SELLING TO SINGLE BUYER

In this experiment, we consider the problem of selling m items to a single buyer. The bidder’s type
distribution is ¢i.i.d.U ([0, 1]™). The buyer has an allocation constraint of X = [0, 1]™, meaning
that the quantity of each item purchased cannot exceed 1. Both the buyer and the platform have
no intrinsic valuation for the allocations, i.e., vo(€) = ¢;(x) = 0,Vx. Therefore, the platform’s
expected utility is equivalent to its expected revenue. We denote .S, as the problem involving m
items in this setting.

We implement MoA, 1-layer PICNN, 1-layer GroupMax, and 3-layer GroupMax architectures
within PFM-Net. As baselines, we also implement UM-GemNet and lottery-AMA as learning-
based baselines, alongside two simple baselines: item-wise Myerson and Bundle-OPT. We compare
the performance of these methods for m = 2, 3, 5, 10, 15, 20.

The expected revenues for different settings are presented in Table 1, with the optimal value for each
setting highlighted in bold. Note that optimal values (OPT) have only been found in special cases,
namely for two or three items by Manelli & Vincent (2006). The OPT for two items is computed
analytically, while for three items it is computed numerically with random 1, 000, 000 samples.

The MoA-based PFM-Net and lottery-AMA do not perform well for larger-scale problems, so some
results are omitted.

6.2.2 SOCIAL PLANNER OF A MARKET

In this experiment, we consider the problem faced by a social planner aiming to maximize social
welfare by designing a market. Let there be n agents and m goods in a market. The agents’ types
are generated independently and identically distributed (i.i.d.) from either a uniform distribution
U([—1,1]) or a normal distribution AV(0,1). We denote Pl as the problem with n agents and m
goods, where the types are i.i.d. from distribution F. Specifically, /' = U represents the uniform
distribution, and F' = N represents the normal distribution.

We set the allocation constraint for each agent as X; = [—1, 1]™, indicating that each agent can either
buy or sell the goods in the market, with a maximum amount of 1. We incorporate a regularity term
to describe diminishing marginal utility, i.e., each agent has a regularization term ¢;(z) = — |||/
for allocation . Specifically, the utility of agent ¢ is given by:

1
wi(®s; tis pi) = vi(xs3 ti) — pi, vi(t;) = (x4, ;) — §H-’BZH2

Under review as a conference paper at ICLR 2025

Table 2: The experimental results of social planners in a market. P,I;j m represents a society with
n agents, m items and types are i.i.d. distributed from distribution F'. F' = N represents normal
distribution with mean 0 and standard deviation 1, and F' = U represents uniform distribution in
[-1,1]. Allocation constraints of players are X; = [—1,1]™. The utility of the platform is the
social welfare, minus a penalty capturing the disobey of market clearance. The values represent the

expected utility of the social planner, with the maximum value on bold.

Methods & Settings Pf{ 5 Pfir, Pg 5 P2]Y5 Pg 5 ng:%

GroupMax-1 0.3853 1.1399 1.0165 2.6812 1.6512 4.2900
UM-GemNet 0.3261 09013 0.8949 24251 1.4367 3.7948
VCG 0 0.8603 0 1.7188 0 2.5846
OPT 04167 1.2348 1.1101 - - -

The social planner is oriented towards maximizing social welfare and therefore has no direct utility
over monetary exchanges. The market must also satisfy the market clearance condition, which
requires that the total quantity of each item remains unchanged before and after the mechanism. In
our model, we assume that the social planner incurs a quadratic cost for any violation of the market
clearance condition. Specifically, the utility of the social planner is:

n m n 2
uo(; t;p) = Y wvilwist;) — %Z (Z xij)
i=1 j=1 \i=1
1

where the term 5 (2?:1 Tij)2 represents the platform’s effort cost when the total surplus or demand

of item j is Y .| @;;.
We compare the performance of 1-layer GroupMax, GemNet, and VCG in settings with 5 items and
1, 2, or 3 players, under both uniform and normal distribution assumptions. The expected utilities

for the different settings are presented in Table 2, with the optimal value for each setting highlighted
in bold.

6.3 EXPERIMENTAL ANALYSIS

Selling to single buyer We find that the performance of all methods exceeds the strong baseline of
Bundle-OPT when m < 5, except for lottery-AMA. This is not surprising, as Bundle-OPT involves
only a single parameter, making it an easy baseline to learn. In the case of m = 2, these methods
also nearly approach the optimal mechanism. However, when m > 5, we observe that UM-GemNet
performs very similarly to Bundle-OPT. In comparison, the 3-layer GroupMax significantly out-
performs both UM-GemNet and Bundle-OPT, suggesting that the GroupMax network learns some
nontrivial components beyond the simple mechanism of selling the full bundle at a fixed price,
whereas UM-GemNet does not. These findings support our conjecture that UM-GemNet, as well
as other discretization-based methods, are vulnerable to problems of moderate size. More in-depth
analysis of the “non-trivial components” in the learned pricing rule is provided in Appendix G.3.

Social planner of a market The performance of GroupMax exceeds that of GemNet and VCG
across all settings. We derive the optimal solution (OPT) in cases where the analytical optimal
solution exists. Additionally, we find that the value with n > 2 players is greater than n times the
value with a single player, except in the case of VCG. This observation is due to the insight that if
one player wants to buy an item (i.e., ¢ > 0), and another player is willing to sell it (i.e., ¢ < 0),
they can reach an agreement that enhances social welfare. Specifically, in all scenarios, the value
obtained by PFM-Net with n players exceeds n times the optimal value achieved with a single player.
In a demonstration of the pricing rule of GroupMax in Appendix G.3, we randomly selected three
type profiles and examined the learned pricing rule for player 1. We observed that the pricing rule
significantly changes with the types of other players, indicating that PFM-Net successfully learns a
conditional pricing rule based on the other players’ types.'!

"' A more detailed analysis of both experiments is provided in Appendix G.3.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Albert, Vincent Conitzer, and Peter Stone. Automated design of robust mechanisms. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5
(4-5):185-196, 1993.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International confer-
ence on machine learning, pp. 146-155. PMLR, 2017.

Gabor Baldzs, Andrds Gyorgy, and Csaba Szepesvari. Near-optimal max-affine estimators for con-
vex regression. In Artificial Intelligence and Statistics, pp. 56—64. PMLR, 2015.

Maria-Florina F Balcan, Tuomas Sandholm, and Ellen Vitercik. Sample complexity of automated
mechanism design. Advances in Neural Information Processing Systems, 29, 2016.

Richard Bellman. Dynamic programming. science, 153(3731):34-37, 1966.

Yoshua Bengio, Olivier Delalleau, and Nicolas Roux. The curse of highly variable functions for
local kernel machines. Advances in neural information processing systems, 18, 2005.

Michael Benisch, Norman M Sadeh, and Tuomas Sandholm. Methodology for designing reasonably
expressive mechanisms with application to ad auctions. In IJCAI, pp. 46-52, 2009.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France, Au-
gust 22-27, 2010 Keynote, Invited and Contributed Papers, pp. 177-186. Springer, 2010.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Tilman Borgers, Daniel Kridhmer, and Roland Strausz. An Introduction to the Theory of Mechanism
Design. Oxford University Press, 07 2015. ISBN 9780199734023.

Giuseppe C Calafiore, Stephane Gaubert, and Corrado Possieri. Log-sum-exp neural networks and
posynomial models for convex and log-log-convex data. IEEE transactions on neural networks
and learning systems, 31(3):827-838, 2019.

Juan Carlos Carbajal, Andrew McLennan, and Rabee Tourky. Truthful implementation and prefer-
ence aggregation in restricted domains. Journal of Economic Theory, 148(3):1074-1101, 2013.

Michael Curry, Tuomas Sandholm, and John Dickerson. Differentiable economics for randomized
affine maximizer auctions. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, pp. 2633-2641, 2023.

Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos. Strong duality for a multiple-
good monopolist. In Proceedings of the Sixteenth ACM Conference on Economics and Computa-
tion, pp. 449-450, 2015.

Zhijian Duan, Jingwu Tang, Yutong Yin, Zhe Feng, Xiang Yan, Manzil Zaheer, and Xiaotie Deng.
A context-integrated transformer-based neural network for auction design. In International Con-
ference on Machine Learning, pp. 5609-5626. PMLR, 2022.

Zhijian Duan, Haoran Sun, Yurong Chen, and Xiaotie Deng. A scalable neural network for dsic
affine maximizer auction design. Advances in Neural Information Processing Systems, 36, 2024a.

Zhijian Duan, Haoran Sun, Yichong Xia, Siqiang Wang, Zhilin Zhang, Chuan Yu, Jian Xu,
Bo Zheng, and Xiaotie Deng. Scalable virtual valuations combinatorial auction design by combin-
ing zeroth-order and first-order optimization method. arXiv preprint arXiv:2402.11904, 2024b.

Paul Diitting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa Ravindranath.
Optimal auctions through deep learning. In International Conference on Machine Learning, pp.
1706-1715. PMLR, 2019.

11

Under review as a conference paper at ICLR 2025

Paul Diitting, Zhe Feng, Harikrishna Narasimhan, David C Parkes, and Sai Srivatsa Ravindranath.
Optimal auctions through deep learning: Advances in differentiable economics. Journal of the
ACM, 71(1):1-53, 2024.

Yiannis Giannakopoulos and Elias Koutsoupias. Duality and optimality of auctions for uniform
distributions. In Proceedings of the fifteenth ACM conference on Economics and computation,
pp. 259-276, 2014.

Noah Golowich, Harikrishna Narasimhan, and David C. Parkes. Deep learning for multi-facility
location mechanism design. IICAT’18. AAAI Press, 2018. ISBN 9780999241127.

Mingyu Guo, Hideaki Hata, and Ali Babar. Optimizing affine maximizer auctions via linear pro-
gramming: an application to revenue maximizing mechanism design for zero-day exploits mar-
kets. In PRIMA 2017: Principles and Practice of Multi-Agent Systems: 20th International Con-
ference, Nice, France, October 30—November 3, 2017, Proceedings 20, pp. 280-292. Springer,
2017.

Peter] Hammond. Straightforward individual incentive compatibility in large economies. The
Review of Economic Studies, 46(2):263-282, 1979.

Dmitry Ivanov, Iskander Safiulin, Igor Filippov, and Ksenia Balabaeva. Optimal-er auctions through
attention. Advances in Neural Information Processing Systems, 35:34734-34747, 2022.

Jinrae Kim and Youdan Kim. Parameterized convex universal approximators for decision-making
problems. [EEE Transactions on Neural Networks and Learning Systems, 35(2):2448-2459,
2022.

Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear program-
ming. Journal of the ACM (JACM), 58(6):1-24, 2011.

Ron Lavi, Ahuva Mu’Alem, and Noam Nisan. Towards a characterization of truthful combinatorial
auctions. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceed-
ings., pp- 574-583. IEEE, 2003.

Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Two simplified proofs for roberts’ theorem. Social
Choice and Welfare, 32(3):407-423, 2009.

Alexander Likhodedov and Tuomas Sandholm. Approximating revenue-maximizing combinatorial
auctions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 5, pp. 267—
274, 2005.

Alejandro M Manelli and Daniel R Vincent. Bundling as an optimal selling mechanism for a
multiple-good monopolist. Journal of Economic Theory, 127(1):1-35, 2006.

Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. Econometrica, 70(2):
583-601, 2002.

Roger B Myerson. Incentive compatibility and the bargaining problem. Econometrica: journal of
the Econometric Society, pp. 61-73, 1979.

Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58-73, 1981.

Harikrishna Narasimhan, Shivani Brinda Agarwal, and David C Parkes. Automated mechanism
design without money via machine learning. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence, 2016.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic game theory. 2007.
URL https://api.semanticscholar.org/CorpusID:239540.

Gregory Pavlov. Optimal mechanism for selling two goods. The BE Journal of Theoretical Eco-
nomics, 11(1):0000102202193517041664, 2011.

Kevin Roberts. The characterization of implementable choice rules. Aggregation and revelation of
preferences, 12(2):321-348, 1979.

12

https://api.semanticscholar.org/CorpusID:239540

Under review as a conference paper at ICLR 2025

Jean-Charles Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear
context. Journal of mathematical Economics, 16(2):191-200, 1987.

Tuomas Sandholm. Automated mechanism design: A new application area for search algorithms.
In International Conference on Principles and Practice of Constraint Programming, pp. 19-36.
Springer, 2003.

Tuomas Sandholm and Anton Likhodedov. Automated design of revenue-maximizing combinatorial
auctions. Operations Research, 63(5):1000-1025, 2015.

Weiran Shen, Pingzhong Tang, and Song Zuo. Automated mechanism design via neural networks.
arXiv preprint arXiv:1805.03382, 2018.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of
finance, 16(1):8-37, 1961.

Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business Media,
2010.

Tonghan Wang, Paul Duetting, Dmitry Ivanov, Inbal Talgam-Cohen, and David C Parkes. Deep
contract design via discontinuous networks. Advances in Neural Information Processing Systems,
36, 2024a.

Tonghan Wang, Yanchen Jiang, and David C Parkes. Gemnet: Menu-based, strategy-proof multi-
bidder auctions through deep learning. arXiv preprint arXiv:2406.07428, 2024b.

Xavier Warin. The groupmax neural network approximation of convex functions. IEEE Transactions
on Neural Networks and Learning Systems, 2023.

Andrew Chi-Chih Yao. Dominant-strategy versus bayesian multi-item auctions: Maximum revenue
determination and comparison. In Proceedings of the 2017 ACM Conference on Economics and
Computation, pp. 3-20, 2017.

Hanrui Zhang and Vincent Conitzer. Automated dynamic mechanism design. Advances in Neural
Information Processing Systems, 34:27785-27797, 2021.

13

Under review as a conference paper at ICLR 2025

APPENDIX

A Further Related Works

B

Supplementary Definitions

B.1 MenuMechanisms
B.2 Universal Approximators

B.3 Affine Maximizer Mechanisms

Supplementary Lemma

C.1 A Simplified Version of Envelope Theorem

C.2 Truthfulnessof AMM

Omitted Proofs

D.1 Proof of Theorem3.4
D.2 Proof of Theorem3.5
D.3 Proof of Proposition 5.1
D4 Proof of Theorem 54
D.5 Proof of Proposition5.5.

Details about Learning Algorithms

E.1 Derivation of Learning Algorithms

E.2 Pseudo-codes

Discussions

F.1 Discussions on Model Expressiveness . . .

F.2 Discussions on Mechanism Properties . . .

More Experimental Details

G.1 More Details on Baselines
G.2 Implementation Details

G.3 More Analysis about the Results

14

15

16
16
16
17

17
17
18

19
19
21
22
22
23

25
25
26

27
27
28

Under review as a conference paper at ICLR 2025

A FURTHER RELATED WORKS

Automated Mechanism Design Automated mechanism design was first proposed by Sandholm
(2003), with various applications including ad auctions (Benisch et al., 2009), combinatorial auc-
tions (Sandholm & Likhodedov, 2015), and mechanism design without money (Narasimhan et al.,
2016). Balcan et al. (2016) explored the sample complexity of automated mechanism design, while
Albert et al. (2017) investigated the robust automated mechanism design problem. Additionally,
Zhang & Conitzer (2021) studied dynamic automated mechanism design.

Differential Economics for Mechanism Design Differential economics aims at parameterizing
differential functions to represent the optimal economic solutions, and find the optimal solution from
gradient, which can be seen as a sub-field of automated mechanism design (Wang et al., 2024a).
Shen et al. (2018) uses the neural network to assist the mechanism design problem. Diitting et al.
(2019) begins with optimal auction design by auction. Ivanov et al. (2022) incorporates transformer
architecture into auction design. Curry et al. (2023) proposes lottery-AMA, which discrete the
platform’s allocation space and optimize an AMA mechanism. Duan et al. (2024b) later studies the
optimal combinatorial auction design within VVCG mechanism class. The most related works with
us should be Wang et al. (2024b), which studies the menu mechanism, with the menu depends on
other players types. The menu discretes each player’s allocation space.

Characterization of Truthful Mechanisms Hammond (1979) showed that menu-based mech-
anism is a sufficient condition for IC, and IC mechanism is in some sense a menu mechanism.
Rochet (1987) showed that an truthful mechanism will induce the utility of player convex on her
type. Though similar to our results, we argue that our characterization in Section 3 is different
from theirs and more general. Compared with Hammond (1979), they mainly focus on the discrete
menu mechanism, and their results has no convexity characterization. Our characterization show the
nature of full-menu and convexity, making the truthful mechanisms and convex full-menu mecha-
nisms “equivalent class” rather than sufficient and necessary condition, making the characterizations
of Hammond (1979) more concise. Compared with Rochet (1987), they studies the convex utility
of truthful mechanism, having no connection on menu mechanism. Our results state that, if we
transform a truthful mechanism into menu mechanism, the pricing rule of the menu is also convex.
These two results have different perspectives, which are complementary to each other.

There are also a plenty of works characterized the relation between truthful mechanisms and VCG-
based mechanisms. Roberts (1979) shows that if the valuation spaces are full domain and player
number is no less than 3, then any implementable mechanism must be an AMA. A simplified proof
is later provided by Lavi et al. (2009). In a general setting of combinatorial auctions, Lavi et al.
(2003) proves that any implementable mechanism should be “almost” AMA. All of their works
studies deterministic mechanism. To the best of our knowledge, there are no full characterization
about the general class of randomized mechanism.

Characterization of Optimal Auctions Since the seminal work of Myerson (1981) for optimally
selling one item to independent buyers, there are only special cases that optimal solution has been
found over the past 40 years (Manelli & Vincent, 2006; Pavlov, 2011; Giannakopoulos & Kout-
soupias, 2014; Daskalakis et al., 2015; Yao, 2017) Among these, Manelli & Vincent (2006) studies
bundling mechanism, showing the condition such that bundling mechanism is optimal among all
truthful mechanisms and deriving the optimal mechanism in selling 2 or 3 uniform items. Gi-
annakopoulos & Koutsoupias (2014) generalizes the results to up o 6 uniform items, though the
optimal mechanism is not analytically given. Yao (2017) studies the optimal mechanism when there
are two items with discrete distributions.

Representing Convex Functions Max-of-Affine (MoA) functions and Log-sum-exp (LSE) func-
tions are well-known functions that are convex by design. Calafiore et al. (2019) demonstrates that
both the maximum-of-affine and log-sum-exp functions are universal approximators for the class
of convex functions under the L., norm. Later, Kim & Kim (2022) further shows that conditioned
maximum-of-affine and conditioned log-sum-exp are also universal approximators for the class of
continuous functions that exhibit convexity over partial inputs. Additionally, Warin (2023) proves

15

Under review as a conference paper at ICLR 2025

that GroupMax can represent the maximum-of-affine function'?, making both GroupMax and Grou-
pLSE universal approximators as well. Partial input convex neural network (PICNN) has been
proposed by Amos et al. (2017) to represent neural-network based convex functions. However, to
the best of our knowledge, there are no established results confirming whether ICNN or PICNN is a
universal approximator.

B SUPPLEMENTARY DEFINITIONS

B.1 MENU MECHANISMS

We introduce the menu mechanism with one player first, then extend menu mechanisms to multiple
players.

Definition B.1 (Menu mechanism with one player).

Consider a mechanism design problem with one player, with type space 7 and feasible allocation
set X. A menu M™ = (X, p™) specifies a subset of feasible allocation,) # X™ C X, and a
pricing rule, p™ : X™ — R. p™(2™) means that the player will pay p™(z™) to get the bundle
™ € X™. Note that the menu does not depend on the hidden type of the player. The mechanism
works as follows.

Step 1. The platform presents the menu M™ to the player.

Step 2. After seeing the menu M"™, the utility-maximizing player with type ¢ € 7 choose the bun-
dle z*(t) that maximizes her quasi-linear utility and report z*(¢) to the platform. Specifi-
cally,

2" (t) € argmaxu(x™,p™(x™); 1))
I’VYLGX"YL

Step 3. The player and the platform reach a deal of x*(¢). The player need to pay p"* (z*(t)) to the
platform.

Definition B.2 (Menu mechanism with multiple players).

Consider a mechanism design problem with n players, with type space 7 = X;¢[,,7; and feasible
allocation set X' = X ;[X;. The mechanism works as follows:

Step 1. The mechanism requests the type profile of players ¢.
Step 2. For each player ¢, the mechanism construct a menu M for player ¢, given ¢_;.

Step 3. For each player ¢, the mechanism runs the one-player mechanism with menu M]" and
player <.

Specifically, the mechanism defines n conditional menu functions X" : 7_; — P(X;) as well as n
conditional pricing functions p* : X/ (t_;) x T7_; — R. The player ¢ will choose

7
x;(ti;t—;) € argmax u(a]",pit(x*;t_;);t;)
T EXM ()

B.2 UNIVERSAL APPROXIMATORS

We show the definition of universal approximators in this section.

Definition B.3 (L., norms between full-menu mechanisms). Let M{™ and MI™™ be two full-
menu mechanisms. We denote the L., norm as follows (note that full-menu mechanisms are only

It is straightforward to see that GroupLSE can represent the log-sum-exp (LSE) function, although Warin
(2023) does not provide explicit results.

16

Under review as a conference paper at ICLR 2025

represented by pricing functions),

Lo (MM MFM) =max sup sup |pi(zit—;) — pa(xist_y)|
i€n] t_,eT_; w;€X;

=max sup sup |fi(x;t_;) — fo(xist_;)]
i€[n] t_,eT_; ®€X;

, where py (z;;t_;), po(xi; t_;) are pricing functions of MI™M MI™M respectively.

Definition B.4 (Universal Approximator). We call full-menu mechanism class M a universal ap-
proximator of another full-menu mechanism class M. If following two conditions hold,

1. My C M.

2. Given any M € M and any € > 0, we can find a full-menu mechanism M; € M such
that [, (M1, M) < e.

B.3 AFFINE MAXIMIZER MECHANISMS

We extend the mechanism of affine maximizer auction to fit our model in this section. We call such
mechanism as Affine Maximizer Mechanism (AMM).

Definition B.5 (Affine Maximizer Mechanism). Denote wg € R, w1, ..., w, € R’} as the weights of
players and A : & — R as the offset of the allocation. Define the affine social welfare of allocation
x and type profile £ as follows,

ASW (z; t) Z wivi (45 ;) + M)
[n]
ASW_,(z;t_ Zw]vj xj;t;) + ANx)
J#i
The affine maximizer mechanism works as follows,
Step 1. The mechanism requests the players’ type profile £.
Step 2. Compute x* € arg max,cy ASW(x;t). Take * as true allocation.

Step 3. For each player 4, find £} such that maxzexy ASW(x;t},t_;) get minimum. Denote the

N g '} 7
corresponding allocation as ~*. Take ™" as virtual allocatlon without the participation

of player :.
Step 4. For each player i, compute p; = - [ASW(z %8} ,t ;) — ASW_;(z*;t)].

Step 5. For each player ¢, allocate & to player ¢ and charge her p; money.

C SUPPLEMENTARY LEMMA

C.1 A SIMPLIFIED VERSION OF ENVELOPE THEOREM

Lemma C.1 (Envelope Theorem (Milgrom & Segal, 2002)). Let f(x,y) be a differential function
and y*(x) = arg max, f(z,y). Denote g(x) = f(z,y*(z)) then,

dg af
%(x) 9z (z, y)|y =y*(x)

Proof of Lemma C.1. We know that by integration of nested functions,

dg of ., of . \Oy"
%(HS) = %(w» Y (z))+8fy(1’ ¥ (2)) o (z)

By argmax property of y*(z), we know that

= (0,7 (2) = 0

17

Under review as a conference paper at ICLR 2025

which follows the original equality.

O

This lemma tells that, when we want to compute %(m), we do not need to compute %(m) We
only need to compute y* (z).

C.2 TRUTHFULNESS OF AMM

Lemma C.2 (Truthfulness of AMM). The extended affine maximizer mechanism that fits our model
is truthful.

Proof.

Proof of IR Let the notation of @;(¢) and w;(t;;t;;t_;) follows the definitions
in Appendix D.1. Besides, denote x*(t) € argmax,cy ASW(x;t), ti(t_;) €
argming . maxgex ASW(x;t;;t_;) and p;(t) as p; in above definitions (note that

x ' = x*(t;,t_;) in above definitions), respectively. By little computation we derive that,

a;(t) =vi(z; (t);t:) — pi(t)
=v;(z; (t); ti) — L [ASW (" (¢; (8—i); t—i); t; (t—i), t—i) — ASW_;(x"(¢);)]

Wy

— L ASW (@ (8);8) — ASW (@ (£ (b-0)i t-o)s (o),)]

%

Recall that ¢} (t_;) minimizes ASW (x*(-;t_;); -, t_;) by definition. Notice that the first term and
second term are the realizations of this function with input ¢; and ¢} (¢_;), respectively. Therefore
@;(t) > 0, which guarantees IR.

Proof of IC 'We compute the u,(st tg):
wi(bis b, t—i) =vi(a” (8, t-3); ¢) pilti t—i)
=vi(2”(t;,t-i); ti)
—% [ASW (2™ (¢ (t—

b

iitoi)it; (t=i) t;) — ASW_;(@" (¢, t—3); ti, £)]

Notice that ASW (a* (¢ (t—;);t—;); t5 (t—;), t—;) does not rely on ¢}, therefore, we abbreviate this
term as h;(t_;). Also notice that ASW_ i(x; ;, t_;) does not rely on t;, then,

ui(ti b, i) :”i(“"*(t;at—i);ti)Jr—ASW (@™ (], t—q); it i) — hi(t—i)
w; w;
[q! 1 oy ha(t_s)
—vi(x (8 t_) b)) + — ASW_i(a™ (B, t_y)iti) —
’U’L(w (t“t z)7tl)+wi SW 1(:13 (tz’t z)atut z) w3
hi(t—z)
A st t;) —
L ASW@ (bt iy t) — — -
1 (.
<S—ASW(z" (8, t—i); ti, t—i) — hift—i)
Ww; w;
=vi(@ (8,)i ti) + iASW—i(fC*(ti,t—i); ti,t_;) — halt—i)
w; w;

=u;(titi, t—;)
The inequality is because x*(t) is the maximizer of ASW (x; t).

Above all, we complete the proof.

18

Under review as a conference paper at ICLR 2025

D OMITTED PROOFS

D.1 PROOF OF THEOREM 3.4

Theorem 3.4. Following mechanism classes are equivalent: 3
s The class MP1C of direct mechanisms M® = (x, p) with IC property,
* The class MM of menu mechanisms M™, where M™ = {M"};c(n and M7 = {X™, pI"},

s The class MEMP of full-menu mechanisms M/, where M? = {M{}ie[n] and M! =
{X;, p{ }, satisfying pricing rule decomposition.

Proof. We only need to prove that, for the mechanism in one class, there is a mechanism in another
class such that they are equivalent.

(3) = (2) Trivial, since a full-menu mechanism satisfying pricing rule decomposition must be a
menu mechanism.

(2) = (1) Let M™ € MM be a menu mechanism, we tend to show that we can transform M™
into an equivalent direct mechanism M? such that M? is IC.

We fix player i, player ¢’s type t; and other players’ types t_;. Then we need to show that player ¢
has no incentive to deviate from ¢; in M?.

Denote p(x;;t_;) as the pricing rule of M™ to player i. If player ¢ reports ¢;, she will get the
allocation

x] € argmaxv(x;;t;) — p(a;;t_;)
x; €EX;

and pay the price p; = p(x};t_;). Otherwise, if player i reports t;, denote that she gets the
allocation «; and pays the price p, = p(x};t_;). We have

ui(x];pyiti) = vi(x]; t) — py > vixg; ts) — pi = wi@); pi; t)
The inequality follows from that & maximizes v(x;;t;) — p(x;; t_;). Notice that LHS is the utility
of truth-telling and RHS is the utility of deviation. Thus, the IC of M follows directly.

(1) = (3) Let M? = (z¢,p?) be a mechanism that satisfies IC, we need to construct a full-
menu mechanism M/ with pricing rule {p] (2i;t_;)}ic(n) satisfying pricing rule decomposition,
and show that M7 is equivalent with M<.

We introduce two notations here. Denote u;(t}; t) is the utility of player i in M? when the reported
type profile is ¢ and her true type is £/. Denote 1;(t) = wu;(t;; t) is the utility of player i in M when
she reports the true type.

We first shed light on how we construct pzf (x;;t_;). Notice that the IC condition of M9 shows that,

(ti, @ (E5t-0)) + cs(@f (K t-3)) — pl(thit—) < (b, wf (tist—s)) + co(amf (L t—s)) — pi(tist_)
3)

If we take =% (t;t_;) and p¢(t}; t;) as free variables x; and p;, then Equation (3) becomes,

pi > —U;(t) + ci(x;) + (Ei, i) €]

where @;(t) = v;(xd(t); t;) — pd(t) = (t;, (ki t_;)) + ci(@d(ti;t_;)) — pd(t;;t_;) is constant
w.r.t. ; and p;.

BHammond (1979) derived the relation between IC mechanism and menu mechanism, while Rochet (1987)
derived the convex utility function in truthful mechanism, we argue that our characterization results are different
from theirs and in fact more general. See Appendix A for more details.

19

Under review as a conference paper at ICLR 2025

When t; = t}, Equation (3) takes equality on two sides. We suspect that Equation (4) should also
take the equality sometimes, therefore, p; should be the minimum value such that Equation (4)
always hold.

Inspired on above, we define

pl(zist_;) = sup —ii;(£) + ci() + (ti, ;)
t;eT;
=ci(x;) + sup —u;(t) + (t;, x;)
t,eT;

&)

Next, we will show that {p/ (z;; t_;)}ic[n)-represented mechanism M/ is equivalent to (z<, p)-
represented mechanism M. To show this, we need to show following statements,

1. p{(azi; t_;) satisfies pricing rule decomposition,
2. zl(t) € argmax, ¢y, vi(®i;t;) fpif(a:i; t_;),
3. pi(t) = pl (@] () -),

where the second condition states that the allocation of M¢ equals the allocation of M/, and the
third condition states that they also charge same price to players.

PROVE THE FIRST STATEMENT Notice that

pl(mit_;) — ci(a;) = sup —U;(ti;t ;) + (ti, ;)
t,eT;

is the Fenchel conjugate of —a;(¢;;t—;) w.r.t. t;. Therefore, it’s convex by nature of Fenchel conju-
gate. (Boyd & Vandenberghe, 2004)

PROVE THE THIRD STATEMENT By definition,
pl(@ ()t) = sup pl(tit i) +vi(@l (£);t]) — vi(al (Est)5 t])
teT; (6)
>pd(t;;t_;), bylettingt, =t;
In order to prove the other side, we first observe that, by IC,
i (t) >ui(ti;th,t_;)
& vi(@] ();t:) — p(t) >vi(wd (t, t);t:) — pf (E;, 1)
By switching t; and ¢} we get,

v(@d (E,t—)its) — Pt b)) >vi(@d (b, t—)it;) — pi(ti t—;)
& vy (b,)i b)) — vi(@d (£,)5 8]) <pl(ts,t_;) — pi (], t_;)

Taking it into Equation (6), we derive,

pl(xd(t);t_;) = sup Pl ;) +vi(xd(8); t)) — vi (@ (Est_i)i L))
t.eT;

< sup pi(thit_y) + pltit—i) — pl(t;,t_;) (7
t.eT;
=pf(ti,t_;)

Together with Equation (6) and Equation (7), we finish this part.

20

Under review as a conference paper at ICLR 2025

PROVE THE SECOND STATEMENT We have

vi(®d(8);t:) — pl (@ (t); ;)
o (); 1) — pe) = ()

We need to prove v;(x;; t;) — p{(:ci; t_;) < u;(t) forall x; € X;.
Notice that

LHS :vz(w“tz) - cz(:cz) - sup ﬂl(t;,t,Z) + <t;, CE,L>
t eT;
Svi(a:i;ti) — CZ‘(CL'Z‘) — ’l]l(t) — <ti,£lfi>, let t; =1t

=u;(t)

Hence we complete the proof.

D.2 PROOF OF THEOREM 3.5

Theorem 3.5. Following mechanism classes are equivalent:

s The class MP'T of truthful direct mechanisms M = (x,p) (IC & IR),

* The class MTMP™ of full-menu mechanisms MY, where M1 = {M{}ie[n] and ./\/lf =
{X, p{ }, satisfying pricing rule decomposition and no-buy-no-pay.

Proof. The line of this proof follows similar with those in Theorem 3.4. We also let the notations
follow those in proof of Theorem 3.4

(2) = (1) Let M be a full-menu mechanism satisfying pricing rule decomposition and no-buy-
no-pay and M be corresponding direct mechanism. By Theorem 3.4 we know that M? is IC. We
then show that M is also IR.

Notice that player i’s utility in M? is
. ..
Inax vi(xiiti) — pj (wist—i)
>0i(0;t;) — pf (03¢-,)

=—p/(0;t_)) >0

(1) = (2) Let M be a truthful direct mechanism and pzf (x;;t_;) be the pricing rule constructed

in Appendix D.1. By Theorem 3.4 we already know that p{ -represented mechanism satisfies pricing
rule decomposition. For no-buy-no-pay, we have

pl(0;t_;) = sup —ii;(t) + ¢;(0) + (¢;,0)
t,cT;

= sup —u;(t) <0
t,cT;

where the inequality comes from IR, which says that truthful telling gives non-negative utility, which
is exactly @, (t).

Above all, we complete the proof.

21

Under review as a conference paper at ICLR 2025

D.3 PROOF OF PROPOSITION 5.1

Proposition 5.1. The mechanism class MM is a universal approximator for the mechanism class
MEMprif the pricing functions are represented by MoA, LSE, GroupMax, or GroupLSE.

Proof.

MPEM - AMFMpry Whether functions are parameterized by MoA, LSE, GroupMax or
GroupMSE, the function is convex on x; and have no constraints on ¢_; by nature of the structure of
them. Besides, the no-buy-no-pay constraint satisfies by design. Therefore, MM C MEMpn,

€ > 0 approximation: = Notice that GroupMax can express MoA, GroupLSE can express LSE
and LSE can arbitrarily approximate MoA. We only need to consider the class of MoA.

Kim & Kim (2022) shows that parameterized max-of-affine functions are universal approximators
of functions those are continuous, convex on some input & and have no constraints on other input y.

Fix any € > 0. Let p;(@;; t—;) be such a convex function that p;(0;¢_;) < 0 and p;(x;;t_;;6) be a
parameterized function such that I (p;, pi(+; 3 0) < 5.

We construct another function ¢; (x5t 5 0) = p;(xs;t—_;0)—5. Since p;(x;;t_;; 0) is arealization
of PMA and ¢; has only constant difference with p;, thus g; is also a realization of PMA.

We have loo(pi, ¢i(+;50)) < loo(Pi(556),6i(5530)) + loo(pi,pi(530)) < 5+ 5 = € and
qi(0;t_4;0) = pi(0;t_4;0) — 5 < pi(0;t_;) + 5 — 5 = pi(0;¢_;) < 0, that completes the
proof.

O

D.4 PROOF OF THEOREM 5.4

Theorem 5.4. Assume that M* is a universal approximator of M under following technical con-
ditions,

1. vo(z;t) is continuous on X and T (thus continuous consistently).

2. The pricing function p(x,t) is €1-strongly convex on x for some €1 > 0, when p € M.
Then, MEU(M!) = MEU(M).

Proof. We assume A = 1 without loss of generality. We denote u(p) the objective function of
p € M in Equation (1). We only need to prove that for any € > 0 and any p € M, thereis p; € M
such that u(p1) > u(p) — . To do this, we first derive a lemma demonstrating the “continuity”
property of z(t) over [, of p(x,t).

Lemma D.1. Let py(x,t), p2(x,t) be two pricing functions such that lo(p1,p2) < € and py is &1-
convex on x, denote =7 (t) = arg max ¢ y (z,t)—p1(z,t) and x5(t) = arg max, c v (z,t) —pa2(z, t),

then, we have that
* * 8
[21(t) — 23] <24/ —
€1

proof of Lemma D.1. Fix some t € 7T, by strong concavity we have that for all x € X such that
|25 (t) — z||2 > & with § = 2, /=, we have that py (z,t) — p1(«(£)) > 2. Then,

p2(z,t) — pa(a1(t))
=pa(2,t) = pi(2,t) + pi(z, 1) = pr(21(1)) + pr(21(2)) = pa(27(F))
6152

>—2 —_
€+ 5

>0

22

Under review as a conference paper at ICLR 2025

It shows that such x cannot be the maximum point of ps(x,t). Therefore, we must have ||z5(t) —
ri(t)]2 <0 =2, / = which completes the proof. O

Now we continue the original proof. We also need an observation that, by optimality of 1 (¢),

(x1(t),t) — pr(x1(t),t) > (w2(t),t) — pr(22(t),t)
p1(x2(t);t) > pr(w1(t),t) + (w2(t) — 21(2), 1)

By consistent continuity of vg(x;t), we know that there exists 61 > 0 such that ||x; — z2|| < &3
indicates that vo(x1,t) — vo(w2,t) < 5. Denote d2 = min{dy, ;5 }, where T' = max;c7 [|t]|2. We

let 63 = %er > 0 such that as long as [(p1,p2) < 5 holds and p; is £;-strong convex, we have
|z2(t) — 21(t)|| < 02, Take 6 = min{§, 03}, while o (p1,p2) < J holds, we have that

Pa(@s(t),) Zpi(2(t), 1) — <
>pu (@1 (£);) + (w2(t) — 210,) - S
>pu (a1 (£);) = Tllea(t) — o1 ()] — =
>pi(en(t):t) - -]
-+ because Lo (pr,p2) < 8 and then [lz(t) — 21 (D] < 02 <
=pi(1(1):1) — 5.

Also note that ||zo(t) — 21(t)||2 < 02 < 61, thus vo(z1(t),t) — vo(22(t),t) < §5. Summing up the
arguments above, we have that

vo(z2(t),t) + p2(w2(t),t) > vo(z1(t),t) + p1(z1(t), 1) — €.

This concludes the proof.

D.5 PROOF OF PROPOSITION 5.5

Proposition 5.5. Consider an AMA mechanism MAMA with positive weights w1, . .., wy, and a
shift function \(x). Assume more that an oracle OM4 of AMA mechanism exists that can run the
mechanism MAMA under input t. Formally, OAMA receives MAMA (or equivalently, w and \)
and t as inputs, and output the resulting allocation x and payment p.

Given any AMA mechanism N AMA oo can explicitly construct a full-menu mechanism M* with
pricing functions {p{ (i35t _3)}icin), that receives type profile t, outputs the full menu p; : X; —
R, i € [n], and is equivalent to MAMA,

Additionally, querying {p;(x;)};c[n) at some point x € X needs polynomial-time computation and
O(n) black-box queries of the oracle OAM4,

We have extended the AMA mechanism to our model and show that extended AMA is truthful in
Appendix B and Appendix C.

23

Under review as a conference paper at ICLR 2025

Proof of Proposition 5.5. Denote pf as the pricing rule of the full menu. We construct plf as follows
given x; and t_;,
tr(t_;) € argmin max ASW(x;t;;t_;)
t,eT TEX

" (t_;) €argmax ASW(x; t; (t_;),1_;)
zeX

z" " (@i, t_;) €argmax ASW(w;, @_;;t) - - - notice that the optimal z_; do not depend on ¢;
x_;EX

=argmax ASW_,(x;, x_;;t_;) + vi(xs; L)
xr_;EX

=argmax ASW_;(x;, x_;;t_;)
rx_;eX

1 .
pl(@ist o) = [ASW(@ ™ (b-0)i] (t-2), 8-0) = ASW _i(s, @'} (s, t0)s)|

Proof of equivalence to AMA Next we show that such mechanism is equivalent to AMA. We
begin with the utility of player ¢ with type t; buying x;:

wi(zi;t) =vi(xs;t;) — P{(iBz‘;Li)
(@i ts) - [ASW(z—* 15,8) — ASW (@i, 2" (:cht,i);t,i)}
-

K3

=ASW(z;, 2" (2, t_;);t) — M
<ASW(z*(t);t) — W

The inequality follows from that x* is the maximizer. When player ¢ choose to buy 7 (t), we know
that,

x* (t) = a7 (xh (),)

—1 K2

because x* ,(t) makes ASW(z(t), x_;; t) get its maximum w.r.z. _;. Then, the utility of player 4
hi (t

equals to ASW (x*(t);t) —) It means that utility-maximizing players will definitely choose
a*(t). The equivalence of prlce is obvious based on this, thus we complete the proof of equivalence.

O(n) queries of 04 Notice that the oracle 044 is a black box and we can only have access
to the output allocation and price.

Now we focus on computing the price p! (a;;t_;). The first term is ASW (z~*(_;); £ (t_;), t_,).
Since this term has no relation with ¢; or x;, thus it can be easily derived from AMA. Actually, by
nature of AMA (in Step 4 in Definition B.5), we know that

ASW (™" (t_;);tr (t_s),t ;) = w; - piMA(t) + ASW_; (M A(2); 1)

AMA AMA OAJWA

where x and p is the AMA allocation and payment rule, thus can be achieve from

A more tricky one is to compute the second term ASW _;(a;, ®" " (x;,t_;);t_;). We construct
another society with n — 1 players, except player i, and let)\Z(i) = Az, x_;). Then
@ (x;,t_;) is the allocation in the AMA mechanism with weights w_; and shift \(z_;).
We can call OAMA with (w_;, A\, t_;) to get the output of & (ax;,t_;), and then computing
ASW_(z, 2" (i, t—;); ;).

Above all, computing the price in given = needs n + 1 = O(n) query of O4MA, The other

computation lies in computing affine social welfare, which can be directed computed in polynomial
time.

O

24

Under review as a conference paper at ICLR 2025

E DETAILS ABOUT LEARNING ALGORITHMS

E.1 DERIVATION OF LEARNING ALGORITHMS

In this part, we derive the learning procedure to this problem.

To begin with, we present the optimization problem as follows,

max Et~rluo(z*(t;0), p(z*(t;0); ¢;0);)]
o6
x; (tist—i;0),i€[n] 8)
st. @l (t;;t_;;0) € arg maxu; (@, pi(xi;t_450); ;) YVt € T,Vi € [n]
x; €EX;

The algorithm control the pricing rule (represented by 6) as well as the simulated players’ utility-
maximizing behaviors x; (-;t_;; 0) for all i. x*(t; 0) is short for {x] (t;;t_; 0) }ic[n) and p(x; t; 0)
is short for {p;(i;t—_s;0)}icn)

The first step is to sample B size of i.i.d. samples from distribution 7. '* We denote t* as the k’th

sample, T2 = {t*}1<r<p as the set of samples and U (T ?) as the uniform distribution on these
samples. We then optimize the experience expected utility:

max Eynui(rm)luo(z” (¢;0), p(x” (¢;0); £, 0);)]
@ (tit—s;0),i€[n] (9)
stz (ti;t_;;0) € argmaxu, (@, pi(xi;t_i;0);t;) vt € T2,Vi € [n]
T; EX;

Since there are only finite values of ¢ in 72, we use {¥},¢(p) to represent } (t¥;¢* ; §). Then,
the problem becomes,

B
max Z ,P A 9)§tk)]
€
{z*€X}ierp k=1 (10)
st xF € argmaxu;(x;, pi(xi; th 5 0);tF) Vk € [B],Vi € [n]
z, €EX;

Notice that the constraint we need to tackle is function maximizer constraint, to resolve this con-
straint, the second step is to utilize the method of envelope theorem (Milgrom & Segal, 2002).

To show how envelope theorem works, we first rewrite the maximizer constraint into equality con-
straint as follows,

wi (2%, ps (25 87 1 0): 7)) = max w;(x;, pi(xi; th;0); tF) Vk € [B],Vi € [n]

T EX;

We denote z*(6) as the maximizer of the right-hand side (RHS). To address any violation of this
equality, we introduce a ReLU penalty function, with the penalty intensity controlled by a hyper-
parameter A > 0. Consequently, the problem formulation becomes:

max OBJ(0, {z*}; \) BZ uo(z", p(x*; ¥ 0);t%)]
{&"€X} e (m

A BZZReLU(ul(*(0), pi (" (0); t’il;a);t?)—ui(wf,pz(m t’il;e);t?)>

k=1 1i=1
1D

'“This step can be done because we assume an oracle that can sample arbitrary size i.i.d. samples.

25

Under review as a conference paper at ICLR 2025

As is commonly done in learning-based algorithms (Amari, 1993; Bottou, 2010), we only need to
compute the first-order derivatives with respect to § and {x*} to optimize OBJ (6, {x*}). While the
derivative With respect to «* is straightforward, the derivative with respect to 6 is more challenging
because x¥* () depends on . The most significant challenge is that the function :ck* (0) is unknown;

k*
even if we can obtain =¥*(6) for a specific # through optimization, computing 39 (0) seems to be
infeasible.

However, according to the envelope theorem (Milgrom & Segal, 2002), when computing

Qs (2 (0), ps (x*(0); t* ;;0); £F), we can treat z¥* () as a constant. In other words,

8ui
00

ou;
00

(a5 (0), pi(a} ™ (0); 85 0):87) =

—i

(@5, pi(@f™; 85 55 0); 1) | e b o)

For completeness, an insightful proof of a simplified version of the envelope theorem is provided in
Appendix C.

Building on this, it suffices to obtain a good estimate of z¥*(6) in this algorithm.

To achieve this, the third step is to define ¥* as an approximation of z**(6), which we can opti-
mize through the optimization procedure as follows.

B n
max OBJ*(= IZZ x; apl k* tlizie)?ti‘c)]

{=F*€X}ierm P

For a specific instance of (6, {z*}cp), {#"* }re(p)). if the two optimization problems achieve
their optima simultaneously (when we consider the optimization problem w.r.t. some variables, fix
the other variables constant), then 6 is guaranteed to be the optimal mechanism representation in
equation Equation (11). Moreover, if * = x*, then @ is the optimal mechanism representation in
original problem Equation (9).

Building on this, we can see that the problem is analogous to finding the equilibrium of a multiple-
agents Stackelberg game (Von Stackelberg, 2010). In this game, the principle first chooses @, rep-
resenting the platform’s penalized expected utility. After seeing 6, agents side will selects x* to
optimize OBJ*(a*; 6), which corresponds to the players’ expected utility. The principle’s utility is
then designated by OBJ(6, {x*})

In our algorithm, we optimize these two objective functions concurrently. A simple illustration of
our algorithm has been provided in Figure 1 in the main body.

After the training process, we left and «* behind, only denote 6* as the learned mechanism
representation.
E.2 PSEUDO-CODES

In this section, we present the pseudo-codes of our training and inference procedure.

26

—

22
23
24

B I Y N

Under review as a conference paper at ICLR 2025

Algorithm 1: Training procedure

Input: number of players and items (n, m), the oracle for i.i.d. samples O

Output: mechanism parameters 6

Define hyper-parameters: sample size B, batch size By, mechanism iteration 7j, platform
allocation iteration 77, player allocation iteration 75, epoch T’

Sample B i.i.d. samples t!, ..., t? from distribution F with oracle O

Initialize mechanism parameters 6, platform allocation & = {x¥}1<1<p 1<;<n, player
allocation &* = {@*}1 << B 1<i<n. penalty intensity A

fort=1,....,T do
Optimizing platform’s objective:
forty =1,...,Ty do
Randomly sample By batch of data on the sample points {(t*, z* z**)}1cp
Fix «, *, compute OBJ(x, 0; *), using B, samples of data
Optimize € through gradient of OBJ(x, 8; =*) for one iteration
end
forty =1,...,77 do
Fix 6, x*, compute OBJ(x, §; =*) on all samples
Optimize x through gradient of OBJ(x, 6; *) for one iteration
end
Optimizing player’s objective:
fort, =1,...,75 do
Fix 6, compute OBJ*(x*;) on all samples
Optimize * through gradient of OBJ*(x*; 6) for one iteration
end
increase A moderately
end

return mechanism parameters 6.

Algorithm 2: Inference procedure

Input: mechanism 6, a type profile of players ¢
Output: the allocation € X" and price p € R™ on the type profile
Define hyper-parameters: the iteration time 7" for optimizing allocation
Initialize allocation . fort = 1, ..., T do
Optimizing players’ utility:
Compute the players’ utilities over &, OBJ(x; 6)
Optimize x through gradient of OBJ(x; @) for one iteration
end
compute players’ payments: p; = p(x;;t_;;0), 4 € [n] return players’ allocations x, players’
payments p

F DISCUSSIONS

F.1 DISCUSSIONS ON MODEL EXPRESSIVENESS

One deficiency of the model is that, the model expressiveness is limited since we assume X =
X ie[n]Xi, but it is not always the case. As an example, in the traditional auction model, the auc-
tioneers’ allocation space is X = A,,, assuming there is n — 1 bidders, since items can not be
over-allocated. However, A,, can not be written as Cartesian product x ;je,,;X;. We call such con-

straint as platform’s hard allocation constraint.

Our argument is following: such hard constraint can be model into the platform’s valuation. As
long as X is convex (this is satisfied in auction problem), we can rewrite the platform’s valuation as

27

Under review as a conference paper at ICLR 2025

follows,

. v(x;t) ifxeX
UO(m;t){oéo) ifo ¢ X

We can verify that such valuation g (a; t) is still convex. Although such model does not capture the
allocation constraint directly, we know that an optimal mechanism will never choose the allocation
x ¢ X. Therefore, as long as we achieve the optimal mechanism in this model, we immediately
achieve the optimal mechanism of the original problem with platform’s hard constraint X’

12)

It naturally leads another question is that, such vy is not continuous thus hard to optimize. Our next
argument is that, we can make a continuous approximation to 9y (x; t), which makes the optimiza-
tion easier. Specifically, we let

- vo(x;) ifxeX

it) = 13
Oo(®;) {vo(proj(m,X);t)—M~proj(ac,X) ifed X (13)
As long as vg is L-Lipschitz (this is again satisfied in auction problem), choose M > L will make
vg concave, continuous and have full domain X ;¢ X;. As long as M is large enough, the optimal
mechanism in Equation (13) can be arbitrary close to the optimal mechanism in Equation (12),
therefore approximate the optimal mechanism of original problem.

However, it’s not known whether the optimal mechanism of Equation (13) equals the optimal mech-
anism of Equation (12) in general, for some constant of M. If this statement is true, we believe that
such generalized model with flexible platform valuations can be seen as an equivalent model when
platform has hard allocation constraint. The only partial results are that, the statement is true for the
auction setting, if there is only 1 bidder or only 1 item.

F.2 DISCUSSIONS ON MECHANISM PROPERTIES

We discuss the three properties we emphasized in Section 2.

* Potentially exact truthfulness. The approach should return a mechanism that meets po-
tentially exact truthfulness. Since it’s hard to verify whether a mechanism is truthful, we
often require that any mechanism that can be represented within the parameterized mech-
anism class should be potentially exact truthful. The potentially exact truthfulness means
that there is no endogenous factor that makes the mechanism untruthful, e.g., the forced and
unreasonable allocation and payment rule. Exogenous factors are acceptable. For example,
exogenous factors consist of: floating-point error in computation; irrational behaviors of
players when maximizing their utilities; the non-existence of optimal choice when utilities
without an upper bound (it can potentially appear in a poor-initialized mechanism). In a
nutshell, potentially exact truthfulness requires that players have no reason to complaint
about the untruthfulness of the mechanism structure. The regret-minimization-based mod-
els (e.g., RegretNet) do not satisfy this property, as the regret can not minimized to be zero.
(Diitting et al., 2019; Duan et al., 2022)

* Full expressive power. The optimal mechanism can be expressed or approached with
arbitrarily small error within the parameterized mechanism class. Since the agnosticism of
the optimal mechanism, we often require that any truthful mechanism can be approached
with arbitrarily small error within the parameterized mechanism class. The AMA-based
model does not satisfy this property, for bounded representative power of AMA model.
(Curry et al., 2023; Duan et al., 2024a;b)

* Efficiency in moderate-size problem. As the problem size (the number of players and
items) increases, there is only polynomial time scale-up for achieving a good-enough mech-
anism in practice. The menu-based approaches (Wang et al., 2024b; Curry et al., 2023;
Shen et al., 2018; Duan et al., 2024a) or programming-based approaches (Wang et al.,
2024b; Lavi & Swamy, 2011; Guo et al., 2017) need a discretization on allocation space or
type space, indicating an exponentially sample complexity in the worst case.

28

Under review as a conference paper at ICLR 2025

G MORE EXPERIMENTAL DETAILS

G.1 MORE DETAILS ON BASELINES
G.1.1 UM-GEMNET

The input of GemNet (Wang et al., 2024b) with n bidders and m items is v_; € R(r=xm We
generalize this network’s structure to n = 1 by the two following approaches:

* Removing the term that penalizes item over-allocation in the original loss function.

* Using n = 2 in actual training and divide the testing result by 2. With the previously
mentioned change of loss function form, the allocations of the two bidders in the case are
independent, thus the two symmetric bidders make decisions separately. Hence we obtain
a valid result without making large changes to the original GemNet structure.

We use a menu size X = 300 if the number of items is less than 5, and KX = 1000 if otherwise.
The network has two hidden linear layers, and the activation function is Leaky-ReLU. The opti-
mizer is Adam, with learning rate 3 x 10~*. The softmax temperature when choosing among menu
allocations is initialized as 128 and doubles every 500 epochs until the maximum value of 2560.
With a minibatch of size 215, the training time is 63.55s per 1000 iterations in the 5-item setting and
355.69s per 1000 iterations, respectively (this increase of time is largely due to enlarging the menu
from 300 to 1000).

Every 100 epochs, we evaluate the network with 10% samples to check convergence. The converged
network is tested on a set of 16 x 16384 ~ 2.6 x 10° samples. We observe that the network
converges after ~ 3000 epochs, and the test performance of > 5000 (for example , 20000) epochs
are not significantly different from that of less than 5000, in a few cases lower.

G.1.2 LOTTERY-AMA

We implement the “additive valuation” and lottery allocations” auction setting of the original
method in (Curry et al., 2023). The lottery auctions candidates are generated via item-wise sigmoid
instead of item-wise softmax. We still use the two-player training setting in UM-GemNet G.1.1.
The learning rate of Adam optimizer is 0.01, and the mechanism is evaluated every 100 epochs with
the same validation size as UM-GemNet. We choose the best result among five candidates of lottery
allocation size | A| ranging from 2048 to 16384. The training time is = 15s per 1000 iterations with
|A| = 2048, m = 2. This method fails to outperform simpler baselines such as item-wise Myerson
significantly, when the item number is larger than 5, so the results are omitted.

G.2 IMPLEMENTATION DETAILS

Network architecture Every network in our experiments is designed as a fully connected net-
work. In the selling experiment, the hidden dimension of neurons d = 256 - m when the network
is 1 hidden layer and d = 32 - m when the network is no less than 2 hidden layers. Networks
in MoA as well as LSE are always chosen to be with depth 3. PICNN and GroupMax are im-
plemented with depth 1 and 3. When we move to the social planner experiment, the hidden di-
mension of neurons is decreased to d = 128 - m and the network is fixed to be 1-hidden layer.
The positive parameters in neural networks are hardcoded by a softplus function element-wisely:
softplus(x) = log(1 + exp(z)), which maps real numbers onto positive numbers. The convex ac-
tivation functions are chosen as leaky relu with negative slope 0.01, while other activation functions
are chosen as GeLU.

Training procedures We use Adam optimizer and initial learning rate 3 - 10~ to optimize all the
network parameters and fixed learning rate 3 - 10~2 to optimize all the non-network parameters. The
learning rate of networks is decayed to =~ 3 - 10~ in the training procedure, with each time divided
by 2. 3 are chosen (0.9, 0.9) for non-network parameters and (0.9, 0.999) for network parameters.

The penalty weight) in the platform’s objective is set with initial value 5, gradually increasing to the
maximum value 32. In the first 50 epochs, A increases AXA = 0.02 in each epoch, and A\ increases
to 0.03 in later epochs.

29

Under review as a conference paper at ICLR 2025

When we begin with the training procedure, we first sample K = 65536 i.i.d. data, the full proce-
dure only acts on these data. We conduct 77 = 300 epochs for cold start, since both the allocation
and the network are initialized and far from optimal. In each epoch in cold start, we train 6 16 times,
train & 8 times and train * 32 times. The penalty weight does not change in cold start. After cold
start, we continue training 75 = 1000 epochs which we call “hot start”. In each epoch in hot start,
we train 6 only 4 times, train & 8 times and train * only 32 times. When we train 6, we use a
random batch with size 2048.

We also validate the models during training. In hot training periods, we save a model per 10 epochs
in the first 200 epochs and per 20 epochs in the remaining epochs. We use 65536 sample to validate
the model and choose the model with largest platform expected utility on those samples.

Inference In the inference period, we use Adam optimizer with learning rate 0.3 and 5 =
(0.9,0.9). Since the objective function for players is concave, finding the optimal point * is a
computationally tractable problem. We optimize with the target of objective function with 500
iterations to simulate the optimal strategies of players. Although it may cause some errors, these
errors are at the magnitude ~ 1071, which is sufficiently small that they have negligible errors to
the estimation of platform’s expected utility.

When testing a model, we use 2'® = 262144 samples to achieve an estimation of expected utility
of platform, the standard deviation of estimation error is ~ 1073 times the estimation. Thus it’s
unlikely that our method outperforms baselines due to random errors.

Hard-code of f;(x;;t_;) <0 InMoA model, the no-buy-no-pay constraint can be hard-coded as
follows,

iO;t_i;G = b; t_,»;H SO
fi) = max b(t—i:0)

To hardcode b;(t_;;0) < 0, We apply a softplus function to the network output: softplus(z) =
log(1 4 exp(x)), then take the negation.

Complexity Analysis of these networks In this section, we analyze the computational complexity
of our approach. Let n and m represent the number of players and items, respectively. The number
of training epochs (300 + 1000 = 1300), iterations per epoch (approximated as 4 + 8 4 32 = 44),
and the sampling data size (65536) are fixed across different experimental settings. The number
of neurons in each network layer is set proportional to m, with constant scaling factors (32 for
more than 2-layer network and 256 for 1-layer network). We also need to compute the pricing rule
for all n players. Consequently, the total computational cost within our framework scales as nm?.
Given that the problem description size is O(nm), the training cost scales quadratically with respect
to the problem size, which demonstrates the potential to solve large-size problems. The constant
coefficient in O(nm?) approximates as 65536 x 1300 x 44 x 256 ~ 1 x 10'2.

G.3 MORE ANALYSIS ABOUT THE RESULTS

Zero utility of VCG in Table 2 We derive that when using VCG mechanism, the expected utility
of platform might be 0 in some case, which corroborate with the results in Table 2 that VCG utility
is 0.

Recall that VCG mechanism maximizes the social welfare: 3, vi(ziiti) = >, (®is ti) —

2]J@;||%. Let us take the allocation constraints behind for a short time, then the optimal x; should be

chosen at ; = t;. Therefore, VCG mechanism will result at x; = ¢;, then, the platform utility will

30

Under review as a conference paper at ICLR 2025

become

wl@itip) = 3wt — 3 30 (Y wy)?

1€[n] jE[m] i€[n]

=Sttt gl 5 (X X+ Y st

ie[n] je[m]ieln] i1#12

:_7 Z Ztn] i2,]

]E [m] i1#i2

By i.i.d. property of t;; and E[¢;;] = 0 in each setting, we immediately derive that

Ee[uo(x"““;;p")] = 0

which demonstrates that if allocation constraint always does not bind, then the platform utility of
VCG mechanism should be 0. In the case of ¢ ~ U[—1, 1] distribution, allocation constraint does
not bind indeed.

The optimal value of some results Since the utility function does not depend on p, from the above
part we know that, if we derive the optimal allocation and allocation constraints do not bind, and
additionally the allocation rule x;(t) is implementable (i.e., there is a pricing rule p;(t) that make
the mechanism truthful), then, x;(t) must be the optimal allocation that maximizes the platform
utility.

Assume the allocation constraints do not bind, by first order condition, we get that,

8u0
6331‘

=0,Vi € [n]

It means that

- xi=0 (14)

i€[n]

Add Equation (14) for all ¢, we know that

)Y =t
i€[n]

i€[n]

Taking into Equation (14), we know that the optimal allocation should satisfy:

- t. 15
i n—l—l n—i—lz (15

In uniform distribution ¢; € [—1,1]™. As long as n = 2, we also have that ; € [—1,1]™, then
allocation constraints do not bind and Equation (15) forms the optimal solution. As long asn > 3,
allocation constraints might bind in some case, and the solution become intriguing.

In the n = 1 case, the optimal solution can also be found for all distribution, only by doing a
projection on x; into [—1, 1]™. We present a numerical solution of the optimal value in the Gaussian
distribution case.

We also note that above-defined x;s are increasing in ¢;, which make the allocation rule imple-
mentable.

A demonstration of pricing rule In this part, we present some pricing rules in different settings.
The model we choose in this part is the best model among validation.

31

Under review as a conference paper at ICLR 2025

PRICING RULE FOR SELLING GOODS TO ONE BUYER Figure 2 represent the pricing rule learned
by PFM-Net with 1-layer GroupMax and 3-layer GroupMax architecture, in the setting of selling
m = 3 items to one buyer. The z-axis represents the allocation on the first item, i.e., 1 = x, while
the y-axis represents the allocation on the second and third item, i.e., x5 = x3 = y. The pricing rule
is almost piece-wise linear, thus we can approximately take the pricing rule as a bundle mechanism
that sells all items at a price ~ 1.2, sells one items at a price ~ 0.8, and sells two items at the
price ~ 1.4. Notice that if a player want to buy two items then she must want to buy all items more.
Therefore, the mechanism actually do not sell two items, only bundle all items together or sell single
item independently. Buyer will get a cheaper average price if she choose to buy the full bundle. This
result coincides with the existing finding that optimal mechanism may sometimes bundle all items
with a lower price sometimes. The pricing rule of 3-layer GroupMax has a similar regularity. The
only difference is that, the price of selling two items is very high in 3-layer GroupMax.

We need to point out that in the characterization of optimal mechanism in selling 3 items (Gian-
nakopoulos & Koutsoupias, 2014), there has small probability that the platform sells exactly 2 items
to the player. Our experiments show that if we give up selling exactly 2 items, we will not lose too
much.

Figure 3 represent the pricing rule learned by PFM-Net with 1-layer PICNN, 1-layer GroupMax
and 3-layer GroupMax architecture, in the setting of selling m = 20 items to one buyer. The z-axis
represents the allocation on the first 10 items, i.e., z; = z for 1 < ¢ < 10, while the y-axis represents
the allocation on the last 10 items, i.e., x; = y for 11 < ¢ < 20. The pricing rule is almost piece-
wise linear again. The mode in 1-layer PICNN and 1-layer GroupMax is similar: selling both full
bundle and separate bundle, but selling full bundle at a cheaper average price. 3-layer GroupMax
again refuses to sell the bundle that consists of exactly 10 items.

PRICING RULE FOR SOCIAL PLANNER OF A MARKET Figure 4 represent the pricing rule learned
by PFM-Net with 1-layer GroupMax architecture, in the setting of social planner with n = 2 players
and m = 5 items. The z-axis represents the allocation on the first 2 items, i.e., x; = x for 1 <7 < 2,
while the y-axis represents the allocation on the last 3 items, i.e., x; = y for 3 < ¢ < 5. The pricing
rule is non-concave and non-convex, since the pricing rule consists of a convex part f(x;;6,t_;)
and a regularization part ¢;(;), which is concave in this setting.

We randomly sample 3 type profiles, and generate the pricing rule given the player 2’th type. We
find that the pricing rule for some player highly depends on the other players’ types. Consider the
case when player 2’s type is high on some good, meaning that player 2 is willing the buy the good,
it will encourage player 1 to sell the good. Therefore, the social planner want to subsidize player 1
if she really sell the good. The opposite direction is vice versa.

32

Under review as a conference paper at ICLR 2025

L ricing rule for 1 players, 3 item, model name: 115, method:GroupMax layer:1

135
120
0.8
1.05
0.90
0.6
0.75
—
= g
&
0.60
0.4
0.45
02 0.30
0.15
0.0 0.00
0.0 0.2 0.4 0.6 0.8 1.0
x

(a) The demonstration of pricing rule learned by 1-layer GroupMax, in the setting of
selling m = 3 items to one buyer.

pricing rule for 1 players, 3 item, model name: 41, method:GroupMax layer:3

1.0
l 2.7
08 2.4
2.1
0.6 18
> 15
0.4 12
0.9
0.2 0.6
0.3
0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0
x

(b) The demonstration of pricing rule learned by 3-layer GroupMax, in the setting of
selling m = 3 items to one buyer.

Pricel

Figure 2: The demonstration of pricing rule learned by 1-layer GroupMax and 3-layer GroupMax,
in the setting of selling m = 3 items to one buyer.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

pricing rule for 1 players, 20 item, model name: 49, method:PICNN layer:1
1.0

0.8

0.6

IS
Pricel

0.4

0.2

(a) The demonstration of pricing rule learned by 1-layer PICNN, in the setting of selling
m = 20 items to one buyer.

gricing rule for 1 players, 20 item, model name: 59, method:GroupMax layer:1
L

(b) The demonstration of pricing rule learned by 1-layer GroupMax, in the setting of
selling m = 20 items to one buyer.

34

Under review as a conference paper at ICLR 2025

1836

1837

1838

1839 1.gritmg rule for 1 players, 20 item, model name: 23, method:GroupMax layer:3
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856 . y y
1857 X

1858

1859 (c) The demonstration of pricing rule learned by 3-layer GroupMax, in the setting of
1860 selling m = 20 items to one buyer.

1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877 >
1878

1879 -0.25
1880
1881 -0.50
1882
1883 -0.75
1884
1885 -1.00 |
-1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 100
1886 x

1887

1888 (a)

1889

Pricel

Lo

Figure 3: The demonstration of pricing rule learned by 1-layer PICNN, 1-layer GroupMax and 3-
layer GroupMax, in the setting of selling m = 20 items to one buyer.

100pril:ing rule for 2 players, 5 item, model name: 60, method:GroupMax layer:1

125

1.00

0.75

0.50

0.25

Pricel

0.00

-0.25

—0.50

-0.75

35

Under review as a conference paper at ICLR 2025

pricing rule for 2 players, 5 item, model name: 60, method:GroupMax layer:1
1.00

105
0.90
0.75
0.60

0.45

Pricel

0.30

0.15

0.00

=0.15

—0.30

-0.75 —0.50 —0.25

()

100pril:ing rule for 2 players, 5 item, model name: 60, method:GroupMax layer:1

12

Pricel

-1.00
-1.00 -0.75 —0.50 -0.25

©

Figure 4: The demonstration of pricing rule learned by 1-layer GroupMax, in the setting of social
planner with 2 players and 5 items.

36

	Introduction
	Problem Setting
	Characterization of Truthful Mechanisms
	Methodology
	Justification of PFM-Net
	Experiments
	Baselines Methods
	Experimental Settings
	Selling to Single Buyer
	Social planner of a market

	Experimental Analysis

	Further Related Works
	Supplementary Definitions
	Menu Mechanisms
	Universal Approximators
	Affine Maximizer Mechanisms

	Supplementary Lemma
	A Simplified Version of Envelope Theorem
	Truthfulness of AMM

	Omitted Proofs
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of

	Details about Learning Algorithms
	Derivation of Learning Algorithms
	Pseudo-codes

	Discussions
	Discussions on Model Expressiveness
	Discussions on Mechanism Properties

	More Experimental Details
	More Details on Baselines
	Implementation Details
	More Analysis about the Results

