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1 Introduction & Related Work

Federated Learning (FL) [1]] offers a privacy-preserving pathway for collaborative model development
across medical institutions, making it particularly valuable for medical imaging applications where
data cannot be shared [2]. However, the statistical heterogeneity of multi-center medical data, where
each institution’s images vary in acquisition protocols, patient populations, and disease prevalence,
severely challenges FL performance [3]]. Medical FL research has extensively focused on developing
improved aggregation algorithms to combat this heterogeneity, meaning two other aspects of the
pipeline, namely the initialization strategy and the model architecture, have remained an under-
explored frontier. For initialization, we know task-relevant pre-training through self-supervised
learning (SSL) is a highly-effective alternative to ImageNet (IN) pre-training [4]], even more so in
the data-scarce and costly annotation medical landscape, but the potential of SSL in the FL setting
remains largely unexplored. In terms of architectures, it is common for FL papers to present novel
aggregation methods tested on shallow/toy networks [3]], which do not mirror the deep and complex
architectures deployed in real-world applications. In this paper, we present a two-stage investigation
to fill this gap.

First, we conducted a large-scale empirical study systematically evaluating the interplay between
Architectures, Initialization strategies, and Aggregation methods (ARIAs). This study, among other
findings, conclusively demonstrated that architectural choice, particularly the use of BatchNorm (BN)
[6]], is a dominant factor in FL performance, often outweighing the benefits of advanced aggregation
algorithms. This echoes prior work which has showed BN hinders performance in heterogeneous
FL due to mismatched client-specific statistics and inconsistent parameter averaging [7} [8]. In
response, using other feature normalization methods like Group Normalization (GN) [9]] and Layer
Normalization (LN) [10] has been frequent in FL research [[L1, 1213 [14]. These alternatives slow
convergence and reduce performance compared to BN [[15, /16, [17].

Second, guided by these findings, we designed a BN-free architecture that combines weight stan-
dardization [18] with channel attention [19] to directly tackle the challenges posed by non-1ID
data. Weight standardization normalizes convolutional layer weights instead of activations, avoiding
reliance on mini-batch statistics, which is problematic in FL. Channel attention generates learnable
scaling factors for feature maps, suppressing features that are inconsistent across clients due to hetero-
geneity, and emphasizing consistent ones. By integrating channel attention with weight-standardized
models, we enhance the model’s ability to focus on shared, informative features across clients. Our
architecture, which we name ANFR (Adaptive Normalization-free Feature Recalibration), is designed
from first principles for the statistical realities of FL, providing a versatile and powerful backbone for
federated medical imaging applications.
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Table 1: Average balanced accuracy across 6 clients on Fed-ISIC. IN top-1 accuracy reported next to
model name. Models listed in decreasing measured training throughput (using AMP). Difference
from average balanced accuracy of centrally trained model in parentheses.

Initialization | Random | ImageNet Pre-Training | DINO on Skin SSL dataset

Agg. Method ‘ FedAvg FedOpt SCAFFOLD ‘ FedAvg FedOpt SCAFFOLD ‘ FedAvg FedOpt SCAFFOLD
ResNet-18 (69.76) 51.65 (] 9.8) 46.7 ( 14.7) 5245 9) 65.87 (1 4.3) 67.55(12.6) 68.66(] 1.5) | 66.57 (] 5.7) 62.36 (| 10) 66.87 (1.5.4)
NFE-ResNet-50 (80.64) | 55.93 (1 6.1)  56.25(15.8) 59.64(.2.4) | 71.88 (10.9) 68.75(.22) 71.53(10.5) | 67.83(10.7) 67.92(10.6) 70.11 (1 1.6)
ResNet-50 (80.86) 4911 (L 12) 4691 ([ 142) 4813 (L 13) |67.97(163) 66.16(.8.1) 6848(,58) | 65.16(172) 6646(.59) 6634 (] 6)
WRN-50-2 (81.6) 5053 (L8)  50.12(184) 51.03(175) |69.54(153) 67.68(172) 7034(L45) | 6556(16.9) 64.22(183) 66.66 (. 5.8)
DenseNet-121 (74.43) 49.42(1 13.3) 4595(116.8) 52.79(19.9) 67.34 (1 5.8) 68.03(]5) 68.52 (1. 4.6) | 66.28 (1 5.3) 64.94 (1 6.6) 67.38 (1 4.2)
SWIN-T (81.47) 4573 (123.2) 44.13(121.6) 45.00(122.5) | 71.19 (L 1.3)  71.81 (1 0.6) 73.13(10.7) | 72.13 (1 1.7) 71.40 (1 0.9) 73.77 (13.3)
EfficientNetV2-S (84.22) | 46.59 (| 10.8) 46.59 (1 10.8) 47.51 (19.8) | 70.00(}9.6) 71.48(}8.1) 73.18 (1 6:4) | 57.99 (| 149) 5974 (L 13.1) 64.98 (| 7.9)
ViT-B-16 (81.07) 4784(172) 4952(189) 4844 (17.8) | 6586(1 1.6) 65.18(10.9) 68.09(}3.8) | 71.06(12.9) 71.52(125)  69.49 (| 4.5)
ConvNext-S (83.61) 48.10(17.9) 49.93(16.1) 4856(175) |7508(L0.1) 7340(1.7) 7428(L08) | 7207(L3)  7357(L15)  74.56 (| 0.5)

Table 2: Average accuracy across 4 clients on OrganAMNIST with o = 0.1. IN top-1 accuracy
reported next to model name. Models listed in decreasing measured training throughput (using AMP).
Difference from the accuracy of the centrally trained model in parentheses.

Initialization | Random | ImageNet Pre-Training | DINO on Abdomen-SSL

Agg. Method | FedAvg FedOpt SCAFFOLD | FedAvg FedOpt SCAFFOLD | FedAvg FedOpt SCAFFOLD
ResNet-18 (69.76) 88.8(15.6) 9076 (13.6) 89.16(152) | 94.02(11.9) 9478 (J1.2) 9433 (11.6) | 83.54(19.8) 87.89(15.5) 8476 (18.6)
NF-ResNet-50 (80.64) 71.6 (116.3) 7884 (]9.1)  73.8(l14.1) | 94.39([1.4) 95.26(0.5) 95.2(l0.6) 84.58 (17.9)  87.93 (l4.5) 86.92 (15.5)
ResNet-50 (80.86) 8332(110.5) 86.6(17.2)  84.82(19.0) | 91.98(13.5) 9298(]2.5) 9232(13.1) | 81.33(112.9) 85.69(18.5) 8149 (|12.8)
WRN-50-2 (81.6) 84.52(19.6) 85.58(18.5) 83.82(110.3) | 90.56 (14.3) 91.71(132) 90.4(14.5) |79.98(113.7) 85.02(18.6) 77.09 (116.5)
DenseNet-121 (74.43) | 86.01 (18.6) 89.12(]5.5)  85.06(19.6) | 94.72(122) 95.1(11.9) 94.68 (123) | 8526 (192)  89.21(15.3)  84.94(]9.5)
SWIN-T (81.474) 83.03(18.6) 85.17(164) 83.16(|84) | 95.64(10.6) 9583 (J0.4) 95.83(10.4) | 83.4(I82)  864(152)  848(16.8)
EfficientNetV2-S (84.22) | 88.8 (16.2) 91.46 (13.6)  89.19(15.9) |94.0(l2.7) 94.26(]2.4) 93.46(l3.2) | 61.19(]31.6) 67.54(]25.3) 56.2(]36.6)
VIT-B-16 (81.072) 83.14(142) 8352(139) 8385(135) | 953(115) 9596(10.9) 96.01(|0.8) | 81.34(|6.8) 8376 (l44) 8199 (16.2)
ConvNext-S (83.61) 53.76 (135.4) 56.07 ({33.1) 55.34(]33.8) | 94.12({2.6) 94.92(/1.8) 94.84(]1.9) | 87.31(16.0)  89.68 (13.7) 87.64 (15.7)

2 Methodology

To quantitatively understand architectural impacts in FL, we conducted an exhaustive benchmark
evaluating 9 modern architectures, spanning convolutional networks (ResNet-18/50 [20], Wide-
ResNet-50-2 [21]], DenseNet-121[22], NF-ResNet-50[23|], EfficientNetV2-S[24], ConvNext-S[25])
and transformers (ViT-B-16[26]], SWIN-T[27]) across three initialization strategies (random weights,
IN pre-training, domain-specific SSL) and three aggregation methods (FedAvg[l1l], FedOpt[12],
SCAFFOLDJ28]])). We evaluated these ARIAs on the tasks of skin lesion classification on Fed-
ISIC2019[29] and abdominal organ classification on Organ AMNIST[30]]. For the SSL component,
our Skin-SSL pretraining dataset was created from 3 skin lesion datasets [31} 32} 33], while the
Abdomen-SSL dataset was created by extracting 20 slices around the center of each volume in 4
abdominal CT datasets[34, 35, 136], cropping around the subject, resizing to 224x224 and copying the
channel over, resulting in 21,000 whole abdomen images.

Next, guided by the ARIA findings, we developed ANFR as an architectural solution specifically
designed for FL’s statistical challenges. ANFR eliminates dependency on batch-specific statistics
through two synergistic components, Scaled Weight Standardization and Adaptive Feature Recali-
bration. 1) Scaled Weight Standardization (SWS)[23]: instead of normalizing activations, ANFR
normalizes convolutional weights themselves using carefully scaled standardization that maintains
signal propagation stability. This ensures consistent forward passes regardless of client-specific data
distributions, removing the statistical conflicts inherent in BN during federation. 2) Adaptive Feature
Recalibration: to actively combat heterogeneity and compensate for lost regularization, we integrate
channel attention mechanisms after weight-standardized layers. This enables dynamic suppression of
client-specific noisy features while amplifying universally informative patterns. We validate ANFR
on Fed-ISIC2019, FedChest (our own multi-label chest X-ray dataset with 4 clients and covariate
shift), and CIFAR-10 [37]. To benchmark ANFR, we perform focused, ablated studies against strong
baselines: BN-ResNet, GN-ResNet, SE-ResNet [[19], and NF-ResNet[23]]. All models are evaluated
under multiple aggregation methods (FedAvg, FedProx, SCAFFOLD, FedAdam).

3 Results

Finding 1: Architecture Dominates Performance. Architecture choice yielded up to 30% perfor-
mance differences while aggregation methods typically changed results by <2%. On Fed-ISIC with
ImageNet initialization, ConvNeXt-S achieved 75.08% while ResNet-50 reached only 67.97%. The
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Table 3: Performance comparison across all architectures under different global FL aggregation
methods and different datasets. Best in bold, second best underlined. ANFR consistently outperforms
the baselines, often by a wide margin.

Architecture

Dataset Method
BN-ResNet GN-ResNet SE-ResNet  NF-ResNet  ANFR (Ours)
FedAvg 66.01+0.73  65.09+0.42 65.29+1.32 72.4940.60  74.78+0.16
FedProx 66.494+0.41 66.51+1.21 66.29+0.63 71.284+2.14  75.61+0.71

Fed-ISIC2019 pljadam  65.8840.67 64604039 6518190 69.06:0.14  73.02+0.93

SCAFFOLD  65.4140.72 68.84£0.46 68.99+0.18 73.30+0.50  76.52+0.60

FedAvg 82.80+0.13  83.40+0.25 82.14£0.18 83.40+0.11  83.49+0.14
FedChest FedProx 82.14+0.10  82.044+0.08 81.50£0.26  81.26+0.58  82.14+0.10
FedAdam 83.024+0.11 82.11£0.10 82.72+0.16  83.10+0.09  83.33+0.07
SCAFFOLD  83.524+0.14 83.95£0.05 83.50+0.08 84.06+0.02  84.26:+0.10
FedAvg 91.71+£0.74  96.60+0.11 94.07£0.04  96.72+0.05  97.42+0.01
CIFAR-10 FedProx 95.03+£0.04 96.05+0.04 94.60£0.07 96.82+0.04  96.33+0.09

FedAdam 91.23+0.29 95.804+0.24 94.09£0.17  95.54+£0.10  96.93+0.06
SCAFFOLD  92.514+0.99 96.78+£0.01 94.30+0.03  96.844+0.01  97.38+0.03

implication is clear: selecting the right architecture provides much larger gains than sophisticated
aggregation algorithms.

Finding 2: ImageNet Initialization Generally Wins, But SSL Shows Promise. ImageNet con-
sistently provided best results but medical SSL. demonstrated domain-specific value: Skin-SSL
achieved 74.56% on Fed-ISIC, nearly matching ImageNet’s 75.08%. Critically, SSL enables FL for
non-standard medical images (non-RGB, varying resolutions) without introducing aliasing artifacts
from forced resizing. For transformers, pre-training proved essential: random initialization yielded
45-48% on Fed-ISIC versus 65-73% with proper initialization.

Finding 3: Normalization Layers Create FL Bottlenecks. Batch Normalization’s limitations were
stark. Normalization-Free ResNet-50 consistently outperformed standard ResNet-50: on Fed-ISIC
with random initialization, 55.93% versus 49.11% . Under heterogeneity, BN models suffered 15-
20% performance drops while NF models remained stable. This robustness stems from avoiding
client-specific statistics that become meaningless when averaged across heterogeneous distributions.

Finding 4: Model Scaling Paradox. Contrary to centralized learning intuitions, deeper/wider
models underperformed in FL. ResNet-18 beat ResNet-50 in 7/9 Fed-ISIC experiments despite
fewer parameters. Wide-ResNet-50-2 (2.7x parameters) showed minimal gains over ResNet-50.
DenseNet-121 achieved competitive performance with 68% fewer parameters than ResNet-50. This
suggests FL favors architectural efficiency over raw capacity—Ilikely because larger models are harder
to optimize under non-IID conditions.

Finding 5: Aggregation Methods Have Limited but Consistent Effects. SCAFFOLD provided
modest improvements (~1.3% on Fed-ISIC) but required 3x communication overhead. FedOpt
showed mixed results: helping heterogeneous OrganAMNIST (4+2.4%) but hurting Fed-ISIC (-0.59%),
with high sensitivity to server learning rate. Remarkably, simple FedAvg remained highly competitive,
often achieving the best results. The marginal gains from complex aggregation methods further
emphasize that architectural improvements offer more promising returns.

Finding 6: ANFR provides universal performance benefits. As see on[3] our proposed architecture
manages to consistently outperform the baselines across all datasets and aggregation methods. This
serves as clear evidence more research into architectures for FL can advance the field just as much, if
not more than, aggregation methods.

The results yielded a clear verdict: architectural selection consistently outweighed aggregation
improvements, with networks employing Batch Normalization suffering dramatic performance drops
up to 14% in balanced accuracy under heterogeneous conditions. This systematic analysis identified
BN'’s dependency on consistent batch statistics as a fundamental architectural weakness in the FL
setting, motivating our architectural redesign.
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4 Potential Negative Societal Impact

While our study provides valuable insights, there are potential negative impacts to consider. The
emphasis on performance metrics could overshadow critical considerations such as model fairness
across different patient demographics, interpretability for clinical decision-making, and robustness to
distribution shifts in real-world medical settings. Finally, while SSL pre-training shows promise for
non-ImageNet domains, the requirement to create large-scale medical SSL datasets may be infeasible
for rare diseases or under-represented populations, potentially widening healthcare disparities .
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:

Justification: Most hyper-parameters and implementation dtails had to be left out due to
space constraints.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification:

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:
Justification:

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification:

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification:

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification:
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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13.

14.

15.

16.

Answer: [NA]
Justification:
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification:
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