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1 Introduction & Related Work1

Federated Learning (FL) [1] offers a privacy-preserving pathway for collaborative model development2

across medical institutions, making it particularly valuable for medical imaging applications where3

data cannot be shared [2]. However, the statistical heterogeneity of multi-center medical data, where4

each institution’s images vary in acquisition protocols, patient populations, and disease prevalence,5

severely challenges FL performance [3]. Medical FL research has extensively focused on developing6

improved aggregation algorithms to combat this heterogeneity, meaning two other aspects of the7

pipeline, namely the initialization strategy and the model architecture, have remained an under-8

explored frontier. For initialization, we know task-relevant pre-training through self-supervised9

learning (SSL) is a highly-effective alternative to ImageNet (IN) pre-training [4], even more so in10

the data-scarce and costly annotation medical landscape, but the potential of SSL in the FL setting11

remains largely unexplored. In terms of architectures, it is common for FL papers to present novel12

aggregation methods tested on shallow/toy networks [5], which do not mirror the deep and complex13

architectures deployed in real-world applications. In this paper, we present a two-stage investigation14

to fill this gap.15

First, we conducted a large-scale empirical study systematically evaluating the interplay between16

Architectures, Initialization strategies, and Aggregation methods (ARIAs). This study, among other17

findings, conclusively demonstrated that architectural choice, particularly the use of BatchNorm (BN)18

[6], is a dominant factor in FL performance, often outweighing the benefits of advanced aggregation19

algorithms. This echoes prior work which has showed BN hinders performance in heterogeneous20

FL due to mismatched client-specific statistics and inconsistent parameter averaging [7, 8]. In21

response, using other feature normalization methods like Group Normalization (GN) [9] and Layer22

Normalization (LN) [10] has been frequent in FL research [11, 12, 13, 14]. These alternatives slow23

convergence and reduce performance compared to BN [15, 16, 17].24

Second, guided by these findings, we designed a BN-free architecture that combines weight stan-25

dardization [18] with channel attention [19] to directly tackle the challenges posed by non-IID26

data. Weight standardization normalizes convolutional layer weights instead of activations, avoiding27

reliance on mini-batch statistics, which is problematic in FL. Channel attention generates learnable28

scaling factors for feature maps, suppressing features that are inconsistent across clients due to hetero-29

geneity, and emphasizing consistent ones. By integrating channel attention with weight-standardized30

models, we enhance the model’s ability to focus on shared, informative features across clients. Our31

architecture, which we name ANFR (Adaptive Normalization-free Feature Recalibration), is designed32

from first principles for the statistical realities of FL, providing a versatile and powerful backbone for33

federated medical imaging applications.34
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Table 1: Average balanced accuracy across 6 clients on Fed-ISIC. IN top-1 accuracy reported next to
model name. Models listed in decreasing measured training throughput (using AMP). Difference
from average balanced accuracy of centrally trained model in parentheses.
Initialization Random ImageNet Pre-Training DINO on Skin SSL dataset

Agg. Method FedAvg FedOpt SCAFFOLD FedAvg FedOpt SCAFFOLD FedAvg FedOpt SCAFFOLD

ResNet-18 (69.76) 51.65 (↓ 9.8) 46.7 (↓ 14.7) 52.45 (↓ 9) 65.87 (↓ 4.3) 67.55 (↓ 2.6) 68.66 (↓ 1.5) 66.57 (↓ 5.7) 62.36 (↓ 10) 66.87 (↓ 5.4)
NF-ResNet-50 (80.64) 55.93 (↓ 6.1) 56.25 (↓ 5.8) 59.64 (↓ 2.4) 71.88 (↑ 0.9) 68.75 (↓ 2.2) 71.53 (↑ 0.5) 67.83 (↓ 0.7) 67.92 (↓ 0.6) 70.11 (↑ 1.6)
ResNet-50 (80.86) 49.11 (↓ 12) 46.91 (↓ 14.2) 48.13 (↓ 13) 67.97 (↓ 6.3) 66.16 (↓ 8.1) 68.48 (↓ 5.8) 65.16 (↓ 7.2) 66.46 (↓ 5.9) 66.34 (↓ 6)
WRN-50-2 (81.6) 50.53 (↓ 8) 50.12 (↓ 8.4) 51.03 (↓ 7.5) 69.54 (↓ 5.3) 67.68 (↓ 7.2) 70.34 (↓ 4.5) 65.56 (↓ 6.9) 64.22 (↓ 8.3) 66.66 (↓ 5.8)
DenseNet-121 (74.43) 49.42 (↓ 13.3) 45.95 (↓ 16.8) 52.79 (↓ 9.9) 67.34 (↓ 5.8) 68.03 (↓ 5) 68.52 (↓ 4.6) 66.28 (↓ 5.3) 64.94 (↓ 6.6) 67.38 (↓ 4.2)
SWIN-T (81.47) 45.73 (↑ 23.2) 44.13 (↑ 21.6) 45.00 (↑ 22.5) 71.19 (↓ 1.3) 71.81 (↓ 0.6) 73.13 (↑ 0.7) 72.13 (↑ 1.7) 71.40 (↑ 0.9) 73.77 (↑ 3.3)
EfficientNetV2-S (84.22) 46.59 (↓ 10.8) 46.59 (↓ 10.8) 47.51 (↓ 9.8) 70.00 (↓ 9.6) 71.48 (↓ 8.1) 73.18 (↓ 6.4) 57.99 (↓ 14.9) 59.74 (↓ 13.1) 64.98 (↓ 7.9)
ViT-B-16 (81.07) 47.84 (↑ 7.2) 49.52 (↑ 8.9) 48.44 (↑ 7.8) 65.86 (↑ 1.6) 65.18 (↑ 0.9) 68.09 (↓ 3.8) 71.06 (↓ 2.9) 71.52 (↓ 2.5) 69.49 (↓ 4.5)
ConvNext-S (83.61) 48.10 (↓ 7.9) 49.93 (↓ 6.1) 48.56 (↓ 7.5) 75.08 (↓ 0.1) 73.40 (↓ 1.7) 74.28 (↓ 0.8) 72.07 (↓ 3) 73.57 (↓ 1.5) 74.56 (↓ 0.5)

Table 2: Average accuracy across 4 clients on OrganAMNIST with α = 0.1. IN top-1 accuracy
reported next to model name. Models listed in decreasing measured training throughput (using AMP).
Difference from the accuracy of the centrally trained model in parentheses.
Initialization Random ImageNet Pre-Training DINO on Abdomen-SSL

Agg. Method FedAvg FedOpt SCAFFOLD FedAvg FedOpt SCAFFOLD FedAvg FedOpt SCAFFOLD

ResNet-18 (69.76) 88.8 (↓5.6) 90.76 (↓3.6) 89.16 (↓5.2) 94.02 (↓1.9) 94.78 (↓1.2) 94.33 (↓1.6) 83.54 (↓9.8) 87.89 (↓5.5) 84.76 (↓8.6)
NF-ResNet-50 (80.64) 71.6 (↓16.3) 78.84 (↓9.1) 73.8 (↓14.1) 94.39 (↓1.4) 95.26 (↓0.5) 95.2 (↓0.6) 84.58 (↓7.9) 87.93 (↓4.5) 86.92 (↓5.5)
ResNet-50 (80.86) 83.32 (↓10.5) 86.6 (↓7.2) 84.82 (↓9.0) 91.98 (↓3.5) 92.98 (↓2.5) 92.32 (↓3.1) 81.33 (↓12.9) 85.69 (↓8.5) 81.49 (↓12.8)
WRN-50-2 (81.6) 84.52 (↓9.6) 85.58 (↓8.5) 83.82 (↓10.3) 90.56 (↓4.3) 91.71 (↓3.2) 90.4 (↓4.5) 79.98 (↓13.7) 85.02 (↓8.6) 77.09 (↓16.5)
DenseNet-121 (74.43) 86.01 (↓8.6) 89.12 (↓5.5) 85.06 (↓9.6) 94.72 (↓2.2) 95.1 (↓1.9) 94.68 (↓2.3) 85.26 (↓9.2) 89.21 (↓5.3) 84.94 (↓9.5)
SWIN-T (81.474) 83.03 (↓8.6) 85.17 (↓6.4) 83.16 (↓8.4) 95.64 (↓0.6) 95.83 (↓0.4) 95.83 (↓0.4) 83.4 (↓8.2) 86.4 (↓5.2) 84.8 (↓6.8)
EfficientNetV2-S (84.22) 88.8 (↓6.2) 91.46 (↓3.6) 89.19 (↓5.9) 94.0 (↓2.7) 94.26 (↓2.4) 93.46 (↓3.2) 61.19 (↓31.6) 67.54 (↓25.3) 56.2 (↓36.6)
ViT-B-16 (81.072) 83.14 (↓4.2) 83.52 (↓3.9) 83.85 (↓3.5) 95.3 (↓1.5) 95.96 (↓0.9) 96.01 (↓0.8) 81.34 (↓6.8) 83.76 (↓4.4) 81.99 (↓6.2)
ConvNext-S (83.61) 53.76 (↓35.4) 56.07 (↓33.1) 55.34 (↓33.8) 94.12 (↓2.6) 94.92 (↓1.8) 94.84 (↓1.9) 87.31 (↓6.0) 89.68 (↓3.7) 87.64 (↓5.7)

2 Methodology35

To quantitatively understand architectural impacts in FL, we conducted an exhaustive benchmark36

evaluating 9 modern architectures, spanning convolutional networks (ResNet-18/50 [20], Wide-37

ResNet-50-2 [21], DenseNet-121[22], NF-ResNet-50[23], EfficientNetV2-S[24], ConvNext-S[25])38

and transformers (ViT-B-16[26], SWIN-T[27]) across three initialization strategies (random weights,39

IN pre-training, domain-specific SSL) and three aggregation methods (FedAvg[1], FedOpt[12],40

SCAFFOLD[28]). We evaluated these ARIAs on the tasks of skin lesion classification on Fed-41

ISIC2019[29] and abdominal organ classification on OrganAMNIST[30]. For the SSL component,42

our Skin-SSL pretraining dataset was created from 3 skin lesion datasets [31, 32, 33], while the43

Abdomen-SSL dataset was created by extracting 20 slices around the center of each volume in 444

abdominal CT datasets[34, 35, 36], cropping around the subject, resizing to 224x224 and copying the45

channel over, resulting in 21,000 whole abdomen images.46

Next, guided by the ARIA findings, we developed ANFR as an architectural solution specifically47

designed for FL’s statistical challenges. ANFR eliminates dependency on batch-specific statistics48

through two synergistic components, Scaled Weight Standardization and Adaptive Feature Recali-49

bration. 1) Scaled Weight Standardization (SWS)[23]: instead of normalizing activations, ANFR50

normalizes convolutional weights themselves using carefully scaled standardization that maintains51

signal propagation stability. This ensures consistent forward passes regardless of client-specific data52

distributions, removing the statistical conflicts inherent in BN during federation. 2) Adaptive Feature53

Recalibration: to actively combat heterogeneity and compensate for lost regularization, we integrate54

channel attention mechanisms after weight-standardized layers. This enables dynamic suppression of55

client-specific noisy features while amplifying universally informative patterns. We validate ANFR56

on Fed-ISIC2019, FedChest (our own multi-label chest X-ray dataset with 4 clients and covariate57

shift), and CIFAR-10 [37]. To benchmark ANFR, we perform focused, ablated studies against strong58

baselines: BN-ResNet, GN-ResNet, SE-ResNet [19], and NF-ResNet[23]. All models are evaluated59

under multiple aggregation methods (FedAvg, FedProx, SCAFFOLD, FedAdam).60

3 Results61

Finding 1: Architecture Dominates Performance. Architecture choice yielded up to 30% perfor-62

mance differences while aggregation methods typically changed results by <2%. On Fed-ISIC with63

ImageNet initialization, ConvNeXt-S achieved 75.08% while ResNet-50 reached only 67.97%. The64
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Table 3: Performance comparison across all architectures under different global FL aggregation
methods and different datasets. Best in bold, second best underlined. ANFR consistently outperforms
the baselines, often by a wide margin.

Dataset Method Architecture

BN-ResNet GN-ResNet SE-ResNet NF-ResNet ANFR (Ours)

Fed-ISIC2019

FedAvg 66.01±0.73 65.09±0.42 65.29±1.32 72.49±0.60 74.78±0.16
FedProx 66.49±0.41 66.51±1.21 66.29±0.63 71.28±2.14 75.61±0.71
FedAdam 65.88±0.67 64.60±0.39 65.18±1.90 69.96±0.14 73.02±0.93
SCAFFOLD 65.41±0.72 68.84±0.46 68.99±0.18 73.30±0.50 76.52±0.60

FedChest

FedAvg 82.80±0.13 83.40±0.25 82.14±0.18 83.40±0.11 83.49±0.14
FedProx 82.14±0.10 82.04±0.08 81.50±0.26 81.26±0.58 82.14±0.10
FedAdam 83.02±0.11 82.11±0.10 82.72±0.16 83.10±0.09 83.33±0.07
SCAFFOLD 83.52±0.14 83.95±0.05 83.50±0.08 84.06±0.02 84.26±0.10

CIFAR-10

FedAvg 91.71±0.74 96.60±0.11 94.07±0.04 96.72±0.05 97.42±0.01
FedProx 95.03±0.04 96.05±0.04 94.60±0.07 96.82±0.04 96.33±0.09
FedAdam 91.23±0.29 95.80±0.24 94.09±0.17 95.54±0.10 96.93±0.06
SCAFFOLD 92.51±0.99 96.78±0.01 94.30±0.03 96.84±0.01 97.38±0.03

implication is clear: selecting the right architecture provides much larger gains than sophisticated65

aggregation algorithms.66

Finding 2: ImageNet Initialization Generally Wins, But SSL Shows Promise. ImageNet con-67

sistently provided best results but medical SSL demonstrated domain-specific value: Skin-SSL68

achieved 74.56% on Fed-ISIC, nearly matching ImageNet’s 75.08%. Critically, SSL enables FL for69

non-standard medical images (non-RGB, varying resolutions) without introducing aliasing artifacts70

from forced resizing. For transformers, pre-training proved essential: random initialization yielded71

45-48% on Fed-ISIC versus 65-73% with proper initialization.72

Finding 3: Normalization Layers Create FL Bottlenecks. Batch Normalization’s limitations were73

stark. Normalization-Free ResNet-50 consistently outperformed standard ResNet-50: on Fed-ISIC74

with random initialization, 55.93% versus 49.11% . Under heterogeneity, BN models suffered 15-75

20% performance drops while NF models remained stable. This robustness stems from avoiding76

client-specific statistics that become meaningless when averaged across heterogeneous distributions.77

Finding 4: Model Scaling Paradox. Contrary to centralized learning intuitions, deeper/wider78

models underperformed in FL. ResNet-18 beat ResNet-50 in 7/9 Fed-ISIC experiments despite79

fewer parameters. Wide-ResNet-50-2 (2.7× parameters) showed minimal gains over ResNet-50.80

DenseNet-121 achieved competitive performance with 68% fewer parameters than ResNet-50. This81

suggests FL favors architectural efficiency over raw capacity—likely because larger models are harder82

to optimize under non-IID conditions.83

Finding 5: Aggregation Methods Have Limited but Consistent Effects. SCAFFOLD provided84

modest improvements (∼1.3% on Fed-ISIC) but required 3× communication overhead. FedOpt85

showed mixed results: helping heterogeneous OrganAMNIST (+2.4%) but hurting Fed-ISIC (-0.59%),86

with high sensitivity to server learning rate. Remarkably, simple FedAvg remained highly competitive,87

often achieving the best results. The marginal gains from complex aggregation methods further88

emphasize that architectural improvements offer more promising returns.89

Finding 6: ANFR provides universal performance benefits. As see on 3, our proposed architecture90

manages to consistently outperform the baselines across all datasets and aggregation methods. This91

serves as clear evidence more research into architectures for FL can advance the field just as much, if92

not more than, aggregation methods.93

The results yielded a clear verdict: architectural selection consistently outweighed aggregation94

improvements, with networks employing Batch Normalization suffering dramatic performance drops95

up to 14% in balanced accuracy under heterogeneous conditions. This systematic analysis identified96

BN’s dependency on consistent batch statistics as a fundamental architectural weakness in the FL97

setting, motivating our architectural redesign.98
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4 Potential Negative Societal Impact99

While our study provides valuable insights, there are potential negative impacts to consider. The100

emphasis on performance metrics could overshadow critical considerations such as model fairness101

across different patient demographics, interpretability for clinical decision-making, and robustness to102

distribution shifts in real-world medical settings. Finally, while SSL pre-training shows promise for103

non-ImageNet domains, the requirement to create large-scale medical SSL datasets may be infeasible104

for rare diseases or under-represented populations, potentially widening healthcare disparities .105
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Question: For each theoretical result, does the paper provide the full set of assumptions and236

a complete (and correct) proof?237

Answer: [NA]238

Justification: No theoretical results were presented.239

4. Experimental result reproducibility240
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-241

perimental results of the paper to the extent that it affects the main claims and/or conclusions242

of the paper (regardless of whether the code and data are provided or not)?243

Answer: [No]244

Justification: Most hyper-parameters and implementation dtails had to be left out due to245

space constraints.246

5. Open access to data and code247

Question: Does the paper provide open access to the data and code, with sufficient instruc-248

tions to faithfully reproduce the main experimental results, as described in supplemental249

material?250

Answer: [No]251

Justification:252

6. Experimental setting/details253

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-254

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the255

results?256

Answer: [No]257

Justification:258

7. Experiment statistical significance259

Question: Does the paper report error bars suitably and correctly defined or other appropriate260

information about the statistical significance of the experiments?261

Answer: [Yes]262

Justification:263

8. Experiments compute resources264

Question: For each experiment, does the paper provide sufficient information on the com-265

puter resources (type of compute workers, memory, time of execution) needed to reproduce266

the experiments?267

Answer: [No]268

Justification:269

9. Code of ethics270

Question: Does the research conducted in the paper conform, in every respect, with the271

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?272

Answer: [Yes]273

Justification:274

Guidelines:275

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.276

• If the authors answer No, they should explain the special circumstances that require a277

deviation from the Code of Ethics.278

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-279

eration due to laws or regulations in their jurisdiction).280

10. Broader impacts281

Question: Does the paper discuss both potential positive societal impacts and negative282

societal impacts of the work performed?283

Answer: [Yes]284

Justification:285

11. Safeguards286

Question: Does the paper describe safeguards that have been put in place for responsible287

release of data or models that have a high risk for misuse (e.g., pretrained language models,288

image generators, or scraped datasets)?289
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Answer: [NA]290

Justification:291

12. Licenses for existing assets292

Question: Are the creators or original owners of assets (e.g., code, data, models), used in293

the paper, properly credited and are the license and terms of use explicitly mentioned and294

properly respected?295

Answer: [Yes]296

Justification:297

13. New assets298

Question: Are new assets introduced in the paper well documented and is the documentation299

provided alongside the assets?300

Answer: [NA]301

Justification:302

14. Crowdsourcing and research with human subjects303

Question: For crowdsourcing experiments and research with human subjects, does the paper304

include the full text of instructions given to participants and screenshots, if applicable, as305

well as details about compensation (if any)?306

Answer: [NA]307

Justification:308

15. Institutional review board (IRB) approvals or equivalent for research with human309

subjects310

Question: Does the paper describe potential risks incurred by study participants, whether311

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)312

approvals (or an equivalent approval/review based on the requirements of your country or313

institution) were obtained?314

Answer: [NA]315

Justification:316

16. Declaration of LLM usage317

Question: Does the paper describe the usage of LLMs if it is an important, original, or318

non-standard component of the core methods in this research? Note that if the LLM is used319

only for writing, editing, or formatting purposes and does not impact the core methodology,320

scientific rigorousness, or originality of the research, declaration is not required.321

Answer: [NA]322

Justification:323
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