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ABSTRACT

Embeddings, numerical representations of data like text and images, are funda-
mental to machine learning. However, the continuous emergence of new em-
bedding models poses a challenge: migrating to these potentially superior mod-
els often requires computationally expensive re-embedding of entire datasets even
without guarantees of improvement. This paper introduces Embedding-Converter,
a unified framework and a novel paradigm for efficiently converting embeddings
between different models, eliminating the need for costly re-embedding. In real-
world scenarios, the proposed method yields O(100) times faster and cheaper
computation of embeddings with new models. Our experiments demonstrate that
Embedding-Converter not only facilitates seamless transitions to new models but
can even surpass the source model’s performance, approaching that of the target
model. This enables efficient evaluation of new embedding models and promotes
wider adoption by reducing the overhead associated with model switching. More-
over, Embedding-Converter addresses latency constraints by enabling the use of
smaller models for online tasks while leveraging larger models for offline process-
ing. By encouraging users to release converters alongside new embedding models,
Embedding-Converter fosters a more dynamic and user-friendly paradigm for em-
bedding model development and deployment.

1 INTRODUCTION

Embeddings are the cornerstone of many machine learning systems. They transform complex data,
such as text and images, into a format readily processed by computers: numerical vectors. These
vectorized representations serve as the foundation for a wide range of applications, including search,
clustering, anomaly detection, classification, and information retrieval (Wang et al., 2016; Huang
et al., 2020; Zhai et al., 2019).

However, the landscape of embedding models is becoming increasingly complex. A multitude of
models are available, each with its own strengths and weaknesses (Wang et al., 2022; Li et al.,
2023; Lee et al., 2024a). This diversity, while offering flexibility, presents a significant challenge:
determining the optimal embedding model for a specific task often necessitates a computationally
expensive and time-consuming evaluation process, especially when dealing with massive datasets.
Consider the scenario of selecting the best embedding model for a billion text passages. Evaluating
each candidate model requires generating embeddings for all billion passages, a daunting compu-
tational undertaking (see Appendix. B for detailed computational complexities). This challenge is
further exacerbated by the continuous emergence of new and improved models, forcing a repetitive
cycle of re-embedding with no guarantee of substantial performance gains. Furthermore, the lack
of compatibility between different embedding models, even within the same family (e.g., Google’s
Gecko (Lee et al., 2024b) or OpenAI’s embeddings (Neelakantan et al., 2022)), poses a significant
obstacle. This incompatibility necessitates a complete recomputation of embeddings whenever a
user wishes to explore a new model or upgrade to a newer version, hindering efficient experimenta-
tion and adoption of state-of-the-art techniques. This laborious process presents a major roadblock
to leveraging the latest advancements in embedding models for real-world applications.

To address the aforementioned challenges, this paper introduces Embedding-Converter, a unified
framework designed to facilitate seamless transitions between different embedding models. Func-
tioning as a universal translator for embedding spaces, Embedding-Converter empowers machine
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Figure 1: Illustrating the efficiency benefits of using Embedding-Converter when the scenario of
comparing embedding models A and B. Embedding models A and B can represent different ver-
sions of the same model or entirely distinct models. (Left) Conventional approach for evaluating
of a new embedding model (B) requires re-embedding the entire corpus, and it incurs significant
computational cost. (Right) Embedding-Converter efficiently transforms existing embeddings from
embedding model A to embedding model B, dramatically reducing the computational overhead.

learning practitioners to effortlessly explore new models, upgrade to the latest versions, and even
switch between entirely different model families (e.g., Google Gecko vs. OpenAI) without incurring
the computational cost of re-embedding their data. This capability accelerates the adoption of new
technologies and provides greater flexibility in managing embedding models (see Fig. 1).

Developing such a converter presents unique challenges. It requires learning an efficient mapping
between potentially disparate high-dimensional spaces from unlabeled text data (see Fig. 2(b)). The
model must possess sufficient capacity to enable effective transfer while avoiding overfitting, and the
training process must be guided by appropriate loss functions to ensure accurate conversion. This
paper elucidates the novel methodological approaches employed in the development of Embedding-
Converter to address these challenges. Through extensive experiments across diverse scenarios, we
demonstrate its efficacy and provide insights into its key components. Our evaluation encompasses
various conversion scenarios, including intra-model conversions (between different versions within
the same model family), inter-model conversions, and conversions between models with different
embedding dimensions. Furthermore, we assess the performance of Embedding-Converter on a
range of downstream tasks involving embeddings, such as retrieval and semantic textual similarity.

Our experiments consistently demonstrate that the converted embeddings closely resemble the target
embeddings, effectively surpassing source model performances on downstream tasks. The main
contributions of this paper can be summarized as follows:

• We introduce Embedding-Converter, a unified framework that enables cost-effective conversion
between different embedding models. Embedding-Converter significantly reduces the compu-
tational overhead associated with migrating from one embedding model to another, facilitating
efficient exploration and adoption of new models (more than 100x reductions in terms of both
computation cost and time).

• Through comprehensive empirical evaluation, we demonstrate that Embedding-Converter effec-
tively surpasses the performance of source embedding models on various downstream tasks, en-
suring marginal accuracy degradation from target models during conversion.

2 RELATED WORK

2.1 EMBEDDING MODELS

Embedding models have become indispensable tools for a wide range of applications, including
information retrieval, search, and various other downstream tasks. Driven by the pursuit of im-
proved performance, the field of embedding models is rapidly evolving, with industry leaders such
as OpenAI (Neelakantan et al., 2022) and Google (Lee et al., 2024b) continuously releasing new
and improved versions. This trend is further exemplified by the competitive landscape of the MTEB
leaderboard (Muennighoff et al., 2022), where industrial models like NV-Embed (Lee et al., 2024a),
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SFR-Embedding (Rui Meng, 2024), and GTE-Qwen (Li et al., 2023) frequently update their ver-
sions to achieve top rankings. Furthermore, there are continual contributions from academia to this
vibrant ecosystem with models like General Text Embedding (GTE) (Li et al., 2023) and General-
izable T5-based dense Retrievers (GTR) (Ni et al., 2021), while multimodal embeddings are repre-
sented by models like CLIP (Radford et al., 2021) and CoCA (Yu et al., 2022). However, this rapid
progress and diversity come at a cost – a lack of compatibility between different embedding models,
even across versions within the same family. As evidenced by the varying performance rankings
across datasets in the MTEB leaderboard, identifying the optimal embedding model for a specific
task or dataset often necessitates evaluating multiple models. This process can be computation-
ally expensive and time-consuming, especially for large corpora, due to the need for re-embedding
the entire dataset with each new model. This paper introduces a unified framework to address this
challenge. We propose an efficient Embedding-Converter that enables seamless transitions between
different embedding models without requiring recomputation of the entire embedding space. This
tool empowers machine learning practitioners to readily evaluate various models on their datasets
and facilitates effortless migration between models, fostering greater flexibility and efficiency in the
development and deployment of embedding-based applications.

2.2 VECTOR SPACE TRANSFORMATION

The task of converting embeddings between different models can be framed as a vector space trans-
formation problem, where the goal is to map numerical vectors from one vector space to another.
This is a classic problem in linear algebra with various established approaches, including linear
transformations (Marcus, 1971), change of basis (Shores et al., 2007), and kernel methods (Treves,
2013). However, these techniques often assume that the target vector spaces are not predefined,
which is not the case with pre-trained embedding models.

Existing research on cross-lingual embedding mapping, such as the work by (Artetxe et al., 2017)
and (Conneau et al., 2017), explores techniques for aligning word embedding spaces across different
languages. These methods, while relevant, primarily focus on word-level embeddings and might
not be directly applicable to embeddings for longer text. Domain adaptation is another related
area that investigates adapting embeddings from a source domain to a target domain. (Wang et al.,
2021) and (Schopf et al., 2023) propose methods for domain adaptation in embedding spaces, while
(Yoon et al., 2024) explore customizing pre-trained embeddings with labeled data. However, these
approaches are often tailored to specific domain adaptation scenarios. In contrast, the Embedding-
Converter proposed in this paper offers a more versatile solution, capable of converting any sentence
embedding from one model to another, regardless of the specific domain or task. This general-
purpose applicability distinguishes our approach from prior works and broadens its potential impact
across various embedding-based applications.

While some research explores model compatibility in the image domain, these approaches differ
significantly from ours. Methods like Backward Compatible Training (BCT) Shen et al. (2020); Hu
et al. (2022) require modifying the training process of new models, which is infeasible in our set-
ting where both models are pre-trained and fixed. Forward Compatible Training (FCT) Ramanujan
et al. (2022), while employing a converter similar to ours, relies on unavailable ”side information”.
Jaeckle et al. (2023) removes this requirement but focuses on online backfilling with different data
requirements and objectives. Crucially, all these works primarily target the image domain, whereas
our method demonstrates broader applicability.

3 METHODS: EMBEDDING-CONVERTER

This section introduces the proposed Embedding-Converter framework, designed to efficiently
‘translate’ embeddings from one model to another. While we demonstrate it using text embedding
models, the framework is versatile and can handle various data types, including images and even
multimodal data, for conversion of embedding models for them. Importantly, Embedding-Converter
works with any embedding model, even those accessible only as prediction APIs with hidden inter-
nal details. This greatly expands its applicability, as many embedding models are provided solely
via prediction-only APIs.
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3.1 PROBLEM FORMULATION

The focus is to learn the transformation between two high dimensional spaces – specifically, we
aim to develop a method for converting text embeddings generated by a source embedding model,
denoted as f , into embeddings consistent with a target embedding model, denoted as g. Given a
text passage t ∈ T , where T represents the set of all text passages, we seek to construct a converter
function h such that h(f(t)) ' g(t). This function maps embeddings from the source space Rdf to
the target space Rdg , where df and dg represent the dimensions of the respective embedding spaces.

Our approach leverages unlabeled text data, denoted asD = {t1, t2, ..., tN}, comprising diverse text
passages. Notably, this method does not require labeled data depicting inter-passage relationships.
Any text corpus, such as the notable public ones like MSMarco (Bajaj et al., 2016) or Wikipedia cor-
pus, can be utilized. The learning objective is to identify the optimal converter h that maximizes the
similarity between the converted embedding and the corresponding target embedding for any given
text where the similarity measure can be defined using various criteria, including cosine similarity.

The proposed converter h is designed as a unified model capable of handling any text t ∈ T , irre-
spective of the dimensionality differences between the source and target embedding spaces. Conse-
quently, distinct converter functions would be required for different source-target embedding model
combinations. This contribution enables flexible utilization of various embedding models by facili-
tating seamless transitions between their respective embedding spaces.

3.2 LOSS FUNCTIONS

A straightforward approach for maximizing the similarity between converted and target embeddings
is to employ a regression loss function, which minimizes the distance between the two embedding
vectors. This can be expressed as:

Lreg =

N∑
t=1

||h(f(t))− g(t)||1. (1)

While this equation utilizes the mean absolute error, alternative regression losses, such as mean
squared error, could be employed as well. However, relying solely on regression loss is insufficient
for accurate embedding conversion, as demonstrated in the ablation study (see Table 6). To enhance
the fidelity of the conversion process, we introduce two supplementary loss functions designed to
preserve both global and local relationships within the embedding spaces. The first, a global similar-
ity loss (similar with (Park et al., 2019)), aims to maintain the overall distance between embeddings:

Lglobal =
∑

t1,t2∈D
|Dist(h(f(t1), h(f(t2)))− Dist(g(t1), g(t2))|. (2)

This loss function evaluates the difference in distances between pairs of randomly selected texts
in both the converted and target embedding spaces, thereby encouraging the preservation of global
structure (we utilize 1-cosine similarity as our distance metrics). The second, a local similarity loss,
focuses on preserving neighborhood relationships:

Llocal =
∑
t1∈D

∑
t2∈NNk(t1)

|Dist(h(f(t1), h(f(t2)))− Dist(g(t1), g(t2))|. (3)

For each text t1, this loss considers its k nearest neighbors (NNk(t1)) (based on target embedding
similarities) and penalizes discrepancies in their relative distances within the converted and target
embedding spaces, thus promoting local neighborhood preservation (k is set to 100 in experiments).
The impact of these additional loss functions on the embedding conversion process is empirically
evaluated in our experiments (see Table 6). Ultimately, the Embedding-Converter is jointly opti-
mized using a weighted combination of these three loss functions:

h∗ = argmin
h
Lreg + αLglobal + βLlocal, (4)

where α, β ≥ 0 are the hyperparameters controlling the relative importance of each loss component,
which can be tuned using a validation set. Note that we employ batch training for all three loss
functions to ensure computational efficiency.
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3.3 IMPLEMENTATION DETAILS

The proposed Embedding-Converter can be implemented using any architecture capable of map-
ping df -dimensional vectors to dg-dimensional vectors. In our experiments, we primarily employ
a 4-layer perceptron with SELU activations (Klambauer et al., 2017). As discussed in Sec. 5, a
Transformer architecture (Vaswani, 2017) yields slightly worse performance. Model selection and
hyperparameter optimization are guided by the retrieval performance. That is, the model and hy-
perparameter configuration that maximizes retrieval effectiveness on a held-out validation set is
selected. This criterion aligns with the practical objective of employing the converted embeddings
in retrieval tasks. Hyper-parameters and additional training details can be found in Appendix. C.

4 EXPERIMENTS

This section presents empirical evaluations of the Embedding-Converter’s performance across var-
ious scenarios. We first demonstrate the effectiveness in converting embeddings between different
versions of the same model. Subsequently, we assess the ability to bridge the embedding spaces of
distinct models. While our primary focus lies in evaluating the Embedding-Converter’s impact on
retrieval tasks, we also provide results on other embedding-dependent tasks, including text classi-
fication and semantic text similarity (STS) (Yang et al., 2018), to showcase broader applicability.
A detailed comparison of the computational time and cost associated with traditional corpus re-
embedding versus our proposed Embedding-Converter approach is presented in Appendix B.

4.1 EXPERIMENTAL SETTINGS

The Embedding-Converter is trained on a diverse set of text passages and queries drawn from 14
datasets in the BEIR benchmark (Thakur et al., 2021). We utilize a subset of the corpus data for
training: half of the corpus for datasets with fewer than 1 million passages, and 500,000 randomly
sampled passages for larger datasets (e.g., 10% of Fever, Climate-fever, and HotPotQA). To ensure
adequate representation of query-side distributions, we include the entire query set from the MS-
Marco dataset in the training data (∼ 500K queries). Consequently, MSMarco is excluded from
the in-domain evaluation to avoid potential bias. We evaluate the effectiveness of the Embedding-
Converter in two distinct settings: in-domain and out-of-domain. In-domain evaluation assesses per-
formance on the remaining 13 BEIR datasets using normalized Discounted Cumulative Gain at rank
10 (nDCG@10) as the retrieval metric (Järvelin & Kekäläinen, 2002). Out-of-domain generalization
is evaluated on 12 datasets from the CQADupStack benchmark (Hoogeveen et al., 2015), which are
entirely separate from the training data, using the same nDCG@10 metric. To further investigate the
versatility of the Embedding-Converter, we extend our analysis beyond retrieval encompassing other
embedding-dependent tasks, including text classification and STS. This evaluation provides insights
into the generalizability and transferability of the converted embeddings across diverse applications.
Dataset-specific details can be found in the Appendix D.

4.2 CONVERSION BETWEEN DIFFERENT MODEL VERSIONS

To evaluate the effectiveness of our Embedding-Converter in adapting to model updates, we utilize
different versions of Google’s Gecko text embedding models: gecko003 and gecko004 1. We be-
gin by generating embeddings for the training dataset using both gecko003 and gecko004 models.
This data is then used to train the Embedding-Converter, specifically to map embeddings from the
gecko003 space to the gecko004 space. For evaluation, we apply the trained converter to transform
the entire corpus of 13 BEIR datasets. We then assess retrieval performance in nDCG@10, compar-
ing three different embedding sets: (1) the original gecko003 embeddings, (2) the original gecko004
embeddings, and (3) the gecko003 embeddings converted to the gecko004 space using Embedding-
Converter. Crucially, we only convert the corpus embeddings; queries are consistently encoded
using the target model (gecko004) across all conditions. This design choice allows us to isolate and
specifically assess the impact of corpus embedding conversion on retrieval effectiveness, eliminating
any confounding effects from query embedding variations. For source/target model evaluation, we
use the source/target model for both query and corpus embedding, respectively.

1https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/
get-text-embeddings

5

https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Dataset
gecko003 → gecko004 openai-3-small → gecko004

gecko003 gecko004 Embedding openai-3-small gecko004 Embedding
(source) (target) -Converter (source) (target) -Converter

Arguana 0.5189 0.6070 0.6103 0.5530 0.6070 0.6049
Climate-fever 0.2540 0.3369 0.2959 0.2792 0.3369 0.2716

DBPedia 0.4128 0.4677 0.4322 0.4154 0.4677 0.4099
Fever 0.7431 0.8106 0.7786 0.7227 0.8106 0.7659
FiQA 0.4582 0.5481 0.5040 0.4048 0.5481 0.4393

HotpotQA 0.6248 0.6892 0.5923 0.6121 0.6892 0.6341
NFCorpus 0.3284 0.3503 0.3435 0.3314 0.3503 0.3479

NQ 0.5166 0.6058 0.5755 0.5254 0.6058 0.5653
Quora 0.8626 0.8621 0.8392 0.8881 0.8621 0.8346

SciDocs 0.1836 0.2041 0.1908 0.2092 0.2041 0.1995
SciFact 0.7221 0.7693 0.7601 0.7292 0.7693 0.7668

Trec-covid 0.7454 0.7840 0.8079 0.8285 0.7840 0.7983
Touche 0.2161 0.2565 0.2397 0.2723 0.2565 0.2706

Average 0.5067 0.5609 0.5362 0.5209 0.5609 0.5314

Table 1: In-domain retrieval performance (in nDCG@10) of the Embedding-Converter on 13 BEIR
datasets. Two conversion scenarios are presented: (i) intra-model conversion between different
versions of Google’s Gecko model (gecko003 to gecko004), and (ii) inter-model conversion from
OpenAI’s text-embedding-3-small model to Google’s gecko004. Bold represents better performance
than the source or target models.

Table 1 demonstrates the effectiveness of the proposed Embedding-Converter in adapting to model
updates. From gecko003 to gecko004, it yields a significant performance improvement over using
the original gecko003 embeddings. Notably, the average performance of the converted embeddings
is in the middle of source and target model performances for most datasets, while for some (e.g. Ar-
guana, NFCorpus, Trec-Covid and SciFact) the Embedding-Converter performance is almost simi-
lar to the target model. This result highlights the capability of Embedding-Converter to efficiently
transfer an entire corpus to a new embedding space with marginal performance degradation. Con-
sequently, leveraging newer model versions becomes feasible without incurring the computational
cost of re-embedding the entire corpus. As demonstrated in Appendix B, in practical scenarios,
Embedding-Converter yields O(100) times cost and runtime savings. It constitutes significant im-
plications to bring new paradigms for maintaining and updating large-scale retrieval systems.

4.3 CONVERSION ACROSS DIFFERENT MODEL FAMILIES

To further showcase the versatility of the proposed Embedding-Converter, we extend our evalu-
ation to scenarios involving conversions between different embedding models. Specifically, we
investigate converting embeddings from OpenAI’s text-embedding-3-small (openai-3-small) 2 to
Google’s gecko004. This experiment is particularly noteworthy as it involves models with different
embedding dimensions – openai-3-small produces 1536-dimensional embeddings, while gecko004
produces 768-dimensional embeddings. Maintaining the same experimental setup as before, we
evaluate the performance of a single Embedding-Converter trained to convert all corpora on the 13
BEIR datasets.

Table 1 demonstrates that even with inter-model conversion and a reduction in dimensionality,
the Embedding-Converter still achieves significant mitigation of retrieval performance degradation.
This result has important practical implications for machine learning developers. It enables efficient
evaluation of new embedding models on existing corpora without the need for computationally ex-
pensive re-embedding. More specifically, Table 1(right) reveals that the target model outperforms
the source model on 9 datasets, while the source model performs better on the remaining 4 datasets.
Traditionally, determining which model is superior for a given dataset would require computing em-
beddings using both models. However, the Embedding-Converter offers an alternative approach. By
comparing the performance with the source model, we can effectively approximate the comparisons

2https://platform.openai.com/docs/guides/embeddings
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between the source and target models without incurring the computational cost of generating target
embeddings. Our results demonstrate the effectiveness of this approach – the relative performance
of the source and target models is accurately predicted by the Embedding-Converter on 11 out of
the 13 datasets. This capability further highlights the value of the proposed Embedding-Converter.
By facilitating seamless transitions between different embedding spaces, it promotes flexibility and
reduces computational overhead in the development and deployment of embedding-based systems,
while also offering a valuable tool for preliminary model comparison and selection.

4.4 GENERALIZATION TO OUT-OF-DOMAIN DATA

While the strong in-domain performance across 13 diverse datasets with a single Embedding-
Converter is encouraging, evaluating its generalization capability on unseen data is paramount for
practical applications. For generalizability to unseen tasks, out-of-domain performance is critical,
as their specific data are likely to differ substantially from the datasets used in training. To assess
the effectiveness in such scenarios, we evaluate its performance on 12 out-of-domain datasets from
the CQADupStack benchmark, which are excluded from the training process.

Dataset
gecko003 → gecko004 openai-3-small → gecko004

gecko003 gecko004 Embedding openai-3-small gecko004 Embedding
(source) (target) -Converter (source) (target) -Converter

Android 0.5258 0.5780 0.5687 0.5414 0.5780 0.5576
English 0.5019 0.5411 0.5163 0.5006 0.5411 0.5017
Gaming 0.6288 0.6720 0.6422 0.6125 0.6720 0.6287

Gis 0.3982 0.4503 0.4223 0.4055 0.4503 0.4178
Mathematica 0.2908 0.3621 0.3329 0.3053 0.3621 0.3265

Physics 0.4738 0.5291 0.4981 0.4615 0.5291 0.4832
Programmers 0.4455 0.5027 0.4766 0.4342 0.5027 0.4627

Stats 0.3531 0.4036 0.3715 0.3581 0.4036 0.3644
Tex 0.2958 0.3517 0.3201 0.2925 0.3517 0.3018

Unix 0.4362 0.4980 0.4622 0.4349 0.4980 0.4498
Webmasters 0.4297 0.4954 0.4698 0.4105 0.4954 0.4466
Wordpress 0.3453 0.3923 0.3701 0.3434 0.3923 0.3493

Average 0.4271 0.4814 0.4542 0.4250 0.4814 0.4408

Table 2: Out-of-domain retrieval performance (nDCG@10) of the Embedding-Converter on 12
CQADupStack datasets. Two conversion scenarios are presented: (i) intra-model conversion be-
tween different versions of Google’s Gecko model (gecko003 to gecko004), and (ii) inter-model
conversion from OpenAI’s text-embedding-3-small model to Google’s gecko004. Bold represents
better performance than the source or target models.

Table 2 presents the results on this out-of-domain evaluation setting. Even in these challenging con-
ditions, the Embedding-Converter consistently outperforms the source model, both within the same
model family (gecko003 to gecko004) and across different models (openai-3-small to gecko004).
Although the performance gap compared to the target model is larger than the gap in the in-domain
setting, the Embedding-Converter still provides valuable means of estimating potential performance
gains before committing to the computationally expensive process of re-embedding the entire cor-
pus with the new model. It offers a preliminary performance guarantee when migrating to a new
embedding model, enabling informed decision-making and resource allocation. Here, the relative
performance of the source and target models is perfectly predicted by the Embedding-Converter.

4.5 PERFORMANCE ON OTHER TASKS BEYOND RETRIEVAL

While our primary focus has been on retrieval tasks, text embeddings are utilized in a wide range
of applications. The MTEB benchmark (Muennighoff et al., 2022) encompasses diverse tasks such
as classification, clustering, reranking, and STS, highlighting the versatility of embeddings. To
assess the broader applicability of our Embedding-Converter, we evaluate its performance on two
additional tasks: text classification and semantic text similarity. For classification, we use Toxic
Conversation (cjadams, 2019) and Tweet Sentiment Extraction (Maggie, 2020) datasets. For se-
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mantic text similarity, we use STS-13 (Agirre et al., 2013), STS-14 (Bandhakavi et al., 2014) and
STS-22 (Chen et al., 2022) datasets.

Task Dataset
gecko003 → gecko004 openai-3-small → gecko004

gecko003 gecko004 Embedding openai-3-small gecko004 Embedding
(source) (target) -Converter (source) (target) -Converter

Classi- Toxic 0.9341 0.9446 0.9392 0.9380 0.9446 0.9410
fication Tweet 0.7261 0.7535 0.7425 0.7476 0.7535 0.7434

Average 0.8301 0.8491 0.8409 0.8428 0.8491 0.8422

STS

STS-13 0.7712 0.8047 0.7982 0.8425 0.8047 0.8317
STS-14 0.7119 0.7403 0.7359 0.8001 0.7403 0.7586
STS-22 0.7019 0.7246 0.7080 0.6716 0.7246 0.6863

Average 0.7283 0.7565 0.7474 0.7714 0.7565 0.7589

Table 3: Classification and STS performances of Embedding-Converter in two different settings:
(i) within same model lineup but different versions (gecko003 → gecko004), (ii) across different
model lineup (openai-3-small→ gecko004) on 5 datasets. Bold represents better performance than
the source or target models.

Table 3 presents the performance of the Embedding-Converter on classification and STS tasks. In the
scenario of conversion from gecko003 to gecko004, the target model (gecko004) consistently out-
performs the source model (gecko003), and the Embedding-Converter achieves performance levels
between the two. This result demonstrates the converter’s ability to effectively transfer relevant
embedding properties for these tasks. For the openai-3-small to gecko004 conversion, the target
model performs better in 3 out of 5 cases, while the source model is superior in the remaining 2
cases. Notably, the Embedding-Converter accurately predicts the relative performance of the source
and target models in 4 out of these 5 cases. This further highlights the utility of the converter as a
tool for preliminary model comparison, even across different model families. Overall, these results
suggest that the converted embeddings successfully capture the semantic information encoded by
the target model, enabling their effective utilization in diverse downstream tasks beyond retrieval.
This generalization capability underscores the broader potential to facilitate efficient and flexible
deployment of embedding models across a wide range of applications including unseen scenarios.

4.6 LEVERAGING FOR LATENCY REDUCTION

Thus far, we’ve focused on using the Embedding-Converter to transform corpus embeddings, a
particularly valuable application when dealing with large corpora. The Embedding-Converter also
offers significant advantages in scenarios where query latency is a critical concern. Often, deploying
large embedding models for online query processing is impractical due to their high latency. While
corpus embeddings can be pre-computed offline to mitigate latency concerns, query embeddings
must be generated in real-time, making latency a significant bottleneck. Consequently, developers
might resort to using smaller embedding models for both queries and corpora, even though larger
models would yield better retrieval performance for the corpus.

The proposed Embedding-Converter offers a solution to this challenge. By decoupling corpus and
query embedding models, we can leverage the superior performance of larger models for corpus
embedding extraction while maintaining low query latency. This is achieved by employing a smaller
model for initial query embedding generation and then utilizing the Embedding-Converter to map
these embeddings to the space of the larger corpus embedding model.

To demonstrate this use case, we evaluate the performance of the Embedding-Converter when ap-
plied to queries instead of the corpus. The results, presented in Table 4, show that query conversion
achieves comparable performance to corpus conversion in most cases (except the in-domain conver-
sion case from openai-3-small). This finding highlights the potential of query conversion to improve
retrieval performance in latency-constrained environments. By enabling the use of larger models for
corpus embedding without sacrificing query speed, the Embedding-Converter offers a valuable tool
for optimizing the trade-off between accuracy and efficiency in real-world retrieval systems.
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Methods
gecko003 → gecko004 openai-3-small → gecko004

In-domain Out-domain In-domain Out-domain

Source embedding model 0.5067 0.4271 0.5209 0.4250
Target embedding model 0.5609 0.4814 0.5609 0.4814

Corpus converter 0.5362 0.4542 0.5314 0.4408
Query converter 0.5263 0.4348 0.5171 0.4342

Table 4: Embedding-Converter on query converting scenarios with two different settings: (i) within
same model lineup but different versions (gecko003→ gecko004), (ii) across different model lineup
(openai-3-small→ gecko004). Bold represents better performance than the source or target models.

5 DISCUSSIONS

5.1 FURTHER ANALYSES OF EMBEDDING-CONVERTER PERFORMANCE

While evaluating the Embedding-Converter on downstream tasks, as presented in Section 4, provides
valuable insights into its practical utility, a comprehensive assessment necessitates further analysis
of its ability to accurately align embedding spaces. This section delves into this aspect by employing
quantitative metrics, specifically distance-based measures, to evaluate the converter’s performance
independent of specific downstream tasks.

We conduct this analysis by examining both global and local distances among corpus embeddings.
Global distances provide a macroscopic view of the embedding space, capturing its overall struc-
ture and organization. Conversely, local distances offer a microscopic perspective, focusing on the
preservation of relationships within local neighborhoods of the embedding space. By analyzing
both the global and local distances, we gain a comprehensive understanding of the Embedding-
Converter’s efficacy in accurately mapping embeddings between different models while preserving
the inherent structure of the embedding spaces.

Settings Methods
gecko003 → gecko004 openai-3-small → gecko004

Global distance Local distance Global distance Local distance

In-domain Source model 0.1053 0.0246 0.2346 0.1260
Converter 0.0393 0.0163 0.0191 0.0205

Out-domain Source model 0.0805 0.0217 0.1811 0.1291
Converter 0.0325 0.0176 0.0179 0.0195

Table 5: Comparison of global and local distance metrics (i.e., Eq. 2 and 3, lower the better) for
the Embedding-Converter on 13 BEIR and 12 CQADupStack datasets. Two conversion scenar-
ios are presented: (i) intra-model conversion between different versions of Google’s Gecko model
(gecko003 to gecko004), and (ii) inter-model conversion from OpenAI’s text-embedding-3-small
model to Google’s gecko004. Bold represents better performance than the source model.

Table 5 shows that the Embedding-Converter effectively aligns both global and local distances be-
tween the converted embeddings and the target embeddings, preserving meaningful positioning.
This result underscores the ability to accurately capture and replicate the inherent structural proper-
ties of the target embedding space, further validating efficacy in facilitating cross-model mapping.
Further experiments evaluating our method in diverse practical settings, including reverse conver-
sion, handling mixed embeddings, and bridging open-source to black-box models, can be found in
the appendix.

5.2 ABLATION STUDIES

We investigate the contributions of different loss functions and architectural choices in the over-
all performance. Recall that the Embedding-Converter is trained using a combination of three loss
functions: a regression loss (Lreg), a global loss (Lglobal), and a local loss (Llocal). In our abla-
tion studies, we analyze the effect of removing these loss components. Additionally, we explore
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the impact of architectural variations by replacing the default multi-layer perceptron (MLP) with a
Transformer architecture. By systematically analyzing the effects of these modifications, we aim to
identify the key components driving the Embedding-Converter’s performance and gain insights into
their individual contributions.

Variants Performances

Global distance Local distance Retrieval

No Lglobal & Llocal 0.0452 0.0237 0.5219

Transformer architecture 0.0233 0.0211 0.5273
Small networks (20% parameters) 0.0203 0.0192 0.5263
Larger networks (5x parameters) 0.0177 0.0164 0.5329

Only with MSMarco 0.0351 0.0227 0.5194

No variants 0.0177 0.0163 0.5369

Table 6: Ablation studies across different variants of Embedding-Converter. Global distance, local
distance, and Retrieval performances are evaluated on out-domain retrieval tasks (with 12 CQADup-
Stack datasets). Here, we use the Embedding-Converter from gecko003 to gecko004.

Table 6 summarizes the results of our ablation studies, highlighting key factors influencing the
Embedding-Converter’s performance:

• Loss functions: Both global and local loss functions are crucial. Removing them leads to perfor-
mance degradation, especially in distance metrics, underscoring their complementary roles.

• Architecture variations: The choice of Transformer vs. MLP impacts performance, suggesting
sensitivity to architectural design choices, given sufficient model capacity and proper training.

• Model size: Smaller models (compared with original Embedding-Converter) exhibit slightly
lower performance due to reduced capacity for capturing complex relationships in embedding
spaces. Larger models perform consistent with original Embedding-Converter.

• Data diversity: Diverse training data significantly improves performance by enhancing gener-
alization and coverage across the embedding space (Fig. 2(a)). Relying solely on MSMarco is
insufficient for broad coverage.

6 CONCLUSIONS

This paper addresses the critical challenge of achieving seamless compatibility between different
embedding models. The lack of such compatibility hinders both machine learning practitioners, who
face difficulties in navigating model updates and selecting optimal models, and the overall robust-
ness of deployed systems. To overcome this limitation, we propose a unified Embedding-Converter,
capable of efficiently translating between different embedding models. In its design, we address the
unique challenges of learning how to convert embeddings efficiently via judicious chosen training
mechanisms and show that in many scenarios, the end-to-end performance with converted embed-
dings can be largely preserved. This contribution can empower practitioners with the flexibility to ef-
fortlessly transition between models, fostering greater experimentation and facilitating the adoption
of improved model versions. Furthermore, Embedding-Converter can encourage a paradigm shift
in model development practices. By emphasizing the importance of providing converters alongside
new model releases, a more user-centric approach is enabled for seamless migration from previous
versions. This fosters a dynamic and evolving ecosystem for embedding models, where innovation
and user experience are prioritized. This, in turn, contributes to a more robust and user-friendly
environment for developing and deploying embedding-based applications.
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APPENDIX

A VISUALIZATION OF EMBEDDING SPACES
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(a) Embeddings of 9 BEIR datasets
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Figure 2: t-SNE visualization of embedding spaces across different corpora and models. (a) Em-
beddings of 9 diverse corpora from the BEIR datasets, highlighting the variability in embedding
distributions across different datasets. (b) Comparison of gecko003 and gecko004 embeddings for
the SciFact dataset, showcasing how different the embedding spaces between different model ver-
sions can be for the same dataset. (c) Embeddings of the gecko004 model and embeddings converted
from gecko003 using the Embedding-Converter. The high degree of overlap indicates the successful
alignment of embedding spaces achieved by the Embedding-Converter.

B COMPUTATIONAL COMPLEXITY

To quantify the computational benefits of the proposed Embedding-Converter, we analyze both the
computational cost and processing time across various scenarios. We assume a consistent document
length of 256 tokens and utilize three different embedding models with varying pricing and request-
per-minute (RPM) limitations, as detailed below. This analysis provides a concrete assessment of
the efficiency gains achieved by leveraging the Embedding-Converter compared to the traditional
approach of re-embedding the entire corpus.

• Openai-3-large:
– Price: $0.065 / 1M tokens 3

– RPM: 1M tokens 4 (with free tier)
• Openai-3-small

– Price: $0.010 / 1M tokens
– RPM: 1M tokens (with free tier)

• Gecko004:
– Price: $0.00002 / 1K characters (i.e., $0.08 / 1M tokens when we assume average 4

characters per one token)5

– RPM: 7500 inputs 6

While OpenAI’s embedding API can offer higher RPM at its highest tier, potentially reducing com-
putation time, it still remains significantly slower than our Embedding-Converter. Furthermore, the

3https://openai.com/api/pricing/
4https://platform.openai.com/docs/guides/rate-limits/usage-tiers?

context=tier-free
5https://cloud.google.com/vertex-ai/generative-ai/pricing
6https://cloud.google.com/vertex-ai/generative-ai/docs/quotas#

text-embedding-limits
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Embedding model Corpus size
Computational cost Computational time

Baseline Embedding Baseline Embedding
-Converter -Converter

Openai-3-large 1B $16640 $185 4266 hours 37 hours
50M $832 $10 213 hours 1.9 hours

Openai-3-small 1B $2560 $115 4266 hours 23 hours
50M $128 $6 213 hours 1.2 hours

gecko004 1B $20480 $75 2222 hours 15 hours
50M $1024 $4 111 hours 0.8 hours

Table 7: Computational cost and time comparisons with Embedding-Converter for different corpus
sizes. Baseline refers to recomputation of the entire corpus using the correspond embedding models.

cost per API call is consistent across all tiers, offering no cost advantage for higher RPM usage. In
contrast, our Embedding-Converter exhibits remarkable efficiency gains with modest compute, and
even without low-level engineering optimizations. It can process a corpus of size 50 million in un-
der 2 hours, including data loading. For inference alone, using a pre-trained Embedding-Converter
takes a mere 20 minutes to process the same corpus with openai-3-small. This represents a speed
improvement of over 100x compared to traditional corpus re-embedding.

The Embedding-Converter utilizes 2 V100 GPUs, incurring an hourly cost of $4.96 on Cloud7. This
results in a computational cost reduction exceeding 100x compared to directly generating embed-
dings with the target model. These findings underscore the substantial efficiency gains offered by our
Embedding-Converter. It provides a compelling solution for migrating to new embedding models,
enabling both cost and time savings, especially when handling large-scale corpora.

C HYPER-PARAMETERS & TRAINING DETAILS

As the Embedding-Converter architecture, we employ a 4-layer multi-layer perceptron (MLP) model
with hidden state dimensions of (5x output-dimension, 5x output-dimension, 5x output-dimension,
output-dimension). Therefore, when converting between gecko003 and gecko004 embeddings, the
Embedding-converter comprises 35 million parameters. We utilize the SELU activation function and
apply L2 normalization to the output. Optimization is performed using the Adam optimizer with a
learning rate of 0.001. Training proceeds for 50,000 iterations, with batches sampled uniformly
from each of the 14 BEIR datasets to mitigate dataset bias and enhance coverage. This balanced
sampling strategy involves selecting an equal number of batches from each dataset, with a batch
size of 64. Validation performance is evaluated every 250 iterations, and the model yielding the best
validation performance is selected. In all experiments, we utilized the Scifact dataset (comprising
1109 queries, 1258 labels, and 5183 corpus passages) for validation data. The hyperparameters α
and β, which control the weighting of the global and local loss functions, are tuned within the range
of [0.01, 1.0]. In most cases, α = β = 0.1 consistently yielded strong results. For the local distance
loss, we consistently set the neighborhood size (k) to 100 across all experiments.

D DATA STATISTICS

D.1 BEIR DATASETS

7https://cloud.google.com/compute/gpus-pricing
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Datasets Number of Number of Number of
queries test pairs corpus

Arguana 1406 1406 8674
Climate-fever 1535 4681 5416593

DBPedia 467 49188 4635922
Fever 123142 148022 5416568
FiQA 6648 15872 57638

HotPotQA 97852 184810 5233329
NFCorpus 3237 122909 3633

NQ 3452 4201 2681468
Quora 15000 23301 522931

SciDocs 1000 29928 25657
SciFact 1109 1258 5183

Trec-Covid 50 66336 171332
Touche 49 2214 382545

Table 8: The statistics of 13 BEIR datasets (sorted by the alphabetical order).

D.2 CQADUPSTACK DATASETS

Datasets Number of Number of Number of
queries test pairs corpus

Android 699 1696 22998
English 1570 3765 40221
Gaming 1595 2263 45301

Gis 885 1114 37637
Mathematica 804 1358 16705

Physics 1039 1933 38316
Programmers 876 1675 32176

Stats 652 913 42269
Tex 2906 5154 68184

Unix 1072 1693 47382
Webmasters 506 1395 17405
Wordpress 541 744 48605

Table 9: The statistics of 12 CQADupStack datasets (sorted by alphabetical order).

D.3 STS AND CLASSIFICATION DATASETS

Tasks Datasets Number of Number of Number of
train samples test samples classes

Classification Toxic 50000 50000 2
Tweet 27481 3534 3

STS
STS-13 - 1500 -
STS-14 - 3750 -
STS-22 - 197 -

Table 10: The statistics of 2 classification and 3 STS datasets.
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E ADDITIONAL EXPERIMENTS

E.1 CONVERTING FROM NEW TO OLD EMBEDDING MODELS

To further validate the versatility of our Embedding-Converter, we conducted experiments where
the conversion direction was reversed: from a newer embedding model to an older one. This sce-
nario might arise when developers need to ”downgrade” their embedding models due to resource
constraints or compatibility requirements. Specifically, we used Gecko-004 as the source model and
Gecko-003 as the target, effectively reversing the conversion direction presented in Table 1 (left) and
Table 2 (left) of the main manuscript.

Dataset
gecko004 → gecko003 gecko004 → openai-3-small

gecko004 gecko003 Embedding gecko004 openai-3-small Embedding
(source) (target) -Converter (source) (target) -Converter

Arguana 0.6070 0.5189 0.5148 0.6070 0.5530 0.5713
Climate-fever 0.3369 0.2540 0.2905 0.3369 0.2792 0.2931

DBPedia 0.4677 0.4128 0.3979 0.4677 0.4154 0.3898
Fever 0.8106 0.7431 0.7327 0.8106 0.7227 0.6972
FiQA 0.5481 0.4582 0.4824 0.5481 0.4048 0.4507

HotpotQA 0.6892 0.6248 0.5794 0.6892 0.6121 0.5519
NFCorpus 0.3503 0.3284 0.3347 0.3503 0.3314 0.3318

NQ 0.6058 0.5166 0.5147 0.6058 0.5254 0.5151
Quora 0.8621 0.8626 0.8369 0.8621 0.8881 0.8396

SciDocs 0.2041 0.1836 0.1743 0.2041 0.2092 0.1928
SciFact 0.7693 0.7221 0.7227 0.7693 0.7292 0.7074

Trec-covid 0.7840 0.7454 0.7187 0.7840 0.8285 0.8278
Touche 0.2565 0.2161 0.2423 0.2565 0.2723 0.2684

Average 0.5609 0.5067 0.5032 0.5609 0.5209 0.5105

Table 11: In-domain retrieval performance (in nDCG@10) of the Embedding-Converter on 13 BEIR
datasets. Two conversion scenarios are presented: (i) intra-model conversion between different
versions of Google’s Gecko model (gecko004 to gecko003), and (ii) inter-model conversion from
Google’s gecko004 to OpenAI’s text-embedding-3-small model.

The results, shown in Table 11 (left) and Table 12 (left), demonstrate that the performance of our
Embedding-Converter remains remarkably consistent with that of the target (older) model. This
finding underscores the flexibility of our approach and its ability to support both upgrading and
downgrading of embedding models, catering to a wider range of practical use cases.
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E.2 CONVERTING FROM SMALLER DIMENSIONAL EMBEDDING TO LARGER DIMENSIONAL
EMBEDDINGS

While the main manuscript focused on embedding conversion between models with the same dimen-
sionality or where the target model has smaller dimensionality, we further investigated the scenario
where the target model possesses larger embedding dimensions. This represents another challenging
yet practical use case, as newer embedding models often exhibit increased dimensionality.

To evaluate this scenario, we trained and evaluated our Embedding-Converter with gecko004 (768
dimensions) as the source model and openai-3-small (1536 dimensions) as the target.

Dataset
gecko004 → gecko003 gecko004 → openai-3-small

gecko004 gecko003 Embedding gecko004 openai-3-small Embedding
(source) (target) -Converter (source) (target) -Converter

Android 0.5780 0.5258 0.5172 0.5780 0.5414 0.5374
English 0.5411 0.5019 0.4785 0.5411 0.5006 0.4844
Gaming 0.6720 0.6288 0.6175 0.6720 0.6125 0.6052

Gis 0.4503 0.3982 0.4008 0.4503 0.4055 0.3951
Mathematica 0.3621 0.2908 0.2879 0.3621 0.3053 0.2984

Physics 0.5291 0.4738 0.4750 0.5291 0.4615 0.4670
Programmers 0.5027 0.4455 0.4479 0.5027 0.4342 0.4460

Stats 0.4036 0.3531 0.3444 0.4036 0.3581 0.3384
Tex 0.3517 0.2958 0.2849 0.3517 0.2925 0.2879

Unix 0.4980 0.4362 0.4287 0.4980 0.4349 0.4329
Webmasters 0.4954 0.4297 0.4345 0.4954 0.4105 0.4338
Wordpress 0.3923 0.3453 0.3289 0.3923 0.3434 0.3334

Average 0.4814 0.4271 0.4205 0.4814 0.4250 0.4217

Table 12: Out-of-domain retrieval performance (nDCG@10) of the Embedding-Converter on 12
CQADupStack datasets. Two conversion scenarios are presented: (i) intra-model conversion be-
tween different versions of Google’s Gecko model (gecko004 to gecko003), and (ii) inter-model
conversion from Google’s gecko004 to OpenAI’s text-embedding-3-small model.

The results, presented in Table 11 (right) and Table 12 (right), demonstrate that our method suc-
cessfully handles this conversion with only marginal performance degradation. This finding further
reinforces the robustness and generalizability of the Embedding-Converter, showcasing its ability to
effectively bridge embedding spaces even when the target dimensionality exceeds that of the source.
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E.3 EMBEDDING-CONVERTER WITH MIXED EMBEDDINGS

Real-world applications often involve dynamic corpus sets where new documents are continuously
added. Embedding-Converter also offers a significant advantage in such scenarios. Instead of re-
quiring the conversion of new documents into the source embedding space before generating target
embeddings, we can directly embed them using the target embedding model. This results in a corpus
containing a mixture of converted embeddings (from older documents) and new embeddings (from
recently added documents). To evaluate the effectiveness of our embedding converter in this mixed
setting, we conducted experiments where half of the corpus embeddings were randomly replaced
with target embeddings.

Dataset
gecko003 → gecko004

gecko003 gecko004 Embedding-Converter

(source) (target) Standard Mixed

Arguana 0.5189 0.6070 0.6103 0.6082
Climate-fever 0.2540 0.3369 0.2959 0.3124

DBPedia 0.4128 0.4677 0.4322 0.4486
Fever 0.7431 0.8106 0.7786 0.7946
FiQA 0.4582 0.5481 0.5040 0.5196

HotpotQA 0.6248 0.6892 0.5923 0.6410
NFCorpus 0.3284 0.3503 0.3435 0.3466

NQ 0.5166 0.6058 0.5755 0.5435
Quora 0.8626 0.8621 0.8392 0.8304

SciDocs 0.1836 0.2041 0.1908 0.1963
SciFact 0.7221 0.7693 0.7601 0.7671

Trec-covid 0.7454 0.7840 0.8079 0.7865
Touche 0.2161 0.2565 0.2397 0.2481

Average 0.5067 0.5609 0.5362 0.5419

Table 13: In-domain retrieval performance (in nDCG@10) of the Embedding-Converter on 13 BEIR
datasets from gecko003 to gecko004. Two conversion scenarios are presented: (i) Standard: with
100% converted corpus, (ii) Mixed: with 50% converted corpus and 50% target corpus.

The results, presented in Table 13 and 14, demonstrate that performance in this mixed setting actu-
ally surpasses the scenario where all embeddings are converted. This observation highlights two key
strengths of our approach: (i) Compatibility: The converted embeddings seamlessly integrate with
the new embeddings, indicating strong compatibility between the two spaces. (ii) Generalizability:
Our embedding converter effectively handles the practical scenario of mixed embeddings, further
validating its robustness and applicability.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Dataset
gecko003 → gecko004

gecko003 gecko004 Embedding-Converter

(source) (target) Standard Mixed

Android 0.5258 0.5780 0.5687 0.5632
English 0.5019 0.5411 0.5163 0.5255
Gaming 0.6288 0.6720 0.6422 0.6547

Gis 0.3982 0.4503 0.4223 0.4394
Mathematica 0.2908 0.3621 0.3329 0.3490

Physics 0.4738 0.5291 0.4981 0.5148
Programmers 0.4455 0.5027 0.4766 0.4877

Stats 0.3531 0.4036 0.3715 0.3846
Tex 0.2958 0.3517 0.3201 0.3323

Unix 0.4362 0.4980 0.4622 0.4775
Webmasters 0.4297 0.4954 0.4698 0.4781
Wordpress 0.3453 0.3923 0.3701 0.3807

Average 0.4271 0.4814 0.4542 0.4656

Table 14: Out-of-domain retrieval performance (nDCG@10) of the Embedding-Converter on 12
CQADupStack datasets from gecko003 to gecko004. Two conversion scenarios are presented: (i)
Standard: with 100% converted corpus, (ii) Mixed: with 50% converted corpus and 50% target
corpus.

E.4 EMBEDDING-CONVERTER WITH MULTIPLE VERSIONS OF EMBEDDING MODELS

The landscape of embedding models is constantly evolving, with new versions frequently released.
This raises the practical challenge of converting embeddings across multiple model iterations. For
example, a user might need to transition from gecko003 to GTE-Large and then to gecko004.

While a direct conversion from gecko003 to gecko004 is possible, we also investigated the feasibility
of utilizing a sequence of converters: gecko003 to GTE-Large followed by GTE-Large to gecko004.
This approach could be advantageous in scenarios where direct conversion is computationally ex-
pensive or when intermediate embeddings are required.

Dataset
gecko003 → gecko004

gecko003 gecko004 Embedding-Converter

(source) (target) Direct Multiple

Arguana 0.5189 0.6070 0.6103 0.5812
FiQA 0.4582 0.5481 0.5040 0.4903

NFCorpus 0.3284 0.3503 0.3435 0.3470
Quora 0.8626 0.8621 0.8392 0.8361

SciDocs 0.1836 0.2041 0.1908 0.1953
SciFact 0.7221 0.7693 0.7601 0.7626

Trec-covid 0.7454 0.7840 0.8079 0.7580
Touche 0.2161 0.2565 0.2397 0.2358

Average 0.5044 0.5609 0.5369 0.5258

Table 15: In-domain retrieval performance (in nDCG@10) of the Embedding-Converter on 8 BEIR
datasets from gecko002 to gecko004. Two conversion scenarios are presented: (i) Direct: converting
gecko003 to gecko004 directly, (ii) Multiple: converting gecko003 to GTE-Large first and then
converting GTE-Large to gecko004.

Our experiments compared the performance of these two strategies in Table 15. While direct con-
version yielded slightly better results, the difference was marginal. This observation highlights the
flexibility of our Embedding-Converter and its ability to effectively handle multi-version embed-
ding conversions, offering a practical solution for navigating the evolving landscape of embedding
models.
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E.5 CONVERTING OPEN-SOURCE MODEL TO BLACK-BOX MODEL

To further demonstrate the versatility of our Embedding-Converter, we extended our evaluation to
scenarios involving conversion between open-source and black-box embedding models. This is
crucial for ensuring compatibility and facilitating transitions across different model ecosystems.
Specifically, we converted embeddings from the open-source GTE-Large model Li et al. (2023) to
Google’s black-box gecko004 model.

Dataset
GTE-Large → gecko004

GTE-Large gecko004 Embedding
(source) (target) -Converter

Arguana 0.5928 0.6070 0.6081
FiQA 0.4434 0.5481 0.5059

NFCorpus 0.3391 0.3503 0.3478
Quora 0.8824 0.8621 0.8391

SciDocs 0.2330 0.2041 0.2080
SciFact 0.7402 0.7693 0.7689

Trec-covid 0.7053 0.7840 0.7628
Touche 0.2237 0.2565 0.2431

Average 0.5200 0.5477 0.5355

Table 16: In-domain retrieval performance (in nDCG@10) of the Embedding-Converter on 8 BEIR
datasets across inter-model conversion from GTE-Large to Google’s gecko004 model.

As shown in Table 16, the Embedding-Converter successfully bridges these two models across var-
ious BEIR datasets, maintaining strong performance. This result underscores the generalizability of
our approach and its ability to handle diverse conversion scenarios, including those involving both
open-source and proprietary embedding models.
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