
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EMBEDDING-CONVERTER: A UNIFIED FRAMEWORK
FOR CROSS-MODEL EMBEDDING TRANSFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Embeddings, numerical representations of data like text and images, are funda-
mental to machine learning. However, the continuous emergence of new em-
bedding models poses a challenge: migrating to these potentially superior mod-
els often requires computationally expensive re-embedding of entire datasets even
without guarantees of improvement. This paper introduces Embedding-Converter,
a unified framework and a novel paradigm for efficiently converting embeddings
between different models, eliminating the need for costly re-embedding. In real-
world scenarios, the proposed method yields O(100) times faster and cheaper
computation of embeddings with new models. Our experiments demonstrate that
Embedding-Converter not only facilitates seamless transitions to new models but
can even surpass the source model’s performance, approaching that of the target
model. This enables efficient evaluation of new embedding models and promotes
wider adoption by reducing the overhead associated with model switching. More-
over, Embedding-Converter addresses latency constraints by enabling the use of
smaller models for online tasks while leveraging larger models for offline process-
ing. By encouraging users to release converters alongside new embedding models,
Embedding-Converter fosters a more dynamic and user-friendly paradigm for em-
bedding model development and deployment.

1 INTRODUCTION

Embeddings are the cornerstone of many machine learning systems. They transform complex data,
such as text and images, into a format readily processed by computers: numerical vectors. These
vectorized representations serve as the foundation for a wide range of applications, including search,
clustering, anomaly detection, classification, and information retrieval (Wang et al., 2016; Huang
et al., 2020; Zhai et al., 2019).

However, the landscape of embedding models is becoming increasingly complex. A multitude of
models are available, each with its own strengths and weaknesses (Wang et al., 2022; Li et al.,
2023; Lee et al., 2024a). This diversity, while offering flexibility, presents a significant challenge:
determining the optimal embedding model for a specific task often necessitates a computationally
expensive and time-consuming evaluation process, especially when dealing with massive datasets.
Consider the scenario of selecting the best embedding model for a billion text passages. Evaluating
each candidate model requires generating embeddings for all billion passages, a daunting compu-
tational undertaking (see Appendix. B for detailed computational complexities). This challenge is
further exacerbated by the continuous emergence of new and improved models, forcing a repetitive
cycle of re-embedding with no guarantee of substantial performance gains. Furthermore, the lack
of compatibility between different embedding models, even within the same family (e.g., Google’s
Gecko (Lee et al., 2024b) or OpenAI’s embeddings (Neelakantan et al., 2022)), poses a significant
obstacle. This incompatibility necessitates a complete recomputation of embeddings whenever a
user wishes to explore a new model or upgrade to a newer version, hindering efficient experimenta-
tion and adoption of state-of-the-art techniques. This laborious process presents a major roadblock
to leveraging the latest advancements in embedding models for real-world applications.

To address the aforementioned challenges, this paper introduces Embedding-Converter, a unified
framework designed to facilitate seamless transitions between different embedding models. Func-
tioning as a universal translator for embedding spaces, Embedding-Converter empowers machine

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Embedding
model ADocuments

Document
embedding A

Embedding
model B

Document
embedding B

Downstream
task evaluation
(e.g., retrieval)

(a) Conventional evaluation framework

Embedding
model A

Documents
Document

embedding A

Embedding-
Converter
(A to B)

Converted document
embedding B

Downstream
task evaluation
(e.g., retrieval)

(b) Proposed evaluation framework

Figure 1: Illustrating the efficiency benefits of using Embedding-Converter when the scenario of
comparing embedding models A and B. Embedding models A and B can represent different ver-
sions of the same model or entirely distinct models. (Left) Conventional approach for evaluating
of a new embedding model (B) requires re-embedding the entire corpus, and it incurs significant
computational cost. (Right) Embedding-Converter efficiently transforms existing embeddings from
embedding model A to embedding model B, dramatically reducing the computational overhead.

learning practitioners to effortlessly explore new models, upgrade to the latest versions, and even
switch between entirely different model families (e.g., Google Gecko vs. OpenAI) without incurring
the computational cost of re-embedding their data. This capability accelerates the adoption of new
technologies and provides greater flexibility in managing embedding models (see Fig. 1).

Developing such a converter presents unique challenges. It requires learning an efficient mapping
between potentially disparate high-dimensional spaces from unlabeled text data (see Fig. 2(b)). The
model must possess sufficient capacity to enable effective transfer while avoiding overfitting, and the
training process must be guided by appropriate loss functions to ensure accurate conversion. This
paper elucidates the novel methodological approaches employed in the development of Embedding-
Converter to address these challenges. Through extensive experiments across diverse scenarios, we
demonstrate its efficacy and provide insights into its key components. Our evaluation encompasses
various conversion scenarios, including intra-model conversions (between different versions within
the same model family), inter-model conversions, and conversions between models with different
embedding dimensions. Furthermore, we assess the performance of Embedding-Converter on a
range of downstream tasks involving embeddings, such as retrieval and semantic textual similarity.

Our experiments consistently demonstrate that the converted embeddings closely resemble the target
embeddings, effectively surpassing source model performances on downstream tasks. The main
contributions of this paper can be summarized as follows:

• We introduce Embedding-Converter, a unified framework that enables cost-effective conversion
between different embedding models. Embedding-Converter significantly reduces the compu-
tational overhead associated with migrating from one embedding model to another, facilitating
efficient exploration and adoption of new models (more than 100x reductions in terms of both
computation cost and time).

• Through comprehensive empirical evaluation, we demonstrate that Embedding-Converter effec-
tively surpasses the performance of source embedding models on various downstream tasks, en-
suring marginal accuracy degradation from target models during conversion.

2 RELATED WORK

2.1 EMBEDDING MODELS

Embedding models have become indispensable tools for a wide range of applications, including
information retrieval, search, and various other downstream tasks. Driven by the pursuit of im-
proved performance, the field of embedding models is rapidly evolving, with industry leaders such
as OpenAI (Neelakantan et al., 2022) and Google (Lee et al., 2024b) continuously releasing new
and improved versions. This trend is further exemplified by the competitive landscape of the MTEB
leaderboard (Muennighoff et al., 2022), where industrial models like NV-Embed (Lee et al., 2024a),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

SFR-Embedding (Rui Meng, 2024), and GTE-Qwen (Li et al., 2023) frequently update their ver-
sions to achieve top rankings. Furthermore, there are continual contributions from academia to this
vibrant ecosystem with models like General Text Embedding (GTE) (Li et al., 2023) and General-
izable T5-based dense Retrievers (GTR) (Ni et al., 2021), while multimodal embeddings are repre-
sented by models like CLIP (Radford et al., 2021) and CoCA (Yu et al., 2022). However, this rapid
progress and diversity come at a cost – a lack of compatibility between different embedding models,
even across versions within the same family. As evidenced by the varying performance rankings
across datasets in the MTEB leaderboard, identifying the optimal embedding model for a specific
task or dataset often necessitates evaluating multiple models. This process can be computation-
ally expensive and time-consuming, especially for large corpora, due to the need for re-embedding
the entire dataset with each new model. This paper introduces a unified framework to address this
challenge. We propose an efficient Embedding-Converter that enables seamless transitions between
different embedding models without requiring recomputation of the entire embedding space. This
tool empowers machine learning practitioners to readily evaluate various models on their datasets
and facilitates effortless migration between models, fostering greater flexibility and efficiency in the
development and deployment of embedding-based applications.

2.2 VECTOR SPACE TRANSFORMATION

The task of converting embeddings between different models can be framed as a vector space trans-
formation problem, where the goal is to map numerical vectors from one vector space to another.
This is a classic problem in linear algebra with various established approaches, including linear
transformations (Marcus, 1971), change of basis (Shores et al., 2007), and kernel methods (Treves,
2013). However, these techniques often assume that the target vector spaces are not predefined,
which is not the case with pre-trained embedding models.

Existing research on cross-lingual embedding mapping, such as the work by (Artetxe et al., 2017)
and (Conneau et al., 2017), explores techniques for aligning word embedding spaces across different
languages. These methods, while relevant, primarily focus on word-level embeddings and might
not be directly applicable to embeddings for longer text. Domain adaptation is another related
area that investigates adapting embeddings from a source domain to a target domain. (Wang et al.,
2021) and (Schopf et al., 2023) propose methods for domain adaptation in embedding spaces, while
(Yoon et al., 2024) explore customizing pre-trained embeddings with labeled data. However, these
approaches are often tailored to specific domain adaptation scenarios. In contrast, the Embedding-
Converter proposed in this paper offers a more versatile solution, capable of converting any sentence
embedding from one model to another, regardless of the specific domain or task. This general-
purpose applicability distinguishes our approach from prior works and broadens its potential impact
across various embedding-based applications.

While some research explores model compatibility in the image domain, these approaches differ
significantly from ours. Methods like Backward Compatible Training (BCT) Shen et al. (2020); Hu
et al. (2022) require modifying the training process of new models, which is infeasible in our set-
ting where both models are pre-trained and fixed. Forward Compatible Training (FCT) Ramanujan
et al. (2022), while employing a converter similar to ours, relies on unavailable ”side information”.
Jaeckle et al. (2023) removes this requirement but focuses on online backfilling with different data
requirements and objectives. Crucially, all these works primarily target the image domain, whereas
our method demonstrates broader applicability.

3 METHODS: EMBEDDING-CONVERTER

This section introduces the proposed Embedding-Converter framework, designed to efficiently
‘translate’ embeddings from one model to another. While we demonstrate it using text embedding
models, the framework is versatile and can handle various data types, including images and even
multimodal data, for conversion of embedding models for them. Importantly, Embedding-Converter
works with any embedding model, even those accessible only as prediction APIs with hidden inter-
nal details. This greatly expands its applicability, as many embedding models are provided solely
via prediction-only APIs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 PROBLEM FORMULATION

The focus is to learn the transformation between two high dimensional spaces – specifically, we
aim to develop a method for converting text embeddings generated by a source embedding model,
denoted as f , into embeddings consistent with a target embedding model, denoted as g. Given a
text passage t ∈ T , where T represents the set of all text passages, we seek to construct a converter
function h such that h(f(t)) ' g(t). This function maps embeddings from the source space Rdf to
the target space Rdg , where df and dg represent the dimensions of the respective embedding spaces.

Our approach leverages unlabeled text data, denoted asD = {t1, t2, ..., tN}, comprising diverse text
passages. Notably, this method does not require labeled data depicting inter-passage relationships.
Any text corpus, such as the notable public ones like MSMarco (Bajaj et al., 2016) or Wikipedia cor-
pus, can be utilized. The learning objective is to identify the optimal converter h that maximizes the
similarity between the converted embedding and the corresponding target embedding for any given
text where the similarity measure can be defined using various criteria, including cosine similarity.

The proposed converter h is designed as a unified model capable of handling any text t ∈ T , irre-
spective of the dimensionality differences between the source and target embedding spaces. Conse-
quently, distinct converter functions would be required for different source-target embedding model
combinations. This contribution enables flexible utilization of various embedding models by facili-
tating seamless transitions between their respective embedding spaces.

3.2 LOSS FUNCTIONS

A straightforward approach for maximizing the similarity between converted and target embeddings
is to employ a regression loss function, which minimizes the distance between the two embedding
vectors. This can be expressed as:

Lreg =

N∑
t=1

||h(f(t))− g(t)||1. (1)

While this equation utilizes the mean absolute error, alternative regression losses, such as mean
squared error, could be employed as well. However, relying solely on regression loss is insufficient
for accurate embedding conversion, as demonstrated in the ablation study (see Table 6). To enhance
the fidelity of the conversion process, we introduce two supplementary loss functions designed to
preserve both global and local relationships within the embedding spaces. The first, a global similar-
ity loss (similar with (Park et al., 2019)), aims to maintain the overall distance between embeddings:

Lglobal =
∑

t1,t2∈D
|Dist(h(f(t1), h(f(t2)))− Dist(g(t1), g(t2))|. (2)

This loss function evaluates the difference in distances between pairs of randomly selected texts
in both the converted and target embedding spaces, thereby encouraging the preservation of global
structure (we utilize 1-cosine similarity as our distance metrics). The second, a local similarity loss,
focuses on preserving neighborhood relationships:

Llocal =
∑
t1∈D

∑
t2∈NNk(t1)

|Dist(h(f(t1), h(f(t2)))− Dist(g(t1), g(t2))|. (3)

For each text t1, this loss considers its k nearest neighbors (NNk(t1)) (based on target embedding
similarities) and penalizes discrepancies in their relative distances within the converted and target
embedding spaces, thus promoting local neighborhood preservation (k is set to 100 in experiments).
The impact of these additional loss functions on the embedding conversion process is empirically
evaluated in our experiments (see Table 6). Ultimately, the Embedding-Converter is jointly opti-
mized using a weighted combination of these three loss functions:

h∗ = argmin
h
Lreg + αLglobal + βLlocal, (4)

where α, β ≥ 0 are the hyperparameters controlling the relative importance of each loss component,
which can be tuned using a validation set. Note that we employ batch training for all three loss
functions to ensure computational efficiency.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 IMPLEMENTATION DETAILS

The proposed Embedding-Converter can be implemented using any architecture capable of map-
ping df -dimensional vectors to dg-dimensional vectors. In our experiments, we primarily employ
a 4-layer perceptron with SELU activations (Klambauer et al., 2017). As discussed in Sec. 5, a
Transformer architecture (Vaswani, 2017) yields slightly worse performance. Model selection and
hyperparameter optimization are guided by the retrieval performance. That is, the model and hy-
perparameter configuration that maximizes retrieval effectiveness on a held-out validation set is
selected. This criterion aligns with the practical objective of employing the converted embeddings
in retrieval tasks. Hyper-parameters and additional training details can be found in Appendix. C.

4 EXPERIMENTS

This section presents empirical evaluations of the Embedding-Converter’s performance across var-
ious scenarios. We first demonstrate the effectiveness in converting embeddings between different
versions of the same model. Subsequently, we assess the ability to bridge the embedding spaces of
distinct models. While our primary focus lies in evaluating the Embedding-Converter’s impact on
retrieval tasks, we also provide results on other embedding-dependent tasks, including text classi-
fication and semantic text similarity (STS) (Yang et al., 2018), to showcase broader applicability.
A detailed comparison of the computational time and cost associated with traditional corpus re-
embedding versus our proposed Embedding-Converter approach is presented in Appendix B.

4.1 EXPERIMENTAL SETTINGS

The Embedding-Converter is trained on a diverse set of text passages and queries drawn from 14
datasets in the BEIR benchmark (Thakur et al., 2021). We utilize a subset of the corpus data for
training: half of the corpus for datasets with fewer than 1 million passages, and 500,000 randomly
sampled passages for larger datasets (e.g., 10% of Fever, Climate-fever, and HotPotQA). To ensure
adequate representation of query-side distributions, we include the entire query set from the MS-
Marco dataset in the training data (∼ 500K queries). Consequently, MSMarco is excluded from
the in-domain evaluation to avoid potential bias. We evaluate the effectiveness of the Embedding-
Converter in two distinct settings: in-domain and out-of-domain. In-domain evaluation assesses per-
formance on the remaining 13 BEIR datasets using normalized Discounted Cumulative Gain at rank
10 (nDCG@10) as the retrieval metric (Järvelin & Kekäläinen, 2002). Out-of-domain generalization
is evaluated on 12 datasets from the CQADupStack benchmark (Hoogeveen et al., 2015), which are
entirely separate from the training data, using the same nDCG@10 metric. To further investigate the
versatility of the Embedding-Converter, we extend our analysis beyond retrieval encompassing other
embedding-dependent tasks, including text classification and STS. This evaluation provides insights
into the generalizability and transferability of the converted embeddings across diverse applications.
Dataset-specific details can be found in the Appendix D.

4.2 CONVERSION BETWEEN DIFFERENT MODEL VERSIONS

To evaluate the effectiveness of our Embedding-Converter in adapting to model updates, we utilize
different versions of Google’s Gecko text embedding models: gecko003 and gecko004 1. We be-
gin by generating embeddings for the training dataset using both gecko003 and gecko004 models.
This data is then used to train the Embedding-Converter, specifically to map embeddings from the
gecko003 space to the gecko004 space. For evaluation, we apply the trained converter to transform
the entire corpus of 13 BEIR datasets. We then assess retrieval performance in nDCG@10, compar-
ing three different embedding sets: (1) the original gecko003 embeddings, (2) the original gecko004
embeddings, and (3) the gecko003 embeddings converted to the gecko004 space using Embedding-
Converter. Crucially, we only convert the corpus embeddings; queries are consistently encoded
using the target model (gecko004) across all conditions. This design choice allows us to isolate and
specifically assess the impact of corpus embedding conversion on retrieval effectiveness, eliminating
any confounding effects from query embedding variations. For source/target model evaluation, we
use the source/target model for both query and corpus embedding, respectively.

1https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/
get-text-embeddings

5

https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Dataset
gecko003 → gecko004 openai-3-small → gecko004

gecko003 gecko004 Embedding openai-3-small gecko004 Embedding
(source) (target) -Converter (source) (target) -Converter

Arguana 0.5189 0.6070 0.6103 0.5530 0.6070 0.6049
Climate-fever 0.2540 0.3369 0.2959 0.2792 0.3369 0.2716

DBPedia 0.4128 0.4677 0.4322 0.4154 0.4677 0.4099
Fever 0.7431 0.8106 0.7786 0.7227 0.8106 0.7659
FiQA 0.4582 0.5481 0.5040 0.4048 0.5481 0.4393

HotpotQA 0.6248 0.6892 0.5923 0.6121 0.6892 0.6341
NFCorpus 0.3284 0.3503 0.3435 0.3314 0.3503 0.3479

NQ 0.5166 0.6058 0.5755 0.5254 0.6058 0.5653
Quora 0.8626 0.8621 0.8392 0.8881 0.8621 0.8346

SciDocs 0.1836 0.2041 0.1908 0.2092 0.2041 0.1995
SciFact 0.7221 0.7693 0.7601 0.7292 0.7693 0.7668

Trec-covid 0.7454 0.7840 0.8079 0.8285 0.7840 0.7983
Touche 0.2161 0.2565 0.2397 0.2723 0.2565 0.2706

Average 0.5067 0.5609 0.5362 0.5209 0.5609 0.5314

Table 1: In-domain retrieval performance (in nDCG@10) of the Embedding-Converter on 13 BEIR
datasets. Two conversion scenarios are presented: (i) intra-model conversion between different
versions of Google’s Gecko model (gecko003 to gecko004), and (ii) inter-model conversion from
OpenAI’s text-embedding-3-small model to Google’s gecko004. Bold represents better performance
than the source or target models.

Table 1 demonstrates the effectiveness of the proposed Embedding-Converter in adapting to model
updates. From gecko003 to gecko004, it yields a significant performance improvement over using
the original gecko003 embeddings. Notably, the average performance of the converted embeddings
is in the middle of source and target model performances for most datasets, while for some (e.g. Ar-
guana, NFCorpus, Trec-Covid and SciFact) the Embedding-Converter performance is almost simi-
lar to the target model. This result highlights the capability of Embedding-Converter to efficiently
transfer an entire corpus to a new embedding space with marginal performance degradation. Con-
sequently, leveraging newer model versions becomes feasible without incurring the computational
cost of re-embedding the entire corpus. As demonstrated in Appendix B, in practical scenarios,
Embedding-Converter yields O(100) times cost and runtime savings. It constitutes significant im-
plications to bring new paradigms for maintaining and updating large-scale retrieval systems.

4.3 CONVERSION ACROSS DIFFERENT MODEL FAMILIES

To further showcase the versatility of the proposed Embedding-Converter, we extend our evalu-
ation to scenarios involving conversions between different embedding models. Specifically, we
investigate converting embeddings from OpenAI’s text-embedding-3-small (openai-3-small) 2 to
Google’s gecko004. This experiment is particularly noteworthy as it involves models with different
embedding dimensions – openai-3-small produces 1536-dimensional embeddings, while gecko004
produces 768-dimensional embeddings. Maintaining the same experimental setup as before, we
evaluate the performance of a single Embedding-Converter trained to convert all corpora on the 13
BEIR datasets.

Table 1 demonstrates that even with inter-model conversion and a reduction in dimensionality,
the Embedding-Converter still achieves significant mitigation of retrieval performance degradation.
This result has important practical implications for machine learning developers. It enables efficient
evaluation of new embedding models on existing corpora without the need for computationally ex-
pensive re-embedding. More specifically, Table 1(right) reveals that the target model outperforms
the source model on 9 datasets, while the source model performs better on the remaining 4 datasets.
Traditionally, determining which model is superior for a given dataset would require computing em-
beddings using both models. However, the Embedding-Converter offers an alternative approach. By
comparing the performance with the source model, we can effectively approximate the comparisons

2https://platform.openai.com/docs/guides/embeddings

6

https://platform.openai.com/docs/guides/embeddings

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

between the source and target models without incurring the computational cost of generating target
embeddings. Our results demonstrate the effectiveness of this approach – the relative performance
of the source and target models is accurately predicted by the Embedding-Converter on 11 out of
the 13 datasets. This capability further highlights the value of the proposed Embedding-Converter.
By facilitating seamless transitions between different embedding spaces, it promotes flexibility and
reduces computational overhead in the development and deployment of embedding-based systems,
while also offering a valuable tool for preliminary model comparison and selection.

4.4 GENERALIZATION TO OUT-OF-DOMAIN DATA

While the strong in-domain performance across 13 diverse datasets with a single Embedding-
Converter is encouraging, evaluating its generalization capability on unseen data is paramount for
practical applications. For generalizability to unseen tasks, out-of-domain performance is critical,
as their specific data are likely to differ substantially from the datasets used in training. To assess
the effectiveness in such scenarios, we evaluate its performance on 12 out-of-domain datasets from
the CQADupStack benchmark, which are excluded from the training process.

Dataset
gecko003 → gecko004 openai-3-small → gecko004

gecko003 gecko004 Embedding openai-3-small gecko004 Embedding
(source) (target) -Converter (source) (target) -Converter

Android 0.5258 0.5780 0.5687 0.5414 0.5780 0.5576
English 0.5019 0.5411 0.5163 0.5006 0.5411 0.5017
Gaming 0.6288 0.6720 0.6422 0.6125 0.6720 0.6287

Gis 0.3982 0.4503 0.4223 0.4055 0.4503 0.4178
Mathematica 0.2908 0.3621 0.3329 0.3053 0.3621 0.3265

Physics 0.4738 0.5291 0.4981 0.4615 0.5291 0.4832
Programmers 0.4455 0.5027 0.4766 0.4342 0.5027 0.4627

Stats 0.3531 0.4036 0.3715 0.3581 0.4036 0.3644
Tex 0.2958 0.3517 0.3201 0.2925 0.3517 0.3018

Unix 0.4362 0.4980 0.4622 0.4349 0.4980 0.4498
Webmasters 0.4297 0.4954 0.4698 0.4105 0.4954 0.4466
Wordpress 0.3453 0.3923 0.3701 0.3434 0.3923 0.3493

Average 0.4271 0.4814 0.4542 0.4250 0.4814 0.4408

Table 2: Out-of-domain retrieval performance (nDCG@10) of the Embedding-Converter on 12
CQADupStack datasets. Two conversion scenarios are presented: (i) intra-model conversion be-
tween different versions of Google’s Gecko model (gecko003 to gecko004), and (ii) inter-model
conversion from OpenAI’s text-embedding-3-small model to Google’s gecko004. Bold represents
better performance than the source or target models.

Table 2 presents the results on this out-of-domain evaluation setting. Even in these challenging con-
ditions, the Embedding-Converter consistently outperforms the source model, both within the same
model family (gecko003 to gecko004) and across different models (openai-3-small to gecko004).
Although the performance gap compared to the target model is larger than the gap in the in-domain
setting, the Embedding-Converter still provides valuable means of estimating potential performance
gains before committing to the computationally expensive process of re-embedding the entire cor-
pus with the new model. It offers a preliminary performance guarantee when migrating to a new
embedding model, enabling informed decision-making and resource allocation. Here, the relative
performance of the source and target models is perfectly predicted by the Embedding-Converter.

4.5 PERFORMANCE ON OTHER TASKS BEYOND RETRIEVAL

While our primary focus has been on retrieval tasks, text embeddings are utilized in a wide range
of applications. The MTEB benchmark (Muennighoff et al., 2022) encompasses diverse tasks such
as classification, clustering, reranking, and STS, highlighting the versatility of embeddings. To
assess the broader applicability of our Embedding-Converter, we evaluate its performance on two
additional tasks: text classification and semantic text similarity. For classification, we use Toxic
Conversation (cjadams, 2019) and Tweet Sentiment Extraction (Maggie, 2020) datasets. For se-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

mantic text similarity, we use STS-13 (Agirre et al., 2013), STS-14 (Bandhakavi et al., 2014) and
STS-22 (Chen et al., 2022) datasets.

Task Dataset
gecko003 → gecko004 openai-3-small → gecko004

gecko003 gecko004 Embedding openai-3-small gecko004 Embedding
(source) (target) -Converter (source) (target) -Converter

Classi- Toxic 0.9341 0.9446 0.9392 0.9380 0.9446 0.9410
fication Tweet 0.7261 0.7535 0.7425 0.7476 0.7535 0.7434

Average 0.8301 0.8491 0.8409 0.8428 0.8491 0.8422

STS

STS-13 0.7712 0.8047 0.7982 0.8425 0.8047 0.8317
STS-14 0.7119 0.7403 0.7359 0.8001 0.7403 0.7586
STS-22 0.7019 0.7246 0.7080 0.6716 0.7246 0.6863

Average 0.7283 0.7565 0.7474 0.7714 0.7565 0.7589

Table 3: Classification and STS performances of Embedding-Converter in two different settings:
(i) within same model lineup but different versions (gecko003 → gecko004), (ii) across different
model lineup (openai-3-small→ gecko004) on 5 datasets. Bold represents better performance than
the source or target models.

Table 3 presents the performance of the Embedding-Converter on classification and STS tasks. In the
scenario of conversion from gecko003 to gecko004, the target model (gecko004) consistently out-
performs the source model (gecko003), and the Embedding-Converter achieves performance levels
between the two. This result demonstrates the converter’s ability to effectively transfer relevant
embedding properties for these tasks. For the openai-3-small to gecko004 conversion, the target
model performs better in 3 out of 5 cases, while the source model is superior in the remaining 2
cases. Notably, the Embedding-Converter accurately predicts the relative performance of the source
and target models in 4 out of these 5 cases. This further highlights the utility of the converter as a
tool for preliminary model comparison, even across different model families. Overall, these results
suggest that the converted embeddings successfully capture the semantic information encoded by
the target model, enabling their effective utilization in diverse downstream tasks beyond retrieval.
This generalization capability underscores the broader potential to facilitate efficient and flexible
deployment of embedding models across a wide range of applications including unseen scenarios.

4.6 LEVERAGING FOR LATENCY REDUCTION

Thus far, we’ve focused on using the Embedding-Converter to transform corpus embeddings, a
particularly valuable application when dealing with large corpora. The Embedding-Converter also
offers significant advantages in scenarios where query latency is a critical concern. Often, deploying
large embedding models for online query processing is impractical due to their high latency. While
corpus embeddings can be pre-computed offline to mitigate latency concerns, query embeddings
must be generated in real-time, making latency a significant bottleneck. Consequently, developers
might resort to using smaller embedding models for both queries and corpora, even though larger
models would yield better retrieval performance for the corpus.

The proposed Embedding-Converter offers a solution to this challenge. By decoupling corpus and
query embedding models, we can leverage the superior performance of larger models for corpus
embedding extraction while maintaining low query latency. This is achieved by employing a smaller
model for initial query embedding generation and then utilizing the Embedding-Converter to map
these embeddings to the space of the larger corpus embedding model.

To demonstrate this use case, we evaluate the performance of the Embedding-Converter when ap-
plied to queries instead of the corpus. The results, presented in Table 4, show that query conversion
achieves comparable performance to corpus conversion in most cases (except the in-domain conver-
sion case from openai-3-small). This finding highlights the potential of query conversion to improve
retrieval performance in latency-constrained environments. By enabling the use of larger models for
corpus embedding without sacrificing query speed, the Embedding-Converter offers a valuable tool
for optimizing the trade-off between accuracy and efficiency in real-world retrieval systems.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Methods
gecko003 → gecko004 openai-3-small → gecko004

In-domain Out-domain In-domain Out-domain

Source embedding model 0.5067 0.4271 0.5209 0.4250
Target embedding model 0.5609 0.4814 0.5609 0.4814

Corpus converter 0.5362 0.4542 0.5314 0.4408
Query converter 0.5263 0.4348 0.5171 0.4342

Table 4: Embedding-Converter on query converting scenarios with two different settings: (i) within
same model lineup but different versions (gecko003→ gecko004), (ii) across different model lineup
(openai-3-small→ gecko004). Bold represents better performance than the source or target models.

5 DISCUSSIONS

5.1 FURTHER ANALYSES OF EMBEDDING-CONVERTER PERFORMANCE

While evaluating the Embedding-Converter on downstream tasks, as presented in Section 4, provides
valuable insights into its practical utility, a comprehensive assessment necessitates further analysis
of its ability to accurately align embedding spaces. This section delves into this aspect by employing
quantitative metrics, specifically distance-based measures, to evaluate the converter’s performance
independent of specific downstream tasks.

We conduct this analysis by examining both global and local distances among corpus embeddings.
Global distances provide a macroscopic view of the embedding space, capturing its overall struc-
ture and organization. Conversely, local distances offer a microscopic perspective, focusing on the
preservation of relationships within local neighborhoods of the embedding space. By analyzing
both the global and local distances, we gain a comprehensive understanding of the Embedding-
Converter’s efficacy in accurately mapping embeddings between different models while preserving
the inherent structure of the embedding spaces.

Settings Methods
gecko003 → gecko004 openai-3-small → gecko004

Global distance Local distance Global distance Local distance

In-domain Source model 0.1053 0.0246 0.2346 0.1260
Converter 0.0393 0.0163 0.0191 0.0205

Out-domain Source model 0.0805 0.0217 0.1811 0.1291
Converter 0.0325 0.0176 0.0179 0.0195

Table 5: Comparison of global and local distance metrics (i.e., Eq. 2 and 3, lower the better) for
the Embedding-Converter on 13 BEIR and 12 CQADupStack datasets. Two conversion scenar-
ios are presented: (i) intra-model conversion between different versions of Google’s Gecko model
(gecko003 to gecko004), and (ii) inter-model conversion from OpenAI’s text-embedding-3-small
model to Google’s gecko004. Bold represents better performance than the source model.

Table 5 shows that the Embedding-Converter effectively aligns both global and local distances be-
tween the converted embeddings and the target embeddings, preserving meaningful positioning.
This result underscores the ability to accurately capture and replicate the inherent structural proper-
ties of the target embedding space, further validating efficacy in facilitating cross-model mapping.
Further experiments evaluating our method in diverse practical settings, including reverse conver-
sion, handling mixed embeddings, and bridging open-source to black-box models, can be found in
the appendix.

5.2 ABLATION STUDIES

We investigate the contributions of different loss functions and architectural choices in the over-
all performance. Recall that the Embedding-Converter is trained using a combination of three loss
functions: a regression loss (Lreg), a global loss (Lglobal), and a local loss (Llocal). In our abla-
tion studies, we analyze the effect of removing these loss components. Additionally, we explore

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the impact of architectural variations by replacing the default multi-layer perceptron (MLP) with a
Transformer architecture. By systematically analyzing the effects of these modifications, we aim to
identify the key components driving the Embedding-Converter’s performance and gain insights into
their individual contributions.

Variants Performances

Global distance Local distance Retrieval

No Lglobal & Llocal 0.0452 0.0237 0.5219

Transformer architecture 0.0233 0.0211 0.5273
Small networks (20% parameters) 0.0203 0.0192 0.5263
Larger networks (5x parameters) 0.0177 0.0164 0.5329

Only with MSMarco 0.0351 0.0227 0.5194

No variants 0.0177 0.0163 0.5369

Table 6: Ablation studies across different variants of Embedding-Converter. Global distance, local
distance, and Retrieval performances are evaluated on out-domain retrieval tasks (with 12 CQADup-
Stack datasets). Here, we use the Embedding-Converter from gecko003 to gecko004.

Table 6 summarizes the results of our ablation studies, highlighting key factors influencing the
Embedding-Converter’s performance:

• Loss functions: Both global and local loss functions are crucial. Removing them leads to perfor-
mance degradation, especially in distance metrics, underscoring their complementary roles.

• Architecture variations: The choice of Transformer vs. MLP impacts performance, suggesting
sensitivity to architectural design choices, given sufficient model capacity and proper training.

• Model size: Smaller models (compared with original Embedding-Converter) exhibit slightly
lower performance due to reduced capacity for capturing complex relationships in embedding
spaces. Larger models perform consistent with original Embedding-Converter.

• Data diversity: Diverse training data significantly improves performance by enhancing gener-
alization and coverage across the embedding space (Fig. 2(a)). Relying solely on MSMarco is
insufficient for broad coverage.

6 CONCLUSIONS

This paper addresses the critical challenge of achieving seamless compatibility between different
embedding models. The lack of such compatibility hinders both machine learning practitioners, who
face difficulties in navigating model updates and selecting optimal models, and the overall robust-
ness of deployed systems. To overcome this limitation, we propose a unified Embedding-Converter,
capable of efficiently translating between different embedding models. In its design, we address the
unique challenges of learning how to convert embeddings efficiently via judicious chosen training
mechanisms and show that in many scenarios, the end-to-end performance with converted embed-
dings can be largely preserved. This contribution can empower practitioners with the flexibility to ef-
fortlessly transition between models, fostering greater experimentation and facilitating the adoption
of improved model versions. Furthermore, Embedding-Converter can encourage a paradigm shift
in model development practices. By emphasizing the importance of providing converters alongside
new model releases, a more user-centric approach is enabled for seamless migration from previous
versions. This fosters a dynamic and evolving ecosystem for embedding models, where innovation
and user experience are prioritized. This, in turn, contributes to a more robust and user-friendly
environment for developing and deploying embedding-based applications.

REFERENCES

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. *SEM 2013
shared task: Semantic textual similarity. In Mona Diab, Tim Baldwin, and Marco Baroni
(eds.), Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1:

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity, pp.
32–43, Atlanta, Georgia, USA, June 2013. Association for Computational Linguistics. URL
https://aclanthology.org/S13-1004.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 451–462, 2017.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated
machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

Anil Bandhakavi, Nirmalie Wiratunga, Deepak P, and Stewart Massie. Generating a word-emotion
lexicon from #emotional tweets. In Johan Bos, Anette Frank, and Roberto Navigli (eds.), Proceed-
ings of the Third Joint Conference on Lexical and Computational Semantics (*SEM 2014), pp.
12–21, Dublin, Ireland, August 2014. Association for Computational Linguistics and Dublin City
University. doi: 10.3115/v1/S14-1002. URL https://aclanthology.org/S14-1002.

Xi Chen, Ali Zeynali, Chico Camargo, Fabian Flöck, Devin Gaffney, Przemyslaw Grabowicz, Scott
Hale, David Jurgens, and Mattia Samory. SemEval-2022 task 8: Multilingual news article sim-
ilarity. In Guy Emerson, Natalie Schluter, Gabriel Stanovsky, Ritesh Kumar, Alexis Palmer,
Nathan Schneider, Siddharth Singh, and Shyam Ratan (eds.), Proceedings of the 16th Interna-
tional Workshop on Semantic Evaluation (SemEval-2022), pp. 1094–1106, Seattle, United States,
July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.semeval-1.155.
URL https://aclanthology.org/2022.semeval-1.155.

inversion Jeffrey Sorensen Lucas Dixon Lucy Vasserman nithum cjadams, Daniel Borkan.
Jigsaw unintended bias in toxicity classification, 2019. URL https://kaggle.com/
competitions/jigsaw-unintended-bias-in-toxicity-classification.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
Word translation without parallel data. arXiv preprint arXiv:1710.04087, 2017.

Doris Hoogeveen, Karin M Verspoor, and Timothy Baldwin. Cqadupstack: A benchmark data set
for community question-answering research. In Proceedings of the 20th Australasian document
computing symposium, pp. 1–8, 2015.

Weihua Hu, Rajas Bansal, Kaidi Cao, Nikhil Rao, Karthik Subbian, and Jure Leskovec. Learning
backward compatible embeddings. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 3018–3028, 2022.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padman-
abhan, Giuseppe Ottaviano, and Linjun Yang. Embedding-based retrieval in facebook search.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2553–2561, 2020.

Florian Jaeckle, Fartash Faghri, Ali Farhadi, Oncel Tuzel, and Hadi Pouransari. Fastfill: Efficient
compatible model update. arXiv preprint arXiv:2303.04766, 2023.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Advances in neural information processing systems, 30, 2017.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024a.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled from large
language models. arXiv preprint arXiv:2403.20327, 2024b.

11

https://aclanthology.org/S13-1004
https://aclanthology.org/S14-1002
https://aclanthology.org/2022.semeval-1.155
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Wei Chen Maggie, Phil Culliton. Tweet sentiment extraction, 2020. URL https://kaggle.
com/competitions/tweet-sentiment-extraction.

Marvin Marcus. Linear transformations on matrices. J. Res. Nat. Bur. Standards Sect. B, 75:107–
113, 1971.

Niklas Muennighoff, Nouamane Tazi, Loı̈c Magne, and Nils Reimers. Mteb: Massive text embed-
ding benchmark. arXiv preprint arXiv:2210.07316, 2022.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qim-
ing Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al. Text and code embeddings by
contrastive pre-training. arXiv preprint arXiv:2201.10005, 2022.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent Y Zhao,
Yi Luan, Keith B Hall, Ming-Wei Chang, et al. Large dual encoders are generalizable retrievers.
arXiv preprint arXiv:2112.07899, 2021.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3967–3976,
2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Vivek Ramanujan, Pavan Kumar Anasosalu Vasu, Ali Farhadi, Oncel Tuzel, and Hadi Pouransari.
Forward compatible training for large-scale embedding retrieval systems. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19386–19395, 2022.

Shafiq Rayhan Joty Caiming Xiong Yingbo Zhou Semih Yavuz Rui Meng, Ye Liu. Sfr-embedding-
mistral:enhance text retrieval with transfer learning. Salesforce AI Research Blog, 2024. URL
https://blog.salesforceairesearch.com/sfr-embedded-mistral/.

Tim Schopf, Dennis N Schneider, and Florian Matthes. Efficient domain adaptation of sentence
embeddings using adapters. arXiv preprint arXiv:2307.03104, 2023.

Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto. Towards backward-compatible repre-
sentation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6368–6377, 2020.

Thomas S Shores et al. Applied linear algebra and matrix analysis, volume 2541. Springer, 2007.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A
heterogenous benchmark for zero-shot evaluation of information retrieval models. arXiv preprint
arXiv:2104.08663, 2021.

François Treves. Topological vector spaces, distributions and kernels. Courier Corporation, 2013.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. Gpl: Generative pseudo labeling
for unsupervised domain adaptation of dense retrieval. 12 2021. URL https://arxiv.org/
abs/2112.07577.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

12

https://kaggle.com/competitions/tweet-sentiment-extraction
https://kaggle.com/competitions/tweet-sentiment-extraction
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://arxiv.org/abs/2112.07577
https://arxiv.org/abs/2112.07577

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Suhang Wang, Jiliang Tang, Charu Aggarwal, and Huan Liu. Linked document embedding for
classification. In Proceedings of the 25th ACM international on conference on information and
knowledge management, pp. 115–124, 2016.

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong, Noah Constant, Petr Pilar, Heming Ge, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. Learning semantic textual similarity from conver-
sations. arXiv preprint arXiv:1804.07754, 2018.

Jinsung Yoon, Yanfei Chen, Sercan Arik, and Tomas Pfister. Search-adaptor: Embedding customiza-
tion for information retrieval. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 12230–12247, 2024.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
Wu. Coca: Contrastive captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917, 2022.

Andrew Zhai, Hao-Yu Wu, Eric Tzeng, Dong Huk Park, and Charles Rosenberg. Learning a unified
embedding for visual search at pinterest. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2412–2420, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A VISUALIZATION OF EMBEDDING SPACES

80 60 40 20 0 20 40 60

80

60

40

20

0

20

40

scifact
arguana
nfcorpus
scidocs
fiqa
treccovid
touche
quora
msmarco

(a) Embeddings of 9 BEIR datasets

60 40 20 0 20 40

75

50

25

0

25

50

75

scifact-gecko004
scifact-gecko003

(b) Embeddings across 2 models

20 10 0 10 20 30 40

40

50

60

70

80

90 scifact-gecko004
scifact-converter

(c) Embeddings with converter

Figure 2: t-SNE visualization of embedding spaces across different corpora and models. (a) Em-
beddings of 9 diverse corpora from the BEIR datasets, highlighting the variability in embedding
distributions across different datasets. (b) Comparison of gecko003 and gecko004 embeddings for
the SciFact dataset, showcasing how different the embedding spaces between different model ver-
sions can be for the same dataset. (c) Embeddings of the gecko004 model and embeddings converted
from gecko003 using the Embedding-Converter. The high degree of overlap indicates the successful
alignment of embedding spaces achieved by the Embedding-Converter.

B COMPUTATIONAL COMPLEXITY

To quantify the computational benefits of the proposed Embedding-Converter, we analyze both the
computational cost and processing time across various scenarios. We assume a consistent document
length of 256 tokens and utilize three different embedding models with varying pricing and request-
per-minute (RPM) limitations, as detailed below. This analysis provides a concrete assessment of
the efficiency gains achieved by leveraging the Embedding-Converter compared to the traditional
approach of re-embedding the entire corpus.

• Openai-3-large:
– Price: $0.065 / 1M tokens 3

– RPM: 1M tokens 4 (with free tier)
• Openai-3-small

– Price: $0.010 / 1M tokens
– RPM: 1M tokens (with free tier)

• Gecko004:
– Price: $0.00002 / 1K characters (i.e., $0.08 / 1M tokens when we assume average 4

characters per one token)5

– RPM: 7500 inputs 6

While OpenAI’s embedding API can offer higher RPM at its highest tier, potentially reducing com-
putation time, it still remains significantly slower than our Embedding-Converter. Furthermore, the

3https://openai.com/api/pricing/
4https://platform.openai.com/docs/guides/rate-limits/usage-tiers?

context=tier-free
5https://cloud.google.com/vertex-ai/generative-ai/pricing
6https://cloud.google.com/vertex-ai/generative-ai/docs/quotas#

text-embedding-limits

14

https://openai.com/api/pricing/
https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-free
https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-free
https://cloud.google.com/vertex-ai/generative-ai/pricing
https://cloud.google.com/vertex-ai/generative-ai/docs/quotas##text-embedding-limits
https://cloud.google.com/vertex-ai/generative-ai/docs/quotas##text-embedding-limits

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Embedding model Corpus size
Computational cost Computational time

Baseline Embedding Baseline Embedding
-Converter -Converter

Openai-3-large 1B $16640 $185 4266 hours 37 hours
50M $832 $10 213 hours 1.9 hours

Openai-3-small 1B $2560 $115 4266 hours 23 hours
50M $128 $6 213 hours 1.2 hours

gecko004 1B $20480 $75 2222 hours 15 hours
50M $1024 $4 111 hours 0.8 hours

Table 7: Computational cost and time comparisons with Embedding-Converter for different corpus
sizes. Baseline refers to recomputation of the entire corpus using the correspond embedding models.

cost per API call is consistent across all tiers, offering no cost advantage for higher RPM usage. In
contrast, our Embedding-Converter exhibits remarkable efficiency gains with modest compute, and
even without low-level engineering optimizations. It can process a corpus of size 50 million in un-
der 2 hours, including data loading. For inference alone, using a pre-trained Embedding-Converter
takes a mere 20 minutes to process the same corpus with openai-3-small. This represents a speed
improvement of over 100x compared to traditional corpus re-embedding.

The Embedding-Converter utilizes 2 V100 GPUs, incurring an hourly cost of $4.96 on Cloud7. This
results in a computational cost reduction exceeding 100x compared to directly generating embed-
dings with the target model. These findings underscore the substantial efficiency gains offered by our
Embedding-Converter. It provides a compelling solution for migrating to new embedding models,
enabling both cost and time savings, especially when handling large-scale corpora.

C HYPER-PARAMETERS & TRAINING DETAILS

As the Embedding-Converter architecture, we employ a 4-layer multi-layer perceptron (MLP) model
with hidden state dimensions of (5x output-dimension, 5x output-dimension, 5x output-dimension,
output-dimension). Therefore, when converting between gecko003 and gecko004 embeddings, the
Embedding-converter comprises 35 million parameters. We utilize the SELU activation function and
apply L2 normalization to the output. Optimization is performed using the Adam optimizer with a
learning rate of 0.001. Training proceeds for 50,000 iterations, with batches sampled uniformly
from each of the 14 BEIR datasets to mitigate dataset bias and enhance coverage. This balanced
sampling strategy involves selecting an equal number of batches from each dataset, with a batch
size of 64. Validation performance is evaluated every 250 iterations, and the model yielding the best
validation performance is selected. In all experiments, we utilized the Scifact dataset (comprising
1109 queries, 1258 labels, and 5183 corpus passages) for validation data. The hyperparameters α
and β, which control the weighting of the global and local loss functions, are tuned within the range
of [0.01, 1.0]. In most cases, α = β = 0.1 consistently yielded strong results. For the local distance
loss, we consistently set the neighborhood size (k) to 100 across all experiments.

D DATA STATISTICS

D.1 BEIR DATASETS

7https://cloud.google.com/compute/gpus-pricing

15

https://cloud.google.com/compute/gpus-pricing

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Datasets Number of Number of Number of
queries test pairs corpus

Arguana 1406 1406 8674
Climate-fever 1535 4681 5416593

DBPedia 467 49188 4635922
Fever 123142 148022 5416568
FiQA 6648 15872 57638

HotPotQA 97852 184810 5233329
NFCorpus 3237 122909 3633

NQ 3452 4201 2681468
Quora 15000 23301 522931

SciDocs 1000 29928 25657
SciFact 1109 1258 5183

Trec-Covid 50 66336 171332
Touche 49 2214 382545

Table 8: The statistics of 13 BEIR datasets (sorted by the alphabetical order).

D.2 CQADUPSTACK DATASETS

Datasets Number of Number of Number of
queries test pairs corpus

Android 699 1696 22998
English 1570 3765 40221
Gaming 1595 2263 45301

Gis 885 1114 37637
Mathematica 804 1358 16705

Physics 1039 1933 38316
Programmers 876 1675 32176

Stats 652 913 42269
Tex 2906 5154 68184

Unix 1072 1693 47382
Webmasters 506 1395 17405
Wordpress 541 744 48605

Table 9: The statistics of 12 CQADupStack datasets (sorted by alphabetical order).

D.3 STS AND CLASSIFICATION DATASETS

Tasks Datasets Number of Number of Number of
train samples test samples classes

Classification Toxic 50000 50000 2
Tweet 27481 3534 3

STS
STS-13 - 1500 -
STS-14 - 3750 -
STS-22 - 197 -

Table 10: The statistics of 2 classification and 3 STS datasets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS

E.1 CONVERTING FROM NEW TO OLD EMBEDDING MODELS

To further validate the versatility of our Embedding-Converter, we conducted experiments where
the conversion direction was reversed: from a newer embedding model to an older one. This sce-
nario might arise when developers need to ”downgrade” their embedding models due to resource
constraints or compatibility requirements. Specifically, we used Gecko-004 as the source model and
Gecko-003 as the target, effectively reversing the conversion direction presented in Table 1 (left) and
Table 2 (left) of the main manuscript.

Dataset
gecko004 → gecko003 gecko004 → openai-3-small

gecko004 gecko003 Embedding gecko004 openai-3-small Embedding
(source) (target) -Converter (source) (target) -Converter

Arguana 0.6070 0.5189 0.5148 0.6070 0.5530 0.5713
Climate-fever 0.3369 0.2540 0.2905 0.3369 0.2792 0.2931

DBPedia 0.4677 0.4128 0.3979 0.4677 0.4154 0.3898
Fever 0.8106 0.7431 0.7327 0.8106 0.7227 0.6972
FiQA 0.5481 0.4582 0.4824 0.5481 0.4048 0.4507

HotpotQA 0.6892 0.6248 0.5794 0.6892 0.6121 0.5519
NFCorpus 0.3503 0.3284 0.3347 0.3503 0.3314 0.3318

NQ 0.6058 0.5166 0.5147 0.6058 0.5254 0.5151
Quora 0.8621 0.8626 0.8369 0.8621 0.8881 0.8396

SciDocs 0.2041 0.1836 0.1743 0.2041 0.2092 0.1928
SciFact 0.7693 0.7221 0.7227 0.7693 0.7292 0.7074

Trec-covid 0.7840 0.7454 0.7187 0.7840 0.8285 0.8278
Touche 0.2565 0.2161 0.2423 0.2565 0.2723 0.2684

Average 0.5609 0.5067 0.5032 0.5609 0.5209 0.5105

Table 11: In-domain retrieval performance (in nDCG@10) of the Embedding-Converter on 13 BEIR
datasets. Two conversion scenarios are presented: (i) intra-model conversion between different
versions of Google’s Gecko model (gecko004 to gecko003), and (ii) inter-model conversion from
Google’s gecko004 to OpenAI’s text-embedding-3-small model.

The results, shown in Table 11 (left) and Table 12 (left), demonstrate that the performance of our
Embedding-Converter remains remarkably consistent with that of the target (older) model. This
finding underscores the flexibility of our approach and its ability to support both upgrading and
downgrading of embedding models, catering to a wider range of practical use cases.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E.2 CONVERTING FROM SMALLER DIMENSIONAL EMBEDDING TO LARGER DIMENSIONAL
EMBEDDINGS

While the main manuscript focused on embedding conversion between models with the same dimen-
sionality or where the target model has smaller dimensionality, we further investigated the scenario
where the target model possesses larger embedding dimensions. This represents another challenging
yet practical use case, as newer embedding models often exhibit increased dimensionality.

To evaluate this scenario, we trained and evaluated our Embedding-Converter with gecko004 (768
dimensions) as the source model and openai-3-small (1536 dimensions) as the target.

Dataset
gecko004 → gecko003 gecko004 → openai-3-small

gecko004 gecko003 Embedding gecko004 openai-3-small Embedding
(source) (target) -Converter (source) (target) -Converter

Android 0.5780 0.5258 0.5172 0.5780 0.5414 0.5374
English 0.5411 0.5019 0.4785 0.5411 0.5006 0.4844
Gaming 0.6720 0.6288 0.6175 0.6720 0.6125 0.6052

Gis 0.4503 0.3982 0.4008 0.4503 0.4055 0.3951
Mathematica 0.3621 0.2908 0.2879 0.3621 0.3053 0.2984

Physics 0.5291 0.4738 0.4750 0.5291 0.4615 0.4670
Programmers 0.5027 0.4455 0.4479 0.5027 0.4342 0.4460

Stats 0.4036 0.3531 0.3444 0.4036 0.3581 0.3384
Tex 0.3517 0.2958 0.2849 0.3517 0.2925 0.2879

Unix 0.4980 0.4362 0.4287 0.4980 0.4349 0.4329
Webmasters 0.4954 0.4297 0.4345 0.4954 0.4105 0.4338
Wordpress 0.3923 0.3453 0.3289 0.3923 0.3434 0.3334

Average 0.4814 0.4271 0.4205 0.4814 0.4250 0.4217

Table 12: Out-of-domain retrieval performance (nDCG@10) of the Embedding-Converter on 12
CQADupStack datasets. Two conversion scenarios are presented: (i) intra-model conversion be-
tween different versions of Google’s Gecko model (gecko004 to gecko003), and (ii) inter-model
conversion from Google’s gecko004 to OpenAI’s text-embedding-3-small model.

The results, presented in Table 11 (right) and Table 12 (right), demonstrate that our method suc-
cessfully handles this conversion with only marginal performance degradation. This finding further
reinforces the robustness and generalizability of the Embedding-Converter, showcasing its ability to
effectively bridge embedding spaces even when the target dimensionality exceeds that of the source.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E.3 EMBEDDING-CONVERTER WITH MIXED EMBEDDINGS

Real-world applications often involve dynamic corpus sets where new documents are continuously
added. Embedding-Converter also offers a significant advantage in such scenarios. Instead of re-
quiring the conversion of new documents into the source embedding space before generating target
embeddings, we can directly embed them using the target embedding model. This results in a corpus
containing a mixture of converted embeddings (from older documents) and new embeddings (from
recently added documents). To evaluate the effectiveness of our embedding converter in this mixed
setting, we conducted experiments where half of the corpus embeddings were randomly replaced
with target embeddings.

Dataset
gecko003 → gecko004

gecko003 gecko004 Embedding-Converter

(source) (target) Standard Mixed

Arguana 0.5189 0.6070 0.6103 0.6082
Climate-fever 0.2540 0.3369 0.2959 0.3124

DBPedia 0.4128 0.4677 0.4322 0.4486
Fever 0.7431 0.8106 0.7786 0.7946
FiQA 0.4582 0.5481 0.5040 0.5196

HotpotQA 0.6248 0.6892 0.5923 0.6410
NFCorpus 0.3284 0.3503 0.3435 0.3466

NQ 0.5166 0.6058 0.5755 0.5435
Quora 0.8626 0.8621 0.8392 0.8304

SciDocs 0.1836 0.2041 0.1908 0.1963
SciFact 0.7221 0.7693 0.7601 0.7671

Trec-covid 0.7454 0.7840 0.8079 0.7865
Touche 0.2161 0.2565 0.2397 0.2481

Average 0.5067 0.5609 0.5362 0.5419

Table 13: In-domain retrieval performance (in nDCG@10) of the Embedding-Converter on 13 BEIR
datasets from gecko003 to gecko004. Two conversion scenarios are presented: (i) Standard: with
100% converted corpus, (ii) Mixed: with 50% converted corpus and 50% target corpus.

The results, presented in Table 13 and 14, demonstrate that performance in this mixed setting actu-
ally surpasses the scenario where all embeddings are converted. This observation highlights two key
strengths of our approach: (i) Compatibility: The converted embeddings seamlessly integrate with
the new embeddings, indicating strong compatibility between the two spaces. (ii) Generalizability:
Our embedding converter effectively handles the practical scenario of mixed embeddings, further
validating its robustness and applicability.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Dataset
gecko003 → gecko004

gecko003 gecko004 Embedding-Converter

(source) (target) Standard Mixed

Android 0.5258 0.5780 0.5687 0.5632
English 0.5019 0.5411 0.5163 0.5255
Gaming 0.6288 0.6720 0.6422 0.6547

Gis 0.3982 0.4503 0.4223 0.4394
Mathematica 0.2908 0.3621 0.3329 0.3490

Physics 0.4738 0.5291 0.4981 0.5148
Programmers 0.4455 0.5027 0.4766 0.4877

Stats 0.3531 0.4036 0.3715 0.3846
Tex 0.2958 0.3517 0.3201 0.3323

Unix 0.4362 0.4980 0.4622 0.4775
Webmasters 0.4297 0.4954 0.4698 0.4781
Wordpress 0.3453 0.3923 0.3701 0.3807

Average 0.4271 0.4814 0.4542 0.4656

Table 14: Out-of-domain retrieval performance (nDCG@10) of the Embedding-Converter on 12
CQADupStack datasets from gecko003 to gecko004. Two conversion scenarios are presented: (i)
Standard: with 100% converted corpus, (ii) Mixed: with 50% converted corpus and 50% target
corpus.

E.4 EMBEDDING-CONVERTER WITH MULTIPLE VERSIONS OF EMBEDDING MODELS

The landscape of embedding models is constantly evolving, with new versions frequently released.
This raises the practical challenge of converting embeddings across multiple model iterations. For
example, a user might need to transition from gecko003 to GTE-Large and then to gecko004.

While a direct conversion from gecko003 to gecko004 is possible, we also investigated the feasibility
of utilizing a sequence of converters: gecko003 to GTE-Large followed by GTE-Large to gecko004.
This approach could be advantageous in scenarios where direct conversion is computationally ex-
pensive or when intermediate embeddings are required.

Dataset
gecko003 → gecko004

gecko003 gecko004 Embedding-Converter

(source) (target) Direct Multiple

Arguana 0.5189 0.6070 0.6103 0.5812
FiQA 0.4582 0.5481 0.5040 0.4903

NFCorpus 0.3284 0.3503 0.3435 0.3470
Quora 0.8626 0.8621 0.8392 0.8361

SciDocs 0.1836 0.2041 0.1908 0.1953
SciFact 0.7221 0.7693 0.7601 0.7626

Trec-covid 0.7454 0.7840 0.8079 0.7580
Touche 0.2161 0.2565 0.2397 0.2358

Average 0.5044 0.5609 0.5369 0.5258

Table 15: In-domain retrieval performance (in nDCG@10) of the Embedding-Converter on 8 BEIR
datasets from gecko002 to gecko004. Two conversion scenarios are presented: (i) Direct: converting
gecko003 to gecko004 directly, (ii) Multiple: converting gecko003 to GTE-Large first and then
converting GTE-Large to gecko004.

Our experiments compared the performance of these two strategies in Table 15. While direct con-
version yielded slightly better results, the difference was marginal. This observation highlights the
flexibility of our Embedding-Converter and its ability to effectively handle multi-version embed-
ding conversions, offering a practical solution for navigating the evolving landscape of embedding
models.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.5 CONVERTING OPEN-SOURCE MODEL TO BLACK-BOX MODEL

To further demonstrate the versatility of our Embedding-Converter, we extended our evaluation to
scenarios involving conversion between open-source and black-box embedding models. This is
crucial for ensuring compatibility and facilitating transitions across different model ecosystems.
Specifically, we converted embeddings from the open-source GTE-Large model Li et al. (2023) to
Google’s black-box gecko004 model.

Dataset
GTE-Large → gecko004

GTE-Large gecko004 Embedding
(source) (target) -Converter

Arguana 0.5928 0.6070 0.6081
FiQA 0.4434 0.5481 0.5059

NFCorpus 0.3391 0.3503 0.3478
Quora 0.8824 0.8621 0.8391

SciDocs 0.2330 0.2041 0.2080
SciFact 0.7402 0.7693 0.7689

Trec-covid 0.7053 0.7840 0.7628
Touche 0.2237 0.2565 0.2431

Average 0.5200 0.5477 0.5355

Table 16: In-domain retrieval performance (in nDCG@10) of the Embedding-Converter on 8 BEIR
datasets across inter-model conversion from GTE-Large to Google’s gecko004 model.

As shown in Table 16, the Embedding-Converter successfully bridges these two models across var-
ious BEIR datasets, maintaining strong performance. This result underscores the generalizability of
our approach and its ability to handle diverse conversion scenarios, including those involving both
open-source and proprietary embedding models.

21

	Introduction
	Related Work
	Embedding models
	Vector space transformation

	Methods: Embedding-Converter
	Problem Formulation
	Loss functions
	Implementation details

	Experiments
	Experimental settings
	Conversion Between Different Model Versions
	Conversion across Different Model Families
	Generalization to Out-of-Domain Data
	Performance on Other Tasks beyond Retrieval
	Leveraging for Latency Reduction

	Discussions
	Further Analyses of Embedding-Converter Performance
	Ablation studies

	Conclusions
	Visualization of embedding spaces
	Computational Complexity
	Hyper-parameters & training details
	Data statistics
	BEIR datasets
	CQADupStack datasets
	STS and Classification datasets

	Additional experiments
	Converting from new to old embedding models
	Converting from smaller dimensional embedding to larger dimensional embeddings
	Embedding-converter with mixed embeddings
	Embedding-converter with multiple versions of embedding models
	Converting open-source model to black-box model

