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Abstract

Report-writing of electromyogram can be prob-
lematic for under-experienced physicians and
time-consuming for experienced physicians. In
this paper, we explore to generate textual report
from tabular diagnostic records of electromyo-
gram. We construct the first dataset for this
task and demonstrate results of some baseline
approaches.

1 Introduction

Electromyography (EMG) refers to the muscle
bioelectrical pattern recorded with an electromyo-
graph (Ni et al., 2020). It is one of the major di-
agnostic tools for identifying and characterizing
disorders of the motor unit (Daube, 2002). After
the EMG examination, the physicians will get the
records of the electrical signals and perform a two-
step analysis. Firstly, they analyze the wave form
and convert signals to tabular data with pre-defined
format. Secondly, they interpret the tabular data to
a diagnosis report (Boon et al., 2008).

Figure 1 shows an anonymized EMG diagnostic
report. The reports consist of two sections, Find-
ings and Impression. The Findings section lists
the key diagnostic results revealed in the tabular
data. As for the Impression section, it contains an
anatomic or physiologic diagnosis but not a final
clinical diagnosis. The Impression should be brief,
yet clear and disclose as much information as possi-
ble. Intuitively, Findings can be seen as a summary
of tabular information, while Impression needs to
be inferred in conjunction with the physician’s clin-
ical experience (Katirji, 2002). In this paper, we
focus on the task of automatic report generation
from EMG tabular data.

There is already a considerable of work for
medical report generation (Jing et al., 2019; Liu
et al., 2019b; Zhang et al., 2020b)). However, they
mainly focus on x-ray images. Here, we intro-
duce a new dataset which contains anonymized
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Needle EMG revealed no denervation or reinnervation in the muscles examined. Nerve conduction studies
revealed mildly prolonged motor distal latency and slowed sensory nerve conduction velocity of left Median Nerve.

Impression:
RoR: EMEFHEMBEETRE, CISTEHR

‘These findings are consistent with a mild carpal tunnel syndrome on the left side.

Figure 1: An example of a EMG diagnostic report, upper
region is the tabular information of the electrophysio-
logical examination and lower region is the diagnostic
report

tabular result of electrophysiological examination
and corresponding diagnostic reports written by
physicians and demonstrate a pipeline to generate
diagnostic reports from tabular data of EMG exam-
ination. This is a the first attempt in this field.

Considering the heterogeneity of the Findings
and Impression, we treat the generation of EMG di-
agnostic report as two tasks, we generate Findings
and Impression separately from tabular information
of the electrophysiological examination. Both tasks
are formalized as table-to-text generation tasks. We
trained neural-based models on these two tasks
and tried to learn physicians’ clinical experience in
EMG diagnosis from a large number of real diag-
nostic reports.

2 Dataset and Task Description
2.1 Dataset

In this section, we introduce our new annotated
dataset MIME (Medical Information Mart for Elec-



Measurement Value
# of Samples 2,848
Vocab 549
Avg # of Records 266
Avg Length (Findings) 82

Avg Length (Impression) 29

Table 1: Dataset Statistics

tromyogram (Denny-Brown, 1949)), which in-
cludes anonymized tabular result of electrophysio-
logical examination and corresponding diagnostic
reports written by physicians (Wang et al., 2018).
In an electrophysiological examination, the patient
usually has multiple physical tests, including EMG,
NCYV, RNS, Blink, LET, SEP, MEP, SET, Inching,
etc (Miura et al., 2020). To build this dataset, we
kept diagnostic reports that contained only EMG
and NCYV tests (Judzewitsch et al., 1983) (around
85%), leaving more complex scenarios for future
work. The final dataset consists of 2,848 EMG
diagnostic reports of patients in Huashan Hospi-
tal Affiliated to Fudan University ! in 2006, 2007,
2010 and 2013, and it’s divided into 2278, 285,
285, as train, validation, test set respectively. Each
report in our dataset consists of three parts:

e Patient information (such as gender, height,
age)

e Pathological examination results (EMG &
NCV test, in tabular form)

¢ Diagnostic opinion (Findings & Impression, the
results of EMG and NCV test are summarized in
Findings section, the diagnostic results are summa-
rized in the Impression section).

To facilitate the evaluation of the generated Find-
ings quality of the model. We extract correspond-
ing quintuples (detection, location, project, target,
state) for each sentence in the test set, and each
quintuple describes the fact of a specific detection
item. The first four items can uniquely locate a cell
in the table, and the last item corresponds to the de-
scription of the unit state. We emphasize that such
an evaluation scheme is most appropriate when
evaluating generations that are primarily intended
to summarize information. While Impression needs
to be inferred in conjunction with the physician’s
clinical experience and there is very little overlap
between Impression and tabular information. De-
signing evaluation metrics for Impression will be
more difficult, and we will leave it for future work.

"https://www.huashan.org.cn/

Table 1 gives some basic statistics for our MIME
dataset. The vocabulary size is 549, which indi-
cates that the lexicon is very limited in our EMG
diagnostic report setting. The average number of
records in the table is 266, and the average length
of Findings and Impression are 82 and 29, respec-
tively.

2.2 Task Description

In this paper, we treat the generation of EMG di-
agnostic report as a table-to-text task. We generate
both Findings and Impression from tabular infor-
mation of the electrophysiological examination us-
ing a pre-trained language model (GPT2) (Radford
et al., 2019; Zhao et al., 2019), and two other non-
pretrained models as baselines. Details of these
models are described in the next section.

3 Methods

In this section, we will first introduce some nota-
tions, and then we will describe how to generate
EMG diagnostic reports using our models by spec-
ifying how are our models organized and how is
input arranged.

3.1 Notations

Consider the following notations:

e We use r,79,...,7, to denote a table T, and
for a regular table, each r represents a cell in the
table and have a 2-tuples form that contains column
name 7.k (key), and cell value r.v (value).

e We use y1, Y2, ..., y|7| denotes a piece of text Y,
and each y is a token or a word.

o Our dataset consists of (T, Y') pairs and it’s worth
noting that although we have multiple tables or text
segments, we can encode them in exactly the same
way, therefore, for convenience, we use the tuple
(T, Y) to represent input and output respectively.

3.2 Compared Models
3.2.1 Long Short Term Memory (LSTM)

Our model follows the standard encoder-decoder
architecture (Bahdanau et al., 2014), where the en-
coder encodes the table into hidden representations
and the decoder generates text conditioned on these
representations.

The first layer of the network consists in learning
two embedding matrices to embed the record keys
and values. Each record embedding is computed by
a linear projection on their concatenation. We use a
bidirectional LSTM (Hochreiter and Schmidhuber,
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Figure 2: Example of generation of Findings and Impression with gold reference

1997) on top of the cell embedding to obtain the
table representation. After the table is represented
as a sequence of vectors, a decoder based on LSTM
(Hochreiter and Schmidhuber, 1997) is applied to
generate text token by token.

3.2.2 Transformer

We linearize the table and feed the records into
standard Transformer (Vaswani et al., 2017). The
linearization of the table consists of a concatenation
of row cells. And since each cell (i.e. record) is
represented by the key and value, We concatenate
them together and get the representation of the cell
using a layer of MLP, which is same as the record
embedding layer described above.

3.2.3 GPT2

We follow previous work on linearizing knowl-
edge base as natural language (Liu et al., 2019a;
Zhang et al., 2020a) to propose “table lineariza-
tion”, which uses template to flatten the table T
as a document Pr = wi, -, wp| fed into pre-
trained language models to generate statement Y ,
where we use w; to denote the ¢-th word in the gen-
erated paragraph Pr and |T'| to denote the length
of the paragraph (the word wj; is either a table entry

or a functional word in the template). The orig-
inal table T is transformed into a paragraph by
horizontally scanning each cell in the table.

After table linearization, we directly feed the
paragraph Pr as the input to the pre-trained GPT-2
model and generate the output sentence Y. We
finetune the model on MIME by maximizing the
likelihood of p(Y'| Pr; 3), with 3 denoting the pa-
rameters of GPT-2 model (Radford et al., 2019;
Zhao et al., 2019).

3.3 Text Generation

For the generation of Findings or Impression based
on the table, we both use the three above-mentioned
table-to-text models, the only difference is the out
text.

4 Experiment & Result

We base our implementation on Huggingface’s
Transformer (Wolf et al., 2019) for GPT-2 (Radford
et al., 2019; Zhao et al., 2019) with word vocab-
ulary of 20K. The batch size is 2. The model is
finetuned using Adam optimizer (Kingma and Ba,
2017) with a learning rate of 1e-6.



Model B-1 B2 B4 R1 R2 RL TC TM CS-ace
LSTM 589 549 486 80.0 662 76.0 350 290 604
Transformer 72.0 684 622 854 742 819 424 345 723
GPT2 764 73.8 69.5 883 80.0 86.1 521 425 884

Table 2: Overall performance of different models for Findings generation. The best result is marked in bold. The
Prediction Accuracy of Cell State (CS-acc) represents the accuracy of the fifth state prediction for those accurate

4-tuples extracted by the model.

Model B-1 B-2 B4 R-1 R-2 R-L
LSTM 50.1 455 369 628 495 614
Transformer 53.0 48.6 394 655 53.1 644
GPT2 594 559 486 70.6 60.2 69.7

Table 3: Overall performance of different models for
Impression generation.

4.1 Result and Analysis

We use ROUGE (Lin, 2004) and BLEU (Pap-
ineni et al., 2002) scores to evaluate our model.
And we report BLEU-1, BLEU-2, BLEU-4 scores
and the Fj scores for unigram (ROUGE-1) and
bigram (ROUGE-2) and longest common subse-
quence overlap (ROUGE-L).

We also propose two information retrieval (IR)
based metrics. These metrics compare the gold and
generated descriptions and measure to what extent
the extracted facts are aligned or differ.First, we
apply an information extraction (IE) system to ex-
tract quintuple in Findings. The value ranges of
the first four items in the quintuple can be obtained
directly from the tables of the training set. The
last item is obtained from our manually labeled test
set(only 12). For example, in the sentence Tibial
nerve H reflex latency upper limit of normal., an IE
tool will extract the pair (Tibial nerve, -, H reflex,
latency, normal). Second, we compute two metrics
on the extracted information:

e Tuple Coverage (TC) estimates how well the
generated description containing the gold descrip-
tion in terms of mentioned quintuple. Obviously,
based on this simple entity extraction IE system,
each item in the 5-tuple may contain multiple ele-
ments at the same time. When only the extracted
quintuple contains the truly labeled quintuple, we
call it tuple coverage. For example, quintuple (ul-
nar nerve/tibial nerve, -, H reflex, latency, normal)
covers quintuple (tibial nerve, -, H reflex, latency,
normal).

e Tuple Matching (TM) measures how well the
system is able to generate text containing factual
(i.e., correct) facts. If and only if the two tuples are

exactly the same, we call it a match.

While ROUGE and BLEU is perhaps a reason-
ably effective way of evaluating text generation, we
note that it primarily rewards fluent text generation,
rather than generations that capture the most impor-
tant information in the database which is extremely
important for medical diagnosis. Our proposed IE
system can be used as an approximation to solve
this evaluation challenge. The result for Findings
generation is in the Table 2 and the result for Im-
pression generation is in the Table 3.

As is shown in the table, all models get relatively
good textual overlap with reference text. And the
pre-trained model achieves the best results on all
metrics benefit from the rich language information
contained in it. The extractive metrics provide fur-
ther insight into the behavior of the models. We
first note that on the gold documents y. 7| , the
extractive model reaches 70.5 coverage and 50.9
match rate. Using the LSTM model, generation
only has a tuple coverage (TC) of 35.0 indicating
that 4-tuples are often generated incorrectly. The
best pre-trained model improves this value to 52.1,
a significant improvement and potentially the cause
of the improved ROUGE and BLEU score, but still
far below gold. It is worth noting that all the mod-
els seem to get a relatively high prediction accuracy
for the fifth item on the accurately matched quadru-
ples. This shows that in the F'indings generation
task, it is more difficult to locate a specific position
in the table than to describe its state after finding
the precise location.

5 Conclusions

This paper explores the automatic generation of
electromyogram diagnostic report. We formal-
ize the generation as two tasks, namely, table-
to-findings and findings-to-impressions. To eval-
uate the generation results, we introduce both
token-level and fact-level evaluations. Results of
some baselines on our self-constructed dataset are
demonstrated.
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A Related Work

Data-to-text generation Wiseman, Shieber,
and Rush (Wiseman et al., 2017) introduced a
document-scale data-to-text dataset with relatively
large table records and long reference texts and
proposed extraction based evaluation metrics for
automatically evaluating generation quality. More
specifically, they introduced an information extrac-
tion module to evaluate content generation, and
ordering of the data-to-document model. Pudup-
pully, Dong and Lapata (Puduppully et al., 2019a)
model a content-selection and-planning module
separate from text generation, with the idea that
introducing a direct signal, i.e. a loss on orderly
selection of table records would improve gener-
ation performance. Gong, Feng, Qin, Bing and
Liu. (Gong et al., 2019) presented a hierarchical
encoder that learn records’ representation along
row and column and obtain row-level representa-
tion for subsequent decoding. Jain et al. (Jain
et al., 2018) proposed a mixed hierarchical atten-
tion based encoder-decoder model to leverage the
structural information in tables. Puduppully, Dong
and Latapa (Puduppully et al., 2019b) propose
an entity-centric architecture such that instead of

treating entities as ordinary tokens, they create dy-
namically updated entity-specific representations
and generates text using hierarchical attention on
table and entity memory cell.

Automatic Medical Report generation  Jing,
Xie and Xing (Jing et al., 2018) proposed a co-
attention mechanism to localize regions contain-
ing abnormalities and generate descriptive texts
for them. Jing, Wang and Xing (Jing et al., 2019)
proposed a multi-agent framework to exploit the
structural features within report sections for gen-
erating Chest X-ray Reports where they have two
agents for generating text about abnormal and nor-
mal results separately with the observation that the
distribution between abnormality and normality is
imbalanced and the wordings are quite different in
text describing abnormal and normal results. Liu et
al. (Liu et al., 2019b) proposed a generation model
which hierarchically first chooses topics and then
generates words from topics and they optimized
the model for clinical correctness which a proposed
clinically coherent reward via reinforment learning.
Zhang, Merck, Tsai, Manning and Langlotz (Zhang
et al., 2020b) leveraged an existing information ex-
traction module to extract a zero-one vector of 14
dimension indicating the presence or absence of 14
clinical observations in chest radiology reports and
apply reinforcement learning with a factual correct-
ness reward to improve the factuality of generated
reports.
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