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Abstract

Report-writing of electromyogram can be prob-001
lematic for under-experienced physicians and002
time-consuming for experienced physicians. In003
this paper, we explore to generate textual report004
from tabular diagnostic records of electromyo-005
gram. We construct the first dataset for this006
task and demonstrate results of some baseline007
approaches.008

1 Introduction009

Electromyography (EMG) refers to the muscle010

bioelectrical pattern recorded with an electromyo-011

graph (Ni et al., 2020). It is one of the major di-012

agnostic tools for identifying and characterizing013

disorders of the motor unit (Daube, 2002). After014

the EMG examination, the physicians will get the015

records of the electrical signals and perform a two-016

step analysis. Firstly, they analyze the wave form017

and convert signals to tabular data with pre-defined018

format. Secondly, they interpret the tabular data to019

a diagnosis report (Boon et al., 2008).020

Figure 1 shows an anonymized EMG diagnostic021

report. The reports consist of two sections, Find-022

ings and Impression. The Findings section lists023

the key diagnostic results revealed in the tabular024

data. As for the Impression section, it contains an025

anatomic or physiologic diagnosis but not a final026

clinical diagnosis. The Impression should be brief,027

yet clear and disclose as much information as possi-028

ble. Intuitively, Findings can be seen as a summary029

of tabular information, while Impression needs to030

be inferred in conjunction with the physician’s clin-031

ical experience (Katirji, 2002). In this paper, we032

focus on the task of automatic report generation033

from EMG tabular data.034

There is already a considerable of work for035

medical report generation (Jing et al., 2019; Liu036

et al., 2019b; Zhang et al., 2020b)). However, they037

mainly focus on x-ray images. Here, we intro-038

duce a new dataset which contains anonymized039

Figure 1: An example of a EMG diagnostic report, upper
region is the tabular information of the electrophysio-
logical examination and lower region is the diagnostic
report

tabular result of electrophysiological examination 040

and corresponding diagnostic reports written by 041

physicians and demonstrate a pipeline to generate 042

diagnostic reports from tabular data of EMG exam- 043

ination. This is a the first attempt in this field. 044

Considering the heterogeneity of the Findings 045

and Impression, we treat the generation of EMG di- 046

agnostic report as two tasks, we generate Findings 047

and Impression separately from tabular information 048

of the electrophysiological examination. Both tasks 049

are formalized as table-to-text generation tasks. We 050

trained neural-based models on these two tasks 051

and tried to learn physicians’ clinical experience in 052

EMG diagnosis from a large number of real diag- 053

nostic reports. 054

2 Dataset and Task Description 055

2.1 Dataset 056

In this section, we introduce our new annotated 057

dataset MIME (Medical Information Mart for Elec- 058
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Measurement Value
# of Samples 2,848
Vocab 549
Avg # of Records 266
Avg Length (Findings) 82
Avg Length (Impression) 29

Table 1: Dataset Statistics

tromyogram (Denny-Brown, 1949)), which in-059

cludes anonymized tabular result of electrophysio-060

logical examination and corresponding diagnostic061

reports written by physicians (Wang et al., 2018).062

In an electrophysiological examination, the patient063

usually has multiple physical tests, including EMG,064

NCV, RNS, Blink, LET, SEP, MEP, SET, Inching,065

etc (Miura et al., 2020). To build this dataset, we066

kept diagnostic reports that contained only EMG067

and NCV tests (Judzewitsch et al., 1983) (around068

85%), leaving more complex scenarios for future069

work. The final dataset consists of 2,848 EMG070

diagnostic reports of patients in Huashan Hospi-071

tal Affiliated to Fudan University 1 in 2006, 2007,072

2010 and 2013, and it’s divided into 2278, 285,073

285, as train, validation, test set respectively. Each074

report in our dataset consists of three parts:075

• Patient information (such as gender, height,076

age)077

• Pathological examination results (EMG &078

NCV test, in tabular form)079

• Diagnostic opinion (Findings & Impression, the080

results of EMG and NCV test are summarized in081

Findings section, the diagnostic results are summa-082

rized in the Impression section).083

To facilitate the evaluation of the generated Find-084

ings quality of the model. We extract correspond-085

ing quintuples (detection, location, project, target,086

state) for each sentence in the test set, and each087

quintuple describes the fact of a specific detection088

item. The first four items can uniquely locate a cell089

in the table, and the last item corresponds to the de-090

scription of the unit state. We emphasize that such091

an evaluation scheme is most appropriate when092

evaluating generations that are primarily intended093

to summarize information. While Impression needs094

to be inferred in conjunction with the physician’s095

clinical experience and there is very little overlap096

between Impression and tabular information. De-097

signing evaluation metrics for Impression will be098

more difficult, and we will leave it for future work.099

1https://www.huashan.org.cn/

Table 1 gives some basic statistics for our MIME 100

dataset. The vocabulary size is 549, which indi- 101

cates that the lexicon is very limited in our EMG 102

diagnostic report setting. The average number of 103

records in the table is 266, and the average length 104

of Findings and Impression are 82 and 29, respec- 105

tively. 106

2.2 Task Description 107

In this paper, we treat the generation of EMG di- 108

agnostic report as a table-to-text task. We generate 109

both Findings and Impression from tabular infor- 110

mation of the electrophysiological examination us- 111

ing a pre-trained language model (GPT2) (Radford 112

et al., 2019; Zhao et al., 2019), and two other non- 113

pretrained models as baselines. Details of these 114

models are described in the next section. 115

3 Methods 116

In this section, we will first introduce some nota- 117

tions, and then we will describe how to generate 118

EMG diagnostic reports using our models by spec- 119

ifying how are our models organized and how is 120

input arranged. 121

3.1 Notations 122

Consider the following notations: 123

• We use r1, r2, ..., rn to denote a table T, and 124

for a regular table, each r represents a cell in the 125

table and have a 2-tuples form that contains column 126

name r.k (key), and cell value r.v (value). 127

• We use y1, y2, ..., y|T | denotes a piece of text Y , 128

and each y is a token or a word. 129

• Our dataset consists of (T, Y ) pairs and it’s worth 130

noting that although we have multiple tables or text 131

segments, we can encode them in exactly the same 132

way, therefore, for convenience, we use the tuple 133

(T, Y ) to represent input and output respectively. 134

3.2 Compared Models 135

3.2.1 Long Short Term Memory (LSTM) 136

Our model follows the standard encoder-decoder 137

architecture (Bahdanau et al., 2014), where the en- 138

coder encodes the table into hidden representations 139

and the decoder generates text conditioned on these 140

representations. 141

The first layer of the network consists in learning 142

two embedding matrices to embed the record keys 143

and values. Each record embedding is computed by 144

a linear projection on their concatenation. We use a 145

bidirectional LSTM (Hochreiter and Schmidhuber, 146
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Findings 

EMG 

左下肢部分肌在静息下见纤颤、正尖波，轻收缩部分肌

MUP 见偏宽大电位伴不规则波和多相电位增多，重收缩

募集减少。 

 

(Some muscles of the left lower extremity showed 

fibrillation and positive sharp waves at rest. In the light 

contraction part of the muscles, MUP showed partial broad 

potential with increased irregular waves and polyphasic 

potentials, and reduced recruitment of re-contractions.) 

NCV 

左侧腓总神经 CMAP 波幅较对侧降低；余被检感觉和运动

神经传导速度和波幅正常范围。左侧胫神经 H 反射未引

出。 

(The CMAP amplitude of the left common peroneal nerve 

was lower than that of the contralateral side; the rest of the 

tested sensory and motor nerve conduction velocity and 

amplitude were normal. Left tibial nerve H reflex not 

elicited.) 

Impression 

神经源性损害肌电改变，累及左下肢部分肌，左侧 L5 根

性损害可考虑。 

(Neurogenic damage changes in myoelectricity, involving 

some muscles of the left lower limb, damage to the left L5 

root can be considered.) 

LS
T
M

 

Findings 

EMG 

右侧下肢部分肌见纤颤正尖波；轻收缩部分肌见 MUP 偏 

宽大或见巨大电位；重收缩募集减少。 

 

 

 

(Some muscles of the right lower extremity showed 

positive sharp waves of fibrillation; some muscles with light 

contraction saw MUP widening or huge potentials; 

recruitment of heavy contractions was reduced.) 

NCV 

右侧正中神经和尺神经运动传导 CMAP 波幅降低；余运动

和感觉神经传导速度和波幅正常范围。运动神经 F 波潜期

正常范围。 

(The motor conduction CMAP amplitude of the right 

median nerve and ulnar nerve decreased; the remaining 

motor and sensory nerve conduction velocity and 

amplitude were normal. Normal range of motor nerve F 

wave latency.) 

Impression 

神经源性损害肌电改变，累及右下肢部分肌。L5 根性损害

可考虑。 

 

 

 

(Neurogenic injury changes in electromyography, 

involving some muscles of the right lower limb. L5 root 

damage can be considered.) 
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Findings 

EMG 

左下肢部分肌见纤颤、正尖波；轻收缩左下肢部分肌见

MUP 偏宽大伴或不伴多相电位和不规则波增多；重收缩

募集减少。 

(Some muscles of the left lower extremity showed 

fibrillation and positive sharp waves; some muscles of the 

left lower extremity were slightly contracted, the MUP was 

widened with or without polyphasic potentials and 

irregular waves; the recruitment of re-contractions 

decreased.) 

NCV 

左侧腓总神经运动传导 CMAP 波幅略降低，余神经传导速

度和波幅正常范围。 

 

(The CMAP amplitude of the motor conduction of the left 

common peroneal nerve is slightly reduced, and the 

conduction velocity and amplitude of the remaining nerve 

are in the normal range.) 

 

Impression 

神经源性损害肌电改变，右 L5-S1 根性损害可考虑。 

 

 

(Neurogenic damage changes in myoelectricity, right L5-

S1 root damage can be considered.) 

G
P
T
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Findings 

EMG 

左下肢部分肌和左侧腓外肌见纤颤正尖波；轻收缩部分肌

见 MUP 部分偏宽大伴或不伴多相电位和不规则波增多；

重收缩募集略减少。 

(Some muscles of the left lower extremity and the left 

extraperoneal muscles showed positive sharp waves of 

fibrillation; some muscles of light contraction showed that 

the MUP part was too wide with or without the increase of 

polyphasic potentials and irregular waves; the recruitment 

of heavy contractions was slightly reduced.) 

NCV 

左侧腓总神经运动传导 CMAP 波幅降低；余运动和感觉神

经传导速度和波幅正常范围。运动神经 F 波潜伏期正常范

围或未引出。 

(The motor conduction CMAP amplitude of the left 

common peroneal nerve decreased; the remaining motor 

and sensory nerve conduction velocity and amplitude were 

normal. The motor nerve F wave incubation period is 

normal range or not elicited.) 

Impression 

1.左侧腓总神经损害，腓骨头-腓骨头上 1cm 处明显。2.慢

性神经源性损害肌电改变，累及左下肢部分肌，L-4 根性

损害可能。  

(1. The damage to the left common peroneal nerve is 

obvious at 1cm above the head of the fibula. 2. Chronic 

neurogenic damage, electromyographic changes, 

involving part of the left lower limb muscles, L-4 root 

damage may be.) 

Figure 2: Example of generation of Findings and Impression with gold reference

1997) on top of the cell embedding to obtain the147

table representation. After the table is represented148

as a sequence of vectors, a decoder based on LSTM149

(Hochreiter and Schmidhuber, 1997) is applied to150

generate text token by token.151

3.2.2 Transformer152

We linearize the table and feed the records into153

standard Transformer (Vaswani et al., 2017). The154

linearization of the table consists of a concatenation155

of row cells. And since each cell (i.e. record) is156

represented by the key and value, We concatenate157

them together and get the representation of the cell158

using a layer of MLP, which is same as the record159

embedding layer described above.160

3.2.3 GPT2161

We follow previous work on linearizing knowl-162

edge base as natural language (Liu et al., 2019a;163

Zhang et al., 2020a) to propose “table lineariza-164

tion”, which uses template to flatten the table T165

as a document PT = w1, · · · , w|T | fed into pre-166

trained language models to generate statement Y ,167

where we use wi to denote the i-th word in the gen-168

erated paragraph PT and |T | to denote the length169

of the paragraph (the word wi is either a table entry170

or a functional word in the template). The orig- 171

inal table T is transformed into a paragraph by 172

horizontally scanning each cell in the table. 173

After table linearization, we directly feed the 174

paragraph PT as the input to the pre-trained GPT-2 175

model and generate the output sentence Y . We 176

finetune the model on MIME by maximizing the 177

likelihood of p(Y |PT ;β), with β denoting the pa- 178

rameters of GPT-2 model (Radford et al., 2019; 179

Zhao et al., 2019). 180

3.3 Text Generation 181

For the generation of Findings or Impression based 182

on the table, we both use the three above-mentioned 183

table-to-text models, the only difference is the out 184

text. 185

4 Experiment & Result 186

We base our implementation on Huggingface’s 187

Transformer (Wolf et al., 2019) for GPT-2 (Radford 188

et al., 2019; Zhao et al., 2019) with word vocab- 189

ulary of 20K. The batch size is 2. The model is 190

finetuned using Adam optimizer (Kingma and Ba, 191

2017) with a learning rate of 1e-6. 192

3



Model B-1 B-2 B-4 R-1 R-2 R-L TC TM CS-acc
LSTM 58.9 54.9 48.6 80.0 66.2 76.0 35.0 29.0 60.4
Transformer 72.0 68.4 62.2 85.4 74.2 81.9 42.4 34.5 72.3
GPT2 76.4 73.8 69.5 88.3 80.0 86.1 52.1 42.5 88.4

Table 2: Overall performance of different models for Findings generation. The best result is marked in bold. The
Prediction Accuracy of Cell State (CS-acc) represents the accuracy of the fifth state prediction for those accurate
4-tuples extracted by the model.

Model B-1 B-2 B-4 R-1 R-2 R-L
LSTM 50.1 45.5 36.9 62.8 49.5 61.4
Transformer 53.0 48.6 39.4 65.5 53.1 64.4
GPT2 59.4 55.9 48.6 70.6 60.2 69.7

Table 3: Overall performance of different models for
Impression generation.

4.1 Result and Analysis193

We use ROUGE (Lin, 2004) and BLEU (Pap-194

ineni et al., 2002) scores to evaluate our model.195

And we report BLEU-1, BLEU-2, BLEU-4 scores196

and the F1 scores for unigram (ROUGE-1) and197

bigram (ROUGE-2) and longest common subse-198

quence overlap (ROUGE-L).199

We also propose two information retrieval (IR)200

based metrics. These metrics compare the gold and201

generated descriptions and measure to what extent202

the extracted facts are aligned or differ.First, we203

apply an information extraction (IE) system to ex-204

tract quintuple in Findings. The value ranges of205

the first four items in the quintuple can be obtained206

directly from the tables of the training set. The207

last item is obtained from our manually labeled test208

set(only 12). For example, in the sentence Tibial209

nerve H reflex latency upper limit of normal., an IE210

tool will extract the pair (Tibial nerve, -, H reflex,211

latency, normal). Second, we compute two metrics212

on the extracted information:213

• Tuple Coverage (TC) estimates how well the214

generated description containing the gold descrip-215

tion in terms of mentioned quintuple. Obviously,216

based on this simple entity extraction IE system,217

each item in the 5-tuple may contain multiple ele-218

ments at the same time. When only the extracted219

quintuple contains the truly labeled quintuple, we220

call it tuple coverage. For example, quintuple (ul-221

nar nerve/tibial nerve, -, H reflex, latency, normal)222

covers quintuple (tibial nerve, -, H reflex, latency,223

normal).224

• Tuple Matching (TM) measures how well the225

system is able to generate text containing factual226

(i.e., correct) facts. If and only if the two tuples are227

exactly the same, we call it a match. 228

While ROUGE and BLEU is perhaps a reason- 229

ably effective way of evaluating text generation, we 230

note that it primarily rewards fluent text generation, 231

rather than generations that capture the most impor- 232

tant information in the database which is extremely 233

important for medical diagnosis. Our proposed IE 234

system can be used as an approximation to solve 235

this evaluation challenge. The result for Findings 236

generation is in the Table 2 and the result for Im- 237

pression generation is in the Table 3. 238

As is shown in the table, all models get relatively 239

good textual overlap with reference text. And the 240

pre-trained model achieves the best results on all 241

metrics benefit from the rich language information 242

contained in it. The extractive metrics provide fur- 243

ther insight into the behavior of the models. We 244

first note that on the gold documents y1:|T | , the 245

extractive model reaches 70.5 coverage and 50.9 246

match rate. Using the LSTM model, generation 247

only has a tuple coverage (TC) of 35.0 indicating 248

that 4-tuples are often generated incorrectly. The 249

best pre-trained model improves this value to 52.1, 250

a significant improvement and potentially the cause 251

of the improved ROUGE and BLEU score, but still 252

far below gold. It is worth noting that all the mod- 253

els seem to get a relatively high prediction accuracy 254

for the fifth item on the accurately matched quadru- 255

ples. This shows that in the Findings generation 256

task, it is more difficult to locate a specific position 257

in the table than to describe its state after finding 258

the precise location. 259

5 Conclusions 260

This paper explores the automatic generation of 261

electromyogram diagnostic report. We formal- 262

ize the generation as two tasks, namely, table- 263

to-findings and findings-to-impressions. To eval- 264

uate the generation results, we introduce both 265

token-level and fact-level evaluations. Results of 266

some baselines on our self-constructed dataset are 267

demonstrated. 268
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A Related Work407

Data-to-text generation Wiseman, Shieber,408

and Rush (Wiseman et al., 2017) introduced a409

document-scale data-to-text dataset with relatively410

large table records and long reference texts and411

proposed extraction based evaluation metrics for412

automatically evaluating generation quality. More413

specifically, they introduced an information extrac-414

tion module to evaluate content generation, and415

ordering of the data-to-document model. Pudup-416

pully, Dong and Lapata (Puduppully et al., 2019a)417

model a content-selection and-planning module418

separate from text generation, with the idea that419

introducing a direct signal, i.e. a loss on orderly420

selection of table records would improve gener-421

ation performance. Gong, Feng, Qin, Bing and422

Liu. (Gong et al., 2019) presented a hierarchical423

encoder that learn records’ representation along424

row and column and obtain row-level representa-425

tion for subsequent decoding. Jain et al. (Jain426

et al., 2018) proposed a mixed hierarchical atten-427

tion based encoder-decoder model to leverage the428

structural information in tables. Puduppully, Dong429

and Latapa (Puduppully et al., 2019b) propose430

an entity-centric architecture such that instead of431

treating entities as ordinary tokens, they create dy- 432

namically updated entity-specific representations 433

and generates text using hierarchical attention on 434

table and entity memory cell. 435

Automatic Medical Report generation Jing, 436

Xie and Xing (Jing et al., 2018) proposed a co- 437

attention mechanism to localize regions contain- 438

ing abnormalities and generate descriptive texts 439

for them. Jing, Wang and Xing (Jing et al., 2019) 440

proposed a multi-agent framework to exploit the 441

structural features within report sections for gen- 442

erating Chest X-ray Reports where they have two 443

agents for generating text about abnormal and nor- 444

mal results separately with the observation that the 445

distribution between abnormality and normality is 446

imbalanced and the wordings are quite different in 447

text describing abnormal and normal results. Liu et 448

al. (Liu et al., 2019b) proposed a generation model 449

which hierarchically first chooses topics and then 450

generates words from topics and they optimized 451

the model for clinical correctness which a proposed 452

clinically coherent reward via reinforment learning. 453

Zhang, Merck, Tsai, Manning and Langlotz (Zhang 454

et al., 2020b) leveraged an existing information ex- 455

traction module to extract a zero-one vector of 14 456

dimension indicating the presence or absence of 14 457

clinical observations in chest radiology reports and 458

apply reinforcement learning with a factual correct- 459

ness reward to improve the factuality of generated 460

reports. 461
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