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Abstract—Recent empirical studies observe that even without
normalization, a deep residual network can be trained reliably.
We call such a structure as normalization-free Residual Networks
(N-F ResNets), which add a learnable parameter α to control the
scale of the residual block instead of normalization. However,
the theoretical understanding on N-F ResNets is still limited
despite their empirical success. In this paper, we provide the first
theoretical understanding of N-F ResNets from two perspectives.
Firstly, we prove that the gradient descent (GD) algorithm can
find the global minimum of the training loss at a linear rate for
over-parameterized N-F ResNets. Secondly, we prove that N-F
ResNets can avoid the gradient exploding or vanishing problem,
by initializing the key parameter α to be a small constant.
Notably, we demonstrate that the gradients of N-F ResNets are
more stable than those of ResNets with Kaiming initialization.
Moreover, empirical experiments on benchmark datasets verify
our theoretical results.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved great success
in numerous fields, including computer vision [1], speech
recognition [2] and natural language processing [3]. As one
of the most popular modern deep network structures, ResNets
proposed by He et al. [4], [5] have achieved remarkable
performance on various challenging tasks. In practice, the
effective training of ResNets requires normalization techniques
such as the commonly adopted batch normalization (BN)
[6]. Despite the enormous empirical success of training deep
networks with skip connections, the use of normalization
may introduce practical challenges, such as costly computing,
memory overhead [7] and the reduction of model’s accuracy
under train-test distribution shifts [8]–[10]. On the other hand,
there is currently no general consensus on why these nor-
malization techniques help the training process [6], [11]–[13].
Recent works [7], [14]–[16] find that none of the perceived
benefits is unique to normalization. Actually, even without
normalization, ResNets can still be trained well. This has been
demonstrated by multiple works. For example, N-F ResNets
can achieve comparable empirical performance by adding a
trainable parameter α to control the scale of the residual block
[14], [15], which enables adaptively controlling the scale of
the gradient at initialization. The scaling factor is initialized to
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Fig. 1. The structure of ResNet (a) and N-F ResNet (b)

a small positive value, which ensures that the training can be
more stable. N-F ResNets perform well on many experiments
of real world datasets. Despite empirical success, there is no
theoretical understanding on its effectiveness up to date. In
this paper, we prove the global convergence of N-F ResNets,
and further provide a theoretical explanation of the empirical
success of N-F ResNets.

The structure of N-F ResNets is shown in Figure 1(b). For
each layer, the N-F ResNet adds a residual connection for
the input signal x and the non-linear transformation of the
layer F (x) which is modulated by a trainable parameter α.
Compared with the original structure of ResNets (Figure 1(a)),
N-F ResNets do not involve normalization but add a parameter
α which controls the scale of the residual block. SkipInit [14],
Rezero [15] and Fixup [16] are three common types of N-F
ResNets. They initialize α to be either a small positive value or
zero. The simple architectural change of N-F ResNets enables
the well-conditioned Gram matrix induced by the gradient.
Thus it is beneficial for making gradients well-behaved and
arbitrarily deep signal propagation.

Specifically, the structure of N-F ResNets is defined as:

x(1) =

√
cσ
m

σ(W(1)x),

x(h) = x(h−1) +
αh

H
√
m
σ(W(h)x(h−1)), 2 ≤ h ≤ H,

f(x, θ) = a⊤x(H),

(1)

where x(0) = x denotes the input, W(1) ∈ Rm×d denotes
the first weight matrix, W(h) ∈ Rm×m denotes the weight
at the h-th layer for 2 ≤ h ≤ H , a ∈ Rm denotes
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the weight of the output layer, σ(·) denotes the nonlinear
activation function, cσ =

(
Ex∼N (0,1)

[
σ(x)2

])−1
is a scal-

ing factor to normalize the input in the initialization phase,
and θ = ({W(h)}, a, {αh}). See Section III-A for detailed
descriptions of notations.

In this paper, we provide a solid theoretical analysis for N-F
ResNets. The core step of our theoretical analysis is to prove
that GD produces a sequence of iterations that stay inside a
bounded perturbation region centered at the initial weights.
And our main proof techniques are (i) the careful control of
the magnitude of the change of network parameters, and (ii) a
fine-grained analysis on the Gram matrix or Jacobian matrix
induced by the ResNet structure.

Our contributions are summarized as follows:
• We prove the global convergence of training the N-F

ResNets with GD. More specifically, over-parameterized
N-F ResNets can achieve zero training loss at a linear
convergence rate with GD.

• We analyze the gradient descent dynamics in the training
process and demonstrate that N-F ResNets can solve the
vanishing or exploding gradient problem, which is the
main difficulty in training DNNs.

• We show that Kaiming initialized ResNets [17] without
normalization will lead to exploding gradients, which
from the opposite angle demonstrates that N-F ResNets
have more stable training dynamics.

To the best of our knowledge, it is the first theoretical
analysis on N-F ResNets.

II. RELATED WORK

A. N-F ResNets

BN is often necessary to train ResNets, however its appli-
cation can be limited and may introduce practical challenges
[11]. For example, BN struggles when training with small
batch-sizes which can incur computing and memory overhead,
and enlarges the variance between different batches [7]. In
settings with train-test distribution shifts, BN can reduce the
generalization ability of the model and undermine a model’s
accuracy [12], [13], [18]. Besides, on meta-learning, it can
lead to transductive inference [7]; and in adversarial training,
it can hamper accuracy on both clean and adversarial examples
by estimating incorrect statistics [8].

To either replace BN in general or address specific short-
comings of normalization, several recent works propose N-
F ResNets. These methods introduce a learnable parameter
αh which is successively updated, such that xh+1 = xh +
αhσ(Whxh). Different kinds of N-F ResNets use different
initialization methods for α. For example, SkipInit [14] sets α
to a small constant or zero at initialization, i.e., the model at
initialization is nearly an identity function, so there will be no
worries about exploding variance of output. Fixup [16] uses
the same technique and rescales α by the number of residual
branches at the beginning of training. Rezero network [15]
is another kind of N-F ResNets, which initializes α to zero.
Empirical results in these works show that the normalization

in the residual learning can be removed with the help of such
kind of trainable scale parameter. Even without normalization,
several kinds of very deep N-F ResNets [14]–[16] can be
trained reliably with faster convergence. However, there is a
lack of theoretical understanding on N-F ResNets’ training
dynamics in practice. These studies focus on initialization but
the training dynamic of N-F ResNets remains unclear. Even
under relatively simple conditions, it is unknown why N-F
ResNets can achieve global convergence. Our work provides
the first complete and dynamical analysis on N-F ResNets.

B. Theoretical analysis of neural networks
Several existing works have analyzed the convergence of

neural networks theoretically. The global convergence of neu-
ral networks with different structures and activation functions
have been proved in many papers. For example, Du et al. [19]
analyze the global convergence of two-layer fully connected
neural networks; Nguyen and Mondelli [20] analyze the global
convergence of networks with one wide layer followed by
pyramidal topology. The structure Zou et al. analyzed uses
a linear activation function [21], while Zou et al. [18], Du
et al. [19], Allen-Zhu et al. [22] and Zhang et al. [23],
analyze networks with the ReLU activation function. Implicit
equilibrium networks have also been analyzed [24].

Several related works [25], [22] and [23] consider the global
convergence of ResNet. They use a fixed scale parameter,
which can be seen as the static version of our N-F ResNets.
These works support the usability of N-F ResNets from
another perspective. However, the three works suffer from the
inconsistence between real use and theory, i.e. their structure
is far away from the real setting in use which needs to
add normalization (e.g. BN) or the trainable parameter α in
order to perform well. Moreover, the gradient stability is not
proven in previous works. Our work differs from existing
works in several ways: (i) we analyze the training dynamic
of α, (ii) we analyze the N-F ResNet architecture, which can
avoid vanish/exploding gradients even without normalization,
and (iii) our analysis is consistent with the structure of N-
F ResNets in practice. We corroborate that N-F ResNets can
achieve global convergence in a linear rate.

III. PRELIMINARIES

A. Notations
We consider an H-layer N-F ResNet with an activation

function σ(·) and weights
{
W(h)

}H
h=1

. Moreover, our network
rescales the residual block by a parameter αi

H (which is called
the residual weight), where αi is a learnable parameter. At
the beginning of training, we set αh(0) = 1, h = 1, 2, · · · , H .
Namely, we initialize the coefficient of the residual block to
be 1

H , so the scale of residual weight is small at initialization.
As we initialize the residual weight by the reciprocal of the
network depth, we call our initialization method as RecipDepth
Init. The commonly used notations are listed in Table 1. Using
these notations, the signal of the N-F ResNet is propagated as

x(h) = x(h−1) +
αh

H
√
m
σ(W(h)x(h−1)), (2)

Authorized licensed use limited to: Peking University. Downloaded on December 13,2023 at 08:02:05 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
MAJOR NOTATIONS

Notation Description

Bold capital letter A matrix
Aij The (i, j)-th entry of matrix A
αh(k) The rescaling parameter of the h-th layer at the

k-th iteration
a The weight of output layer, belonging to Rm

∥ · ∥2 The ℓ2 norm
σ(·) Nonlinear activation function
cσ cσ =

(
Ex∼N(0,1)

[
σ(x)2

])−1

H The depth of network
m The width of network
n The number of data points in the training set
[n] [n] = {1, 2, · · · , n}
x(0) The input vector, belonging to Rd

y The labels of training inputs
W(1) The first weight matrix, belonging to Rm×d

W(h) The weight matrix of the h-th layer, 2 ≤ h ≤ H
ui(k) The prediction of the i-th sample at the k-th

iteration
u(k) u(k) = (u1(k), u2(k), · · · , un(k))⊤

λ0 The smallest eigenvalue of the Gram matrix K(H)

λ(A) The eigenvalues of matrix A
λmin(A) The smallest eigenvalue of matrix A
λmax(A) The largest eigenvalue of matrix A

O(·) For two nonnegative sequences {bk} and {dk},
there is bk = O(dk), if bk ≤ C1dk for some
absolute constant C1 > 0

Ω(·) For two nonnegative sequences {bk} and {dk},
there is bk = Ω(dk), if bk ≥ C2dk for some
absolute constant C2 > 0

Θ(·) If bk = O(dk) and bk = Ω(dk), there is bk =
Θ(dk)

for 2 ≤ h ≤ H . αh plays an important role in the convergence
of the network, as it controls the magnitude of the entire
gradient flow.

We make several assumptions as follows. Firstly, we use
the following Gaussian noise initialization for GD algorithm
to find the global minimizer of the empirical loss.

Assumption 1: Each entry of W and a uses standard
initialization and is sampled from a Gaussian distribution:
W

(h)
ij ∼ N (0, 1

m ), ai ∼ N (0, 1
m ). αh is initialized to 1.

We extract the 1
m term of weights before activation function

for the simplicity of proof.
Assumption 2: We suppose that σ(·) is analytic but is not

a polynomial function. We further assume that there exists a
constant L > 0 such that σ(0) ≤ L and σ(·) is L-Lipschtiz
and L-smooth. Namely, there exists a constant L > 0 such
that for any x, y ∈ R,

|σ(x)− σ(y)| ≤ L|x− y| and |σ′(x)− σ′(y)| ≤ L|x− y|.

Remark 1: Assumption 2 is used to show the stability of
the training process. It is leveraged to guarantee the positive
definiteness of certain Gram matrices which we will define
later. Typical activation functions that satisfy Assumption 2
include softplus, sigmoid, tanh, GeLU, swish, etc.

B. Problem Setup

We define the i-th individual prediction at the k-th it-
eration as ui(k) = f(θ(k), xi), and denote u(k) =

(u1(k), u2(k), · · · , un(k))
⊤. We use the square loss func-

tion and write the loss of all data points as L(θ(k)) =
1
2∥y − u(k)∥22 = 1

2

∑n
i=1(yi − ui(k))

2. Then the empirical
risk minimization problem with the square loss function can
be written as:

min
θ

L(θ) = 1

2

n∑
i=1

(f(θ, xi)− yi)
2,

where {xi}ni=1 are the training inputs and {yi}ni=1 are their
labels. We train all layers by the GD algorithm with a constant
positive step size η. Below are the equations of gradient
update. For k = 1, 2, · · · , and h = 1, 2, · · · , H ,

W(h)(k) = W(h)(k − 1)− η ∂L(θ(k−1))
∂W(h)(k−1)

,

a(k) = a(k − 1)− η ∂L(θ(k−1))
∂a(k−1) ,

αh(k) = αh(k − 1)− η ∂L(θ(k−1))
∂αh(k−1) .

(3)

IV. MAIN RESULTS

A. Global convergence of N-F ResNets

In this section, we consider the convergence of GD for
training an N-F ResNet (1). We first provide the expressions of
the Gram matrices G(h) and K(h). These two matrices play an
important role in the analysis. Then we show how much over-
parameterization is needed to ensure the global convergence
of GD.

1) Proof sketch: The core of our proof technique is (1) the
careful control of the magnitude of the change of α, and (2)
a fine-grained analysis on the Gram matrix induced by the
ResNet structure.

For Gram matrix G(h) (Definition 1), we prove that there
holds ∥y−u(k+1)∥22 ≤ (1−2ηλmin(G

(H)(k))∥y−u(k)∥22 in
the dynamics. If λmin(G

(H)(k)) is uniformly bounded away
from zero, then we can conclude that the loss decreases in a
linear rate (Theorem 1).

We prove the uniform lower bound of λmin(G
(H)(k))

(Lemma 2) in two steps. Firstly, we prove that at initialization,
G(H)(0) is close to K(H) (Definition 3). Secondly, we prove
that in the training process G(H)(k) is close to G(H)(0) for
k = 0, 1, · · · . This shows that

{
G(H)(k)

}
is a matrix sequence

that is close to Gram matrix K(H).
Our main theoretical analysis is composed of two steps.

Firstly, we prove that the gradient of initial N-F ResNet is
stable. Secondly, we show that the sequence of iterations of α
stay inside a bounded perturbation region, and the training loss
function of ResNets achieves good locally linear convergence.
These two results imply the global convergence of GD.

2) Detailed Results: The Gram matrix G(h) is a kernel
induced by the gradient to the weights of the h-th layer. The
detailed definition is given below.

Definition 1: G(h) ∈ Rn×n and

G
(h)
ij (k) =


〈

∂ui(k)
∂W(h)(k)

,
∂uj(k)

∂W(h)(k)

〉
, h = 1, · · · , H,〈

∂ui(k)
∂a(k) ,

∂uj(k)
∂a(k)

〉
, h = H + 1.

(4)

The Gram matrix contains rich information about the gradi-
ents. Especially, its eigenvalues are good proxies for assessing
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how stable the gradient is. Note that G(h)(k) is a positive
semi-definite matrix for h ∈ [H + 1].

Definition 2: G ∈ Rn×n and

Gij(k) ≜
H+1∑
h=1

G
(h)
ij (k) +

H∑
h=1

〈
∂ui(k)

∂αh(k)
,
∂uj(k)

∂αh(k)

〉
. (5)

In the proving process, it is important to prove that G is
positive definite. Because each term of G is positive semi-
definite, it is enough to prove that there exists one term being
positive definite. Thus, at the cost of a minor degradation
in convergence rate, we focus on G(H)(k), the Gram matrix
induced by the weights of last but one layer.

G(h) plays an important role in our analysis. On one hand,
the eigenvalues of G(h) are crucial indicators to measure the
smallest and the largest gradient quantities: for any i ∈ [n],
there holds

λmin(G
(h)) ≤ G

(h)
ii =

∥∥∥∥ ∂ui

∂W(h)

∥∥∥∥2
2

≤ λmax(G
(h)). (6)

This means that, if the eigenvalues are upper bounded and
lower bounded, the gradient can also be bounded. On the other
hand, the Gram matrix G(h) influences the convergence speed
of sequence {y − u(k)}k. We will prove that

∥y−u(k+1)∥22 ≤
(
1− 2ηλmin(G

(H)(k)
)
∥y−u(k)∥22, (7)

i.e. there is a direct link between G(H)(k) and the perturbation
of two adjacent iterations. In order to achieve a uniform con-
vergence rate, we need to lower bound the smallest eigenvalue
of G(H)(k) for any k = 0, 1, · · · .

We first find the lower bound of λmin(G
(H)(0)), then we

uniformly bound λmin(G
(H)(k)) for k = 1, 2, · · · . Driven by

the need of the lower bound of λmin(G
(H)(0)), the definition

of K(H) arises. The recursive equation for the key Gram
matrix K(H) is given below.

Definition 3: For (i, j) ∈ [n]× [n] and h = 2, · · · , H − 1:

K
(0)
ij =⟨xi, xj⟩,Aij

(1) =

(
K

(0)
ii K

(0)
ij

K
(0)
ji K

(0)
jj

)
,

K
(1)
ij =E

(u,v)⊤∼N (0,A
(1)
ij )

[cσσ(u)σ(v)] ,

b
(1)
i =

√
cσEu∼N (0,K

(0)
ii )

[σ(u)],

A
(h)
ij =

(
K

(h−1)
ii K

(h−1)
ij

K
(h−1)
ji K

(h−1)
jj

)
,

K
(h)
ij =K

(h−1)
ij + E

(u,v)⊤∼N (0,A
(h)
ij )

[
αhb

(h−1)
i σ(u)

H
+ (8)

αhb
(h−1)
j σ(v)

H
+

α2
hσ(u)σ(v)

H2

]
,

b
(h)
i =b

(h−1)
i +

αh

H
E

u∼N (0,K
(h−1)
ii )

[σ(u)],

K
(H)
ij =

α2
H

H2
K

(H−1)
ij E

(u,v)⊤∼N (0,A
(H)
ij )

[σ′(u)σ′(v)] .

For h = 1, · · · , H − 1, the Gram matrix K(h) reflects the
correlation of forward propagation of the h-th layer in an

infinitely wide N-F ResNet. And K(H) reflects the correlation
between gradients of the last layer. K

(h)
ij is the expecta-

tion of the correlation between the corresponding outputs of
the i-th sample and the j-th sample in the h-th layer, i.e.
K

(h)
ij = E

〈
x
(h)
i , x

(h)
j

〉
. When m becomes infinity, b(h) is

equivalent to the output of the h-th layer. We can see that the
definition of K(H) also depends on the sequence {b(h)}H−1

h=1 .
This dependency comes from the skip connection block in the
ResNet architecture.

The Gram matrix K(H) is closely related to the uniform
convergence rate of all iterations, because we can prove that
Gram matrix K(H) is the limit of the initial matrix G(H)(0)
as m → ∞. The Gram matrix K(H) is the key to the whole
analysis, as its smallest eigenvalue λ0 will determine the
convergence rate and the amount of over-parameterization. The
relation between the Gram matrix and convergence rate will
be described in Theorem 1.

As a technical remark, we note that if no two input vectors
are parallel, then K(H) is positive definite. In Proposition 1 as
follows, we can show that, if none of the data points are paral-
lel and the activation function is analytic but not polynomial,
then the eigenvalues of Gram matrix λ(K(H)) > 0.

Proposition 1: Assume that σ(·) satisfies Assumption 2,
and for any i, j ∈ [n], xi and xj are not parallel. Then we
have λ0 > 0.

The Gram matrices play an important role in displaying
the dynamics of gradients. First, we present that the initial
Gram matrices G(H)(0) are closely connected to K(h) via
their smallest eigenvalues, as shown below.

Lemma 1 (The full rankness of G(H)(0)): Assume that
the number m of neurons per layer is Ω

(
n2 log(Hn/δ)

λ2
0

)
, then

with probablity at least 1− δ we have λmin(G
(H)(0)) ≥ 3

4λ0.

Combining Lemma 1 and Proposition 1, we can show that
G(H)(0) is strictly positive definite. The proof of Lemma 1
uses the same technique as [25]. Several previous works also
prove the positive definiteness of Gram matrix [19]–[21], but
their settings differ from ours in the perspective of network
structures and activation functions.

Meanwhile, the lemma characterizes how much over-
parameterization is needed to ensure the connection between
λmin(G

(H)(0)) and λ0. The assumed lower bound on m
depends on the number n of samples and the depth H of
network, etc.

As parameters of N-F ResNets perturb in the neighborhood
of the initial point, we can also lower bound λmin(G

(H)(k))
for k = 1, 2, · · · , thus achieving the uniform lower bound
of the smallest eigenvalues. With the help of Lemma 1 and
Hoffman-Wielandt theorem [26], we get the lemma as follows.

Lemma 2 (The full rankness of G(H)(k)): Assume that
the number m of neurons per layer is Ω

(
n2 log(Hn/δ)

λ2
0

)
, then

with probablity at least 1− δ we have λmin(G
(H)(k)) ≥ λ0

4 .

Lemma 2 implies that the magnitude of gradients at any
iteration is greater than λ0

4 , which is a positive scalar, because
there holds

∥∥ ∂ui

∂W(H)

∥∥2
2
≥ λmin(G

(H)) for any i ∈ [n]. This
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theorem is key to prove the global convergence of the N-
F ResNet structure (1), as it can uniformly lower bound
G(H)(k)’s smallest eigenvalue at any k-th iteration, which
contributes to the convergence rate between 0 and 1.

With these lemmas, we present our convergence result as
shown in Theorem 1. The detailed proof is presented in
Appendix.

Theorem 1 (The convergence of the loss): Assume
for all i ∈ [n], ∥xi∥2 = 1, yi = O(1), m =

Ω
(
max

{
n4

λ4
0H

6 ,
n2

λ2
0H

2 ,
n
δ ,

n2 log(Hn/δ)
λ2
0

})
and we set the step

size η = O
(

λ0H
2

n2

)
, then with probability at least 1− δ over

the random initialization, we have

∥y − u(k)∥22 ≤
(
1− ηλ0

2

)k

∥y − u(0)∥22, k = 1, 2, · · · .

(9)

The theorem shows that if the width m is large enough and
we set step size η appropriately, the loss of the N-F ResNet (1)
can converge to a global minimum at a linear rate. The main
assumption of the theorem is that we need a large enough
width m for each layer, which depends on n, H and λ0. The
dependency on n is only polynomial. m also polynomially
depends on 1

λ0
. The dependency on the number H of layers is

logarithmic. Equation (9) holds with higher probability when
m is larger, thus training process is more stable.

Without loss of generality, the training loss converges to
zero as the iteration number k tends to infinity, because the
training loss function L(θ(k)) = 1

2∥y − u(k)∥22 decreases
geometrically as Theorem 1 declares. If we make rectifications
of the input data, the loss function just changes by an offset
which does not affect the GD dynamics. Thus, the global
minimum is consistent with zero training loss.

To prove Theorem 1, our main idea of analysis is that
random initialization followed by GD produces a sequence
of iterations that stay inside a bounded perturbation region
centered at the initial weights. In the perturation region, the
training loss function of ResNets enjoys good locally linear
convergence. Therefore, it is worth mentioning that we have
each αh(k) and weight matrix close to their initialization. The
following lemma shows the result in detail.

Lemma 3 (Bounded weight pertubation): If Assump-
tions 1 and 2 hold and η ≤ cH

2

m for some small constant
c > 0, then we have

∥αh(k)− αh(0)∥F ≤ O(1),∥∥∥W(h)(k)−W(h)(0)
∥∥∥
F
≤ O(

√
n), k = 0, 1, 2, · · · .

Then we quantitatively study the bound of output during
training. The following lemma shows that the outputs of any
layer are close to its initial value, being within the range of
O(1) under the over-parameterization condition.

Lemma 4 (Bounded output pertubation): Suppose
that σ(·) is L-Lipschitz and for h ∈ [H],

∥∥W(h)(0)
∥∥
2
≤

cw,0
√
m,

∥∥x(h)(0)
∥∥
2

≤ cx,0, ∥ah(0)∥2 ≤ ca,0 and∥∥W(h)(k)−W(h)(0)
∥∥
F

≤
√
mR for some constant

cw,0, cx,0, ca,0 > 0 and R ≤ cw,0. Then with probability at
least 1− δ, we have∥∥∥x(h)(k)− x(h)(0)

∥∥∥
2
= O(1).

By the way, Lemma 4 claims that the output of the N-F ResNet
structure can be bounded by the input.

Remark 2: We also analyze the magnitude change between
two adjacent iterations as follows. It shows the perturbation
during training. The magnitude of W’s change is O(

√
n), that

of αh is O(1), and that of x’s change is O(1) (Lemma 4). So
the output change of two neighboring layers is O(1). When
the network is wide enough, it leads to a bounded perturbation.
The perturbations from weight matrices propagate to the input
of each layer.

Remark 3: It is noteworthy that our analysis works in both
RecipDepth Init and zero Init [15] of α. The above analysis
is under the condition of RecipDepth Init. When α(0) = 0,
the gradient of weight W is zero, i.e., W is not trained at
the first step. Therefore, the process from the second step is
consistent with our above analysis.

B. No vanishing or exploding gradient

Vanishing and exploding gradient is the main difficulty in
training deep neural networks. In this subsection, we establish
that the N-F ResNet structure can avoid vanishing and explod-
ing gradients throughout the training. This is the advantage of
N-F ResNet structure.

Below is the theoretical analysis that the N-F ResNet
structure (1) can avoid vanishing gradient. Even without BN,
N-F ResNets trained in the way of RecipDepth Init can help
address the problem. It shows that G(H)(k) can retain the
good properties at the initial time, such as the full rankness,
etc.

As declared in the previous section, we only need to prove
that ∥y− u0∥ is independent of n and m. This is not obvious
as it may explode at the initial time. Then we can choose
an appropriate η to ensure that the loss of the N-F ResNet
structure converges to a global minimum at a linear rate.

Lemma 5 (The boundedness of initial output): If m =
Ω
(
n
δ

)
, we have with probability at least 1 − δ over random

initialization that
1

cx,0
≤ ∥x(h)

i (0)∥2 ≤ cx,0, for all h ∈ [H] and i ∈ [n].

for some universal constant cx,0 > 1 (only depending on σ).
Lemma 5 shows that the magnitude of initial output is of the

order of Ω(1) with high probability. It is both lower-bounded
and upper-bounded. The bound only depends on the properties
of the activation function. Moreover, it shows that the initial
loss is a finite value. Combined with the result of Lemma 4,
we can show that the output is always bounded.

Then we quantitatively study the bound of gradients during
training. The following theorem shows that N-F ResNets can
avoid vanishing or exploding gradients.

Theorem 2 (No vanishing or exploding gradient through-
out training): There exists a lower bound m1 and upper
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bound M of the magnitude of gradients during training for all
iteration k, such that

m1 ≤
∥∥∥∥∂ui

∂ξ

∥∥∥∥
2

≤ M, for all i ∈ [n], k ∈ N and ξ ∈ θ,

where m1 > 0 and M = O(
√
n).

Theorem 2 is the result of Lemmas 2 and 3. With a
constant learning rate, Lemma 3 shows that N-F ResNets can
counteract exploding gradient and benefit from a more stable
training dynamics. On the other hand, Lemma 2 shows that the
magnitude of gradients is greater than

√
λ0

2 , thus N-F ResNets
can avoid vanishing gradients.

C. Comparison with conventional ResNet scheme

Standard initialization [17], [27], [28] is the commonly-used
initialization scheme for ResNets. So it is natural to consider
vanilla ResNets with standard initialization strategy in nor-
malization free conditions. However, existing researches find
that such an initialization does not work. It has been observed
[16], [29], [30] that without normalization techniques, ResNets
do not account properly for the effect of residual connections
and this causes exploding gradients. In this subsection, we will
give theoretical analysis on this phenomenon.

We assume that the ResNet structure is described by (10),
and we apply Gaussian initialization, i.e., W(h)

ij (0) ∼ N (0, 1).

x(h) = x(h−1) +
1√
m
σ(W(h)x(h−1)), for 1 ≤ h ≤ H. (10)

Through simple calculations, the gradients of N-F ResNets
and vanilla ResNets can both be represented as follows,

∂L
∂W(h)

=
∂L

∂x(H)
·

H∏
l=h+1

(
∂x(l)

∂x(l−1)

)
· ∂x(h)

∂W(h)
. (11)

The most important component of the gradients
is the multiplicative term which is boxed in (11).
And the boxed term of N-F ResNets is shown as a
form of

∏H
l=h+1

(
I+ αl

H
√
m
J
(l)
i W(l)

)
, where J(h′) ≜

diag
(
σ′
(
(w

(h′)
1 )⊤x(h′−1)

)
, · · · , σ′

(
(w

(h′)
m )⊤x(h′−1)

))
∈

Rm×m. Compared with N-F ResNets, the divergent
multiplicative term of vanilla ResNets makes the gradients
have worse performance. The rigorous mathematical analysis
is shown as follows.

Let J = ∂x(H)

∂x(0) denote the input-output Jacobian matrix
of vanilla ResNets. The condition number of JJ⊤ is good
measurement for assessing how stable the gradient is. Based on
the previous works [16], [29], [30], we can get the following
conclusion.

Theorem 3 (Exploding gradient of standard initialized
ResNets): For ResNets with standard initialization, the con-
dition number of JJ⊤ grows at least linearly with depth. More
specifically,

λmax(JJ
⊤) = Ω(H),

λmin(JJ
⊤) = O(1).

As Lemma 3 shows, the maximum eigenvalue of JJ⊤ grows
in an unbounded way with the network depth. So the Jacobian
matrix is ill-conditioned and the learning dynamics is unstable
when the network is deep. Even at initialization, the output of
each layer is linearly dependent on the depth. The output will
approach to infinite, which reflects that the gradient of standard
initialization is unstable. So standard initialization is easier to
suffer from the exploding gradient issue.

Compared with standard initialized ResNets, the initial state
of N-F ResNets (1) has a much smaller gradient norm, and
has the ability to propagate informative activation patterns in
deeper layers. It reduces the dependence on normalization,
via which we can train a deep residual network reliably even
without normalization. Avoiding the ill-conditioned gradient,
the N-F ResNet structure can use a larger learning rate.

The parameter α in the N-F ResNet plays a role in control-
ling the scale of the gradient. It can achieve the comparable
empirical performance of the ResNet with normalization. The
scaling factor ensures that the network preserves the size of
every input in expectation.

V. EXPERIMENT

In this section, we implement several numerical experiments
to verify our main theoretical conclusions in Section IV. The
first experiment is performed to test the global convergence
of N-F ResNet structure (1), and how the amount of over-
parameterization affects the convergence rates. The second
one is to test that the N-F ResNet structure can keep away
from vanishing or exploding gradients and test the stability of
parameters of various layers over time. The third one aims at
verifying that N-F ResNets has better training dynamics than
ResNets trained in other ways.

A. Training dynamic loss of different widths

In this subsection, we verify Theorem 1. We first evalu-
ate our method on various datasets including MNIST [31],
CIFAR10 [32], and a randomly generated dataset for classifi-
cation tasks. As for the generation of data points and labels,
we uniformly generate n = 1,000 data points from a d = 1,000
dimensional unit sphere; and labels are generated from a one-
dimensional standard Gaussian distribution. The depth H of
ResNet is set as 64. And we use the N-F ResNet shown in
Figure 1(b), with the softplus activation function. In order to
better observe the changing trend of the training loss, we run
2,000 iterations of GD with a fixed learning rate η = 10−4 in
this experiment.

B. No exploding or vanishing gradient

In this experiment, we test different values of network width
m. It can be seen from Figure 2 that, the loss decreases
at a linear rate, as m becomes larger, the loss convergence
speed becomes faster, and the training loss at iteration 2,000
becomes smaller. We believe that the reason is as m increases,
Gram matrices become more stable, and therefore have a
larger smallest eigenvalue. So the above empirical results are
consistent with Theorem 1.
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Fig. 2. Training dynamic loss of different widths (a) MNIST; (b) CIFAR10; (c) Randomly generated dataset.
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Fig. 3. The magnitude of gradient in different layers (a) MNIST; (b) CIFAR10; (c) Randomly generated dataset.

We conduct the second experiment to verify Theorem 2. The
width m and depth H of structure (1) are set as 256 and 64,
respectively. About the experimental setup of this experiment,
except for the value of width m, other parameter settings are
the same as those in Subsection V-A, including optimizer,
network structure, loss function, learning rate, initialization
method of α, etc.

Then we test the magnitude of gradients in different layers.
We run 2,000 iterations of GD and use a fixed step size η =
10−4. As Figure 3 shows, the gradient of each layer is always
bounded, neither exploding nor vanishing. The upper bound
and lower bound are drawn with a dotted line in the figure.
The empirical results convince that N-F ResNets can avoid
vanishing or exploding gradient.

C. The performance of ResNets trained in other ways

We first compare the gradient stability of N-F ResNets
with standard initialized ResNets to verify Theorem 3. We
train 1,000-layer ResNets on the MNIST dataset. Under the
same setting, the ℓ2 norm of output vector via two kinds
of ResNets in the normalization-free circumstance is shown
in Table II. It can be seen that when training via standard
initialized ResNets, the magnitude of output will increase
to an extraordinarily large value even at the first iteration,
so the performance cannot be guaranteed to be stable in
the subsequent process. Compared with standard initialized
ResNet whose Gram matrix is ill conditioned, the N-F ResNet

structure with RecipDepth Init is apparently much more stable,
which significantly improves the gradient performance.

TABLE II
OUTPUT MAGNITUDE OF DIFFERENT RESNETS IN THE FIRST ITERATION

UNDER NORMALIZATION-FREE CONDITION.

Layer Number Standard Initialized ResNets N-F ResNets(Ours)
1-st layer 6.36 5.52

64-th layer 1.57×106 5.59
128-th layer 4.21×1011 5.68
256-th layer NaN 5.85
512-th layer NaN 6.25
1024-th layer NaN 7.23

Besides, we compare the training dynamics of ResNets
trained in different ways. As shown in Figure 4, N-F ResNets
achieve the state-of-the-art performance. N-F ResNets con-
verge faster than ResNets with batch normalization, which
demonstrates its comparable performance to replace normal-
ization. Moreover, the fixed scale ResNets analyzed in [25] has
inferior performance to ours due to the inconsistency between
theory and real use.

VI. CONCLUSIONS

In this paper, we analyze the gradient dynamics of N-F
ResNets with the quadratic loss function. Firstly, we prove
that the loss of deep over-parametrized N-F ResNets using GD
can linearly converge to zero. Secondly, we demonstrate that
N-F ResNets with RecipDepth Init have more stable gradients
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Fig. 4. Training dynamic loss of ResNets trained in different ways on the
MNIST dataset.

than Kaiming initialization, avoiding vanishing or exploding
gradients, hence enabling efficient training. To the best of our
knowledge, it is the first theoretical analysis on N-F ResNets.
All our theoretical results are verified by experiments. The
theoretical and experimental results provide solid evidences
that a deep residual network can be trained reliably without
normalization. This work paves the way for future work on
new analyses about N-F ResNets and the essential benefits of
normalization.

We provide the full proof in the Appendix
and the link to it is https://github.com/snowbbbb/
Appendix-for-GD-Optimizes-N-F-ResNets.
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