
Decision Transformer: Reinforcement Learning
via Sequence Modeling

Lili Chen * 1 Kevin Lu * 1 Aravind Rajeswaran 2 Kimin Lee 1 Aditya Grover 2 Michael Laskin 1 Pieter Abbeel 1

Aravind Srinivas† 1 Igor Mordatch† 3

Abstract

We introduce a framework that abstracts Rein-
forcement Learning (RL) as a sequence model-
ing problem. This allows us to draw upon the
simplicity and scalability of the Transformer ar-
chitecture, and associated advances in language
modeling such as GPT-x and BERT. In particular,
we present Decision Transformer, an architecture
that casts the problem of RL as conditional se-
quence modeling. Unlike prior approaches to RL
that fit value functions or compute policy gradi-
ents, Decision Transformer simply outputs the
optimal actions by leveraging a causally masked
Transformer. By conditioning an autoregressive
model on the desired return (reward), past states,
and actions, our Decision Transformer model can
generate future actions that achieve the desired
return. Despite the simplicity, Decision Trans-
former matches or exceeds the performance of
state-of-the-art model-free offline RL baselines
on Atari, OpenAI Gym, and Key-to-Door tasks.

1. Introduction
Recent work has shown transformers (Vaswani et al., 2017)
can model high-dimensional distributions of semantic con-
cepts at scale, including effective zero-shot generalization in
language (Brown et al., 2020) and out-of-distribution image
generation (Ramesh et al., 2021). Given the diversity of
successful applications of such models, we seek to examine
their application to sequential decision making problems for-
malized as reinforcement learning (RL). In contrast to prior
work using transformers as an architectural choice for com-
ponents within traditional RL algorithms (Parisotto et al.,

*Equal contribution †Equal advising 1UC Berkeley 2Facebook
AI Research 3Google Brain. Correspondence to: Lili Chen
<lilichen@berkeley.edu>, Kevin Lu <kzl@berkeley.edu>.

Unsupervised Reinforcement Learning (URL) Workshop in the
38 th International Conference on Machine Learning, 2021. Copy-
right 2021 by the author(s).

2020; Zambaldi et al., 2018), we seek to study if generative
trajectory modeling – i.e. modeling the joint distribution of
the sequence of states, actions, and rewards – can serve as a
replacement for conventional RL algorithms.

We consider the following shift in paradigm: instead of
training a policy through conventional RL algorithms like
temporal difference (TD) learning (Sutton & Barto, 2018),
we will train transformer models on collected experience
using a sequence modeling objective. This will allow us
to bypass the need for bootstrapping for long term credit
assignment – thereby avoiding one of the “deadly triad” (Sut-
ton & Barto, 2018) known to destabilize RL. It also avoids
the need for discounting future rewards, as typically done
in TD learning, which can induce undesirable short-sighted
behaviors. Additionally, we can make use of existing trans-
former frameworks widely used in language and vision that
are easy to scale, utilizing a large body of work studying
stable training of transformer models.

In addition to their demonstrated ability to model long se-
quences, transformers have other advantages. Transformers
can perform credit assignment directly via self-attention,
in contrast to Bellman backups which slowly propagate re-
wards and are prone to “distractor” signals (Hung et al.,
2019). This can enable transformers to still work effectively
in the presence of sparse or distracting rewards. Finally,
empirical evidence suggest that a transformer modeling ap-
proach can model a wide distribution of behaviors, enabling
better generalization and transfer (Ramesh et al., 2021).

We explore our hypothesis by considering offline RL, where
we will task agents with learning policies from suboptimal
data – producing maximally effective behavior from fixed,
limited experience. This task is traditionally challenging due
to error propagation and value overestimation (Levine et al.,
2020). However, it is a natural task when training with a
sequence modeling objective. By training an autoregressive
model on sequences of states, actions, and returns, we re-
duce policy sampling to autoregressive generative modeling.
We can specify the expertise of the policy – which “skill” to
query – by selecting the desired return tokens, acting as a
prompt for generation.

Decision Transformer: Reinforcement Learning via Sequence Modeling

R s a

a

s

a

a

causal transformer
emb. + pos. enc.

linear decoder

. . .

21
return state action

. . .

^ R̂

Figure 1. Decision Transformer architecture1. States, actions, and returns are fed into modality-specific linear embeddings and a positional
episodic timestep encoding is added. Tokens are fed into a GPT architecture which predicts actions autoregressively using a causal
self-attention mask.

...
goal

-2

-1

-3

-4

-1

-3

-4

-∞

-∞
-∞

-∞

graph training dataset (random walks)

goal

start -3

-1

generation

-2
0 0

-∞

Figure 2. Illustrative example of finding shortest path for a fixed graph (left) posed as reinforcement learning. Training dataset consists of
random walk trajectories and their per-node returns-to-go (middle). Conditioned on a starting state and generating largest possible return
at each node, Decision Transformer sequences optimal paths.

Illustrative example. To get an intuition for our proposal,
consider the task of finding the shortest path on a directed
graph, which can be posed as an RL problem. The reward
is 0 when the agent is at the goal node and −1 otherwise.
We train a GPT (Radford et al., 2018) model to predict next
token in a sequence of returns-to-go (sum of future rewards),
states, and actions. Training only on random walk data –
with no expert demonstrations – we can generate optimal
trajectories at test time by adding a prior to generate highest
possible returns (see more details and empirical results in
the Appendix) and subsequently generate the corresponding
sequence of actions via conditioning. Thus, by combining
the tools of sequence modeling with hindsight return infor-
mation, we achieve policy improvement without the need
for dynamic programming.

Motivated by this observation, we propose Decision Trans-
former, where we use the GPT architecture to autoregres-
sively model trajectories (shown in Figure 1). We study
whether sequence modeling can perform policy optimiza-
tion by evaluating Decision Transformer on offline RL
benchmarks in Atari (Bellemare et al., 2013), OpenAI
Gym (Brockman et al., 2016), and Key-to-Door (Mesnard
et al., 2020) environments. We show that – without using dy-
namic programming – Decision Transformer matches or ex-

ceeds the performance of state-of-the-art model-free offline
RL algorithms (Agarwal et al., 2020; Kumar et al., 2020).
Furthermore, in tasks where long-term credit assignment
is required, Decision Transformer capably outperforms the
RL baselines. With this work, we aim to bridge sequence
modeling and transformers with RL, and hope that sequence
modeling serves as a strong algorithmic paradigm for RL.

2. Preliminaries
2.1. Offline reinforcement learning

We consider learning in a Markov decision process (MDP)
described by the tuple (S, A, P , R). The MDP tuple con-
sists of states s ∈ S, actions a ∈ A, transition dynam-
ics P (s′|s, a), and a reward function r = R(s, a). We
use st, at, and rt = R(st, at) to denote the state, ac-
tion, and reward at timestep t, respectively. A trajectory
is made up of a sequence of states, actions, and rewards:
τ = (s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT). The return of a
trajectory at timestep t,Rt =

∑T
t′=t rt′ , is the sum of future

rewards from that timestep. The goal in reinforcement learn-
ing is to learn a policy which maximizes the expected return
E
[∑T

t=1 rt

]
in an MDP. In offline reinforcement learning,

instead of obtaining data via environment interactions, we

Decision Transformer: Reinforcement Learning via Sequence Modeling

only have access to some fixed limited dataset consisting
of trajectory rollouts of arbitrary policies. This setting is
harder as it removes the ability for agents to explore the
environment and collect additional feedback.

2.2. Transformers

Transformers were proposed by Vaswani et al. (2017) as
an architecture to efficiently model sequential data. These
models consist of stacked self-attention layers with residual
connections. Each self-attention layer receives n embed-
dings {xi}ni=1 corresponding to unique input tokens, and
outputs n embeddings {zi}ni=1, preserving the input dimen-
sions. The i-th token is mapped via linear transformations
to a key ki, query qi, and value vi. The i-th output of the
self-attention layer is given by weighting the values vj by
the normalized dot product between the query qi and other
keys kj :

zi =

n∑
j=1

softmax({〈qi, kj′〉}nj′=1)j · vj . (1)

As we shall see later, this allows the layer to assign “credit”
by implicitly forming state-return associations via similarity
of the query and key vectors (maximizing the dot product).
In this work, we use the GPT architecture (Radford et al.,
2018), which modifies the transformer architecture with a
causal self-attention mask to enable autoregressive gener-
ation, replacing the summation/softmax over the n tokens
with only the previous tokens in the sequence (j ∈ [1, i]).
We defer the other architecture details to the original papers.

3. Method
We present Decision Transformer, which models trajecto-
ries autoregressively with minimal modification to the trans-
former architecture, as summarized in Figure 1.

Trajectory representation. The key desiderata in our
choice of trajectory representation are that it should enable
transformers to learn meaningful patterns and we should
be able to conditionally generate actions at test time. It is
nontrivial to model rewards since we would like the model
to generate actions based on future desired returns, rather
than past rewards. As a result, instead of feeding the re-
wards directly, we feed the model with the returns-to-go
R̂t =

∑T
t′=t rt′ . This leads to the following trajectory rep-

resentation which is amenable to autoregressive training and
generation:

τ =
(
R̂1, s1, a1, R̂2, s2, a2, . . . , R̂T , sT , aT

)
. (2)

At test time, we can specify the desired performance (e.g.
1 for success or 0 for failure), as well as the environment
starting state, as the conditioning information to initiate

generation. After executing the generated action for the
current state, we decrement the target return by the achieved
reward and repeat until episode termination.

Architecture. We feed the last K timesteps into Decision
Transformer, for a total of 3K tokens (one for each modality:
return-to-go, state, or action). To obtain token embeddings,
we learn a linear layer for each modality, which projects
raw inputs to the embedding dimension, followed by layer
normalization (Ba et al., 2016). For environments with vi-
sual inputs, the state is fed into a convolutional encoder
instead of a linear layer. Additionally, an embedding for
each timestep is learned and added to each token – note
this is different than the standard positional embedding used
by transformers, as one timestep corresponds to three to-
kens. The tokens are then processed by a GPT (Radford
et al., 2018) model, which predicts future action tokens via
autoregressive modeling.

Training. We are given a dataset of offline trajectories. We
sample minibatches of sequence length K from the dataset.
The prediction head corresponding to the input token st
is trained to predict at – either with cross-entropy loss for
discrete actions or mean-squared error for continuous ac-
tions – and the losses for each timestep are averaged. We
did not find predicting the states or returns-to-go to improve
performance, although it is easily permissible within our
framework (as shown in Section 5.3) and would be an inter-
esting study for future work.

4. Evaluations on Offline RL Benchmarks
In this section, we investigate the performance of Decision
Transformer relative to dedicated offline RL and imitation
learning algorithms. In particular, our primary points of
comparison are model-free offline RL algorithms based on
TD-learning, since our Decision Transformer architecture is
fundamentally model-free in nature as well. Furthermore,
TD-learning is the dominant paradigm in RL for sample
efficiency, and also features prominently as a sub-routine
in many model-based RL algorithms (Sutton, 1990; Janner
et al., 2019). We also compare with behavior cloning and
variants, since it also involves a likelihood based policy
learning formulation similar to ours. The exact algorithms
depend on the environment but our motivations are as fol-
lows:

• TD learning: most of these methods use an action-space
constraint or value pessimism, and will be the most
faithful comparison to Decision Transformer, represent-
ing standard RL methods. A state-of-the-art model-free
method is Conservative Q-Learning (CQL) (Kumar et al.,
2020) which serves as our primary comparison. In ad-
dition, we also compare against other prior model-free
RL algorithms like BEAR (Kumar et al., 2019b) and

Decision Transformer: Reinforcement Learning via Sequence Modeling

Atari OpenAI Gym Key-To-Door

50

100

Pe
rfo

rm
an

ce

Decision Transformer (Ours) TD Learning Behavior Cloning

Figure 3. Results comparing Decision Transformer (ours) to TD learning (CQL) and behavior cloning across Atari, OpenAI Gym, and
Minigrid. On a diverse set of tasks, Decision Transformer performs comparably or better than traditional approaches. Performance is
measured by normalized episode return (see text for details).

BRAC (Wu et al., 2019).

• Imitation learning: this regime similarly uses supervised
losses for training, rather than Bellman backups. We
use behavior cloning here, and include a more detailed
discussion in Section 5.1.

We evaluate on both discrete (Atari (Bellemare et al., 2013))
and continuous (OpenAI Gym (Brockman et al., 2016))
control tasks. The former involves high-dimensional ob-
servation spaces and requires long-term credit assignment,
while the latter requires fine-grained continuous control,
representing a diverse set of tasks. Our main results are
summarized in Figure 3, where we show averaged normal-
ized performance for each domain.

4.1. Atari

The Atari benchmark (Bellemare et al., 2013) is challenging
due to its high-dimensional visual inputs and difficulty of
credit assignment arising from the delay between actions
and resulting rewards. We evaluate our method on 1% of
all samples in the DQN-replay dataset as per Agarwal et al.
(2020), representing 500 thousand of the 50 million transi-
tions observed by an online DQN agent (Mnih et al., 2015)
during training; we report the mean and standard deviation
of 3 seeds. We normalize scores based on a professional
gamer, following the protocol of Hafner et al. (2020), where
100 represents the professional gamer score and 0 represents
a random policy.

We compare to CQL (Kumar et al., 2020), REM (Agarwal
et al., 2020), and QR-DQN (Dabney et al., 2018) on four
Atari tasks (Breakout, Qbert, Pong, and Seaquest) that are
evaluated in Agarwal et al. (2020). We use context lengths
of K = 30 for Decision Transformer (except K = 50
for Pong). We also report the performance of behavior
cloning (BC), which utilizes the same network architecture
and hyperparameters as Decision Transformer but does not
have return-to-go conditioning2. For CQL, REM, and QR-

2We also tried using an MLP with K = 1 as in prior work, but
found this was worse than the transformer.

DQN baselines, we report numbers directly from the CQL
and REM papers. We show results in Table 1. Our method is
competitive with CQL in 3 out of 4 games and outperforms
or matches REM, QR-DQN, and BC on all 4 games.

4.2. OpenAI Gym

In this section, we consider the continuous control tasks
from the D4RL benchmark (Fu et al., 2020). We also con-
sider a 2D reacher environment that is not part of the bench-
mark, and generate the datasets using a similar methodology
to the D4RL benchmark. Reacher is a goal-conditioned task
and has sparse rewards, so it represents a different setting
than the standard locomotion environments (HalfCheetah,
Hopper, and Walker). The different dataset settings are
described below.

1. Medium: 1 million timesteps generated by a “medium”
policy that achieves approximately one-third the score of
an expert policy.

2. Medium-Replay: the replay buffer of an agent trained
to the performance of a medium policy (approximately
25k-400k timesteps in our environments).

3. Medium-Expert: 1 million timesteps generated by the
medium policy concatenated with 1 million timesteps
generated by an expert policy.

We compare to CQL (Kumar et al., 2020), BEAR (Kumar
et al., 2019b), BRAC (Wu et al., 2019), and AWR (Peng
et al., 2019). CQL represents the state-of-the-art in model-
free offline RL, an instantiation of TD learning with value
pessimism. Score are normalized so that 100 represents an
expert policy, as per Fu et al. (2020). CQL numbers are
reported from the original paper; BC numbers are run by us;
and the other methods are reported from the D4RL paper.
Our results are shown in Table 2. Decision Transformer
achieves the highest scores in a majority of the tasks and is
competitive with the state of the art in the remaining tasks.

3Given that CQL is generally the strongest TD learning method,
for Reacher we only run the CQL baseline.

Decision Transformer: Reinforcement Learning via Sequence Modeling

Game DT (Ours) CQL QR-DQN REM BC

Breakout 267.5± 97.5 211.1 17.1 8.9 138.9± 61.7
Qbert 15.4± 11.4 104.2 0.0 0.0 17.3± 14.7
Pong 106.1± 8.1 111.9 18.0 0.5 85.2± 20.0
Seaquest 2.5± 0.4 1.7 0.4 0.7 2.1± 0.3

Table 1. Normalized scores for the 1% DQN-replay Atari dataset. We report the mean and variance across 3 seeds. Best mean scores are
highlighted in bold. Decision Transformer performs comparably to CQL on 3 out of 4 games, and usually outperforms other baselines.

Dataset Environment DT (Ours) CQL BEAR BRAC-v AWR BC

Medium-Expert HalfCheetah 86.8± 1.3 62.4 53.4 41.9 52.7 59.9
Medium-Expert Hopper 107.6± 1.8 111.0 96.3 0.8 27.1 79.6
Medium-Expert Walker 108.1± 0.2 98.7 40.1 81.6 53.8 36.6
Medium-Expert Reacher 89.1± 1.3 30.6 - - - 73.3

Medium HalfCheetah 42.6± 0.1 44.4 41.7 46.3 37.4 43.1
Medium Hopper 67.6± 1.0 58.0 52.1 31.1 35.9 63.9
Medium Walker 74.0± 1.4 79.2 59.1 81.1 17.4 77.3
Medium Reacher 51.2± 3.4 26.0 - - - 48.9

Medium-Replay HalfCheetah 36.6± 0.8 46.2 38.6 47.7 40.3 4.3
Medium-Replay Hopper 82.7± 7.0 48.6 33.7 0.6 28.4 27.6
Medium-Replay Walker 66.6± 3.0 26.7 19.2 0.9 15.5 36.9
Medium-Replay Reacher 18.0± 2.4 19.0 - - - 5.4

Average (Without Reacher) 74.7 63.9 48.2 36.9 34.3 46.4
Average (All Settings) 69.2 54.2 - - - 47.7

Table 2. Results for D4RL datasets3. We report the mean and variance for three seeds. Decision Transformer (DT) outperforms
conventional RL algorithms on almost all tasks.

5. Discussion
5.1. Does Decision Transformer perform behavior

cloning on a subset of the data?

In this section, we seek to gain insight into whether Deci-
sion Transformer can be thought of as performing imitation
learning on a subset of the data with a certain return. To
investigate this, we propose a new method, Percentile Behav-
ior Cloning (%BC), where we run behavior cloning on only
the top X% of timesteps in the dataset, ordered by episode
returns. The percentile X% interpolates between standard
BC (X = 100%) that trains on the entire dataset and only
cloning the best observed trajectory (X → 0%), trading
off between better generalization by training on more data
with training a specialized model that focuses on a desirable
subset of the data.

We show full results comparing %BC to Decision Trans-
former and CQL in Table 3, sweeping over X ∈
[10%, 25%, 40%, 100%]. Note that the only way to choose
the optimal subset for cloning is to evaluate using rollouts
from the environment, so %BC is not a realistic approach;
rather, it serves to provide insight into the behavior of Deci-
sion Transformer. When data is plentiful – as in the D4RL
regime – we find %BC can match or beat other offline RL
methods. On most environments, Decision Transformer is
competitive with the performance of the best %BC, indicat-

ing it can hone in on a particular subset after training on the
entire dataset distribution.

In contrast, when we study low data regimes – such as Atari,
where we use 1% of a replay buffer as the dataset – %BC
is weak (shown in Table 4). This suggests that in scenarios
with relatively low amounts of data, Decision Transformer
can outperform %BC by using all trajectories in the dataset
to improve generalization, even if those trajectories are dis-
similar from the return conditioning target. Our results
indicate that Decision Transformer can be more effective
than simply performing imitation learning on a subset of the
dataset. On the tasks we considered, Decision Transformer
either outperforms or is competitive to %BC, without the
confound of having to select the optimal subset.

5.2. How well does Decision Transformer model the
distribution of returns?

We evaluate the ability of Decision Transformer to under-
stand return-to-go tokens by varying the desired target return
over a wide range – evaluating the multi-task distribution
modeling capability of transformers. Figure 5 shows the
average sampled return accumulated by the agent over the
course of the evaluation episode for varying values of target
return. On every task, the desired target returns and the true
observed returns are highly correlated. On some tasks like

Decision Transformer: Reinforcement Learning via Sequence Modeling

Dataset Environment DT (Ours) 10%BC 25%BC 40%BC 100%BC CQL

Medium HalfCheetah 42.6± 0.1 42.9 43.0 43.1 43.1 44.4
Medium Hopper 67.6± 1.0 65.9 65.2 65.3 63.9 58.0
Medium Walker 74.0± 1.4 78.8 80.9 78.8 77.3 79.2
Medium Reacher 51.2± 3.4 51.0 48.9 58.2 58.4 26.0

Medium-Replay HalfCheetah 36.6± 0.8 40.8 40.9 41.1 4.3 46.2
Medium-Replay Hopper 82.7± 7.0 70.6 58.6 31.0 27.6 48.6
Medium-Replay Walker 66.6± 3.0 70.4 67.8 67.2 36.9 26.7
Medium-Replay Reacher 18.0± 2.4 33.1 16.2 10.7 5.4 19.0

Average 56.1 56.7 52.7 49.4 39.5 43.5

Table 3. Comparison between Decision Transformer (DT) and Percentile Behavior Cloning (%BC).

Game DT (Ours) 10%BC 25%BC 40%BC 100%BC

Breakout 267.5± 97.5 28.5± 8.2 73.5± 6.4 108.2± 67.5 138.9± 61.7
Qbert 15.4± 11.4 6.6± 1.7 16.0± 13.8 11.8± 5.8 17.3± 14.7
Pong 106.1± 8.1 2.5± 0.2 13.3± 2.7 72.7± 13.3 85.2± 20.0
Seaquest 2.5± 0.4 1.1± 0.2 1.1± 0.2 1.6± 0.4 2.1± 0.3

Table 4. %BC scores for Atari. We report the mean and variance across 3 seeds. Decision Transformer usually outperforms %BC.

Pong, HalfCheetah and Walker, Decision Transformer gen-
erates trajectories that almost perfectly match the desired
returns (as indicated by the overlap with the oracle line).
Furthermore, on some Atari tasks like Seaquest, we can
prompt the Decision Transformer with higher returns than
the maximum episode return available in the dataset, demon-
strating that Decision Transformer is sometimes capable of
extrapolation.

key room distractor room door room
Episode time

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 re
wa

rd
 p

ro
ba

bi
lit

y

not pick up key
pick up key and reach door
pick up key and not reach door

pick up key reach door
Episode time

0.0

0.2

0.4

0.6

0.8

1.0

At
te

nt
io

n
we

ig
ht

Figure 4. Left: Averages of running return probabilities predicted
by the transformer model for three types of episode outcomes.
Right: Transformer attention weights from all timesteps superim-
posed for a particular successful episode. The model attends to
steps near pivotal events in the episode, such as picking up the key
and reaching the door.

5.3. Does Decision Transformer perform effective
long-term credit assignment?

To evaluate long-term credit assignment capabilities of our
model, we consider a variant of the Key-to-Door environ-
ment proposed in Mesnard et al. (2020). This is a grid-based
environment with a sequence of three phases: (1) in the first
phase, the agent is placed in a room with a key; (2) then,
the agent is placed in an empty room; (3) and finally, the
agent is placed in a room with a door. The agent receives

a binary reward when reaching the door in the third phase,
but only if it picked up the key in the first phase. We train
on datasets of trajectories generated by applying random
actions and report success rates in Table 5. Methods that
use highsight return information: our Decision Transformer
model and %BC (trained only on successful episodes) are
able to learn effective policies – producing near-optimal
paths, despite only training on random walks. TD learning
(CQL) cannot effectively propagate Q-values over the long
horizons involved and gets poor performance.

5.4. Can transformers be accurate critics in sparse
reward settings?

In previous sections, we established that decision trans-
former can produce effective policies (actors). We now eval-
uate whether transformer models can also be effective critics.
We modify Decision Transformer to output return tokens in
addition to action tokens on the Key-to-Door environment.
We find that the transformer continuously updates reward
probability based on events during the episode, shown in
Figure 4 (Left). Furthermore, we find the transformer at-
tends to critical events in the episode (picking up the key
or reaching the door), shown in Figure 4 (Right), indicat-
ing formation of state-reward associations as discussed in
Raposo et al. (2021) and enabling accurate value prediction.

5.5. Does Decision Transformer perform well in sparse
reward settings?

A known weakness of TD learning algorithms is that they
require densely populated rewards, which can be unrealistic
and/or expensive. In contrast, Decision Transformer can
improve robustness in these settings since it makes minimal

Decision Transformer: Reinforcement Learning via Sequence Modeling

0 100 200 300
0

100

200

300

Pe
rfo

rm
an

ce
Breakout

0 20 40 60 80 100
0

50

100
Qbert

0 50 100 150
0

50

100

150
Pong

0 1 2 3
0

1

2

3
Seaquest

0 10 20 30 40 50
Target Return (Normalized)

0

20

40

Pe
rfo

rm
an

ce

HalfCheetah

0 25 50 75 100
Target Return (Normalized)

0

50

100
Hopper

0 25 50 75 100
Target Return (Normalized)

0

50

100
Walker

0 5 10 15 20 25
Target Return (Normalized)

0

10

20

Reacher

0.04 0.02 0.00 0.02 0.04
0.05
0.00
0.05

Decision Transformer Oracle Best Trajectory in Dataset

Figure 5. Sampled (evaluation) returns accumulated by Decision Transformer when conditioned on the specified target (desired) returns.
Top: Atari. Bottom: D4RL medium-replay datasets.

Dataset DT (Ours) CQL BC %BC Random

1K Random Trajectories 71.8% 13.1% 1.4% 69.9% 3.1%
10K Random Trajectories 94.6% 13.3% 1.6% 95.1% 3.1%

Table 5. Success rate for Key-to-Door environment. Methods using hindsight (Decision Transformer, %BC) can learn successful policies,
while TD learning struggles to perform credit assignment.

assumptions on the density of the reward. To evaluate this,
we consider a delayed return version of the D4RL bench-
marks where the agent does not receive any rewards along
the trajectory, and instead receives the cumulative reward of
the trajectory in the final timestep. Our results for delayed re-
turns are shown in Table 6. Delayed returns minimally affect
Decision Transformer; and due to the nature of the training
process, while imitation learning methods are reward agnos-
tic. While TD learning collapses, Decision Transformer and
%BC perform well, indicating that Decision Transformer
can be more robust to delayed rewards.

See Appendix D for additional discussions.

6. Related Work
Offline reinforcement learning. To mitigate the impact
of distribution shift in offline RL, prior algorithms either
(a) constrain the policy action space (Fujimoto et al., 2019;
Kumar et al., 2019a; Siegel et al., 2020) or (b) incorporate
value pessimism (Fujimoto et al., 2019; Kumar et al., 2020),
or (c) incorporate pessimism into learned dynamics mod-
els (Kidambi et al., 2020; Yu et al., 2020). Since we do not
use Decision Transformers to explicitly learn the dynamics
model, we primarily compare against model-free algorithms
in our work; in particular, adding a dynamics model tends to
improve the performance of model-free algorithms. Another
line of work explores learning wide behavior distribution
from an offline dataset by learning a task-agnostic set of
skills, either with likelihood-based approaches (Ajay et al.,
2020; Campos et al., 2020; Pertsch et al., 2020; Singh et al.,

2021) or by maximizing mutual information (Eysenbach
et al., 2019; Lu et al., 2020; Sharma et al., 2020). Our work
is similar to the likelihood-based approaches, which do not
use iterative Bellman updates – although we use a simpler
sequence modeling objective instead of a variational method,
and use rewards for conditional generation of behaviors.

Supervised learning in reinforcement learning settings.
Some prior methods for reinforcement learning bear more re-
semblance to static supervised learning, such as Q-learning
(Watkins, 1989; Mnih et al., 2013), which still uses itera-
tive backups, or likelihood-based methods such as behavior
cloning, which do not (discussed in previous section). Re-
cent work (Srivastava et al., 2019; Kumar et al., 2019c;
ogm, 2019) studies “upside-down” reinforcement learning
(UDRL), which are similar to our method in seeking to
model behaviors with a supervised loss conditioned on the
target return. A key difference in our work is the shift of
motivation to sequence modeling rather than supervised
learning: while the practical methods differ primarily in the
context length and architecture, sequence modeling enables
behavior modeling even without access to the reward, in a
similar style to language (Radford et al., 2018) or images
(Chen et al., 2020), and is known to scale well (Brown et al.,
2020). The method proposed by Kumar et al. (2019c) is
most similar to our method with K = 1, which we find se-
quence modeling/long contexts to outperform (see Section
D). Ghosh et al. (2019) extends prior UDRL methods to use
state goal conditioning, rather than rewards, and Paster et al.
(2020) further use an LSTM with state goal conditioning
for goal-conditoned online RL settings. Concurrent to our

Decision Transformer: Reinforcement Learning via Sequence Modeling

Delayed (Sparse) Agnostic Original (Dense)
Dataset Environment DT (Ours) CQL BC %BC DT (Ours) CQL

Medium-Expert Hopper 107.3± 3.5 9.0 59.9 102.6 107.6 111.0
Medium Hopper 60.7± 4.5 5.2 63.9 65.9 67.6 58.0
Medium-Replay Hopper 78.5± 3.7 2.0 27.6 70.6 82.7 48.6

Table 6. Results for D4RL datasets with delayed (sparse) reward. Decision Transformer (DT) and imitation learning are minimally
affected by the removal of dense rewards, while CQL fails.

work, Janner et al. (2021) propose Trajectory Transformer,
which is similar to Decision Transformer but additionally
uses state and return prediction, as well as discretization,
which incorporates model-based components. We believe
that their experiments, in addition to our results, highlight
the potential for sequence modeling to be a generally appli-
cable idea for reinforcement learning.

Credit assignment. Many works have studied better credit
assignment via state-association, learning an architecture
which decomposes the reward function such that certain
“important” states comprise most of the credit (Ferret et al.,
2019; Harutyunyan et al., 2019; Mesnard et al., 2020). They
use the learned reward function to change the reward of
an actor-critic algorithm to help propagate signal over long
horizons. Similar to our long-term setting, some works have
specifically shown such state-associative architectures can
perform better in delayed reward settings (Arjona-Medina
et al., 2018; Hung et al., 2019; Liu et al., 2019; Raposo et al.,
2021). In contrast, we allow these properties to naturally
emerge in a transformer architecture, without having to
explicitly learn a reward function or a critic.

Conditional language generation. Various works have
studied guided generation for images (Karras et al., 2019)
and language (Ghazvininejad et al., 2017; Weng, 2021). Sev-
eral works (Ficler & Goldberg, 2017; Hu et al., 2017; Rajani
et al., 2019; Yu et al., 2017; Ziegler et al., 2019; Keskar
et al., 2019) have explored training or fine-tuning of models
for controllable text generation. Class-conditional language
models can also be used to learn disciminators to guide gen-
eration (Dathathri et al., 2019; Ghazvininejad et al., 2017;
Holtzman et al., 2018; Krause et al., 2020). However, these
approaches mostly assume constant “classes”, while in rein-
forcement learning the reward signal is time-varying. Fur-
thermore, it is more natural to prompt the model desired
target return and continuously decrease it by the observed
rewards over time, since the transformer model and environ-
ment jointly generate the trajectory.

Attention and transformer models. Transform-
ers (Vaswani et al., 2017) have been applied successfully
to many tasks in natural language processing (Devlin et al.,
2018; Radford et al., 2018) and computer vision (Carion
et al., 2020; Dosovitskiy et al., 2020). However, transform-
ers are relatively unstudied in RL, mostly due to differing

nature of the problem, such as higher variance in training.
Zambaldi et al. (2018) showed that augmenting transformers
with relational reasoning improve performance in combina-
torial environments and Ritter et al. (2020) showed iterative
self-attention allowed for RL agents to better utilize episodic
memories. Parisotto et al. (2020) discussed design decisions
for more stable training of transformers in the high-variance
RL setting. Unlike our work, these still use actor-critic algo-
rithms for optimization, focusing on novelty in architecture.
Additionally, in imitation learning, some works have studied
transformers as a replacement for LSTMs: Dasari & Gupta
(2020) study one-shot imitation learning, and Abramson
et al. (2020) combine language and image modalities for
text-conditioned behavior generation.

7. Conclusion
We proposed Decision Transformer, seeking to unify ideas
in language/sequence modeling and reinforcement learning.
On standard offline RL benchmarks, we showed Decision
Transformer can match or outperform strong algorithms de-
signed explicitly for offline RL with minimal modifications
from standard language modeling architectures.

We hope this work inspires investigation into using large
transformer models for RL. We used a simple supervised
loss that was effective in our experiments, but applications
to large-scale datasets could benefit from self-supervised
pretraining tasks. In addition, one could consider more
sophisticated embeddings for returns, states, and actions –
for instance, conditioning on return distributions to model
stochastic settings instead of deterministic returns. Trans-
former models can also be used to model the state evolution
of trajectory, potentially serving as an alternative to model-
based RL, and we hope to explore this in future work.

Successful real-world deployment of AI systems requires
strong generalization to unseen situations. While we do not
directly evaluate generalization ability, we utilize a method
known to generalize well in domains such as language and
vision. Given our promising results on offline RL bench-
marks, we are excited about the potential of larger RL sys-
tems built upon the Decision Transformer framework. For
real-world applications, it will also be important to analyze
the errors transformers make in MDP settings and biases in
the datasets used for training.

Decision Transformer: Reinforcement Learning via Sequence Modeling

References
Acting without rewards. 2019. URL https://ogma.
ai/2019/08/acting-without-rewards/.

Abramson, J., Ahuja, A., Barr, I., Brussee, A., Carnevale, F.,
Cassin, M., Chhaparia, R., Clark, S., Damoc, B., Dudzik,
A., et al. Imitating interactive intelligence. arXiv preprint
arXiv:2012.05672, 2020.

Agarwal, R., Schuurmans, D., and Norouzi, M. An opti-
mistic perspective on offline reinforcement learning. In
International Conference on Machine Learning, 2020.

Ajay, A., Kumar, A., Agrawal, P., Levine, S., and Nachum,
O. Opal: Offline primitive discovery for acceler-
ating offline reinforcement learning. arXiv preprint
arXiv:2010.13611, 2020.

Arjona-Medina, J. A., Gillhofer, M., Widrich, M., Un-
terthiner, T., Brandstetter, J., and Hochreiter, S. Rud-
der: Return decomposition for delayed rewards. arXiv
preprint arXiv:1806.07857, 2018.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Campos, V., Trott, A., Xiong, C., Socher, R., Giro-i Nieto,
X., and Torres, J. Explore, discover and learn: Unsuper-
vised discovery of state-covering skills. In International
Conference on Machine Learning, 2020.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In European Conference on Computer Vi-
sion, 2020.

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan,
D., and Sutskever, I. Generative pretraining from pixels.
In International Conference on Machine Learning, pp.
1691–1703. PMLR, 2020.

Dabney, W., Rowland, M., Bellemare, M., and Munos, R.
Distributional reinforcement learning with quantile re-
gression. In Conference on Artificial Intelligence, 2018.

Dasari, S. and Gupta, A. Transformers for one-shot visual
imitation. arXiv preprint arXiv:2011.05970, 2020.

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E.,
Molino, P., Yosinski, J., and Liu, R. Plug and play lan-
guage models: A simple approach to controlled text gen-
eration. arXiv preprint arXiv:1912.02164, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995,
2019.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2019.

Ferret, J., Marinier, R., Geist, M., and Pietquin, O. Self-
attentional credit assignment for transfer in reinforcement
learning. arXiv preprint arXiv:1907.08027, 2019.

Ficler, J. and Goldberg, Y. Controlling linguistic style
aspects in neural language generation. arXiv preprint
arXiv:1707.02633, 2017.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional Conference on Machine Learning, 2019.

Gao, Y., Xu, H., Lin, J., Yu, F., Levine, S., and Darrell, T.
Reinforcement learning from imperfect demonstrations.
arXiv preprint arXiv:1802.05313, 2018.

Ghazvininejad, M., Shi, X., Priyadarshi, J., and Knight,
K. Hafez: an interactive poetry generation system. In
Proceedings of ACL, System Demonstrations, 2017.

Ghosh, D., Gupta, A., Fu, J., Reddy, A., Devin, C., Eysen-
bach, B., and Levine, S. Learning to reach goals without
reinforcement learning. arXiv preprint arXiv:1912.06088,
2019.

https://ogma.ai/2019/08/acting-without-rewards/
https://ogma.ai/2019/08/acting-without-rewards/

Decision Transformer: Reinforcement Learning via Sequence Modeling

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020.

Harutyunyan, A., Dabney, W., Mesnard, T., Azar, M., Piot,
B., Heess, N., van Hasselt, H., Wayne, G., Singh, S.,
Precup, D., et al. Hindsight credit assignment. arXiv
preprint arXiv:1912.02503, 2019.

Holtzman, A., Buys, J., Forbes, M., Bosselut, A., Golub,
D., and Choi, Y. Learning to write with cooperative
discriminators. arXiv preprint arXiv:1805.06087, 2018.

Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., and Xing,
E. P. Toward controlled generation of text. In Interna-
tional Conference on Machine Learning, 2017.

Hung, C.-C., Lillicrap, T., Abramson, J., Wu, Y., Mirza,
M., Carnevale, F., Ahuja, A., and Wayne, G. Optimizing
agent behavior over long time scales by transporting value.
Nature communications, 10(1):1–12, 2019.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
Advances in Neural Information Processing Systems, pp.
12498–12509, 2019.

Janner, M., Li, Q., and Levine, S. Reinforcement learning
as one big sequence modeling problem. arXiv preprint
arXiv:2106.02039, 2021.

Karras, T., Laine, S., and Aila, T. A style-based genera-
tor architecture for generative adversarial networks. In
Conference on Computer Vision and Pattern Recognition,
2019.

Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C.,
and Socher, R. Ctrl: A conditional transformer lan-
guage model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning.
In Advances in Neural Information Processing Systems,
2020.

Krause, B., Gotmare, A. D., McCann, B., Keskar, N. S.,
Joty, S., Socher, R., and Rajani, N. F. Gedi: Generative
discriminator guided sequence generation. arXiv preprint
arXiv:2009.06367, 2020.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. In Advances in Neural Information Processing
Systems, 2019a.

Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing
off-policy q-learning via bootstrapping error reduction.
arXiv preprint arXiv:1906.00949, 2019b.

Kumar, A., Peng, X. B., and Levine, S. Reward-conditioned
policies. arXiv preprint arXiv:1912.13465, 2019c.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
In Advances in Neural Information Processing Systems,
2020.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Liu, Y., Luo, Y., Zhong, Y., Chen, X., Liu, Q., and Peng,
J. Sequence modeling of temporal credit assignment
for episodic reinforcement learning. arXiv preprint
arXiv:1905.13420, 2019.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Reset-free
lifelong learning with skill-space planning. arXiv preprint
arXiv:2012.03548, 2020.

Mesnard, T., Weber, T., Viola, F., Thakoor, S., Saade,
A., Harutyunyan, A., Dabney, W., Stepleton, T., Heess,
N., Guez, A., et al. Counterfactual credit assignment
in model-free reinforcement learning. arXiv preprint
arXiv:2011.09464, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating
online reinforcement learning with offline datasets. arXiv
preprint arXiv:2006.09359, 2020.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C.,
Jayakumar, S., Jaderberg, M., Kaufman, R. L., Clark, A.,
Noury, S., et al. Stabilizing transformers for reinforce-
ment learning. In International Conference on Machine
Learning, 2020.

Paster, K., McIlraith, S. A., and Ba, J. Planning from
pixels using inverse dynamics models. arXiv preprint
arXiv:2012.02419, 2020.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Decision Transformer: Reinforcement Learning via Sequence Modeling

Pertsch, K., Lee, Y., and Lim, J. J. Accelerating reinforce-
ment learning with learned skill priors. arXiv preprint
arXiv:2010.11944, 2020.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training. 2018.

Rajani, N. F., McCann, B., Xiong, C., and Socher, R. Ex-
plain yourself! leveraging language models for common-
sense reasoning. arXiv preprint arXiv:1906.02361, 2019.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. arXiv preprint arXiv:2102.12092,
2021.

Raposo, D., Ritter, S., Santoro, A., Wayne, G., Weber, T.,
Botvinick, M., van Hasselt, H., and Song, F. Synthetic
returns for long-term credit assignment. arXiv preprint
arXiv:2102.12425, 2021.

Ritter, S., Faulkner, R., Sartran, L., Santoro, A., Botvinick,
M., and Raposo, D. Rapid task-solving in novel environ-
ments. arXiv preprint arXiv:2006.03662, 2020.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman,
K. Dynamics-aware unsupervised discovery of skills. In
International Conference on Learning Representations,
2020.

Siegel, N. Y., Springenberg, J. T., Berkenkamp, F., Ab-
dolmaleki, A., Neunert, M., Lampe, T., Hafner, R., and
Riedmiller, M. Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning. In
International Conference on Learning Representations,
2020.

Singh, A., Liu, H., Zhou, G., Yu, A., Rhinehart, N., and
Levine, S. Parrot: Data-driven behavioral priors for re-
inforcement learning. In International Conference on
Learning Representations, 2021.

Srivastava, R. K., Shyam, P., Mutz, F., Jaśkowski, W., and
Schmidhuber, J. Training agents using upside-down re-
inforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Sutton, R. S. Integrated architectures for learning, planning,
and reacting based on approximating dynamic program-
ming. In ICML, 1990.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT Press, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

Watkins, C. Learning from delayed rewards. 01 1989.

Weng, L. Controllable neural text gen-
eration. lilianweng.github.io/lil-log,
2021. URL https://lilianweng.
github.io/lil-log/2021/01/02/
controllable-neural-text-generation.
html.

Wolf, T., Chaumond, J., Debut, L., Sanh, V., Delangue, C.,
Moi, A., Cistac, P., Funtowicz, M., Davison, J., Shleifer,
S., et al. Transformers: State-of-the-art natural language
processing. In Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, 2020.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Yu, L., Zhang, W., Wang, J., and Yu, Y. Seqgan: Sequence
generative adversarial nets with policy gradient. In AAAI
conference on artificial intelligence, 2017.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine,
S., Finn, C., and Ma, T. Mopo: Model-based offline
policy optimization. In Advances in Neural Information
Processing Systems, 2020.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y.,
Babuschkin, I., Tuyls, K., Reichert, D., Lillicrap, T.,
Lockhart, E., et al. Deep reinforcement learning with
relational inductive biases. In International Conference
on Learning Representations, 2018.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

https://lilianweng.github.io/lil-log/2021/01/02/controllable-neural-text-generation.html
https://lilianweng.github.io/lil-log/2021/01/02/controllable-neural-text-generation.html
https://lilianweng.github.io/lil-log/2021/01/02/controllable-neural-text-generation.html
https://lilianweng.github.io/lil-log/2021/01/02/controllable-neural-text-generation.html

Decision Transformer: Reinforcement Learning via Sequence Modeling

A. Experimental Details
A.1. Atari

We build our Decision Transformer implemen-
tation for Atari games off of minGPT (https:
//github.com/karpathy/minGPT), a publicly
available re-implementation of GPT. We use most of
the default hyperparameters from their character-level
GPT example (https://github.com/karpathy/
minGPT/blob/master/play_char.ipynb). We
reduce the batch size (except in Pong), block size, number
of layers, attention heads, and embedding dimension for
faster training. For processing the observations, we use the
DQN encoder from Mnih et al. (2015) with an additional
linear layer to project to the embedding dimension.

For return-to-go conditioning, we use either 1× or 5× the
maximum return in the dataset, but more possibilities exist
for principled return-to-go conditioning. In Atari experi-
ments, we use Tanh instead of LayerNorm (as described in
Section 3) after embedding each modality, but did this does
not make a significant difference in performance. The full
list of hyperparameters can be found in Table 7.

A.2. OpenAI Gym

A.2.1. DECISION TRANSFORMER

Our code is based on the Huggingface Transformers library
(Wolf et al., 2020). Our hyperparameters on all OpenAI
Gym tasks are shown below in Table 8. Heuristically, we
find using larger models helps to model the distribution of
returns, compared to standard RL model sizes (which learn
one policy). For reacher we use a smaller context length
than the other environments, which we find to be helpful
as the environment is goal-conditioned and the episodes
are shorter. We choose return targets based on expert per-
formance for each environment, except for HalfCheetah
where we find 50% performance to be better due to the
datasets containing lower relative returns to the other en-
vironments. Models were trained for 105 gradient steps
using the AdamW optimizer (Loshchilov & Hutter, 2017)
following PyTorch defaults.

A.2.2. BEHAVIOR CLONING

As briefly mentioned in Section 4.2, we found previously
reported behavior cloning baselines to be weak, and so run
them ourselves using a similar setup as Decision Trans-
former. We tried using a transformer architecture, but found
using an MLP (as in previous work) to be stronger. We train
for 2.5× 104 gradient steps; training more did not improve
performance. Other hyperparameters are shown in Table 9.
The percentile behavior cloning experiments use the same
hyperparameters.

B. Graph Shortest Path
We give details of the illustrative example discussed in the
introduction. The task is to find the shortest path on a
fixed directed graph, which can be formulated as an MDP
where reward is 0 when the agent is at the goal node and
−1 otherwise. The observation is the integer index of the
graph node the agent is in. The action is the integer index
of the graph node to move to next. The transition dynamics
transport the agent to the action’s node index if there is an
edge in the graph, while the agent remains at the past node
otherwise. The returns-to-go in this problem correspond to
negative path lengths and maximizing them corresponds to
generating shortest paths.

In this environment, we use the GPT model as described
in Section 3 to generate both actions and return-to-go to-
kens. This makes it possible for the model it generate its
own (realizable) returns-to-go R̂. Since we require a re-
turn prompt to generate actions and we do assume knowl-
edge of the optimal path length upfront, we use a simple
prior over returns that favors shorter paths: Pprior(R̂ =
k) ∝ T + 1 − k, where T is the maximum trajectory
length. Then, it is combined with the return probabilities
generated by the GPT model: P (R̂t|s0:t, a0:t−1, R̂0:t−1) =
PGPT(R̂t|s0:t, a0:t−1, R̂0:t−1)× Pprior(R̂t)

10. Note that the
prior and return-to-go predictions are entirely computable
by the model, and thus avoids the need for any external or
oracle information like the optimal path length. Adjustment
of generation by a prior has also been used for similar pur-
poses in controllable text generation in prior work (Krause
et al., 2020).

We train on a dataset of 1, 000 graph random walk trajecto-
ries of T = 10 steps each with a random graph of 20 nodes
and edge sparsity coefficient of 0.1. We report the results
in Figure 6, where we find that transformer model is able
to significantly improve upon the number of steps required
to reach the goal, closely matching performance of optimal
paths.

There are two reasons for the favorable performance on this
task. In one case, the training dataset of random walk trajec-
tories may contain a segment that directly corresponds to the
desired shortest path, in which case it will be generated by
the model. In the second case, generated paths are entirely
original and are not subsets of trajectories in the training
dataset - they are generated from stitching sub-optimal seg-
ments. We find this case accounts for 15.8% of generated
paths in the experiment.

While this is a simple example and uses a prior on generation
that we do not use in other experiments for simplicity, it
illustrates how hindsight return information can be used
with generation priors to avoid the need for explicit dynamic
programming.

https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT/blob/master/play_char.ipynb
https://github.com/karpathy/minGPT/blob/master/play_char.ipynb

Decision Transformer: Reinforcement Learning via Sequence Modeling

Table 7. Hyperparameters of DT (and %BC) for Atari experiments.

Hyperparameter Value

Number of layers 6
Number of attention heads 8
Embedding dimension 128
Batch size 512 Pong

128 Breakout, Qbert, Seaquest
Context length K 50 Pong

30 Breakout, Qbert, Seaquest
Return-to-go conditioning 90 Breakout (≈ 1× max in dataset)

2500 Qbert (≈ 5× max in dataset)
20 Pong (≈ 1× max in dataset)
1450 Seaquest (≈ 5× max in dataset)
GeLU, otherwise

Encoder channels 32, 64, 64
Encoder filter sizes 8× 8, 4× 4, 3× 3
Encoder strides 4, 2, 1
Max epochs 5
Dropout 0.1
Learning rate 6 ∗ 10−4

Adam betas (0.9, 0.95)
Grad norm clip 1.0
Weight decay 0.1
Learning rate decay Linear warmup and cosine decay (see code for details)
Warmup tokens 512 ∗ 20
Final tokens 2 ∗ 500000 ∗K

C. Atari Task Scores
Table 10 shows the normalized scores used for normalization
used in Hafner et al. (2020). Tables 11 and 12 show the raw
scores corresponding to Tables 1 and 4, respectively. For
%BC scores, we use the same hyperparameters as Decision
Transformer for fair comparison. For REM and QR-DQN,
there is a slight discrepancy between Agarwal et al. (2020)
and Kumar et al. (2020); we report raw data provided to us
by REM authors.

D. Additional Discussions
D.1. Context Length Ablation

To assess the importance of access to previous states, ac-
tions, and returns, we ablate on the context length K. This
is interesting since it is generally considered that the previ-
ous state (i.e. K = 1) is enough for reinforcement learning
algorithms when frame stacking is used, as we do. Table 13
shows that performance of Decision Transformer is signifi-
cantly worse when K = 1, indicating that past information
is useful for Atari games. One hypothesis is that when we
are representing a distribution of policies – like with se-
quence modeling – the context allows the transformer to
identify which policy generated the actions, enabling better
learning and/or improving the training dynamics.

D.2. Why does Decision Transformer avoid the need for
value pessimism or behavior regularization?

One key difference between Decision Transformer and prior
offline RL algorithms is that we do not require policy reg-
ularization or conservatism to achieve good performance.
Our conjecture is that TD-learning based algorithms learn an
approximate value function and improve the policy by opti-
mizing this value function. This act of optimizing a learned
function can exacerbate and exploit any inaccuracies in the
value function approximation, causing failures in policy im-
provement. Since Decision Transformer does not require
explicit optimization using learned functions as objectives,
it avoids the need for regularization or conservatism.

D.3. How can Decision Transformer benefit online RL?

Offline RL and the ability to model behaviors has the po-
tential to enable sample-efficient online RL for downstream
tasks. Works studying the transition from offline to online
generally find that likelihood-based approaches, like our se-
quence modeling objective, are more successful (Gao et al.,
2018; Nair et al., 2020). As a result, although we studied
offline RL in this work, we believe Decision Transformer
can meaningfully improve online RL methods by serving
as a strong model for behavior generation. For instance,
Decision Transformer can serve as a powerful “memoriza-
tion engine” and in conjunction with powerful exploration

Decision Transformer: Reinforcement Learning via Sequence Modeling

Table 8. Hyperparameters of Decision Transformer for OpenAI Gym experiments.

Hyperparameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Nonlinearity function ReLU
Batch size 64
Context length K 20 HalfCheetah, Hopper, Walker

5 Reacher
Return-to-go conditioning 6000 HalfCheetah

3600 Hopper
5000 Walker
50 Reacher

Dropout 0.1
Learning rate 10−4

Grad norm clip 0.25
Weight decay 10−4

Learning rate decay Linear warmup for first 105 training steps

Table 9. Hyperparameters of Behavior Cloning for OpenAI Gym experiments.

Hyperparameter Value

Number of layers 3
Embedding dimension 256
Nonlinearity function ReLU
Batch size 64
Dropout 0.1
Learning rate 10−4

Weight decay 10−4

Learning rate decay Linear warmup for first 105 training steps

algorithms like Go-Explore (Ecoffet et al., 2019), has the
potential to simultaneously model and generative a diverse
set of behaviors.

Decision Transformer: Reinforcement Learning via Sequence Modeling

1 2 3 4 5 6 7 8 9
of steps to goal

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
op

or
tio

n
of

 p
at

hs

shortest path
transformer
random walk

Figure 6. Histogram of steps to reach the goal node for random walks on the graph, shortest possible paths to the goal, and attempted
shortest paths generated by the transformer model. ∞ indicates the goal was not reached during the trajectory.

Game Random Gamer

Breakout 2 30
Qbert 164 13455
Pong −21 15
Seaquest 68 42055

Table 10. Atari baseline scores used for normalization.

Game DT (Ours) CQL QR-DQN REM BC

Breakout 76.9± 27.3 61.1 6.8 4.5 40.9± 17.3
Qbert 2215.8± 1523.7 14012.0 156.0 160.1 2464.1± 1948.2
Pong 17.1± 2.9 19.3 −14.5 −20.8 9.7± 7.2
Seaquest 1129.3± 189.0 779.4 250.1 370.5 968.6± 133.8

Table 11. Raw scores for the 1% DQN-replay Atari dataset. We report the mean and variance across 3 seeds. Best mean scores are
highlighted in bold. Decision Transformer (DT) performs comparably to CQL on 3 out of 4 games, and outperforms other baselines.

Game DT (Ours) 10%BC 25%BC 40%BC 100%BC

Breakout 76.9± 27.3 10.0± 2.3 22.6± 1.8 32.3± 18.9 40.9± 17.3
Qbert 2215.8± 1523.7 1045± 232.0 2302.5± 1844.1 1674.1± 776.0 2464.1± 1948.2
Pong 17.1± 2.9 −20.3± 0.1 −16.2± 1.0 5.2± 4.8 9.7± 7.2
Seaquest 1129.3± 189.0 521.3± 103.0 549.3± 96.2 758± 169.1 968.6± 133.8

Table 12. %BC scores for Atari. We report the mean and variance across 3 seeds. Decision Transformer usually outperforms %BC.

Game DT (Ours) DT with no context (K = 1)

Breakout 267.5± 97.5 73.9± 10
Qbert 15.1± 11.4 13.6± 11.3
Pong 106.1± 8.1 2.5± 0.2
Seaquest 2.5± 0.4 0.6± 0.1

Table 13. Ablation on context length. Decision Transformer (DT) performs better when using a longer context length (K = 50 for Pong,
K = 30 for others).

