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ABSTRACT

Although Text-to-Speech (TTS) has made rapid progress in speech quality at sen-
tence level, it still faces a lot of challenges in paragraph / long-form reading. Syn-
thesizing sentence by sentence in a paragraph and then concatenating them together
will cause inconsistent issues that affect paragraph-level expressiveness. While
directly modelling all the sentences in a paragraph will incur large computation /
memory cost. In this paper, we develop a TTS system called ContextSpeech, which
models the contextual information in a paragraph for coherence and expressiveness
without largely increasing the computation or memory cost. On the one hand, we
introduce a memory-cached recurrence mechanism to let the current sentence see
more history information both on the text and speech sides. On the other hand, we
construct text-based semantic information in a hierarchical structure, which can
broaden the horizon and incorporate the future information. Additionally, we use a
linearized self-attention with compatible relative-position encoding to reduce the
computation / memory cost. Experiments show that ContextSpeech significantly
improves the paragraph-level voice quality and prosody expressiveness in terms
of both subjective and objective evaluation metrics. Furthermore, ContextSpeech
achieves better model efficiency in both training and inference stage.

1 INTRODUCTION

Deep neural network based Text-to-speech (TTS) develops rapidly and brings significant break-
throughs. Neural Network based models like Tacotron 1/2[Wang et al.|(2017); |Shen et al.| (2018)),
Deep voice 3 |Ping et al.| (2017), Transformer TTS |Li et al.|(2019)), FastSpeech1/2|Ren et al.|(2019;
2020), together with neural vocoder model like WaveNet |Oord et al.|(2016), Parallel WaveNet|Oord
et al.| (2018]), WaveRNN |Kalchbrenner et al.| (2018)), MelGAN |[Kumar et al.| (2019) can generate
high-quality voices. More recently it evolves to fully end-to-end model like VITS Kim et al.| (2022)
and NatualSpeech Tan et al.| (2022), which achieves high-fidelity and close-to-recording quality.

These TTS models usually convert text to speech in sentence-level. In fact, there are many scenarios
in TTS where the synthesized audio is created in paragraph-level, like news reading, audiobook, audio
content dubbing, or even dialogue composed by multiple interrelated sentences. Regarding the large
variation of context in long-form content, concatenating synthesized speech sentence by sentence still
has obvious gap to natural recording in paragraph reading from perceptual evaluation. Meanwhile,
the imbalanced distribution of TTS corpus data with long-tail sentences, e.g., extra-long or extra-short
sentences, makes it difficult for TTS systems to generate high quality synthesized speech in such
context. From our observation, the sentence-level speech synthesis is limited as followings:

* Correlation between adjacent sentences. For paragraph reading, adjacent sentences influence
each other naturally as the semantic information flowing. Thus, sentence-level synthesis
lacks coherence between adjacent sentences and accurate expression.

* Efficiency or consistency on extra-long sentences. Synthesizing extra-long sentences usually
leads to unstable results (e.g. bad alignment between text and speech) and high latency.
Generally, such sentences will be cut into two or more segments and then synthesized
separately, which may cause inconsistent speech rate or prosody between cut segments.
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* Quality on extra-short sentences. As rare patterns in corpus, sentences that are too short
(e.g. consisted by one or two words) are easy to generate audio with poor quality (e.g. bad
pronunciation or extremely slow speech rate).

Naturally, involving contextual-related information should be helpful to address above issues and
do better paragraph-level text-to-speech. To be more specific, 1) for adjacent sentences, contextual
information brings inter-sentence knowledge, to guide the generation of current sentence under
more appropriate speaking style. 2) For extra-long sentences, intra-sentence contextual information
can benefit each position to generate expressive and consistent audio. 3) For extra-short sentences,
leveraging contextual information can enlarge the perceptive scope to produce a more stable result.

Nevertheless, contextual information is difficult to define and the introduction of external information
into the model leads to high calculation and memory cost. Thus, the challenges of this work are
1) how to construct and leverage effective contextual information; and 2) how to reduce the cost
introduced by the external information. Based on such motivation, we propose the ContextSpeech
model, and the mainly contributions of this work are summarized as follows:

* We present a framework with cached hidden state to capture previous information, thus
it evolves from sentence-level to paragraph-level speech synthesis in perspective of mod-
eling. We use one of the state-of-the-art sentence-level speech synthesis architecture,
Conformer |Peng et al.|(2021)) based TTS in|Liu et al.|(2021), as our baseline framework.
This model can capture local correlation well and produce more expressive speech compared
with Feed-Forward Transformer based FastSpeech. Based on that, referring to segment-level
recurrence mechanism proposed in |Dai et al. (2019)), the cached hidden state for each
Conformer block in both encoder and decoder transfers text and speech information from
the previous segment to current segment.

* Inspired by the context-aware conversational TTS |Guo et al.|(2021)), we propose a modified
version of text-based contextual encoder and integrate it into our memory reuse mechanism
based conformer model. We first extract BERT |Devlin et al.| (2018)-based embedding
and pre-defined statistical information from contextual scripts. After that, we build a text-
based contextual encoder to consume these features and then combine them with phoneme
embedding to go through the Conformer block. Such integration of the context information
can broaden the model horizon from history to future and alleviate the one-to-many mapping
issue in TTS |Ren et al.|(2020).

* To reduce the memory and calculation cost, we use a linearized self-attention module
to avoid quadratic complexity caused by softmax self-attention. Meanwhile, we adopt a
permute-based relative position encoding to fit the efficient self-attention under our memory
reused framework.

We conduct experiments on a speech corpus of Chinese audiobook. The results show that Con-
textSpeech can generate more expressive and coherent paragraph audios compared with baseline
ConformerTTS model in terms of objective and subjective evaluation. From the observation, it also
alleviates the issues caused by extra-long and extra-short sentences obviously. And the ablation
experiments demonstrate that both of our proposed contextual model framework and the integration
of text-based contextual encoder are effective. Additionally, the efficiency optimization on Con-
textSpeech expand around 2x of both memory tolerance and training speedup, and the final model
largely alleviate the efficiency issue of extra-long input compared with baseline model.

2 RELATED WORK

2.1 TEXT TO SPEECH

TTS is a technique aimed at converting given text to speech automatically, and the goal of which
includes naturalness, expressiveness, robustness and efficiency. Along with the flourishing of deep
learning, the conventional methods like concatenative synthesis Hunt & Black! (1996)) and statistical
parametric synthesis Zen et al.|(2009) are gradually replaced by neural network based approaches [Tan
et al.| (2021). Autoregressive acoustic model [Wang et al.|(2017);[Shen et al.| (2018); |Ping et al.| (2017);
L1 et al.|(2019) and vocoder |Oord et al.| (2016); [Kalchbrenner et al.| (2018)) largely improves the
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voice quality but are limited by the slow inference speed, especially on the vocoder part. To improve
the model efficiency, non-autoregressive vocoder methods |Oord et al.| (2018); [Prenger et al.| (2019);
Kumar et al.[(2019) are proposed for boosting the inference speed and move the bottleneck to acoustic
model. Therefore, non-autoregressive acoustic models Ren et al.| (2019} |2020); Kim et al.| (2020);
I ancucki| (2021) appeared. For example, FastSpeech |Ren et al.| (2019) is one of the most remarkable
work that is fast and stable based on the duration predictor and feed-forward transformer in both
encoder and decoder. But the expressiveness is limited due to teacher-student distillation (information
loss). An improved Conformer |[Hunt & Black| (1996))-based FastSpeech model is proposed in |[Liu
et al.|(2021), we call it ConformerTTS. Combining convolutional neural networks and multi-head
self-attention for both local and global information encoding, this model can generate audios with
high naturalness and expressiveness. In this paper, we will use the ConformerTTS as our baseline
model, and then make it context-aware to improve the quality and efficiency on paragraphs and
extremely short/long sentences.

2.2 CONTEXT MODELING

Contextual information can be leveraged from two perspectives, priori knowledge and model construc-
tion. Text-based information processing is actually an indispensable basement. Previously, front-end
processing is an essential module in a classical SPSS (Statistical Parametric Speech Synthesis) system,
which is used for converting text to linguistic features. This module is replaced by a powerful encoder
with phoneme or character as input in current end-to-end neural TTS model. Even so, incorporating
external linguistic and semantic information can still benefit the voice quality Xiao et al.| (2020); |Guo
et al.[(2021));|Le1 et al.| (2022); Xu et al.|(2021); Xue et al.|(2022)). On the other hand, variant model
structures serve to extracting contextual information. For example, recurrent mechanisms [Hochreiter|
& Schmidhuber| (1997)); Chung et al.| (2014)); Wang et al.| (2017); |Shen et al.| (2018)) are good at
modelling sequence but limited to sequential computation. Convolutional block [Kalchbrenner et al.
(2016));|Gehring et al.| (2017); Ping et al.| (2017); |Arik et al.| (2017) can capture more detail information
but lack long-range dependencies. Transformer-based models Vaswani et al.|(2017); |Li et al.|(2019)
can achieve better scalability and model global correlation information well. These models mainly
focus on the modelling of intra-sequence correlation. For the cross-sentence context modeling,
Transformer-XL Dai et al.[(2019) is proposed to deal with inter-segment information transfer based
on a segment-level recurrence mechanism, and similar framework is introduced into TTS task Wang
et al.[(2020b). In this paper, we capture fine-grained and global correlation by convolutional based
Transformer framework, learn dependency of adjacent sequences with XL-like hidden state reuse and
construct a text-based contextual encoder to incorporate both linguistic and semantic information.

2.3 EFFICIENT TRANSFORMER

Transformer model achieves success across a wide range of domains. The self-attention module brings
the effectiveness but also limits the model efficiency due to the quadratic time and memory complexity.
Especially for extra-long sequences, the workload will be heavy and largely hinder model scalability.
Recently, a number of Transformer variants with different mechanisms are proposed to address this
efficiency issue|Tay et al.|(2020). For instance, Sparse Transformers |Child et al.[{(2019) compute a
sparse number of query-key pairs based on fixed attention patterns. Reformer [Kitaev et al.| (2020)
introduces Locality Sensitive Hashing to measure the similarity of tokens efficiently. Linformer(Wang
et al.| (2020a) improves efficiency by assuming the attention matrix as low-rank structure to be
decomposed. In this paper, as we will leverage external contextual information and structures, to
make the model more efficient, we use the linearized attention from Linear Transfomer |[Katharopoulos
et al.| (2020). It is a kernel based method that can significantly reduce the computation time and
memory footprint even linearly according to the context length, which is also demonstrated in TTS
scenarios X1ao et al. (2022).

3 CONTEXTSPEECH

In this section, we will introduce detailed architecture of our proposed model, ContextSpeech. In
Section 3.1, we first describe our baseline framework, ConformerTTS, which is a Conformer based
FastSpeech model that can capture sentence-level local and global information well. Based on that, we
introduce the memory reuse mechanism, which can transfer contextual information of both text and
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Figure 1: Overall Model Architecture of ContextSpeech. (a) ConformerTTS Framework (b) Con-
former block with Segment-Level Memory Reuse (c) Linearized Self-Attention with Permute-based
Relative Position Embedding.

speech between adjacent sentences. In Section 3.2, we illustrate the proposed text-based contextual
encoder, which can encode linguistic and semantic information effectively in a hierarchical structure.
Finally, Section 3.3 presents the efficient self-attention mechanism we used in our framework, which
significantly improves the model efficiency in both training and inference stage.

3.1 CONFORMERTTS WITH MEMORY REUSE

ConformerTTS (Baseline). Figure (a) is the overall framework of a ConformerTTS model (without
the text-based contextual encoder). The difference between it and FastSpeech is that the Feed-Forward
Transformer (FFT) block is replaced by the Conformer Block(CB) |Hunt & Black| (1996) in both
encoder and decoder |Liu et al.|(2021). As shown in Figure E}(b), the CB integrates a Convolution
Module (ConvM) and a Multi-Head Self-Attention (MHSA) to model the local correlation and the
global interaction. Additionally, a convolution based Feed-Forward Network (ConvFFN) is attached
after the self-attention for encoding the correlation between adjacent hidden state in further. To be
specific, the ConvM is composed of four stacked components, including a convolutional feed-forward
module, a gated linear unit (GLU), a depthwise convolution module and another convolutional
feed-forward module. Set N as the number of CB stacked in encoder (or decoder), the input feature
of the n-th CB can be represented as H;" = [hm7 oy Py, ], where t is the index of current sequence
and L is the sequence length. This model will be used as baseline framework in this paper.

Segment-level Memory Reuse. Refer to Transformer-XL Dai et al.|(2019), we cache the hidden
state of previous segment in each layer and reuse it with current segment for involving contextual
information as shown in Figure [T} (b). Notice that, the previous segment is with a fixed length while
we use a complete sentence as our current segment to retain more intact semantic and acoustic
information from both text and speech. Instead of reusing the input feature of MHSA, we choose
to cache the input feature of CB directly since the ConvM can help in capturing the contextual
information around the concatenation point. As the output of the n-th block is the input of the
(n + 1)-th block when n < N, the hidden state can be represented as Eq.(1), where SG(-) means
stop-gradient and the notation [A o B] indicates concatenating hidden sequences A and B along the
length dimension.

H} = [SG(H!') o ConformerBlock(H}")] (1)

3.2 TEXT-BASED CONTEXTUAL ENCODER

Given the same sentence with different context, the prosody of the generated speech would be different.
In this section, we adopt a text-based contextual encoder to enhance the prosody expressiveness and
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Figure 2: Text-based Contextual Encoder.

coherence. Overall, we use two modules to extract semantic and syntax information separately, then
combine these features together.

As shown in Figure[2] given a paragraph text, a sentence splitter firstly splits the paragraph text into
sentences. Then, for each sentence centered in a predefined range of context ¢, we use a BERT Devlin
et al.[(2018) model to extract the token E]-level semantic context embedding derived as current sentence
token embedding E; and context sentence token embedding F;_.;4. for further operation. At the
same time, a token-level statistical feature extractor is used to calculate the syntactic information,
which covers the correlation from sentence to paragraph. The calculated statistical features are listed
in the upper table of Figure 2, where i;  means the i-th token in sentence, i;_, means the i-th token
in paragraph, i, _, means the ¢-th sentence in paragraph, n; ; means the number tokens in a sentence,
n;_, means the number of tokens in a paragraph, n, , means the number of sentences in a paragraph.
The maximum values are used for normalization and are counted based on the training data.

* Phoneme-level contextual embedding. When BERT and statistical features of current
sentence are ready, they will be concatenated and then up-sampled to align with the phoneme
sequence. After that, a convolution layer and projection layer are used to generate the
phoneme-level context-aware feature.

* Sequence-level contextual embedding. BERT token embedding for the predefined range of
context in the paragraph will go through the average pooling. After a linear layer, the context
embedding will be encoded by a GRU module to a state vector, which is the paragraph-level
contextual representation and contains both historical and future information. Then, the
paragraph-level contextual representation will be concatenated with the current sentence’s
embedding and go through a projection layer to get the sequence-level context-aware feature.

Our text-based contextual encoder contributes in two aspects: (i) it broadens the horizon of current
phoneme to paragraph scope by calculating the paragraph-level statistical features and generating the
higher-level contextual state vector, rather than just using the current utterance. (ii) the constructed
hierarchical contextual feature will be inserted into phoneme embedding which impacts encoder
effectively.

3.3 EFFICIENT SELF-ATTENTION MECHANISM

Linearized Self-Attention. Let X € R*¢ as the input of self-attention module, Q = Wy - X,
K =Wy -XandV =W, - X are linear transformations on the input X. The canonical softmax-
based self-attention mechanism in Transformer can be presented as equation (2), where the time and
memory complexity is quadratic according to the input length.

A(Q,K,V) = softmaz(QKT /Vd)V 2)

"For Chinese, "token" means "character”, for English, “token” means “subword”.
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L L
AQi 1,V) = (X sim(Qu 553 ) /(3 sim(@i, K ©)
j=1 j=1
As in |Katharopoulos et al.[(2020), the attention matrix can be generalized as a similarity function
of Q; and Kj, the i-th or j-th row of the matrix () and K, as Eq.(3). The similarity function can
be any other attention functions that are non-negative. Given a qualified kernel function ¢(z), the
generalized row-wise attention matrix can be rewritten as Eq.(4).

AQi K. V) = (im@)%(&)w)/(ias(Q,-)%(Kj)) @

= (2(@)" Y o()V; ) /(@)™ S 6(K) )

j=1 j=1

According to the associative property of matrix multiplication, ¢(Q;)” can be taken out of the
summation formula both in numerator and denominator as Eq.(5). Thus, we can compute the
summation formula part in advance and reuse them for each query.

Permute-based Relative Position Encoding. Since we reuse the hidden states as described in
Section 3.1, we have to make sure the positional information carried by memory is consistent with
that of current segment. Transformer-XL propose a relative positional encoding method while it is
target for softmax-based self-attention. Since we use a linearized self-attention instead, we need
a corresponding compatible relative-positional encoding way. Therefore, we applied the permute-
based method proposed in (Chen| (2021), where the sim(Q;, K ]‘) in Eq.(3) will be converted to
permute based format as Eq.(6). 7 is set as 1 to avoid exploding as the sequence length increases. A
premutation B: {1,2,....d} -> {1,2,...,d} is generated randomly, where d is the dimension of query
or key. Here, the first {1,2,...,d} and the second {1,2,...,d} can be treated as index collections with
different order. Pp is the corresponding premutation matrix of B, where Pgp ;; = 1if B(i) = j;
otherwise Pp ;; = 0.

. T L
simy(Qi ;) = (riPo(Q)) - (r7 Pho(K;)) ©)
4 EVALUATION

4.1 EXPERIMENTAL SETUP

Dataset. We did experiments on an expressive Chinese male voice. The dataset is an audiobook
corpus which is composed of around 70 hours (~35, 000 sentences) of narration speech data and the
corresponding text transcripts. We left 100 paragraphs from the same book for objective evaluation
and construct 3 different paragraph test sets from other books for subjective evaluation. These 3 test
sets includes: Set-A: 50 paragraphs with sentences in normal length, in order to evaluate the overall
model performance on paragraph reading. Set-B: 50 paragraphs with sentences in extra-short length
(e.g. one or two words), to see if the model relieve the robustness issue in extra-short sentences.
Set-C: 10 paragraphs with incremental sentence number from 2 to 11, which is used for testing the
model efficiency of extra-long input.

Model Configuration. Our ContexSpeech model is composed by encoder (for phoneme side),
variance adapter (pitch and duration predictor) and decoder (for mel-spectrograms side). There
are 6 stacked Conformer blocks in both encoder and decoder and 4 self-attention heads in each
Conformer. In Convolution Module, the [input_dim, output_dim, kernel_size] for the first pointwise
convolution module, the depthwise convolution module and the second pointwise convolution module
are [384, 768, 1], [384, 384, 7] and [384, 384, 1] respectively. The kernel function used in linearized
self-attention is ¢(x) = elu(z) + 1, and the ConvFFN consists of 2 convolution layers with input
and output dimension as 384 and hidden state dimension as 1536. The memory length is set as 128
for encoder, which is around the average input length of one sentence in the training data. While
the memory length of decoder is set as 64, which is the setting with best objective evaluation results
among the setting group [16, 32, 64, 128, 256, 512]. The experimental result of memory length
selection is presented in Appendix B. For the text-based contextual encoder, the pretrained Chinese
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Figure 3: Paragraph MOS result on Recordings, Baseline, ContextSpeech.

Table 1: Objective Metrics Result of Baseline and ContextSpeech model.
Correlation RMSE
Metrics Pitch Intensity Duration Pause | Pitch Intensity Duration Pause
Baseline 0.688  0.853 0.764  0.888 [ 25.398 11.582  47.090 60.803
ContextSpeech | 0.716  0.870 0.817 0.929 | 23.197 10929 44.658 36.145

BERT-based model is used for our experiments, the size of the extracted BERT
embedding and the statistical features are 768-dim and 6-dim, respectively. For the phone level
contextual extractor, the [input_dim, output_dim, kernel_size] of the convolution layer is [774, 384,
5], which is followed by RELU, layer norm, dropout with rate 0.5 and a linear layer with size [384,
384]. For the sequence level contextual extractor, the size of linear layer is [768, 384], and the
context size in our experiment is 11, i.e., 5 sentences before and after except the current sentence.
The GRU layer with size [384, 384] is used to encode the input context embedding to a state vector,
and followed by a RELU, dropout with rate 0.5 and a linear layer with size [768, 384].

Evaluation. We conduct paragraph MOS (mean opinion score) test to evaluate the overall voice
performance of our method considering both recording and baseline model. In the paragraph MOS
test, 25 native speakers listen to each audio and give a score in 10-point scale according to the
overall performance and each specific metric, including naturalness, pleasantness, speech pause,
stress, intonation, emotion, style matchiness and listening effort (Definition of each metrics is given
in Appendix C). Paragraph CMOS (comparative mean opinion score) test is used to compare the
proposed model with the baseline model in different test sets. In the paragraph CMOS test, given
the same text, 15 native speakers will compare the synthesized samples side by side and give a
score from -3 to +3, where the baseline model is set as O for reference. Additionally, we propose a
group of objective metrics to evaluate model performance according to recordings with the same
transcripts, including pitch, intensity, duration and pause. Detailed definition and calculation are
listed in Appendix A. Objective metrics are useful in model parameter and final step selection since
we need to compare many groups of samples, which is heavy for subjective evaluation. For model
efficiency evaluation, we do model training on 8 NVIDIA V100 GPUs and inference work on 1
NVIDIA Tesla K80 GPU.

4.2 QUALITY ON PARAGRAPH READING

We conduct a paragraph MOS test on Set-A for ContextSpeech model along with baseline and
recording. Figure [3] shows the result in overall impression and other 8 specific metrics. The
ContextSpeech outperforms baseline model no matter in which metric and is close to recording in
overall impression (7.93@7.99). To be more specific, the proposed model reduces the MOS gap
with recording from 0.25 to 0.06 compared with baseline model, which is around 76% reduction.
Especially for voice pleasantness, emotion, style matchiness and listening effort, ContextSpeech
model shows significant improvement with more than 50% MOS gap reduction.

Besides the subjective evaluation, we also calculate the prosody-related objective metrics to measure
the similarity between synthesized voice and 100 paragraph recordings. Table [I] shows that Con-
textSpeech achieves improvement in each objective metric compared with baseline model, which
also verifies the model performance in paragraph-level prosody expressiveness.
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Table 2: CMOS result on Paragraphs with Extra-Short or Long sentences.
Baseline | ContextSpeech
Paragraphs with Extra-short Sentences 0 +0.107
Paragraphs with Extra-long Sentences 0 +0.226

Mel spectrogram

+0dB

-10 dB

20 dB

-30dB

-40 dB

-50 dB

-60 dB

-70 dB

-80 dB

(a) Mel-Spectrograms of Baseline sample

Mel spectrogram
L ! +0dB

-10dB
-20dB
-30dB
-40 dB
-50 dB
-60 dB

-70 dB

-80 dB

Time

(b) Mel-Spectrograms of ContextSpeech sample

Figure 4: Mel-Spectrogram samples of paragraph with one-word sentence

4.3 STABILITY ON EXTRA-SHORT SENTENCE

As mentioned in Section 1, extra-short sentences (one or two words) in sentence-level speech
synthesis model usually cause robustness issue, such as bad pronunciation and low speech rate.
Therefore, we conduct paragraph CMOS test on Set-B. Set score of Baseline model as O for reference,
ContextSpeech obtains 0.107 CMOS gain. Two kinds of issues on extra-short sentence are obviously
relieved, including bad pronunciation issue in one-word sentences and low speech rate issue in
two-word sentences. Figure @] demonstrates the mel-spectrogram samples to compare baseline and
ContextSpeech model in terms of one-word sentence. The red rectangles mark the position of the
sentence with only one word in the paragraph. It is obvious that the spectrogram of baseline model
in that position is muffle (Figure f(a)), while that of ContextSpeech model is much clearer with
complete formant (Figure[d(b)). By listening to the audios, we can also notice that the pronunciation
of that one-word sentence is distorted in baseline paragraph but clear in ContextSpeech paragraph.
The sample pairs with pronunciation and speech rate issues will be attached in Appendix D.

4.4 EFFICIENCY ON EXTRA-LONG SENTENCE

The efficient self-attention module described in Section 3.3 largely improves the model efficiency.
For training stage, ContexSpeech with linearized self-attention can achieved 2x of speedup and
2x of memory tolerance compared with using softmax-based self-attention. For Inference stage,
ContextSpeech shows significant advantage over the baseline model especially for extra-long input.
We construct a test consisting of 10 paragraphs, and the sentence number is incremental from 2 to 11.
Table [3]illustrates the inference latency for baseline and ContextSpeech model according to different
input phoneme length on 1 NIVIDA K80 GPU. The baseline model run into out-of-memory when
the input phone number increase to 1574, while the ContextSpeech model can still handle such long
sequence. Additionally, the ContextSpeech model outperforms the baseline model in each group
and achieves more than 10x speedup compared with baseline model when the input length is 1506.
Furthermore, we do paragraph CMOS on this test set and obtain 0.226 CMOS gain (Baseline vs
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Table 3: Inference latency — millisecond per phone in different length of input.
#Sent(#Phone) | 2(252) | 3(414) | 4(506) | 5(620) | 6(780) | 7(398) | 8(1194) | 9(1354) | 10(1506) | 11(1574)
Baseline 1116 | 0521 | 0474 | 0422 | 0403 | 0416 | 0720 | 0.609 | 0.797 OOM
0240 | 0.150 | 0.134 | 0.111 | 0.095 | 0.089 | 0.084 | 0.083 | 0.078 0.075
(x4.65) | (347) | (x3.54) | (3.80) | (x4.24) | (x4.67) | (x4.67) | (x7.39) | (x10.22)

ContextSpeech

ContextSpeech as shown in Table [2)). In summary, for extra-long input sentence, ContextSpeech
model shows better performance in both inference time and memory tolerance, and also voice quality.

4.5 ABLATION STUDY

We conduct ablation study for the proposed ContextSpeech model to evaluate the effectiveness of the
added module. Table[d] shows the paragraph CMOS results on Set-A for removing each component
from ContextSpeech model.

Memory Recurrence (MR). Memory reuse mechanism described in Section 3.1 is proposed to
enlarge the receptive field of current segment to see more historical information. To verify the
effectiveness of this module, we remove it from ContextSpeech model, and do a paragraph CMOS
test for comparison. Set ContextSpeech model as 0 for reference, remove the MR component cause
-0.085 regression, which demonstrates the contribution from MR mechanism.

Text-based Contextual Encoder (TCE). As described in Section 3.2, we proposed a text-based
contextual encoder to leverage hierarchical contextual information from plain text and broaden the
model horizon to see more future information. To evaluate its effectiveness, we do paragraph CMOS
test to compare the model with and without TCE module. The negative score -0.048 verifies the
positive effect from TCE module.

Linearized self-attention with Permute-based relative encoding (LP). LP is introduced in Section
3.3, which is used for improve model efficiency and capability especially on extra-long input. The
efficiency improvement and corresponding performance on extra-long input are proved in Section
4.4. Here we replace the LP in ContextSpeech by previous softmax-based self-attention with relative
position encoding in Transformer-XL to evaluate the performance in paragraphs with normal-length
sentence. The paragraph CMOS result, -0.030, demonstrates that the LP module will not cause
quality regression and even with slight improvement in normal case.

Table 4: Paragraph CMOS test result for Ablation Study.
ContextSpeech | -MR | - TCE | -LP
0 -0.085 | -0.048 | -0.030

5 CONCLUSION

In this paper, we propose ContextSpeech, which is an expressive and efficient TTS model for
paragraph reading. We introduce memory reuse mechanism in both encoder and decoder to transfer
historical information of both text and speech to current sentence. Additionally, we encode text-based
contextual information in a hierarchical structure to broaden the model horizon and enlarge the scope
to see future information. Furthermore, we use linearized self-attention with permute-based relative
position encoding to improve the model efficiency. Experiments on Chinese audiobook corpus
demonstrate that ContextSpeech achieved superior voice quality and expressiveness in paragraph
reading compared with one of the baseline model (76% reduction on the MOS gap to recording).
ContextSpeech also alleviates the robustness issues in extra-short sentence (0.107 CMOS gain) and
shows significant improvement in terms of the quality (0.226 CMOS gain) and efficiency (~10x
speedup) with the extra-long input.

Future Work. Besides long-form problem for paragraph in text, the audio content usually contains
rich style and prosody variations like introducing the dialogue data in audiobook. There would be
large potential for extracting more contextual representation from the speech data , for example,
the memory reuse of prosody related information and appropriate style representation could bring
richness improvement on the long-form content audio in further. We will continue explore this
possibility in the future work.
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A APPENDIX

A. Objective Metrics

We design a set of objective metrics to evaluate the prosody similarity between TTS wave and
recording with the same transcripts, including pitch, intensity, duration and pause. Specifically, as
shown in Figure[5] we use an internal vocoder analysis tool to generate the frame level fO (fundamental
frequency) and intensity of the given TTS wave and recording. It is worth mentioning that in order
to get more accurate results, we perform linear interpolation and median filtering on fO to obtain a
continuous and smooth fO curve. Given the transcription text, we can obtain the phoneme boundary,
phoneme duration and pause duration between adjacent phonemes by an internal force align tool. In
addition, we use an internal syllabification tool to obtain the syllable boundary of phoneme sequences.

Combing frame-level f0, intensity and the phoneme boundary, we can get phoneme-level fO and
intensity by averaging the frame-level features inside a phoneme. The duration of all the phonemes
inside the syllable is added to get the duration of the syllable. The pause duration after the last
phoneme of the syllable is treated as the pause duration of the syllableﬂ When the phone-level {0,
intensity and syllable duration, pause features are ready, we calculate the pearson correlation and
RMSE of the above prosody features between TTS wave and recording as the objective metrics. The
pearson correlation is calculated by Eq.(7), where x and y are the prosody feature vector of TTS
wave and recording respectively, F, and E, are the mean of the feature vector of x and y. RMSE is
calculated by Eq.(8), where IV is the vector length of 2 and y. As we mentioned in section[4.1} these
objective metrics are used as an additional reference combined with subjective evaluation for our
model selection.

Frame to
> Phone Level
Features
Frame Leyel Phoneme
FO,Intensity Boundary, Pause , i
Vocodgr TTS Wave —>  Force Align Correlation RMSE
Analysis ) )
Recording —
Phone to
Transcription ——>| Syllabification ——— Syllable Level
Features
Figure 5: Objective Metrics.
r—E,)(y—E N (2 — ;)2
pearson = Z( I)(y y) (7) rmse = w—7yz) (8)
V(= E)? Y (y — By)? N

B. Selection of Memory Length

We have to select the best parameter setting of memory length for both encoder and decoder. As the
number of different comparison pairs is large and the difference among these models is not obvious
enough, we use the objective metrics described in Appendix A to perform the evaluation. Notice that
the result here is based on the ContextSpeech model without the integration of text-based contextual
encoder.

Encoder Memory Length To select the memory length of encoder, we first set the decoder memory
length as 0, and then compare model performance under different encoder memory lengths (from

From our experiments and observation, syllable-level features are more appropriate for the comparison of
duration and pause related prosody feature.
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32 to 512). The results are presented in Table[5] The distribution of the best metric values seems
not concentrate on one model, since not all carried information in memory is useful for current
sentence synthesis. We can see that the model with 128 as the encoder memory length achieves 3
best metrics, which is better than other models. 128 is also a number close to the average input length
of 1 sentence in our data set. Therefore, we select 128 as the final setting of encoder memory length
in our ContextSpeech model.

Table 5: Objective Metrics Result of Different Encoder Memory Length.

Correlation RMSE

Metrics | Pitch Intensity Duration Pause | Pitch Intensity Duration Pause
32-0 [0.674 0.852 0.760  0.897 | 25204 11.620  46.576  56.917
64-0 | 0.676  0.849 0.775 0.887 | 25474 11.796  46.692 58.051
128-0 | 0.678  0.856 0.786  0.884 | 24.820 11.475  46.723  57.437
256-0 | 0.662  0.856 0.776  0.890 | 24966 11.377  46.620 58.307
512-0 | 0.669  0.858 0.770  0.892 | 25.134 11.477  45.958 58.904

Decoder Memory Length. Given the memory length of encoder is 128, we compare models with
different memory length in the decoder, from 16 to 512, and the result are shown in Table @ We can
see that the model with decoder memory length as 64 achieves the best overall performance among
the parameter tuning range [16, 32, 64, 128, 256, 512]. Thus, we select 64 as the decoder memory
length in the final ContextSpeech model. The results also reveal that longer memory will not produce
better model performance, which can be illustrated form two respects: 1) We just need a small piece
of speech at the end of last sentence to help the current sentence synthesis to the greatest degree.
2) Directly leveraging speech information by concatenation with previous decoder memory cannot
make the most use of it, we need a more complex module to handle longer decoder memory. We will
do more investigation on these observations in the future work.

Table 6: Objective Metrics Result of Different Decoder Memory Length.
Correlation RMSE

Metrics | Pitch Intensity Duration Pause | Pitch Intensity Duration Pause
128-16 | 0.674  0.843 0.740  0.889 | 25973 11.969  48.107 58.418
128-32 | 0.686  0.849 0.759  0.891 | 24920 11.777  47.862 57.390
128-64 | 0.707  0.849 0.786  0.894 | 24980 11.562  45.693 55.876
128-128 | 0.666  0.845 0.761  0.890 | 25476 11.821  48.118 58.084
128-256 | 0.664  0.846 0.763  0.891 | 26.703 11.835  47.421 57.824
128-512 | 0.677  0.843 0.761  0.891 | 25.677 11.906  47.227 57.961

C. Definition of Metrics in Paragraph MOS

As we mentioned in paper, in the paragraph MOS, 25 native speakers listen to each audio and give
a score in 10-point scale according to the overall performance and each specific metric, including
naturalness, pleasantness, speech pause, stress, intonation, emotion, style matchiness and listening
effort. The definition of each metric can be found in the following items. The price of this test is 0.1
dollar per case per judge.

* Overall impression. How is your overall impression on this content reading, considering
the inside and cross sentences? Consider if the voice is clear, natural, expressive, easy to
understand and pleasant to listen to.

* Naturalness. How nature is this content reading, considering the inside and cross sentence
prosody?

* Pleasantness. If the voice sounds comfortable and pleasant reading this content

* Speech pause. If the break between words and the silence between sentences are appropri-
ate?

* Stress. If the degree of emphasis is natural and correct?
* Intonation. If the melody and variation in the pitch level fits the sentence?

* Emotion. If the emotion is expressive and suitable for the content?
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* Style matchiness. How much is the voice suitable for reading the content from the speaking
style?

* Listening effort. How easy is it to focus on this voice and get information?
D. Samples
https://contextspeech.github.io/demo/
E. Detail Steps of Some Equations

¢ ConformerBlock

ConformerBlock in Eq.(1) is presented in Fig.1 and the process can also be formatted with
the following equations:

H,, =ConvM(H)+ H )
Hy, = MHSA(H, )+ H,, (10)
Con formerBlock(H{") = C’om;FFN(Ht/:n) + Htun (11)

* Linearized Self-Attention with Permute-based Relative Position Encoding

Combine permutation operation in Eq.(6) into linearized self-attention, Eq.(4-5) can be
rewritten as Eq.(12-13)

L L
A(Qu K. V) = (Xo(rPho(@u)" (7 Pho(K)V; )/ ( Do (riPho(@a) (7 Pho(K,) )
! ! (12)
L L
= (rePho(Q)T Y (r PRV )/ (rePho(Q)T Y (r I Pho(K;))  (13)

As the r is set as 1 in our model setting, the Eq.(13) can be simplified as:

L L
AQu K. V) = (Pho@Q)T Y (Pho(E)V; )/ ((Pho(Q)T Yo (PEo(K;))) (14)

Jj=1
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