A Counterfactual Explanation Framework for Retrieval Models

Anonymous ACL submission

Abstract

Explainability has become a crucial concern in
today’s world, aiming to enhance transparency
in machine learning and deep learning mod-
els. Information retrieval is no exception to
this trend. In existing literature on explainabil-
ity of information retrieval, the emphasis has
predominantly been on illustrating the concept
of relevance concerning a retrieval model. The
questions addressed include why a document
is relevant to a query, why one document ex-
hibits higher relevance than another, or why a
specific set of documents is deemed relevant
for a query.

However, limited attention has been given to
understanding why a particular document is
considered non-relevant to a query with re-
spect to a retrieval model. In an effort to ad-
dress this gap, our work focus on the ques-
tion of what terms need to be added within
a document to improve its ranking. This
in turn answers the question of which words
played a role in not being favored by a re-
trieval model for a particular query. We use
an optimization framework to solve the above-
mentioned research problem. To the best of
our knowledge, we mark the first attempt to
tackle this specific counterfactual problem (i.e.
examining the absence of which words can
affect the ranking of a document). Our ex-
periments show the effectiveness of our pro-
posed approach in predicting counterfactuals
for both statistical (e.g. BM25) and deep-
learning-based models (e.g. DRMM, DSSM,
ColBERT). The code implementation of our
proposed approach is available in https://
anonymous. 4open.science/r/CfIR/.

1 Introduction

The requirement of transparency of Al models has
made explainability crucial, and this applies to In-
formation Retrieval (IR) models as well (Anand
et al., 2022). The target audience plays a signifi-
cant role in achieving explainability for an infor-
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Figure 1: Counterfactual Setup Used in this Work.

mation retrieval model, as the units of explanation
or questions may differ based on the end user. For
instance, a healthcare specialist, who is a domain
expert but not necessarily an information retrieval
specialist, might want to understand the reasons
behind a ranked suggestion produced by a retrieval
model in terms of words (Singh and Anand, 2019).
On the other hand, an IR practitioner may be more
interested in understanding whether different IR
axioms are followed by a retrieval model or not
(Bondarenko et al., 2022).

This study focus on the perspective of Informa-
tion Retrieval (IR) practitioners. To be more spe-
cific, we introduce a counterfactual framework de-
signed for information retrieval models, catering
to the needs of IR practitioners. Existing literature
in explainable IR (ExIR) addressed questions like
why a particular document is relevant with respect
to a query (Singh and Anand, 2019), between a
pair of documents why one document is more rel-
evant to the query (Penha et al., 2022) compared to
the other and why a list of documents relevant to a
query (Lyu and Anand, 2023). Broadly speaking,
all the above mentioned questions mainly focus on
explaining the relevance of a document or a list of
documents from different perspectives.
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However, there is limited attention to explain
the concept of non-relevance. The question like
the absense of which words renders a document
unfavorable to a retrieval model (i.e. not within
top-K) remains unexplored. The above mentioned
explanation can give an idea to an IR practitioner
about how to modify a retrieval model. For ex-
ample, if it is observed that a retrieval model (e.g.
specially neural network based retrieval models)
does not favour documents because of not hav-
ing words which are not so related to query topic
then the setting of the retrieval model needs to be
changed so that it gives more importance to the
semantic similarity feature.

With the motivation described above, the funda-
mental research question which we address in this
research work is described as follows.

e RQ1: What are the terms that should be
added to a document which can push the doc-
ument to a higher rank with respect to a par-
ticular retrieval model?

Figure 1 shows a schematic diagram of RQ1
discussed in this work. As shown in Figure 1,
we would like to note that we framed RQ1 as a
counterfactual setup in our research scope. Similar
to existing research in counterfactual explanations
in Al (Kanamori et al., 2021; Van Looveren and
Klaise, 2021), we also attempt to change the out-
put of model with the provided explanations (i.e.
change the rank of a document in IR models). In
the counterfactual setup, we primarily used a con-
strained optimization technique to address RQ1.
Our experimental results show that on an average
in 60% cases the solution provided by the counter-
factual setup improves the ranking of a document
with respect to a query and a ranking model.

Our Contributions The main contributions of
this paper are as follows.

* Propose a model agnostic novel counterfac-
tual framework for retrieval models.

» Estimating the terms that can push the rank
of a document. Consequently this work is
also the first attempt to explain non-relevance
( important for learning relevance in neu-
ral retrieval models) in information retrieval
framework.

* Provide a comprehensive analysis with exist-
ing explanation frameworks in IR.

The rest of the paper is organized as follows.
Section 2 describes Related work. Section 3 de-
scribes the counterfactual framework used in our
work. Section 4 describes the experimental setup.
Section 5 discuss about results and ablation study.
Section 6 is about conclusion.

2 Related Work

Existing research related to this work can be
broadly categorized into three different areas: ex-
plainability in general Al, explainability in IR and
search engine optimization. Each one of them are
described as follows.

2.1 Explainability in AI

The origins of explainable Al (xAI) can be
traced back to the early 1960s when pioneer-
ing researchers identified the need for Al sys-
tems (Association et al., 1966; McCarthy, 2022;
Davis, 1989) that could reason and explain their
actions, addressing the lack of transparency in
decision-making processes. More recently, the
development of the Local Interpretable Model-
agnostic Explanations (LIME) (Ribeiro et al.,
2016) method has provided a way to explain
any classification model. One major advantage
of LIME is that it requires only access to the
model’s input and output. Following LIME, a
series of posthoc explainers (Lundberg and Lee,
2017; Ribeiro et al., 2018; Selvaraju et al., 2017;
Petsiuk et al., 2018; Wang et al., 2020; Jiang et al.,
2021; Englebert et al., 2024) were proposed.

Counterfactual Explanations While models
like LIME explains why a model predicts a par-
ticular output, counterfactual explainers address
the question of what changes in input features
would be needed to alter the output. Counter-
factual XAl was first brought into limelight in
early 2010s with seminal works of Judea Pearl
(2018). Karimi et al. (2020) provided a practical
framework named Model-Agnostic Counterfac-
tual Explanations (MACE) for generating coun-
terfactual explanations for any model. Later se-
ries of models (Kanamori et al., 2021; Van Loov-
eren and Klaise, 2021; Parmentier and Vidal,
2021; Carreira-Perpifidn and Hada, 2021; Pawel-
czyk et al., 2022; Hamman et al., 2023) based on
optimization framework was proposed for coun-
terfactual explanation.



2.2 Explainability in IR

Explainability in IR models can be broadly cat-
egorized into four areas: a) Pointwise Explana-
tion b)Pairwise Explanation c¢) Listwise Explana-
tion and d) Generative Explanation.

Pointwise Explanations Here the explainer
shows the important features responsible for the
relevance score predicted by a retrieval model for
a query-document pair. Popular techniques in-
clude locally approximating the relevance scores
predicted by the retrieval model using a regression
model (Singh and Anand, 2019).

Pairwise Explanations Here explainers predict
why a particular document was favoured by a
ranking model compared to others. Generally ex-
planations are expressed in terms of words. The
work in (Xu et al., 2024) proposed a counterfac-
tual explanation method to compare the ranking
of a pair of documents with respect to a particular
query. A major difference of our proposed work
with the study in (Xu et al., 2024) is that we fo-
cus on providing counterfactual for a query and a
document (i.e. pointwise explanation) instead of a
pair of documents.

Listwise Explanations Here the focus is on ex-
plaining the key features for a ranked list of doc-
uments and a query. Listwise explanations (Yu
et al., 2022; Lyu and Anand, 2023) aim to capture
a more global perspective compared to pointwise
and pairwise explanations. The study in (Lyu and
Anand, 2023) proposed an approach which com-
bines the output of different explainers to capture
the different aspects of relevance. The study in (Yu
et al., 2022) trained a transformer model to gener-
ate explanation terms for a query and a ranked list
of documents.

Generative Explanation Unlike previously
mentioned methods, which focus on analyzing
existing features or model internals, generative
explanations (Singh and Anand, 2020; Lyu and
Anand, 2023) leverage natural language process-
ing to create new text content, like summaries
or justifications, that directly address the user’s
query and information needs. Model-agnostic ap-
proaches (Singh and Anand, 2020) were proposed
to interpret the intent of the query as understood
by a black box ranker.

Search Engine Optimization The study in
(Egri and Bayrak, 2014; Erdmann et al., 2022)
used different features like commercial cost, links
to optimize the performance of the search en-

gine. A major difference of the work in (Egri
and Bayrak, 2014; Erdmann et al., 2022) with our
work is we only consider the words present in a
document as a feature. Our objective is to improve
the ranking of a particular document concerning a
specific query and a retrieval model rather than im-
proving the ranking of a document concerning any
query belonging to a particular topic.

3 Counterfactual Framework for
Information Retrieval (CFIR)

In this section, we first outline the general coun-
terfactual setup in explainable Al, followed by a
detailed explanation of the counterfactual setup
in IR. Within the current literature on XAI, con-
siderable efforts have been dedicated to identify-
ing counterfactuals (Mothilal et al., 2020) in re-
gression and classification scenarios. In the ex-
isting counterfactual setup, the problem being ad-
dressed is identifying which features in the input
instance need to be modified to change the out-
put of a trained model. Generally framed as a
constrained optimization problem, the task of dis-
covering counterfactuals involves optimizing var-
ious constraints such as minimum edit distance
between the generated counterfactual and the in-
put, diversity, and immutability of certain features.
In our research scope we particularly used the
counterfactual methodology proposed in (Mothilal
et al., 2020).

Counterfactual Setup (CF Setup) For the opti-
mization setup described in (Mothilal et al., 2020),
the input to the problem is a trained machine learn-
ing model f, and an instance, x for which we
want to generate counterfactuals. The k number
of counterfactuals generated from the optimiza-
tion problem (denoted as {ci,ca2...,cr}) is sup-
posed to alter the prediction for « in f. The
main assumptions in the above mentioned setup
is that the machine learning model should be dif-
ferentiable and the output of the model should not
change over time. The optimization setup takes
into account three different criteria while generat-
ing counterfactuals. They are

* Criteria 1: Minimizing the distance between
the desired outcome 3’ and the prediction
of the model f for a counterfactual example

(f(ci).

* Criteria 2: Minimizing the distance between
the generated counterfactual (c;) and the orig-
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Figure 2: Counterfactual Explanation Model Description.

inal input x. Broadly speaking, a counter-
factual example closer to the original input
should be more useful for a user.

¢ Criteria 3: Balancing between diversity and
feasibility among generated counterfactuals.

Based on the above mentioned criteria the objec-
tive function for the optimization function is de-
scribed as follows.

k
C(r) = argmin 3" vioss(f(ci).v)

..C :
etk i=1

k
Ao .
+o ;dlst(ci, x) — Xadiv(ci, ..., ck)

(D

In Equation 1, yloss(.) takes care of the first cri-
teria, dist(c;,x) takes care of the second criteria
and div takes care of the third criteria as discussed
above. \; and A9 in Equation 1 are hyperparame-
ters that balance the three parts of the overall ob-
jective function. The detailed description of the
each part of the Equation is given in Appendix 10.
The ¢;s in Equation 1 comes from the vocabulary
set used to construct the feature vector for each
document.

3.1 Mapping Retrieval to CF Setup

In IR, the end user is generally interested in the
rank of documents within top-K compared to the
corresponding relevance score. Hence to align
with the optimization setup described for counter-
factuals in Section 3, we aim to build on a clas-
sifier where we are interested in finding the coun-
terfactuals that can push a document within top-K.

The specifics of the classification setup is given
below.

Classifier Setup Existing work in XAI devel-
oped a simple model which can approximate the
decision boundary of the original complex model
in a small region (Ribeiro et al., 2016; ?) to ex-
plain the original model. In that direction, the ob-
jective of the classifier in our research scope is
to locally approximate a retrieval model M, for
a query ¢ and a subset of documents retrieved
for the query gq. More specifically, we are in-
terested in approximating the the behavior of the
model M in determining whether a document is
retrieved within the top-K results or not. In con-
trast to (Ribeiro et al., 2016) we build a classifica-
tion model instead of regression model. We build
a binary classifier capable of predicting whether a
document d will be ranked within the top-K re-
sults or not for a specific query ¢ and retrieval
model M.

In the classifier setup, the top-K documents for
a query ¢ and model M represents class 1 and any
other document not belonging to this class repre-
sents class 0. Theoretically, speaking if a corpus
had N number of documents, then there will be
N — K documents which should have class label
zero and N — K is a very large number in gen-
eral which can cause class imbalance issue. To
avoid this issue, for the O class, for each document
for which we want to generate a counterfactual,
we choose a set of closest neighbors in the set of
N — K documents and the size of the neighbor-
hood should be similar to K. Consequently, there
is no class imbalance issue in our classifier setup.
In the classifier setup, K serves as a predefined



threshold, typically set to values such as 10, 20, or
30.

Feature Vector for Classifier Generating the
feature vector for the classifier using all the words
from documents retrieved for a query can pose
challenges. Consequently, we adopted a filtering
strategy. Not all words in a document contribute
equally to its retrieval. Therefore, we selectively
choose the most significant n words from each
document. We create a vocabulary set V' by tak-
ing the union of the top n important words present
in each one of the top- K documents of the ranked
list. Mathematically,

V=Uii{ Y w} )

j=lw;€d;

We employ Tf-Idf mechanism to select the top n
words from each document. The dimension of the
feature vector required for the classifier setup is set
to the size of the vocabulary set |V|. If a document
d contains = number of words from the set |V,
then only & number of positions in the correspond-
ing representation will have nonzero values, while
the remaining positions will be assigned a value
of 0. The non-zero positions within the vector en-
compass the term frequency value of the word at
the i*" position within the document d. For exam-
ple, if the set |V/| contains words w1, ws ..., ws
and a document D has only w1, w2 and ws from
|V'| then the corresponding vector representation
for d will be {tfi,tfa,tf3,0,0} where tfi, tfs
and t f5 represents the term frequency of the words
w1, we, ws in D respectively.

Equation 3, shows the mathematical represen-
tation of the classifier. X in Equation 3 is of |V/|
dimensional.

h:X —{0,1} 3)

Once the classifier is trained then we use this
classifier in the optimization setup described in
Equation 1. The output of the optimizer is used
to explain what changes needs to be done in the
document d to improve its ranking. Informally
speaking, the optimizer determines what minimal
changes need to be applied to the feature vector
to push the document to the higher rank. Fig-
ure 2 shows the schematic diagram for counterfac-
tual setup with the workflow between the different
components (i.e. classifier and optimizer) within
it.

4 Experiment Setup

Here we first describe the dataset used in our ex-
periments, followed by the retrieval models, pa-
rameter setup, and evaluation metrics.

Dataset We used two ranking datasets for
our experiments: MS MARCO passage ranking
dataset for short documents (Bajaj et al., 2016)
and MS MARCO document ranking dataset for
longer documents (Craswell et al., 2023). The MS
MARCO passage ranking dataset contains queries
from Bing! and a collection of 5 million passages
for retrieval. For testing our counterfactual setup,
we randomly selected 10 queries from the test set
and 5 documents not in the top 10 results for each
query, creating 50 query-document pairs similar to
existing test sets in IR (Craswell et al., 2020).

For MSMARCO document also we followed a
similar approach to construct the test setup. The
Equation described in 1, produces x number of
countefactuals as an output of the optimization
setup. For each query-document pair, we have
produced = = 1 set of counterfactuals to test. The
details of the dataset is given in Table 1.

Classifier Setup
MS MARCO Passage | MSMARCO Document
#Instances | 30 [| #Instances | 30
CFIR Setup
MS MARCO P MS MARCO Document

Query Avg Length 59 Query Avg Length 6.9
Document | Avg Length || 64.9 || Document | Avg Length || 1134.2
Query #Instances 10 Query #Instances 10
Document | #Instances 50 Document | #Instances 50

Table 1: Dataset Details for Counterfactual Experi-
ments

Retrieval Models The four different retrieval
models used in our experiment are described as
follows.

BM25: BM25? is a statistical retrieval model
where the similarity between a query and a doc-
ument is computed based on the term frequency
of the query words present in the document, doc-
ument frequency of the query words and also the
document length.

DRMM: Deep Relevance Matching Model
(DRMM) Guo et al. (2016) is a neural retrieval
model where the semantic similarity between each
pair of tokens corresponding to a query and a doc-
ument is computed to estimate the final relevance
score of a document corresponding to a query.

"https://bing.com
2https://en.wikipedia.org/wiki/Okapi_BM25
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DSSM: Deep semantic similarity model
(DSSM) Huang et al. (2013) is another neural re-
trieval model which uses word hashing techniques
to compute the semantic similarity between a
query and a document.

CoIlBERT: Contextualized Late Interaction
over BERT (ColBERT) (Khattab and Zaharia,
2020), is an advanced neural retrieval model
which exploits late interaction techniques based
on BERT (Devlin et al., 2019) based representa-
tions of both query and document for retrieval.

Our proposed counterfactual approach is re-
trieval model agnostic. Hence, it can be applied
on any retrieval model. We used BM25, DRMM,
DSSM and CoLBERT only to show the contrast
between a statistical and neural retrieval model in
terms of counterfactual explanations.

Baselines To the best of our knowledge, this is
the first work which attempts to provide counter-
factual explanations in IR. Consequently, there ex-
ists no baseline for our proposed approach. How-
ever we have used a query word and top-K word
based intuitive baseline to compare with our pro-
posed approach. In query word baseline (QW),
we have used query words not originally present
in a document to enhance its ranking. For Top-
K’ (Top — K') baseline we used the top k&’ words
extracted from top 5 documents corresponding to
a query as relevance set. Words appearing in the
relevance set but not appearing in a document are
added to the document to improve its ranking. For
different retrieval models we have the correspond-
ing versions of QW and T'op — K’ baselines.

Evaluation Metrics There exists no standard
evaluation framework for exIR approaches. The
three different evaluation metrics in our experi-
ment setup are described as follows.

Fidelity (FD): Existing xAl approaches in IR
have used Fidelity (Anand et al., 2022) as one of
the metrics to evaluate the effectiveness of the pro-
posed explainability approach. Intuitively speak-
ing, Fidelity measures the correctness of the fea-
tures obtained from a x Al approach. In the context
of the CFIR setup described in this work, we de-
fine this fidelity score as the number of times the
words predicted by the counterfactual algorithm
could actually improve the rank of a document.
Let n be number of total number of query doc-
ument pairs in our test case and x be number of
query document pairs for which the the rank of the
document improved after adding the counterfactu-

Method | Evaluation Metric
MS MARCO Passage
Retrieval Model Classifier | FD(%) A%(.nljiesw A‘(])g"]e?ll:‘ ;ry
QWpnas NA 46% 478 100%
Top — Klgnios NA 38% 14.28 100%
CFIRBwMm2s RF 62% 11.14 64%
CFIRBMm2s LR 67 % 18.32 53%
QWprmM NA 46% 4.78 100%
Top — Kb pasas NA 40% 1621 100%
CFIRprMM RF 68% 10.21 45%
CFIRprMM LR 64% 13.47 63%
QWpsmm NA 46% 478 100%
Top — Khssut NA 32% 14.53 100%
CFIRpssm RF 54% 12.42 56%
CFIRpssm LR 58% 14.77 55%
QWcoBERT NA 56% 478 100%
Top — K&oiERT NA 48% 15.63 100%
CFIRcoBERT RF 62% 12.41 56%
CFIRcoBERT LR 68 % 14.53 72%
MS MARCO Document
QWanas NA 30% 5.64 100%
Top — Kl pros NA 36% 8.42 100%
CFIRBMm2s RF 48% 15.64 54%
CFIRBwMa2s LR 54% 13.45 56%
QWprymM NA 44% 5.64 100%
Top — K’ parnt NA 28% 15.00 100%
CFIRpRrRM RF 54% 9.42 44%
CFIRpRrrRM LR 58% 16.53 44%
QWpsum NA NA 5.64 100%
Top — K'hssar NA 30% 13.32 100%
CFIRpssm RF 44% 17.74 56%
CFIRpssm LR 50% 19.32 62%
QWeoBERT NA 34% 5.64 100%
Top — Kb pipmrr NA 36% 13.42 100%
CFIRcoBERT RF 72% 11.05 49%
CFIRcoBERT LR 66% 9.42 56%

Table 2: CFIR model Performance for BM25, DRMM,
DSSM and ColBERT in MSMARCO Passage and
Document Collection. The Best Performing Counter-
factual Explanation Method for every retrieval model
is boldfaced; the overall best performance explanation
across all rows is underlined.

als obtained from the optimization setup described
in Equation 1. Then mathematically Fidelity score
with respect to a test dataset D and retrieval model
M is defined as follows.

FD(D, M) = = %100 )
n

Avg. New Words: Here we compute the av-
erage number of new words added by the counter-
factual approach for a set of query document pairs.
One of the criteria of the optimization setup de-
scribed in Equation 1 is the diversity of the expla-
nations generated by the algorithm. Consequently
average number of new words will give an approx-
imate idea about how much new content should be
added to the documents to improve the ranking.

Avg. Query Overlap: It is intuitive to think
that increasing the number of query words in a
document is likely to increase the ranking of a doc-
ument for a particular retrieval model. However,
this is not always the case. To address this point
we have reported on an average how many of the



words suggested by the counterfactual algorithm
comes from the query words.

Pararameters and Implementation Details
The details of implementation about retrieval
models are shown in Appendix 9.1. We employed
two popular classical machine learning techniques
Logistic Regression (LR) and Random Forest
(RF) for the classifier described in Section 3.1.
For logistic regression the learning rate was
set to 0.001. For random forest the number of
estimators were set to 100. We train a separate
classifier for each query and retrieval model.
In total for each retrieval model there are 10
classifiers. As described in Section 3.1, all the
words present in a document is not used as input
to the classifier. We use top 10 (n’ = 10) words
based on Tf-Idf weights from each document
to create the vocabulary (|V]) for the classifier.
While training the classifier, we put the label
of any document appearing within top 10 as 1
(K =10).

5 Results

Table 2 shows the performance of the counter-
factual approach with respect to different retrieval
models (i.e. BM25, DRMM, DSSM, ColBERT).
We did experiment both on MS MARCO passage
and document dataset to observe the effective-
ness of our proposed explanation approach both
on shorter and longer documents. Mainly four
different observations can be made from Table 2.
Firstly, It can be clearly observed that the CFIR
model for each retrieval model has performed bet-
ter compared to its corresponding query word or
top-K words baseline in terms of Fidelity score.
The above mentioned observation is consistent for
both passages and long documents. Secondly, it
can be observed from Table that mostly CFIR ap-
proach provided the highest number of new terms
(terms not already present in the documents) as
part of the explanation to improve ranking. Conse-
quently, we can say the overall set of explanation
terms are more diverse for CFIR approach com-
pared to others. Thirdly, it can be also observed
from Table 2 that the Fidelity scores are generally
better in the MS MARCO passages compared to
documents. One likely explanation for this phe-
nomena is that documents are longer in length
compared to passages. Consequently, a counter-
factual classifier comprising of the top- K features
of documents may not always be sufficient to rep-

resent the document. Fourthly, another interest-
ing observation from table 2 is that the maximum
query word overlap by our proposed approach is
63%. This implies that the counterfactual algo-
rithm is suggesting new words that are not even
present in a query.

Table 3 shows some example terms extracted by
our proposed approach. The words shown in Ta-
ble 3 have improved the ranking of a docID with
respect to the queries shown in .

5.1 Parameter Sensitivity Analysis

In Table 2, we observed that for most of the re-
trieval models the performance of the counterfac-
tual explainer follows similar trend both in MS-
MARCO passage and document dataset (i.e. the
best performing model in terms of fidelity score is
same in most of the cases). As a result of this we
did parameter sensitivity experiments only on MS-
MARCO passage dataset. Figure 3 (a) shows the
performance of the counterfactual classifier build
for the counterfactual setup with respect to the
variance of the number of documents with label
0 used to train the classifier. The success of the
counterfactual classifier (CAC) is measured by the
percentage of cases where the classifier prediction
label flipped from O to 1 by introducing the expla-
nation terms in the feature vector. The reason for
using CAC instead of FD in the Y axis for Figure
3 (a) is that the counterfactual classifier provides
a local approximation of the retrieval model and it
is computationally very expensive to measure FD
(i.e. we need to update the collection index with
a the modified document obtained from counter-
factual explanation and then we need to execute
retrieval) compared to CAC. It is clearly observed
from Figure 3 (a) that with increase in the num-
ber of documents having label 0, the performance
of the classifier decreases. Consequently for all
our experiments in Table 2, we have used in to-
tal 30 documents to train the classifier. In Figure
3 (b) we show the variance of the counterfactual
classifier success rate with respect to the number
of counterfactual set provided by the optimization
setup in (Mothilal et al., 2020). It is clearly visible
from Figure 3 (b) that with increase in the value
of number of counterfactuals there is a decrease
in the performance of the counterfactual classi-
fier. Intuitively, we can say that with increase in
number of counterfactuals there is also increase in
noise. This noise eventually affects rank improve-
ment in the corresponding retrieval model. Figure



Retrieval Model Query Text Explanation Terms
. working, strict, Maine, 1929, law, resentment, New York City,
9
DRMM What law repealed prohibition ? Irish, immigrant, prohibition, repeal, fall, Portland, temperance, riot, visit
DSSM What is the role of lipid in the cell? phospholipid, fluidity, storage, triglyceride, fatty receptor
ColBERT what type of wave is electromagnetic? directly ,oscillations, medium, wave, properties, speed

Table 3: Sample Explanation Terms by CFIR Model for DRMM, DSSM and ColBERT in MS MARCO.
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Figure 3: Counterfactual Classifier Performance Variance with TopK and Counterfactual Performance Variance

with variation of number of Counterfactuals.

Avg. Rank Shift By After Adding CFIR Explanation Terms

W MS MARCO Passage
N MS MARCO Document

Avg. Rank shift
1
o
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Figure 4: Average Rank shift by CFIR for BM25,
DRRM, DSSM and ColBERT

4 shows the average rank change after introduc-
ing the explanation terms suggested by the CFIR
setup. Figure 4 the actionability introduced by the
counterfactual explanation terms. The two things
to observe from Figure 4 are Firstly, the average
rank shift is greater for documents than for pas-
sages. Table 2 shows that ColBERT achieved a
significantly higher fidelity score (16!" and 31%
rows) and a larger average rank shift compared to
the other models, is also seen in Figure 4.

6 Conclusion

In this paper we propose a counterfactual setup
for a query document pair and a retrieval model.
To the best of our knowledge there has not been
any work on providing counterfactual explanation

for a query-document pair. We did experiments on
both MS MARCO passage and document ranking
sets. Our experiments show that the proposed ap-
proach on an average 65% cases for both in short
and long documents could successfully improve
the ranking. In future we would like to explore
different explanation units for the counterfactual
setup.

7 Limitations

One of the limitations of this work is that we as-
sume that top 10 or 20 words (based on tf-idf
weights) within a document plays the most im-
portant part in improving the rank of a document.
However, theoretically speaking we should con-
sider all the words present in a document to de-
termine the most influential words for a retrieval
model. We have used top tf-idf words (Similar
to statistical retrieval models) to reduce the com-
putational complexity of our experiments and we
have seen that increasing the number of top words
doesn’t affect the performance of the model that
much.

8 [Ethical Considerations

In this work we have used publicly available
search query log and document collection to
demonstrate counterfactual explanation. Any kind
of sensitive data is not used in this experiment. As



aresult of this there is no particular ethical concern
associated with this work. If there is any kind of
bias present in the search log data that effect can
also be observed within our approach. However
mitigating that bias was beyond the scope of this
work
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9 Appendix

9.1 Retrieval Performance of IR Models

We used Lin et al. (2021) toolkit for implement-
ing BM25. For DRMM and DSSM, we used the
implementation released by the study in Guo et al.
(2019). For passage ranking we varied the param-
eters in a grid search and we took the configura-
tion producing best MRR @10 value on TREC DL
(Craswell et al., 2021) test set. For both DRMM
and DSSM experiments on MSMARCO data, the
parameters were set as suggested in (Wu et al.,
2022). The MRR @10 values are reported in Table
6 in Appendix 9.1. For DRMM and DSSM, we
use randomly chosen 100K query pairs from the
MSMARCO training dataset to train the model.

Model | MRR@10
MSMARCO Passage
BM25 0.1874
DRMM 0.1623
DSSM 0.1320
ColBERT 0.3481
MSMARCO Document
BM25 0.2184
DRMM 0.1168
DSSM 0.1051
ColBERT 0.3469

Table 4: Retrieval Model Performance on MSMARCO
passage and document

9.2 Example of Input and Output to
Classifier

Given an input query, we employ a Lucene-
Searcher with MSMARCO Index to retrieve the
top 30 documents. The feature vector construction
process follows these steps:

For each document, we:

1. Extract the top 10 words based on their tf-idf
values

2. Construct a vocabulary V' as the union of all
top 10 words across documents

3. Note that |V| typically falls in the range of
150-180 words

The feature vector for each document has di-
mension |V|, where each component represents
the tf-idf value of the corresponding word from the
vocabulary. Formally:
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feature vector € RWVI

Labels are assigned according to the following
criterion:

1 for top K documents(K = 10 by default)

label = o
0 for remaining documents

Example feature vectors and their correspond-
ing counterfactuals generated using DiCE ML are
shown in Figure 5.

Existing Explanation Methods Word Overlap
PointWise Explanation (Singh and Anand, 2019) 21.46%
ListWise Explanation (Lyu and Anand, 2023) 9.57%

Table 5: Comparison of CFIR with Existing ExIR Ap-
proaches.
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Figure 5: Example input feature vector and one coun-
terfactual produced by DICEML for query ’average
rent in california’. Here you can observe |V'| = 150.

9.3 Existing EXIR approaches VS. CFIR

The existing literature aims to explain the signifi-
cance of a document, a set of documents, or a pair
of documents through various explanation meth-
ods. Nonetheless, our proposed approach diverges
fundamentally from prior work in that we seek to
demonstrate how the absence or frequency of cer-
tain tokens impacts document relevance. In this
section, we examine whether there is any intersec-
tion between the two sets of tokens described ear-
lier.

Pointwise Explanation Approach As outlined
in Section 2.2, existing pointwise explanation
methods elucidate why a specific document aligns
with a given query within a retrieval model. Sim-
ilarly, our proposed approach operates on individ-
ual documents and queries, albeit with a distinct
objective. Here, we analyze the overlap between
the explanations generated by the pointwise expla-
nation method and those derived from our model,
as presented in Table 6. This comparison was con-
ducted across 50 pairs of documents.

Listwise Explanation Approach In Section 2,
it is explained that listwise explanations typically

view yearly true label



aim to demonstrate the relevance of a list of doc-
uments to a given query. In listwise setup, one set
of xplanation terms are extracted for a list of docu-
ments, a query, and a retrieval model. Conversely,
in our approach, we generate distinct explanations
for each query-word pair. Therefore, to compare
listwise explanations with our method, we aggre-
gate all individual explanations obtained for each
document-query pair in the list to create a unified
explanation set for the entire list corresponding to
a query. The resulting overlap is presented in Ta-
ble 6.

Existing Explanation Methods Word Overlap
PointWise Explanation (Singh and Anand, 2019) 21.46%
ListWise Explanation (Lyu and Anand, 2023) 9.57%

Table 6: Comparison of CFIR with Existing EXIR Ap-
proaches.

10 Counterfactual Optimization
Framework

The different parts of Equation 1 is described here.
The yloss in Equation 1 is a hinge loss function
as defined in Equation 5. In Equation 5 z is —1
when y = 0 otherwise, z = 1. logit(f(c)) is the
logit values obtained form the ML model when the
counterfactual c is given as input.

yloss = maz(0,1 — z x logit(f(c))) (5)

The distance function (dist(c;, x)) in Equation
1 is computed using the formula given in Equation
6. In Equation 6, d.; represents the number of
categorical variables used in the counterfactual in-
put. In Equation 6, the value of [ is equal to 1 if
the corresponding value of the categorical variable
is same in both the counterfactual input ¢ and the
original input x, otherwise it is set to 0.

dcat

dist(c,z) = Z I(cp # xp) (6)
p=1

The diversity in Equation is defined by the for-
mula described in Equation 7. In euqation 7, K; ;
. 1 .

1s. equal to TRt dist(c;, c;) computes the
distance between two counterfactuals ¢; and c;.

diversity = Z det(K; ;) (7)
0,
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