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Abstract

Currently, the field of structure-based drug design is dominated by three main types of algo-
rithms: search-based algorithms, deep generative models, and reinforcement learning. While
existing works have typically focused on comparing models within a single algorithmic cate-
gory, cross-algorithm comparisons remain scarce. In this paper, to fill the gap, we establish
a benchmark to evaluate the performance of fifteen models across these different algorith-
mic foundations by assessing the pharmaceutical properties of the generated molecules and
their docking affinities and poses with specified target proteins. We highlight the unique
advantages of each algorithmic approach and offer recommendations for the design of future
SBDD models. We emphasize that 1D/2D ligand-centric drug design methods can be used
in SBDD by treating the docking function as a black-box oracle, which is typically neglected.
Our evaluation reveals distinct patterns across model categories. 3D structure-based models
excel in binding affinities but show inconsistencies in chemical validity and pose quality. 1D
models demonstrate reliable performance in standard molecular metrics but rarely achieve
optimal binding affinities. 2D models offer balanced performance, maintaining high chemical
validity while achieving moderate binding scores. Through detailed analysis across multi-
ple protein targets, we identify key improvement areas for each model category, providing
insights for researchers to combine strengths of different approaches while addressing their
limitations.

1 Introduction

Novel types of safe and effective drugs are needed to meet the medical needs of billions worldwide and
improve the quality of human life. The process of discovering a new drug candidate and developing it into
an approved drug for clinical use is known as drug discovery (Sinha & Vohora, 2018). This complex process
is fundamental to the development of new therapies that can manage, cure, or alleviate the symptoms of
various health conditions.

Structure-based drug design (SBDD) (Bohacek et al., 1996) is a core strategy that accelerates this process
by using the three-dimensional (3D) structures of disease-related proteins to develop drug candidates. This
approach is grounded in the "lock and key" model (Tripathi & Bankaitis, 2017), where molecules that bind
more effectively to a target protein are more likely to modulate its function, a principle validated by numerous
experimental studies (Honarparvar et al., 2014; Blundell, 1996; Lu et al., 2022).

Currently, three main algorithmic approaches dominate the drug design field (Brown et al., 2019; Gao
et al., 2022; Du et al., 2022): search-based algorithms like genetic algorithms (GA) (Jensen, 2019; Spiegel &
Durrant, 2020; Tripp & Hernández-Lobato, 2023; Fu et al., 2022a), deep generative models such as variational
autoencoder (VAE) (Gómez-Bombarelli et al., 2018) and autoregressive models (Luo et al., 2021; Peng
et al., 2022; Zhang et al., 2023), and reinforcement learning (RL) models (Olivecrona et al., 2017; Zhou
et al., 2019). While these models, particularly those using 3D protein representations (Zhang et al., 2023;
Luo et al., 2021; Fu et al., 2022a; Peng et al., 2022), are considered state-of-the-art for generating valid and
diverse molecules, a clear comparative understanding across these different algorithmic foundations is lacking.
Existing benchmarks often focus on comparing models within the same category (typically deep generative
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Table 1: Representative structure-based drug design methods, categorized based on the molecular assembly
strategies and the optimization algorithms. Columns are various molecular assembly strategies while rows
are different optimization algorithms.

1D SMILES/SELFIES 2D Molecular Graph 3D Structure-based

Genetic Algorithm (GA) SMILES-GA (Yoshikawa
et al., 2018)

Graph GA (Jensen, 2019) -

Hill Climbing SMILES-LSTM-HC (Brown
et al., 2019)

MIMOSA (Fu et al., 2021) -

Reinforcement Learning (RL) REINVENT (Olivecrona
et al., 2017)

MolDQN (Zhou et al., 2019) -

Gradient Ascent (GRAD) Pasithea (Shen et al., 2021) DST (Fu et al., 2022b) -

Generative Models SMILES/SELFIES-VAE-
BO (Gómez-Bombarelli
et al., 2018)

JT-VAE (Jin et al., 2019) 3DSBDD (Luo et al.,
2021), Pocket2mol (Peng
et al., 2022), Pocket-
Flow (Jiang et al., 2024),
ResGen (Zhang et al.,
2023), TargetDiff (Guan
et al., 2023)

Table 2: Top 1 docking score for each target. Targets in CrossDocking are marked in red, and targets not
in CrossDocking are in blue.

Model 6GL8 1UWH 7OTE 1KKQ 5WFD 7W7C 8JJL 7D42 7S1S 6AZV

Pocket2Mol -11.56 -14.56 -15.72 -14.18 -11.30 -13.76 -13.27 -12.76 -12.90 -12.36
PocketFlow -9.42 -11.04 -10.27 -12.47 -10.30 -13.52 -11.88 -12.79 -10.16 -11.83
ResGen – -9.71 -7.14 -9.81 – -7.88 – -8.94 -11.77 -9.71
3DSBDD -8.61 -12.67 -10.52 -13.36 -11.28 -11.29 -11.67 -11.12 -10.19 -10.13
DST -8.69 -11.09 -11.41 -10.92 -10.13 -12.14 -12.20 -11.87 -11.54 -10.31
graph-GA -8.47 -11.19 -11.15 -10.61 -9.66 -11.85 -10.72 -11.03 -10.47 -9.85
JT-VAE -10.26 -12.38 -12.29 -12.25 -11.65 -12.45 -11.91 -12.79 -11.53 -10.60
MIMOSA -8.64 -11.13 -11.49 -11.00 -9.91 -11.72 -11.85 -11.72 -11.96 -10.27
MolDQN -6.63 -7.38 -7.49 -7.35 -7.79 -7.75 -8.94 -7.30 -8.42 -8.04
Pasithea -9.25 -11.47 -11.56 -10.45 -10.54 -12.00 -11.87 -11.76 -11.35 -10.24
REINVENT -9.06 -11.13 -12.03 -11.19 -10.18 -11.88 -11.63 -12.23 -11.32 -10.66
SMILES-GA -8.83 -10.74 -11.18 -10.47 -9.72 -11.74 -11.29 -11.93 -11.05 -10.46
SMILES-LSTM-HC -9.77 -11.50 -12.35 -12.40 -11.21 -13.93 -11.41 -12.84 -12.02 -10.61
SMILES-VAE -9.35 -11.95 -13.06 -10.91 -10.01 -12.11 -11.95 -12.01 -12.14 -10.42
TargetDiff – -7.30 – -11.53 -10.07 -9.27 -8.91 -6.10 – –

models) and prioritize molecular properties over the crucial evaluation of protein-ligand interactions. (Du
et al., 2022; Brown et al., 2019; Gao et al., 2022).

To fill this blank, this paper curates a comprehensive benchmark that encompasses fifteen models spanning
all three algorithmic approaches. We assess model performance through multiple dimensions: traditional
heuristic molecular property oracles, docking scores, and pose evaluations - all critical metrics for under-
standing the quality of protein-ligand interactions in the context of drug discovery. Our analysis reveals a
notable dichotomy in 3D models’ performance: while they excel in docking score optimization, achieving
consistently superior binding affinity predictions, they show comparable or sometimes inferior performance
in pose quality assessments and other heuristic property evaluations. These findings highlight the need for
future structure-based models to better balance docking score optimization with other crucial molecular
properties and structural validity metrics.
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Average Number of Molecules Calculated by oracles across PDBs

Figure 1: The bar chart of average generated molecules that are calculated by our selected oracles for each
model across all target proteins under given time. 1D methods are colored orange, blue is used to indicate
3D methods, and green represents 2D methods.

2 Related Works

Significant progress has been made in benchmarking drug design models (Brown et al., 2019; Tripp et al.,
2021; Huang et al., 2021; Gao et al., 2022; Polykovskiy et al., 2020; Harris et al., 2023). Benchmarks like
Guacamol, Molecular Sets (MOSES), Practical Molecule Optimization (PMO), and POSECHECK have been
crucial for evaluating algorithms on molecular properties and protein-ligand interactions. Building on this,
our work provides a cross-algorithmic comparison of fifteen models, which we group into three categories
based on their molecular representation.

1D Molecule Design Methods 1D molecule design methods use Simplified Molecular-Input Line-Entry
System (SMILES) (Weininger, 1988) or SELF-referencing Embedded Strings (SELFIES) (Lo et al., 2023)
strings as the representation of molecules. Most 1D methods produce molecule strings in an autoregressive
manner. In this paper, we discuss several methods that were developed to produce molecule strings, ei-
ther SMILES or SELFIES strings, including REINVENT (Olivecrona et al., 2017), SMILES and SELFIES
VAE (Gómez-Bombarelli et al., 2018), SMILES GA (Yoshikawa et al., 2018), SMILES-LSTM-HC (Brown
et al., 2019), and Pasithea (Shen et al., 2021). Although SELFIES string has the advantage of enforcing
chemical validity rules compared to SMILES, through thorough empirical studies, Gao et al. (2022) showed
that SELFIES string-based methods do not demonstrate superiority over SMILES string-based ones.

2D Molecule Design Methods Compared to 1D molecule design methods, representing molecules using
2D molecular graphs is a more sophisticated approach. molecular 2D representation, graphs are used to
depict molecules, where edges represent chemical bonds and nodes represent atoms. There are two main
strategies for constructing these graphs: atom-based and fragment-based. Atom-based methods operate
on one atom or bond at a time, searching the entire chemical space. On the other hand, fragment-based
methods summarize common molecular fragments and operate on one fragment at a time, which can be more
efficient. In this paper, we discuss several methods belonging to this category: MolDQN (Zhou et al., 2019),
which uses an atom-based strategy, and Graph GA (Jiang et al., 2024), Multi-constraint Molecule Sampling
(MIMOSA) (Fu et al., 2021), Differentiable Scaffolding Tree (DST) (Fu et al., 2022b), JT-VAE (Jin et al.,
2019) which use fragment-based.
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3D Molecule Design Methods Both 1D and 2D molecule design methods are ligand-centric, focusing
primarily on designing the molecule itself. In structure-based drug design, as pointed out in Huang et al.
(2021), these models take the docking function as a black box, which inputs a molecule and outputs the
binding affinity score. However, these models fail to incorporate target protein structure information and
consequently suffer from high computational time (to find binding pose). In contrast, 3D structure-based
drug design methods take the three-dimensional geometry of the target protein as input and directly generate
pocket-aware molecules in the pocket of target protein. In this paper, we cover five cutting-edge structure-
based drug design methods: TargetDiff (Guan et al., 2023), PocketFlow (Jiang et al., 2024), 3DSBDD (Luo
et al., 2021), Pocket2mol (Peng et al., 2022), and ResGen (Zhang et al., 2023).

3 Models

In this paper, the models we select for evaluation are based on one or a combination of the following
algorithms. For ease of comparison, we categorize all the methods based on optimization algorithm and
molecular assembly strategy in Table 1.

Genetic Algorithm (GA): Inspired by natural selection, genetic algorithm is a combinatorial optimization
method that evolves solutions to problems over many generations. Specifically, in each generation, GA will
perform crossover and mutation over a set of candidates to produce a pool of offspring and keep the top-
k offspring for the next generation, imitating the natural selection process. In our evaluation, we choose
three GA models: SMILES GA (Yoshikawa et al., 2018) that performs GA over SMILES string-based space,
Graph GA (Jiang et al., 2024) that searches over atom- and fragment-level by designing their crossover and
mutation rules on graph matching.

Variational Auto-Encoder (VAE) and Diffusion: The aim of variational autoencoder is to generate
new data that is similar to training data. In the molecule generation area, VAE learns a bidirectional map
between molecule space and continuous latent space and optimizes the latent space. VAE itself generated
diverse molecules that are learned from the training set. After training VAE, Bayesian optimization (BO) is
used to navigate latent space efficiently, identify desirable molecules, and conduct molecule optimization. In
our evaluation, we select three VAE-based models and one diffusion-based model: SMILES-VAE-BO (Gómez-
Bombarelli et al., 2018) uses SMILES string as the input to the VAE model, and SELFIES-VAE-BO uses
the same algorithm but uses SELFIES string as the molecular representation. JT-VAE (Jin et al., 2019)
instead use a tree-structured scaffold over chemical substructures. TargetDiff (Guan et al., 2023) design a
target-aware diffusion model that could generate molecules under given protein atoms.

Auto-regressive: An auto-regressive model is a type of statistical model that is based on the idea that past
values in the series can be used to predict future values. In molecule generation, an auto-regressive model
would typically take the generated atom sequence as input and predict which atom would be the next. In
our evaluation, we choose seven auto-regressive models: PocketFlow (Jiang et al., 2024) is autoregressive
flow-based generative models. 3DSBDD (Luo et al., 2021) based on conventional Markov Chain Monte
Carlo (MCMC) algorithms and Pocket2mol (Peng et al., 2022) choose graph neural networks (GNN) as
the backbone. Inspired by Pocket2mol, ResGen (Zhang et al., 2023) used a hierarchical autoregression,
which consists of a global autoregression for learning protein-ligand interactions and atomic component
autoregression for learning each atom’s topology and geometry distributions.

Hill Climbing (HC): Hill Climbing (HC) is an optimization algorithm that belongs to the family of local
search techniques (Selman & Gomes, 2006). It is used to find the best solution to a problem among a
set of possible solutions. In molecular design, Hill Climbing would tune the generative model with the
reference of generated high-scored molecules. In our evaluation, we adopt two HC models: SMILES-LSTM-
HC (Brown et al., 2019) uses an LSTM model to generate molecules and uses the HC technique to fine-tune
it. MultI-constraint MOlecule SAmpling (MIMOSA) (Fu et al., 2021) uses a graph neural network instead
and incorporates it with HC.

Gradient Ascent (GRAD): Similar to gradient descent, gradient ascent also estimates the gradient direc-
tion but chooses the maximum direction. In molecular design, the GRAD method is often used in molecular
property function to optimize molecular generation. In our evaluation, we choose two GRAD-based models:
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Pasithea (Shen et al., 2021) uses SELFIES as input and applies GRAD on an MLP-based molecular property
prediction model. Differentiable Scaffolding Tree (DST) (Fu et al., 2022b) uses differentiable molecular graph
as input and uses a graph neural network to estimate objective and the corresponding gradient.

Reinforcement Learning (RL): In molecular generation context, a reinforcement learning model would
take a partially-generated molecule (either sequence or molecular graph) as state; action is how to add a
token or atom to the sequence or molecular graph respectively; and reward is the property score of current
molecular sequence. In our evaluation, we test on two RL-based models: REINVENT (Olivecrona et al.,
2017) is a policy-gradient method that uses RNN to generate molecules and MolDQN (Zhou et al., 2019)
uses a deep Q-network to generate molecular graph.
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Figure 2: The cumulative density function (CDF) of strain energy of each model

4 Experiments

In this section, we demonstrate the experimental results. We start with the description of experimental
setup. Then, we present and analyze the experimental results, including protein-ligand bindings and pose,
pharmaceutical properties of generated molecules (e.g., drug-likeness and synthetic accessibility), and other
qualities of generated molecules (e.g., diversity, validity).
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4.1 Experiment Setup

4.1.1 Oracle

In drug discovery, we need to evaluate the pharmaceutical properties of the generated molecules, such as
binding affinity to certain target proteins, drug-likeness, synthetic accessibility, solubility, etc. These property
evaluators are also known as oracle. In this section, we introduce the oracle we chose to evaluate these models.
The oracle functions are sourced from either the Therapeutics Data Commons (TDC) (Huang et al., 2022;
2021)1 or established Python packages.

(1) Docking Score: Molecular docking is a measurement of free energy exchange between a ligand and
a target protein during the binding process. A lower docking score means the ligand would have a higher
potential to pose higher bioactivity with a given target. Compared with other heuristic oracles, such as QED
(quantitative estimate of drug-likeness), and LogP (Octanol-water partition coefficient), docking reflects the
binding affinities between drug molecule and target (Graff et al., 2021). Our experiments use AutoDock
Vina (Eberhardt et al., 2021) python package to calculate the docking score for each generated molecules.
We selected ten representative and diverse target proteins, with five sourced from CrossDock (Francoeur
et al., 2020) and five from other datasets. The CrossDock-derived PDB IDs are 6GL8, 1UWH, 7OTE, 1KKQ,
and 5WFD, while the remaining structures are 7WC7, 8JJL, 7D42, 6AZV, and 7S1S. These crystallography
structures are across different fields, including virology, immunology, and oncology (Huang et al., 2022; 2021;
Chang et al., 2019). They cover various kinds of diseases such as chronic myelogenous leukemia, tuberculosis,
SARS-COVID-2, etc. They represent a breadth of functionality, from viral replication mechanisms to cellular
signaling pathways and immune responses.

(2) Pose: Pose evaluation is another crucial oracle in structure-based drug discovery. It primarily focuses
on measuring physical and chemical validity aspects of docking, such as chemical consistency, geometric
plausibility, and energy-based checks. These assessments help eliminate physically implausible poses that
might score well in Vina but are chemically or geometrically invalid. Additionally, it evaluates intermolecular
interactions between the ligand and protein, such as steric clashes, to ensure that the predicted poses are
not only energetically favorable but also physically realistic in the protein environment. In our experiments,
we employed two pose evaluation packages: PoseBuster (Buttenschoen et al., 2024) and PoseCheck (Harris
et al., 2023). PoseBuster contains 19 True/False-style metrics spanning chemical validity and consistency,
intramolecular validity, and intermolecular validity. PoseCheck provides numerical values for clashes and
strain energy for each docking pose generated by Vina.

(3) Heuristic Oracles: Although heuristic oracles are considered to be “trivial” and too easily optimized, we
still incorporate some of them into our evaluation metrics for comprehensive analysis. In our experiments,
we utilize Quantitative Estimate of Drug-likeness (QED), SA, and LogP as our heuristic oracles. QED
evaluates a molecule’s drug-likeness on a scale from 0 to 1, where 0 indicates minimal drug-likeness and 1
signifies maximum drug-likeness, aligning closely with the physicochemical properties of successful drugs.
SA, or Synthetic Accessibility, assesses the ease of synthesizing a molecule, with scores ranging from 1 to
10; a lower score suggests easier synthesis. LogP measures a compound’s preference for a lipophilic (oil-like)
phase over a hydrophilic (water-like) phase, essentially indicating its solubility in water, where the optimal
range depends on the type of drug. But mostly the value should be between 0 and 5.

(4) Molecule Generation Oracles: While docking score oracles and heuristic oracles focus on evaluating
individual molecules, molecule generation oracles assess the quality of all generated molecules as a whole.
In our experiments, we choose three metrics to evaluate the generated molecules of each model: diversity,
validity, and uniqueness. Diversity is measured by the average pairwise Tanimoto distance between the
Morgan fingerprints (Benhenda, 2017). Validity is determined by checking atoms’ valency and the consistency
of bonds in aromatic rings using RDKit’s molecular structure parser (Polykovskiy et al., 2020). Uniqueness
is measured by the frequency at which a model generates duplicated molecules, with lower values indicating
more frequent duplicates (Polykovskiy et al., 2020).

1https://tdcommons.ai/functions/oracles/
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4.1.2 Model Setup

Inspired by Liu et al. (2024), we setup our experiment as follow: For each model, we aim to generate 1,000
molecules for each given target protein. In case there are models fail to sample sufficient enough molecules
at one run, we will rerun models that failed at most three times with different seed. We do not retrain each
model and instead we directly use the checkpoints they provided. We use the receptor information from Liu
et al. (2024) when setting target. After we get enough molecules for each model, we apply the four oracles
mentioned above to every molecule and collect the results. None of the tested models have prior knowledge
of these oracle functions.
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Figure 3: The heatmap based on the average of each model’s Top-10 docking score for each target protein.

4.2 Experiment Results

In this section, we present our experimental results. First, we analyze the generation performance of each
model, including the number of molecules successfully generated and stored, as well as generation speed. We
then evaluate the oracle results for the generated molecules. Finally, we discuss our observations regarding
model performance based on these analyses.

4.2.1 Generation Performance and Efficiency

In our analysis of model generation capabilities, we examined both generation speed and the total number of
successfully stored molecules. As specified in the model setup section, each model was tasked with generating
1,000 molecules per run. We measured generation speed in molecules per minute, calculated by dividing the
total generation time by 1,000. The speed results are presented in Table ??.

Several models encountered execution issues with specific targets, resulting in ’error’ designations. These
failures occurred for three primary reasons: immediate execution errors (as with Pasithea), infinite loop
conditions (as observed with MolDQN), and initialization failures due to unsuitable molecular configurations
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(as seen with ResGen). It is important to note that the absence of recorded time does not necessarily indicate
a complete failure to generate and store molecules.

Among successfully executing models, we first examined 1D and 2D models from the PMO benchmark (Gao
et al., 2022), which underwent identical processing. Most of these models achieved average speeds of 1-
3 molecules per minute. SMILES-GA demonstrated superior performance with speeds of 6-7 molecules
per minute, followed by Graph-GA at 3-4 molecules per minute. The relatively modest speeds may be
attributed to the computational overhead of PMO’s internal oracle calculations, particularly for complex
molecular structures.

In the 3D model category, ResGen achieved the highest average speed of approximately 300 molecules per
minute. However, it failed to initiate generation for several targets (6GL8, 5WFD, 1UWH) given our receptor
specifications. Pocket2mol maintained the second-highest performance at 40-60 molecules per minute, while
PocketFlow operated at approximately 30 molecules per minute.

Regarding the number of stored molecules (Table 5), several models consistently approached or reached the
1,000-molecule target. SMILES-LSTM-HC, REINVENT, MIMOSA, and PocketFlow demonstrated notably
stable performance, consistently generating and storing the full 1,000 molecules across most targets. How-
ever, some models showed significant variability. TargetDiff particularly struggled, storing fewer than 100
molecules for most targets, with its best performance being 557 molecules for 1KKQ. JT-VAE showed incon-
sistent performance, notably generating only 200 molecules for receptor 7WC7 despite strong performance
with other targets. 3DSBDD displayed varying success rates, ranging from 222 to 1,000 stored molecules
across different targets.

4.2.2 Binding Affinities and Poses

Method Median Strain
graph-GA 14.99
MIMOSA 32.01
MolDQN 11.75
DST 32.06
JT-VAE 49.70
SMILES-GA 38.66
SMILES-LSTM-HC 41.95
REINVENT 33.11
Pasithea 31.99
SMILES-VAE 30.35
3DSBDD 157.11
Pocket2Mol 60.55
PocketFlow 19.21
ResGen 12.05
TargetDiff 487.72

Table 3: Median strain energies across different methods.

We first take a look about the docking score performance by the Top-1 (Table 2), Top-10 average (Table 6
and Figure 3) and Top-100 average (Table 7). Overall, the docking scores generally range from -14 to -5,
with more negative values indicating better binding affinity. Pocket2Mol consistently demonstrates superior
performance across all three tables, with score ranging from between -10 and -15. In contrast, MolDQN
shows the weakest performance, with scores consistently around -5 to -7. The remaining models typically
score between -8 and -12, with 3D models generally achieving the best scores across most targets.

1D models: The 1D models (SMILES-GA, SMILES-LSTM-HC, REINVENT, SMILES-VAE) show consis-
tent performance across targets. In particular, SMILES-VAE and REINVENT demonstrate strong results
with scores around -10 to -11 in the Top-10 average. SMILES-LSTM-HC exhibits slightly better perfor-
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mance for CrossDocking targets compared to non-CrossDocking ones. SMILES-GA maintains performance
comparable to other 1D models but shows higher variability across different targets.

2D models: The 2D models exhibit more diverse performance patterns compared to 1D models. DST
and MIMOSA achieve scores comparable to 1D models, demonstrating competitive performance. Graph-GA
maintains consistency but performs slightly below the top 1D models. JT-VAE scores well but shows notable
variance across targets. MolDQN consistently underperforms relative to other 2D approaches.

3D models: Among 3D models, Pocket2Mol emerges as the clear leader, consistently achieving top scores.
PocketFlow also performs strongly but shows higher variance between targets. ResGen delivers moderate
but consistent performance. 3DSBDD displays the most variable performance among 3D models, achieving
some excellent scores but with significant variance.

The above analysis demonstrates that while 3D models, particularly Pocket2Mol, can achieve the best overall
scores, each category of models has its distinct performance characteristics and trade-offs.

We next examine the pose-related results, beginning with the Posebusters evaluation results presented in
Table 17. Each value in the table represents the pass rate for all molecules generated by the corresponding
model. For Chemical Validity and Consistency tests (including mol pred loaded, mol cond loaded, sanitiza-
tion, inchi convertible, and all atoms connected), 2D models demonstrate consistently perfect performance,
while 3D models show notable variations. Specifically, 3DSBDD and Pocket2Mol exhibit lower pass rates
in all-atom connectivity and inchi convertibility tests. SMILES-based models show lower but consistent
performance in this category, particularly in inchi convertible and all-atom connectivity metrics. Regard-
ing Intramolecular Validity tests (covering bond lengths/angles, internal steric clash, aromatic ring flatness,
double bond flatness, and internal energy), most models perform well except in the Internal Energy category.
Here, significant variations are observed, with some models (3DSBDD, Pocket2Mol) showing very low pass
rates while others (DST, graph-GA) achieve excellent results. For Intermolecular Validity tests (encompass-
ing protein-ligand maximum distance, minimum distances to protein/cofactors/waters, and volume overlap
with protein/cofactors/waters), nearly all models achieve perfect pass rates, with TargetDiff being the no-
table exception, showing poor performance in minimum distance to protein metrics. In summary, while most
models excel at intermolecular validity checks, the key differences emerge in chemical validity and intramolec-
ular metrics. 2D models maintain the most consistent performance across all categories, whereas 3D models
and SMILES-based approaches display greater variability, particularly in chemical validity assessments.

We also use PoseCheck to calculate the strain energy and the steric clash of the generated poses. A clash
occurs when the pairwise distance between protein and ligand atoms falls below the sum of their van der
Waals radii, which is physically implausible (Ramachandran et al., 2011; Buonfiglio et al., 2015). Strain
energy represents the internal energy within a ligand during binding, with lower energy typically being more
favorable (Perola & Charifson, 2004).

First, we examine strain energy results in Figure 2 and Table 3, which reveal distinct patterns across model
dimensions. 3D models show wide variation, with ResGen performing best (median: 12.05 kcal/mol) and
TargetDiff worst (median: 487.72 kcal/mol). 2D models generally perform better, led by MolDQN (11.75
kcal/mol) and graph-GA (14.99 kcal/mol). 1D SMILES-based models show consistent performance, with
SMILES-VAE (30.35 kcal/mol) outperforming others in this category.

Turning to clash results shown in Figure 4, Figure 5, Figure 6 and Table 18, we observe significant variation
among 3D models. ResGen demonstrates the best performance with consistently low clash counts (median
2-4) across most receptors, while Pocket2Mol and TargetDiff exhibit high variability. In contrast, 1D and
2D models show stable performance with most models having median clash counts no higher than 10.
Interestingly, receptor 8JJL consistently proves challenging for models across all categories.

In summary, while 3D models often achieve better docking scores, they do not necessarily produce better
protein-ligand geometric compatibility.

4.2.3 Pharmaceutical Properties

In this section, we report and analyze the pharmaceutical properties of the generated molecules.

9



Under review as submission to TMLR

LogP: Overall, nearly all the models tested produced the majority of their molecules within the 0 to 3 range.
For example, SMILES-LSTM-HC demonstrates remarkable consistency, maintaining a LogP score of 3.39 ±
0.60 across all targets. Several models, including Pasithea, SMILES-VAE, MIMOSA, and DST, show stable
performance with LogP values between 2.40 and 2.60, indicating good potential for drug-like properties.
However, there is significant variability among other models. Pocket2Mol and PocketFlow exhibit wide
fluctuations in their LogP scores, ranging from -0.05 to 5.24, suggesting inconsistent control over molecular
hydrophobicity. MolDQN consistently generates highly hydrophilic molecules, with LogP scores consistently
below -1.0 across all targets. 3DSBDD shows the most extreme variability, with scores ranging from -11.36
to 3.73, and notably large standard deviations.

QED:Based on the results in table 13, these models demonstrate varying levels of performance across different
targets. The majority of models, including SMILES-VAE, MIMOSA, and DST, consistently achieve high
QED scores between 0.90-0.91, indicating their robust ability to generate drug-like molecules. A second tier
of models, including SMILES-GA, SMILES-LSTM-HC, and JT-VAE, maintains reliable performance with
scores ranging from 0.86 to 0.88. The graph-GA model shows moderate consistency with scores around 0.84
across all targets. Notably, there are significant performance disparities among certain models. MolDQN
demonstrates considerably lower performance, with QED scores consistently falling between 0.43-0.49 across
all targets. PocketFlow and 3DSBDD show variable performance, with scores fluctuating between 0.60 and
0.80, suggesting less stability in generating drug-like molecules. The performance patterns remain relatively
consistent whether evaluating targets in CrossDocking or those not included in CrossDocking, indicating
that the models’ capabilities are generally independent of the target selection.

SA: Overall, most of the models generate molecules with scores between 1 to 3. Several models maintain
consistent performance with relatively low variance: SMILES-LSTM-HC (1.93 ± 0.13), MIMOSA (1.95 ±
0.12), and DST (1.95 ± 0.14) demonstrate stable synthetic accessibility scores across all targets. However,
3DSBDD shows significantly higher scores with substantial variance, ranging from 2.89 ± 0.73 to 6.10 ± 0.96.
MolDQN consistently generates molecules with higher SA scores (2.83-3.28) and notable standard deviations
(0.50-0.55). The data indicates that while most models can generate synthetically accessible compounds,
there are significant variations in their consistency and the complexity of the proposed synthetic routes.

Furthermore, we report the numerical values of top-K docking, QED, SA, and LogP scores for all the methods
across different target proteins in the Appendix A.

4.2.4 Molecule Generation Quality

Model Diversity Uniqueness Validity
SMILES-GA 0.90 0.60 1.00
SMILES-LSTM-HC 0.88 0.17 1.00
REINVENT 0.89 0.70 1.00
Pasithea 0.91 0.28 1.00
SMILES-VAE 0.88 0.54 1.00
graph-GA 0.92 0.71 1.00
MIMOSA 0.88 0.09 1.00
MolDQN 0.93 0.71 1.00
DST 0.88 0.10 1.00
JT-VAE 0.89 0.77 1.00
TargetDiff 0.89 1.00 1.00
Pocket2Mol 0.84 1.00 1.00
PocketFlow 0.89 0.84 1.00
ResGen 0.85 0.97 1.00
3DSBDD 0.89 0.80 0.80

Table 4: average Molecule Generation Metrics across all target

We record the results of Molecule Generation Oracles in Table 4 and below are the breakdown analysis.
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In the diversity oracle, all models demonstrates strong capabilities with scores consistently above 0.84.
MolDQN achieves the highest diversity at 0.93, followed closely by graph-GA (0.92) and Pasithea (0.91).
This high-performing cluster suggests that these models are particularly adept at generating structurally
varied molecules. The remaining models maintain robust diversity scores between 0.84 and 0.90, indicating
generally strong performance in exploring chemical space.

In the validity oracle, nearly all models shows exceptional performance with fourteen out of fifteen models
achieving perfect scores of 1. This indicates these models consistently generate chemically valid molecular
structures. 3DSBDD stands as the sole exception with a validity score of 0.80, suggesting some room for
improvement in ensuring chemical validity of its generated structures.

Uniqueness scores reveal the most significant variations among the three metrics. TargetDiff and Pocket2Mol
achieve perfect uniqueness scores of 1.00, while ResGen (0.97) and PocketFlow (0.84) also demonstrate
strong performance. However, there is a notable performance gap, with some models showing substantially
lower uniqueness scores. MIMOSA (0.09), DST (0.10), and SMILES-LSTM-HC (0.17) generate relatively
high proportions of duplicate structures. This variance in uniqueness scores suggests that while models
can generate valid and diverse molecules, ensuring uniqueness remains a challenging aspect of molecular
generation.

This comprehensive analysis indicates that while the field has largely solved the challenge of generating
valid molecular structures and can consistently produce diverse molecule sets, the ability to generate unique
molecules varies significantly across different approaches.

5 Discussion

Our benchmark experiments reveal a nuanced performance landscape across 1D, 2D, and 3D algorithmic
families. This section provides a deeper analysis of these results, explaining the underlying reasons for
the observed performance trade-offs and offering insights into the strategic application of these different
approaches in drug discovery.

Intuitively, 3D models should have a decisive advantage, as they explicitly use the 3D coordinates of the
target’s binding pocket as input. This allows them to learn the geometric and chemical constraints imposed
by the pocket’s shape, directly optimizing for steric and electrostatic complementarity. Our results confirm
this, showing that 3D models consistently generate molecules with superior binding affinity. However, we
also observe inconsistent chemical validity and poor pose quality. There are several possible factors that can
explain this "affinity-validity trade-off":

• Sequential Error Accumulation: Many 3D models are autoregressive, building molecules atom-
by-atom. This sequential process can suffer from "exposure bias," where small geometric prediction
errors in early steps accumulate, resulting in final structures with high internal strain or steric
clashes, even if the overall shape fits the pocket.

• Primacy of Coordinates over Chemistry: The intense focus on optimizing 3D coordinates
can come at the expense of enforcing fundamental, discrete rules of chemistry. This can lead to
geometrically plausible but chemically unfavorable arrangements, such as strained or uncommon ring
structures. Some models successfully mitigate this by explicitly incorporating chemical knowledge,
like valence rules, into the generation process to improve validity.

• Practical Hurdles: 3D models often face practical constraints that can limit their use. They can
be computationally intensive and may lack robustness, sometimes failing to generate molecules for
novel protein targets without specific configurations—an issue we observed in our own experiments.

On the contrary, 1D and 2D models have better performance on chemical validity may because they are
using more chemical "language" such as SMILES string or fragments and scaffolds. However these methods
treat target as a "black-box oracle", generating a molecule first and only then checking its fit. This indirect
optimization is inefficient for discovering high-affinity binders.
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Given the complementary strengths and weaknesses of each approach, the most promising direction for
future research lies in the development of hybrid models. Such framework could leverage a 1D/2D model
to generate a diverse library of valid and synthesizable scaffolds, which are then passed to a 3D model for
precise refinement and optimization within the target’s binding pocket. This would combine the chemical
robustness of 1D/2D methods with the geometric precision of 3D methods, potentially overcoming the key
trade-offs identified in this benchmark.

6 Conclusion

Currently, the landscape of structure-based drug design models is vast, featuring various algorithmic back-
bones, yet comparative analyses across them are scarce. In this study, we design experiments to evaluate
the quality of molecules generated by each model. Our experiments extend beyond conventional heuristic
oracles related to molecular properties, also examining the affinity and poses between molecules and selected
target proteins. Our findings indicate that different algorithmic approaches exhibit distinct strengths and
limitations. 3D models, particularly Pocket2Mol, demonstrate superior performance in generating molecules
with strong binding affinities, as evidenced by docking scores. However, they show more variability in chem-
ical validity checks and pose evaluations. 1D SMILES-based models maintain consistent performance across
most metrics but rarely achieve the highest binding affinities. 2D graph-based models offer the most bal-
anced performance, showing strong consistency across chemical validity, pose quality, and moderate binding
affinity scores.

These results suggest that while significant progress has been made in structure-based drug design, there
remains room for improvement in developing models that can simultaneously optimize binding affinity while
maintaining high chemical validity and pose quality. Future development of structure-based models should
focus on bridging these gaps, potentially by incorporating mechanisms that better balance the trade-offs
between binding affinity optimization and other crucial molecular properties. This comprehensive evaluation
provides valuable insights for researchers working to advance the field of computational drug discovery.
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A Appendix

Table 5: Number of successfully generated and stored molecules by model. Targets in CrossDocking are
marked in red, and targets not in CrossDocking are in blue.

Model 6GL8 1UWH 7OTE 1KKQ 5WFD 7WC7 8JJL 7D42 6AZV 7S1S

SMILES-GA 832 800 819 892 580 791 652 662 629 558
SMILES-LSTM-HC 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
REINVENT 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Pasithea 1000 800 900 1000 1000 800 900 800 1000 1000
SMILES-VAE 1000 1000 1000 600 1000 1000 1000 1000 1000 1000
graph GA 1000 1000 400 1000 1000 1000 500 1000 1000 1000
MIMOSA 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
MolDQN 700 690 700 800 700 700 700 700 700 696
DST 1000 900 1000 1000 1000 1000 900 1000 1000 1000
JT-VAE 1000 1000 1000 1000 1000 200 1000 1000 1000 1000
TargetDiff 0 1 0 557 70 4 10 1 0 0
3DSBDD 898 708 669 668 769 1000 1000 1000 222 673
Pocket2mol 1000 968 1000 790 1000 1000 860 884 868 1000
PocketFlow 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
ResGen 0 676 290 785 0 259 0 805 1000 1000
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Figure 4: The clashes box plot for 1D models
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Figure 5: The clashes box plot for 2D models
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Figure 6: The clashes box plot for 3D models
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Model 6GL8 1UWH 7OTE 1KKQ 5WFD

Pocket2Mol -10.53 ± 0.40 -13.87 ± 0.34 -14.78 ± 0.44 -13.53 ± 0.30 -11.06 ± 0.15
PocketFlow -8.98 ± 0.22 -10.68 ± 0.23 -9.55 ± 0.36 -11.67 ± 0.38 -9.34 ± 0.35
ResGen – -9.23 ± 0.20 -7.03 ± 0.06 -9.56 ± 0.18 –
3DSBDD -8.19 ± 0.22 -12.41 ± 0.18 -10.41 ± 0.09 -12.71 ± 0.30 -10.72 ± 0.22
DST -8.23 ± 0.15 -10.48 ± 0.16 -10.76 ± 0.21 -9.96 ± 0.32 -9.22 ± 0.28
graph-GA -7.94 ± 0.18 -10.12 ± 0.37 -9.94 ± 0.36 -9.63 ± 0.32 -9.03 ± 0.18
JT-VAE -9.09 ± 0.42 -11.12 ± 0.41 -11.27 ± 0.34 -10.90 ± 0.47 -10.26 ± 0.42
MIMOSA -8.28 ± 0.13 -10.52 ± 0.22 -10.82 ± 0.25 -10.16 ± 0.25 -9.35 ± 0.19
MolDQN -6.13 ± 0.17 -6.69 ± 0.25 -6.93 ± 0.20 -6.75 ± 0.21 -7.37 ± 0.14
Pasithea -8.73 ± 0.24 -11.12 ± 0.27 -10.84 ± 0.26 -10.13 ± 0.18 -9.88 ± 0.33
REINVENT -8.65 ± 0.24 -10.72 ± 0.28 -10.76 ± 0.44 -10.51 ± 0.28 -9.56 ± 0.24
SMILES-GA -8.44 ± 0.23 -10.33 ± 0.27 -10.27 ± 0.39 -9.81 ± 0.38 -9.20 ± 0.30
SMILES-LSTM-HC -9.26 ± 0.29 -11.02 ± 0.25 -11.54 ± 0.40 -11.21 ± 0.51 -10.41 ± 0.42
SMILES-VAE -8.76 ± 0.25 -11.13 ± 0.37 -11.35 ± 0.61 -10.31 ± 0.31 -9.74 ± 0.16
TargetDiff – – – -11.14 ± 0.26 -8.29 ± 0.69

(a) Targets in CrossDocking.

Model 7W7C 8JJL 7D42 7S1S 6AZV

Pocket2Mol -13.56 ± 0.11 -12.79 ± 0.33 -12.10 ± 0.33 -12.49 ± 0.26 -11.87 ± 0.26
PocketFlow -13.02 ± 0.23 -11.42 ± 0.28 -12.25 ± 0.30 -9.46 ± 0.34 -11.49 ± 0.15
ResGen -7.56 ± 0.18 – -8.60 ± 0.20 -11.63 ± 0.08 -9.47 ± 0.13
3DSBDD -10.78 ± 0.28 -10.90 ± 0.35 -10.43 ± 0.29 -9.84 ± 0.21 -9.66 ± 0.32
DST -11.11 ± 0.37 -10.79 ± 0.48 -10.92 ± 0.32 -10.73 ± 0.30 -9.78 ± 0.16
graph-GA -10.60 ± 0.39 -10.23 ± 0.19 -10.43 ± 0.20 -9.98 ± 0.16 -9.14 ± 0.21
JT-VAE -10.81 ± 0.54 -10.81 ± 0.39 -11.52 ± 0.41 -11.04 ± 0.16 -10.18 ± 0.14
MIMOSA -11.14 ± 0.21 -10.77 ± 0.36 -11.03 ± 0.29 -10.78 ± 0.33 -9.78 ± 0.18
MolDQN -7.33 ± 0.16 -7.90 ± 0.35 -6.53 ± 0.26 -8.01 ± 0.16 -6.73 ± 0.39
Pasithea -11.41 ± 0.26 -11.24 ± 0.32 -11.15 ± 0.26 -11.06 ± 0.18 -10.03 ± 0.12
REINVENT -11.52 ± 0.19 -11.13 ± 0.25 -11.40 ± 0.34 -10.99 ± 0.20 -9.92 ± 0.30
SMILES-GA -10.97 ± 0.29 -11.01 ± 0.18 -11.01 ± 0.43 -10.46 ± 0.35 -9.41 ± 0.40
SMILES-LSTM-HC -12.20 ± 0.60 -11.09 ± 0.18 -11.47 ± 0.46 -11.47 ± 0.24 -10.38 ± 0.13
SMILES-VAE -11.42 ± 0.33 -11.14 ± 0.42 -11.42 ± 0.27 -11.14 ± 0.34 -10.11 ± 0.19
TargetDiff – -7.99 ± 0.53 – – –

(b) Targets not in CrossDocking.

Table 6: Top 10 Vina score for each target.
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Model 6GL8 1UWH 7OTE 1KKQ 5WFD

Pocket2Mol -9.90 ± 0.31 -12.81 ± 0.48 -13.14 ± 0.78 -12.36 ± 0.52 -10.45 ± 0.29
PocketFlow -7.92 ± 0.52 -8.12 ± 1.43 -7.74 ± 0.85 -10.33 ± 0.60 -8.14 ± 0.56
ResGen – -8.06 ± 0.56 -6.30 ± 0.48 -8.82 ± 0.35 –
3DSBDD -7.22 ± 0.44 -11.52 ± 0.44 -9.67 ± 0.38 -11.59 ± 0.51 -9.86 ± 0.40
DST -7.50 ± 0.28 -9.41 ± 0.40 -9.47 ± 0.49 -9.00 ± 0.40 -8.41 ± 0.31
graph-GA -6.81 ± 0.40 -8.32 ± 0.68 -8.25 ± 0.65 -8.07 ± 0.59 -7.65 ± 0.49
JT-VAE -7.93 ± 0.48 -9.82 ± 0.51 -9.65 ± 0.59 -9.62 ± 0.53 -9.00 ± 0.48
MIMOSA -7.49 ± 0.27 -9.54 ± 0.38 -9.49 ± 0.48 -8.99 ± 0.40 -8.46 ± 0.32
MolDQN -4.84 ± 0.47 -5.46 ± 0.47 -5.87 ± 0.40 -5.65 ± 0.43 -5.79 ± 0.56
Pasithea -7.93 ± 0.39 -9.94 ± 0.51 -9.98 ± 0.43 -9.36 ± 0.36 -8.92 ± 0.44
REINVENT -7.82 ± 0.36 -9.70 ± 0.43 -9.77 ± 0.48 -9.40 ± 0.51 -8.80 ± 0.36
SMILES-GA -7.37 ± 0.46 -8.94 ± 0.66 -8.95 ± 0.64 -8.64 ± 0.50 -8.12 ± 0.44
SMILES-LSTM-HC -8.29 ± 0.42 -10.18 ± 0.41 -10.40 ± 0.50 -10.10 ± 0.49 -9.43 ± 0.43
SMILES-VAE -7.97 ± 0.37 -9.97 ± 0.50 -10.09 ± 0.56 -9.08 ± 0.52 -8.84 ± 0.40
TargetDiff – – – -9.84 ± 0.58 –

a): targets in CrossDocking

Model 7W7C 8JJL 7D42 7S1S 6AZV

Pocket2Mol -12.55 ± 0.49 -11.63 ± 0.51 -10.88 ± 0.56 -11.51 ± 0.46 -11.11 ± 0.36
PocketFlow -11.94 ± 0.47 -10.35 ± 0.46 -11.11 ± 0.48 -7.82 ± 0.74 -10.56 ± 0.40
ResGen -7.04 ± 0.24 – -7.71 ± 0.44 -11.06 ± 0.31 -8.75 ± 0.32
3DSBDD -8.67 ± 1.14 -9.58 ± 0.57 -9.10 ± 0.64 -8.95 ± 0.42 -8.28 ± 0.64
DST -10.06 ± 0.41 -9.74 ± 0.45 -9.92 ± 0.41 -9.78 ± 0.37 -8.90 ± 0.30
graph-GA -8.89 ± 0.64 -8.52 ± 0.61 -8.82 ± 0.57 -8.46 ± 0.52 -7.88 ± 0.48
JT-VAE -8.63 ± 0.79 -9.78 ± 0.43 -10.30 ± 0.48 -10.07 ± 0.35 -9.02 ± 0.42
MIMOSA -10.08 ± 0.40 -9.74 ± 0.45 -9.88 ± 0.45 -9.77 ± 0.41 -8.85 ± 0.34
MolDQN -6.12 ± 0.43 -6.57 ± 0.53 -5.41 ± 0.42 -6.38 ± 0.53 -5.78 ± 0.38
Pasithea -10.53 ± 0.42 -10.22 ± 0.45 -10.31 ± 0.40 -10.23 ± 0.42 -9.30 ± 0.35
REINVENT -10.46 ± 0.48 -10.26 ± 0.41 -10.32 ± 0.48 -10.08 ± 0.41 -9.19 ± 0.34
SMILES-GA -9.78 ± 0.55 -9.61 ± 0.62 -9.39 ± 0.66 -9.30 ± 0.50 -8.50 ± 0.43
SMILES-LSTM-HC -11.09 ± 0.50 -10.16 ± 0.43 -10.62 ± 0.43 -10.51 ± 0.44 -9.52 ± 0.37
SMILES-VAE -10.54 ± 0.42 -10.17 ± 0.45 -10.34 ± 0.51 -10.22 ± 0.44 -9.32 ± 0.36
TargetDiff – – – – –

b): targets not in CrossDocking

Table 7: Top 100 Average docking score for each target
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Table 8: Top 1 LogP score for each target. Targets in CrossDocking are marked in red, and targets not in
CrossDocking are in blue.

Model 6GL8 1UWH 7OTE 1KKQ 5WFD 7W7C 8JJL 7D42 7S1S 6AZV

SMILES-GA 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59
SMILES-LSTM-HC 6.88 5.60 6.88 6.88 6.88 6.88 6.88 6.88 6.88 6.88
REINVENT 3.55 3.85 3.85 3.73 3.39 3.39 3.39 3.39 4.04 3.39
Pasithea 3.35 3.48 3.24 3.38 3.24 3.24 3.24 3.24 3.24 3.24
SMILES-VAE 3.55 3.82 3.87 3.84 3.86 3.55 3.73 3.56 3.63 4.20
graph-GA 3.59 3.59 3.66 4.19 3.96 3.78 3.59 3.81 3.59 3.59
MIMOSA 4.15 4.15 4.15 4.15 4.15 4.15 4.15 4.15 4.15 4.15
MolDQN 0.49 1.00 1.07 1.07 0.56 1.00 1.00 0.29 1.00 1.45
DST 3.44 3.31 3.44 3.44 3.44 3.44 3.31 3.44 3.44 3.44
JT-VAE 3.93 3.91 3.91 4.37 4.70 3.75 4.10 3.75 3.75 4.36
TargetDiff – -0.67 – 4.43 1.30 3.08 0.15 -0.28 – –
Pocket2Mol 5.49 3.72 5.23 6.31 4.22 3.30 4.27 4.04 3.27 5.04
PocketFlow 4.92 3.94 3.86 6.76 4.89 6.19 4.87 5.80 3.04 6.85
ResGen – 3.29 2.18 3.75 – 2.90 – 2.90 2.79 2.90
3DSBDD 2.41 3.51 0.72 3.30 1.23 2.01 6.93 3.79 1.14 2.67
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Model 6GL8 1UWH 7OTE 1KKQ 5WFD

SMILES-GA 2.58 ± 0.44 2.55 ± 0.42 2.53 ± 0.44 2.43 ± 0.51 2.57 ± 0.43
SMILES-LSTM-HC 4.64 ± 1.03 4.52 ± 0.41 4.64 ± 1.03 4.64 ± 1.03 4.64 ± 1.03
REINVENT 3.14 ± 0.25 3.22 ± 0.27 3.13 ± 0.33 3.12 ± 0.29 3.02 ± 0.23
Pasithea 3.08 ± 0.12 3.04 ± 0.18 3.06 ± 0.09 3.06 ± 0.16 3.06 ± 0.09
SMILES-VAE 3.33 ± 0.09 3.36 ± 0.18 3.33 ± 0.26 3.34 ± 0.20 3.47 ± 0.19
graph-GA 2.78 ± 0.33 3.04 ± 0.32 3.00 ± 0.34 3.29 ± 0.51 3.20 ± 0.32
MIMOSA 3.34 ± 0.28 3.34 ± 0.28 3.34 ± 0.28 3.34 ± 0.28 3.34 ± 0.28
MolDQN 0.27 ± 0.20 -0.13 ± 0.49 0.27 ± 0.49 0.50 ± 0.31 0.02 ± 0.32
DST 3.14 ± 0.14 3.09 ± 0.11 3.14 ± 0.14 3.14 ± 0.14 3.14 ± 0.14
JT-VAE 3.45 ± 0.28 3.54 ± 0.24 3.51 ± 0.20 3.71 ± 0.29 3.87 ± 0.46
TargetDiff – -0.67 ± 0.00 – 3.79 ± 0.36 -0.11 ± 0.87
Pocket2Mol 5.00 ± 0.21 3.33 ± 0.18 4.93 ± 0.18 6.00 ± 0.15 3.88 ± 0.21
PocketFlow 4.35 ± 0.27 2.29 ± 0.73 3.01 ± 0.58 6.03 ± 0.40 3.78 ± 0.49
ResGen – 2.83 ± 0.18 1.78 ± 0.22 3.58 ± 0.08 –
3DSBDD 1.98 ± 0.23 2.72 ± 0.47 -0.59 ± 0.49 2.93 ± 0.24 0.33 ± 0.56

a): targets in CrossDocking

Model 7W7C 8JJL 7D42 7S1S 6AZV

SMILES-GA 2.55 ± 0.50 2.84 ± 0.28 2.59 ± 0.43 2.45 ± 0.49 2.54 ± 0.45
SMILES-LSTM-HC 4.64 ± 1.03 4.64 ± 1.03 4.64 ± 1.03 4.64 ± 1.03 4.64 ± 1.03
REINVENT 3.07 ± 0.22 3.13 ± 0.18 3.02 ± 0.23 3.38 ± 0.37 3.07 ± 0.21
Pasithea 3.06 ± 0.09 3.06 ± 0.09 3.06 ± 0.09 3.06 ± 0.09 3.06 ± 0.09
SMILES-VAE 3.31 ± 0.10 3.38 ± 0.15 3.35 ± 0.13 3.37 ± 0.17 3.32 ± 0.30
graph-GA 3.07 ± 0.39 2.92 ± 0.34 3.00 ± 0.40 3.03 ± 0.27 2.80 ± 0.29
MIMOSA 3.34 ± 0.28 3.34 ± 0.28 3.34 ± 0.28 3.34 ± 0.28 3.34 ± 0.28
MolDQN 0.15 ± 0.38 -0.09 ± 0.54 -0.23 ± 0.34 0.04 ± 0.36 0.06 ± 0.65
DST 3.14 ± 0.14 3.09 ± 0.11 3.14 ± 0.14 3.14 ± 0.14 3.14 ± 0.14
JT-VAE 2.94 ± 0.36 3.47 ± 0.34 3.38 ± 0.16 3.37 ± 0.18 3.58 ± 0.41
TargetDiff 1.01 ± 1.35 -7.95 ± 20.45 -0.28 ± 0.00 – –
Pocket2Mol 2.78 ± 0.29 3.98 ± 0.13 3.54 ± 0.27 2.74 ± 0.23 4.38 ± 0.32
PocketFlow 5.50 ± 0.36 3.84 ± 0.51 5.48 ± 0.21 1.15 ± 0.79 6.40 ± 0.26
ResGen 2.59 ± 0.16 – 2.48 ± 0.19 2.36 ± 0.15 2.58 ± 0.20
3DSBDD 0.91 ± 0.60 6.19 ± 0.35 2.94 ± 0.43 -0.19 ± 0.64 1.71 ± 0.41

b): targets not in CrossDocking

Table 9: Top 10 LogP score for each target
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Model 6GL8 1UWH 7OTE 1KKQ 5WFD

SMILES-GA 1.25 ± 0.62 1.36 ± 0.57 1.24 ± 0.63 0.93 ± 0.75 1.32 ± 0.63
SMILES-LSTM-HC 3.39 ± 0.60 3.38 ± 0.55 3.39 ± 0.60 3.39 ± 0.60 3.39 ± 0.60
REINVENT 2.21 ± 0.47 2.11 ± 0.58 2.12 ± 0.51 2.11 ± 0.53 2.08 ± 0.49
Pasithea 2.44 ± 0.35 2.40 ± 0.31 2.50 ± 0.30 2.42 ± 0.32 2.50 ± 0.30
SMILES-VAE 2.56 ± 0.40 2.55 ± 0.38 2.57 ± 0.34 2.45 ± 0.44 2.58 ± 0.42
graph-GA 1.61 ± 0.61 1.81 ± 0.58 1.64 ± 0.64 1.89 ± 0.65 1.99 ± 0.57
MIMOSA 2.55 ± 0.38 2.55 ± 0.38 2.55 ± 0.38 2.55 ± 0.38 2.55 ± 0.38
MolDQN -1.41 ± 0.72 -1.67 ± 0.66 -1.51 ± 0.75 -1.17 ± 0.76 -1.62 ± 0.71
DST 2.60 ± 0.28 2.57 ± 0.27 2.60 ± 0.28 2.60 ± 0.28 2.60 ± 0.28
JT-VAE 2.25 ± 0.54 2.54 ± 0.49 2.52 ± 0.47 2.47 ± 0.56 2.46 ± 0.63
TargetDiff – -0.67 ± 0.00 – 2.14 ± 0.77 -2.55 ± 1.65
Pocket2Mol 3.72 ± 0.68 2.59 ± 0.39 3.97 ± 0.44 4.78 ± 0.66 3.02 ± 0.41
PocketFlow 3.02 ± 0.65 0.57 ± 0.75 1.85 ± 0.54 4.40 ± 0.74 1.86 ± 0.88
ResGen – 2.19 ± 0.32 0.77 ± 0.52 2.92 ± 0.32 –
3DSBDD -0.19 ± 1.18 1.01 ± 0.75 -2.16 ± 0.76 0.56 ± 1.15 -2.56 ± 1.25

a): targets in CrossDocking

Model 7W7C 8JJL 7D42 7S1S 6AZV

SMILES-GA 0.91 ± 0.79 1.54 ± 0.60 1.03 ± 0.75 1.23 ± 0.65 1.28 ± 0.61
SMILES-LSTM-HC 3.39 ± 0.60 3.39 ± 0.60 3.39 ± 0.60 3.39 ± 0.60 3.39 ± 0.60
REINVENT 2.08 ± 0.53 2.16 ± 0.53 2.08 ± 0.50 2.21 ± 0.57 2.15 ± 0.50
Pasithea 2.50 ± 0.30 2.50 ± 0.30 2.50 ± 0.30 2.50 ± 0.30 2.50 ± 0.30
SMILES-VAE 2.54 ± 0.35 2.55 ± 0.40 2.57 ± 0.38 2.53 ± 0.39 2.47 ± 0.39
graph-GA 1.81 ± 0.62 1.58 ± 0.66 1.83 ± 0.55 1.69 ± 0.64 1.63 ± 0.62
MIMOSA 2.55 ± 0.38 2.55 ± 0.38 2.55 ± 0.38 2.55 ± 0.38 2.55 ± 0.38
MolDQN -1.14 ± 0.68 -1.68 ± 0.70 -1.83 ± 0.68 -1.49 ± 0.69 -1.63 ± 0.75
DST 2.60 ± 0.28 2.57 ± 0.27 2.60 ± 0.28 2.60 ± 0.28 2.60 ± 0.28
JT-VAE 1.13 ± 0.92 2.28 ± 0.59 2.50 ± 0.50 2.28 ± 0.53 2.35 ± 0.56
TargetDiff 1.01 ± 1.35 -7.95 ± 20.45 -0.28 ± 0.00 – –
Pocket2Mol 1.62 ± 0.58 3.43 ± 0.27 2.05 ± 0.70 1.35 ± 0.67 3.24 ± 0.56
PocketFlow 4.30 ± 0.52 2.52 ± 0.64 4.51 ± 0.46 -0.05 ± 0.64 5.24 ± 0.57
ResGen 1.63 ± 0.49 – 1.67 ± 0.39 1.62 ± 0.39 1.79 ± 0.36
3DSBDD -11.36 ± 11.32 3.73 ± 1.18 0.04 ± 1.80 -3.82 ± 1.76 -0.32 ± 1.20

b): targets not in CrossDocking

Table 10: Top 100 LogP score for each target
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Table 11: Top 1 QED score for each target. Targets in CrossDocking are marked in red, and targets not in
CrossDocking are in blue.

Model 6GL8 1UWH 7OTE 1KKQ 5WFD 7W7C 8JJL 7D42 7S1S 6AZV

SMILES-GA 0.94 0.93 0.94 0.94 0.94 0.92 0.92 0.94 0.92 0.92
SMILES-LSTM-HC 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
REINVENT 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Pasithea 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
SMILES-VAE 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
graph-GA 0.93 0.94 0.93 0.94 0.93 0.94 0.92 0.92 0.94 0.93
MIMOSA 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
MolDQN 0.65 0.75 0.58 0.63 0.59 0.55 0.66 0.53 0.72 0.55
DST 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
JT-VAE 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
TargetDiff – 0.06 – 0.86 0.72 0.28 0.51 0.38 – –
Pocket2Mol 0.95 0.94 0.94 0.94 0.93 0.94 0.93 0.89 0.94 0.94
PocketFlow 0.91 0.79 0.88 0.93 0.88 0.92 0.90 0.94 0.78 0.90
ResGen – 0.78 0.65 0.93 – 0.70 – 0.89 0.93 0.89
3DSBDD 0.92 0.92 0.88 0.86 0.85 0.91 0.87 0.93 0.91 0.92
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Model 6GL8 1UWH 7OTE 1KKQ 5WFD

SMILES-GA 0.92 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.92 ± 0.01
SMILES-LSTM-HC 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
REINVENT 0.94 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.01
Pasithea 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.00 0.93 ± 0.00 0.94 ± 0.00
SMILES-VAE 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.01 0.94 ± 0.00
graph-GA 0.92 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.91 ± 0.01 0.91 ± 0.01
MIMOSA 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00
MolDQN 0.60 ± 0.03 0.67 ± 0.03 0.54 ± 0.02 0.60 ± 0.02 0.53 ± 0.04
DST 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00
JT-VAE 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.93 ± 0.01
TargetDiff – 0.06 ± 0.00 – 0.82 ± 0.02 0.56 ± 0.09
Pocket2Mol 0.93 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.91 ± 0.02 0.91 ± 0.01
PocketFlow 0.90 ± 0.01 0.74 ± 0.03 0.83 ± 0.02 0.90 ± 0.02 0.85 ± 0.02
ResGen – 0.74 ± 0.02 0.63 ± 0.01 0.91 ± 0.01 –
3DSBDD 0.90 ± 0.01 0.88 ± 0.02 0.82 ± 0.03 0.79 ± 0.03 0.79 ± 0.03

a): targets in CrossDocking

Model 7W7C 8JJL 7D42 7S1S 6AZV

SMILES-GA 0.91 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.91 ± 0.01 0.91 ± 0.01
SMILES-LSTM-HC 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
REINVENT 0.94 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
Pasithea 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00
SMILES-VAE 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00
graph-GA 0.92 ± 0.01 0.90 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01
MIMOSA 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00
MolDQN 0.52 ± 0.01 0.56 ± 0.04 0.50 ± 0.02 0.67 ± 0.03 0.52 ± 0.01
DST 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00
JT-VAE 0.91 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
TargetDiff 0.17 ± 0.09 0.23 ± 0.18 0.38 ± 0.00 – –
Pocket2Mol 0.93 ± 0.00 0.92 ± 0.01 0.87 ± 0.01 0.91 ± 0.01 0.93 ± 0.01
PocketFlow 0.89 ± 0.02 0.88 ± 0.01 0.87 ± 0.03 0.72 ± 0.03 0.88 ± 0.01
ResGen 0.67 ± 0.01 – 0.88 ± 0.01 0.91 ± 0.01 0.84 ± 0.02
3DSBDD 0.78 ± 0.06 0.79 ± 0.04 0.90 ± 0.02 0.85 ± 0.04 0.90 ± 0.02

b): targets not in CrossDocking

Table 12: Top 10 QED score for each target
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Model 6GL8 1UWH 7OTE 1KKQ 5WFD

SMILES-GA 0.87 ± 0.03 0.87 ± 0.02 0.87 ± 0.03 0.86 ± 0.03 0.86 ± 0.03
SMILES-LSTM-HC 0.88 ± 0.03 0.88 ± 0.03 0.88 ± 0.03 0.88 ± 0.03 0.88 ± 0.03
REINVENT 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.90 ± 0.02
Pasithea 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.02
SMILES-VAE 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.02 0.89 ± 0.02 0.91 ± 0.02
graph-GA 0.84 ± 0.04 0.84 ± 0.04 0.84 ± 0.04 0.84 ± 0.04 0.84 ± 0.04
MIMOSA 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02
MolDQN 0.45 ± 0.06 0.49 ± 0.08 0.44 ± 0.05 0.47 ± 0.06 0.44 ± 0.05
DST 0.91 ± 0.02 0.90 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02
JT-VAE 0.87 ± 0.03 0.88 ± 0.03 0.88 ± 0.02 0.88 ± 0.02 0.87 ± 0.03
TargetDiff – 0.06 ± 0.00 – 0.66 ± 0.08 0.24 ± 0.17
Pocket2Mol 0.86 ± 0.04 0.81 ± 0.05 0.84 ± 0.05 0.75 ± 0.09 0.83 ± 0.05
PocketFlow 0.78 ± 0.06 0.62 ± 0.06 0.74 ± 0.05 0.79 ± 0.06 0.73 ± 0.06
ResGen – 0.68 ± 0.03 0.58 ± 0.03 0.87 ± 0.02 –
3DSBDD 0.78 ± 0.06 0.76 ± 0.07 0.73 ± 0.05 0.64 ± 0.09 0.62 ± 0.08

a): targets in CrossDocking

Model 7W7C 8JJL 7D42 7S1S 6AZV

SMILES-GA 0.86 ± 0.03 0.86 ± 0.03 0.86 ± 0.03 0.86 ± 0.03 0.86 ± 0.03
SMILES-LSTM-HC 0.88 ± 0.03 0.88 ± 0.03 0.88 ± 0.03 0.88 ± 0.03 0.88 ± 0.03
REINVENT 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02
Pasithea 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.02
SMILES-VAE 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02
graph-GA 0.84 ± 0.04 0.83 ± 0.04 0.84 ± 0.04 0.84 ± 0.04 0.83 ± 0.04
MIMOSA 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02
MolDQN 0.44 ± 0.04 0.45 ± 0.05 0.43 ± 0.03 0.49 ± 0.08 0.43 ± 0.04
DST 0.91 ± 0.02 0.90 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02
JT-VAE 0.82 ± 0.05 0.88 ± 0.03 0.87 ± 0.02 0.88 ± 0.03 0.88 ± 0.03
TargetDiff 0.17 ± 0.09 0.23 ± 0.18 0.38 ± 0.00 – –
Pocket2Mol 0.89 ± 0.03 0.87 ± 0.03 0.81 ± 0.03 0.83 ± 0.04 0.84 ± 0.05
PocketFlow 0.80 ± 0.05 0.79 ± 0.05 0.75 ± 0.06 0.60 ± 0.06 0.78 ± 0.05
ResGen 0.62 ± 0.03 – 0.80 ± 0.04 0.87 ± 0.02 0.78 ± 0.04
3DSBDD 0.49 ± 0.16 0.62 ± 0.07 0.75 ± 0.08 0.52 ± 0.18 0.73 ± 0.09

b): targets not in CrossDocking

Table 13: Top 100 QED score for each target
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Table 14: Top 1 SA score for each target. Targets in CrossDocking are marked in red, and targets not in
CrossDocking are in blue.

Model 6GL8 1UWH 7OTE 1KKQ 5WFD 7W7C 8JJL 7D42 7S1S 6AZV

SMILES-GA 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65
SMILES-LSTM-HC 1.51 1.50 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51
REINVENT 1.58 1.58 1.58 1.58 1.58 1.58 1.27 1.58 1.58 1.58
Pasithea 1.63 1.52 1.50 1.54 1.50 1.50 1.50 1.50 1.50 1.50
SMILES-VAE 1.44 1.50 1.50 1.50 1.50 1.50 1.44 1.50 1.50 1.50
graph-GA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MIMOSA 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
MolDQN 1.51 1.75 1.65 1.51 1.85 1.62 1.62 1.85 1.51 1.61
DST 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
JT-VAE 1.50 1.38 1.50 1.38 1.25 1.50 1.50 1.11 1.50 1.41
TargetDiff – 4.05 – 1.76 2.96 3.86 3.68 3.41 – –
Pocket2Mol 1.00 1.03 1.00 1.03 1.00 1.09 1.18 1.63 1.32 1.00
PocketFlow 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.61 1.00
ResGen – 1.00 1.18 1.00 – 1.00 – 1.00 1.16 1.00
3DSBDD 1.00 1.20 2.03 1.84 1.00 3.07 1.21 1.55 1.88 1.00
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Model 6GL8 1UWH 7OTE 1KKQ 5WFD

SMILES-GA 1.84 ± 0.10 1.87 ± 0.12 1.79 ± 0.08 1.87 ± 0.12 1.85 ± 0.11
SMILES-LSTM-HC 1.67 ± 0.07 1.66 ± 0.08 1.67 ± 0.07 1.67 ± 0.07 1.67 ± 0.07
REINVENT 1.72 ± 0.07 1.73 ± 0.07 1.74 ± 0.08 1.74 ± 0.08 1.74 ± 0.08
Pasithea 1.73 ± 0.05 1.70 ± 0.11 1.66 ± 0.09 1.67 ± 0.07 1.66 ± 0.09
SMILES-VAE 1.64 ± 0.10 1.67 ± 0.07 1.67 ± 0.08 1.64 ± 0.10 1.64 ± 0.08
graph-GA 1.24 ± 0.25 1.07 ± 0.09 1.35 ± 0.24 1.12 ± 0.13 1.08 ± 0.05
MIMOSA 1.70 ± 0.08 1.70 ± 0.08 1.70 ± 0.08 1.70 ± 0.08 1.70 ± 0.08
MolDQN 1.84 ± 0.14 2.09 ± 0.19 1.90 ± 0.18 1.83 ± 0.14 2.02 ± 0.15
DST 1.66 ± 0.09 1.66 ± 0.09 1.66 ± 0.09 1.66 ± 0.09 1.66 ± 0.09
JT-VAE 1.81 ± 0.12 1.71 ± 0.15 1.67 ± 0.09 1.65 ± 0.13 1.64 ± 0.17
TargetDiff – 4.05 ± 0.00 – 2.41 ± 0.27 3.54 ± 0.28
Pocket2Mol 1.20 ± 0.13 1.50 ± 0.22 1.10 ± 0.08 1.45 ± 0.20 1.05 ± 0.06
PocketFlow 1.00 ± 0.00 1.37 ± 0.26 1.00 ± 0.00 1.07 ± 0.06 1.11 ± 0.10
ResGen – 1.00 ± 0.00 1.40 ± 0.12 1.05 ± 0.06 –
3DSBDD 1.44 ± 0.25 1.47 ± 0.16 2.92 ± 0.41 2.90 ± 0.39 2.02 ± 0.59

a): targets in CrossDocking

Model 7W7C 8JJL 7D42 7S1S 6AZV

SMILES-GA 1.89 ± 0.14 1.85 ± 0.11 1.87 ± 0.11 1.86 ± 0.11 1.85 ± 0.09
SMILES-LSTM-HC 1.67 ± 0.07 1.67 ± 0.07 1.67 ± 0.07 1.67 ± 0.07 1.67 ± 0.07
REINVENT 1.74 ± 0.08 1.67 ± 0.15 1.74 ± 0.08 1.73 ± 0.07 1.73 ± 0.08
Pasithea 1.66 ± 0.09 1.66 ± 0.09 1.66 ± 0.09 1.66 ± 0.09 1.66 ± 0.09
SMILES-VAE 1.71 ± 0.09 1.64 ± 0.10 1.65 ± 0.07 1.67 ± 0.09 1.70 ± 0.08
graph-GA 1.12 ± 0.14 1.30 ± 0.21 1.14 ± 0.18 1.15 ± 0.16 1.31 ± 0.25
MIMOSA 1.70 ± 0.08 1.70 ± 0.08 1.70 ± 0.08 1.70 ± 0.08 1.70 ± 0.08
MolDQN 1.85 ± 0.16 2.01 ± 0.27 2.08 ± 0.20 1.92 ± 0.18 1.96 ± 0.20
DST 1.66 ± 0.09 1.66 ± 0.09 1.66 ± 0.09 1.66 ± 0.09 1.66 ± 0.09
JT-VAE 1.88 ± 0.13 1.83 ± 0.14 1.70 ± 0.24 1.78 ± 0.16 1.60 ± 0.10
TargetDiff 4.59 ± 0.67 5.23 ± 0.86 3.41 ± 0.00 – –
Pocket2Mol 1.29 ± 0.13 1.36 ± 0.12 2.10 ± 0.22 1.78 ± 0.29 1.54 ± 0.22
PocketFlow 1.10 ± 0.08 1.16 ± 0.09 1.00 ± 0.00 1.77 ± 0.08 1.00 ± 0.00
ResGen 1.15 ± 0.11 – 1.14 ± 0.10 1.43 ± 0.11 1.05 ± 0.06
3DSBDD 4.40 ± 0.57 2.76 ± 0.76 1.98 ± 0.27 2.65 ± 0.48 1.80 ± 0.41

b): targets not in CrossDocking

Table 15: Top 10 SA score for each target
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Model 6GL8 1UWH 7OTE 1KKQ 5WFD

SMILES-GA 2.55 ± 0.35 2.50 ± 0.33 2.53 ± 0.37 2.77 ± 0.49 2.52 ± 0.37
SMILES-LSTM-HC 1.93 ± 0.13 1.95 ± 0.14 1.93 ± 0.13 1.93 ± 0.13 1.93 ± 0.13
REINVENT 2.14 ± 0.20 2.14 ± 0.19 2.14 ± 0.19 2.15 ± 0.19 2.14 ± 0.18
Pasithea 2.01 ± 0.14 2.00 ± 0.14 1.97 ± 0.15 1.97 ± 0.14 1.96 ± 0.15
SMILES-VAE 1.96 ± 0.14 1.94 ± 0.13 1.96 ± 0.14 2.02 ± 0.17 1.96 ± 0.15
graph-GA 2.10 ± 0.36 1.94 ± 0.39 2.15 ± 0.37 1.94 ± 0.35 1.96 ± 0.43
MIMOSA 1.95 ± 0.12 1.95 ± 0.12 1.95 ± 0.12 1.95 ± 0.12 1.95 ± 0.12
MolDQN 2.93 ± 0.57 3.21 ± 0.51 2.98 ± 0.50 2.83 ± 0.53 3.15 ± 0.53
DST 1.95 ± 0.14 1.96 ± 0.14 1.95 ± 0.14 1.95 ± 0.14 1.95 ± 0.14
JT-VAE 2.29 ± 0.25 2.19 ± 0.22 2.21 ± 0.24 2.21 ± 0.25 2.23 ± 0.27
TargetDiff – 4.05 ± 0.00 – 3.42 ± 0.48 4.50 ± 0.63
Pocket2Mol 1.69 ± 0.25 2.07 ± 0.29 1.92 ± 0.37 2.05 ± 0.29 1.43 ± 0.18
PocketFlow 1.36 ± 0.22 1.98 ± 0.30 1.30 ± 0.23 1.60 ± 0.29 1.86 ± 0.34
ResGen – 1.29 ± 0.17 1.87 ± 0.25 1.49 ± 0.21 –
3DSBDD 3.00 ± 0.74 2.89 ± 0.73 4.39 ± 0.65 4.20 ± 0.61 4.40 ± 1.03

a): targets in CrossDocking

Model 7W7C 8JJL 7D42 7S1S 6AZV

SMILES-GA 2.77 ± 0.48 2.48 ± 0.32 2.66 ± 0.43 2.53 ± 0.35 2.55 ± 0.38
SMILES-LSTM-HC 1.93 ± 0.13 1.93 ± 0.13 1.93 ± 0.13 1.93 ± 0.13 1.93 ± 0.13
REINVENT 2.16 ± 0.20 2.14 ± 0.23 2.16 ± 0.19 2.11 ± 0.18 2.13 ± 0.19
Pasithea 1.97 ± 0.15 1.97 ± 0.15 1.97 ± 0.15 1.97 ± 0.15 1.97 ± 0.15
SMILES-VAE 1.99 ± 0.13 1.95 ± 0.14 1.95 ± 0.14 1.97 ± 0.13 1.96 ± 0.13
graph-GA 1.97 ± 0.37 2.15 ± 0.38 2.00 ± 0.37 2.01 ± 0.38 2.13 ± 0.35
MIMOSA 1.95 ± 0.12 1.95 ± 0.12 1.95 ± 0.12 1.95 ± 0.12 1.95 ± 0.12
MolDQN 3.05 ± 0.53 3.24 ± 0.55 3.28 ± 0.53 3.05 ± 0.53 3.14 ± 0.51
DST 1.95 ± 0.14 1.96 ± 0.14 1.95 ± 0.14 1.95 ± 0.14 1.95 ± 0.14
JT-VAE 2.64 ± 0.43 2.30 ± 0.22 2.23 ± 0.25 2.30 ± 0.26 2.18 ± 0.26
TargetDiff 4.59 ± 0.67 5.23 ± 0.86 3.41 ± 0.00 – –
Pocket2Mol 2.05 ± 0.35 2.19 ± 0.39 2.72 ± 0.28 2.57 ± 0.39 2.14 ± 0.29
PocketFlow 1.71 ± 0.30 1.62 ± 0.26 1.17 ± 0.21 2.02 ± 0.10 1.06 ± 0.09
ResGen 1.76 ± 0.35 – 1.63 ± 0.24 1.86 ± 0.21 1.47 ± 0.21
3DSBDD 6.10 ± 0.96 4.89 ± 0.88 3.73 ± 0.90 4.87 ± 1.05 3.57 ± 0.83

b): targets not in CrossDocking

Table 16: Top 100 SA score for each target
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Table 17: Posebusters evaluation results across models. The values represent the success rate of generated
molecules for all receptor targets, indicating the proportion of molecules that meet the Posebusters validation
criteria

Model
All Atoms
Connected

Aromatic Ring
Flatness

Bond
Angles

Bond
Lengths

Double Bond
Flatness

Inchi
Convertible

Pocket2Mol 0.763 0.990 0.989 0.988 0.970 0.559
PocketFlow 0.936 0.991 0.990 0.989 0.991 0.880
ResGen 0.947 0.988 0.989 0.989 0.987 0.913
3DSBDD 0.459 0.957 0.943 0.944 0.922 0.400
DST 1.000 1.000 1.000 0.999 1.000 1.000
graph-GA 1.000 1.000 1.000 0.999 1.000 1.000
JT-VAE 1.000 1.000 1.000 0.998 1.000 1.000
MIMOSA 1.000 1.000 1.000 0.999 1.000 1.000
MolDQN 1.000 1.000 0.968 0.950 0.998 1.000
Pasithea 0.956 0.767 0.766 0.765 0.767 0.738
REINVENT 0.915 0.803 0.802 0.802 0.803 0.733
SMILES-GA 0.954 0.720 0.719 0.719 0.719 0.699
SMILES-LSTM-HC 0.930 0.902 0.900 0.899 0.902 0.839
SMILES-VAE 0.959 0.776 0.776 0.775 0.776 0.745
TargetDiff 1.000 1.000 0.758 0.903 1.000 0.998

Model
Internal
Energy

Internal Steric
Clash

Min Dist To
Inorg Cofactors

Min Dist To
Org Cofactors

Min Dist
To Protein

Min Dist
To Waters

Pocket2Mol 0.471 0.968 1.000 1.000 0.935 1.000
PocketFlow 0.724 0.980 1.000 1.000 0.998 1.000
ResGen 0.711 0.983 1.000 1.000 1.000 1.000
3DSBDD 0.323 0.909 1.000 1.000 0.867 1.000
DST 0.972 1.000 1.000 1.000 0.996 1.000
graph-GA 0.970 0.999 1.000 1.000 0.998 1.000
JT-VAE 0.958 0.999 1.000 1.000 0.991 1.000
MIMOSA 0.968 1.000 1.000 1.000 0.997 1.000
MolDQN 0.947 0.990 1.000 1.000 1.000 1.000
Pasithea 0.724 0.763 1.000 1.000 0.996 1.000
REINVENT 0.717 0.800 1.000 1.000 0.998 1.000
SMILES-GA 0.678 0.714 1.000 1.000 0.998 1.000
SMILES-LSTM-HC 0.815 0.898 1.000 1.000 0.986 1.000
SMILES-VAE 0.735 0.775 1.000 1.000 0.997 1.000
TargetDiff 0.746 0.933 1.000 1.000 0.470 1.000

Model
Mol Cond

Loaded
Mol Pred
Loaded

Prot-Lig
Max Dist Sanitization

Vol Overlap
w/ Inorg Cof

Vol Overlap
w/ Org Cof

Vol Overlap
w/ Protein

Pocket2Mol 1.000 1.000 1.000 0.992 1.000 1.000 1.000
PocketFlow 1.000 1.000 1.000 0.991 1.000 1.000 1.000
ResGen 1.000 1.000 1.000 0.989 1.000 1.000 1.000
3DSBDD 1.000 1.000 1.000 0.957 1.000 1.000 1.000
DST 1.000 1.000 1.000 1.000 1.000 1.000 1.000
graph-GA 1.000 1.000 1.000 1.000 1.000 1.000 1.000
JT-VAE 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MIMOSA 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MolDQN 1.000 1.000 1.000 1.000 1.000 1.000 0.996
Pasithea 1.000 1.000 1.000 0.767 1.000 1.000 1.000
REINVENT 1.000 1.000 1.000 0.803 1.000 1.000 1.000
SMILES-GA 1.000 1.000 1.000 0.720 1.000 1.000 1.000
SMILES-LSTM-HC 1.000 1.000 1.000 0.902 1.000 1.000 1.000
SMILES-VAE 1.000 1.000 1.000 0.776 1.000 1.000 1.000
TargetDiff 1.000 1.000 1.000 0.998 1.000 1.000 0.903

30



Under review as submission to TMLR

Ta
bl

e
18

:
C

la
sh

st
at

ist
ic

s
ac

ro
ss

di
ffe

re
nt

m
od

el
s.

A
n

em
pt

y
ite

m
(–

)
m

ea
ns

th
e

m
od

el
ei

th
er

di
d

no
t

ge
ne

ra
te

m
ol

ec
ul

es
fo

r
th

at
ta

rg
et

or
th

e
ev

al
ua

tio
n

fa
ile

d.
U

Q
st

an
ds

fo
r

U
pp

er
Q

ua
rt

ile
.

6G
L

8
1U

W
H

7O
T

E
1K

K
Q

5W
F

D
M

od
el

M
in

M
ax

M
ea

n
U

Q
M

in
M

ax
M

ea
n

U
Q

M
in

M
ax

M
ea

n
U

Q
M

in
M

ax
M

ea
n

U
Q

M
in

M
ax

M
ea

n
U

Q

D
ST

0
14

3.
14

4
0

23
5.

54
7

0
19

5.
29

7
0

17
4.

14
6

0
11

3.
44

5
JT

-V
A

E
0

14
3.

56
5

0
60

6.
28

8
0

30
6.

44
9

0
21

4.
96

6
0

16
4.

00
5

M
IM

O
SA

0
11

3.
15

4
0

21
5.

35
7

0
22

5.
62

8
0

16
4.

09
6

0
12

3.
46

5
M

ol
D

Q
N

0
13

2.
74

4
0

13
2.

78
4

0
19

3.
14

4
0

9
2.

39
3

0
13

3.
03

4
gr

ap
h-

G
A

0
15

2.
34

3
0

25
3.

34
5

0
20

4.
88

7
0

13
2.

59
4

0
11

2.
24

3
Pa

si
th

ea
0

12
3.

02
4

0
26

5.
58

7
0

23
5.

51
7

0
20

4.
17

6
0

11
3.

41
5

R
E

IN
V

E
N

T
0

13
3.

09
4

0
21

4.
42

6
0

20
4.

42
6

0
18

4.
02

5
0

14
3.

32
4

SM
IL

E
S-

G
A

0
13

3.
34

4
0

18
5.

15
7

0
21

4.
89

7
0

16
4.

12
5

0
10

3.
57

5
SM

IL
E

S-
LS

T
M

-H
C

0
14

3.
56

5
0

38
6.

38
8

0
29

6.
48

8
0

27
5.

02
7

0
16

4.
04

5
SM

IL
E

S-
VA

E
0

9
2.

93
4

0
25

5.
45

7
0

22
5.

41
7

0
17

4.
01

5
0

10
3.

42
5

3D
SB

D
D

0
11

3.
31

5
0

15
5.

06
7

0
28

8.
85

12
0

15
5.

79
7

–
–

–
–

Po
ck

et
2M

ol
0

15
4.

14
5

0
49

9.
09

12
0

34
8.

28
11

0
27

7.
73

10
0

15
4.

30
6

Po
ck

et
Fl

ow
0

14
2.

72
4

0
19

2.
73

4
0

19
3.

26
5

0
17

3.
11

5
0

18
3.

74
5

R
es

G
en

–
–

–
–

0
9

2.
32

3
0

8
1.

61
2

0
16

5.
34

7
–

–
–

–
Ta

rg
et

D
iff

–
–

–
–

88
88

88
.0

0
88

–
–

–
–

3
11

5
30

.4
3

40
19

93
48

.7
5

61

7W
7C

8J
JL

7D
42

7S
1S

6A
Z

V
M

od
el

M
in

M
ax

M
ea

n
U

Q
M

in
M

ax
M

ea
n

U
Q

M
in

M
ax

M
ea

n
U

Q
M

in
M

ax
M

ea
n

U
Q

M
in

M
ax

M
ea

n
U

Q

D
ST

0
25

4.
13

6
0

39
10

.2
6

13
0

28
4.

86
6

0
21

5.
49

7
0

19
4.

87
6

JT
-V

A
E

0
47

5.
69

7
0

74
13

.8
7

18
0

66
7.

15
9

0
25

6.
78

9
0

21
5.

37
7

M
IM

O
SA

0
27

4.
23

6
0

47
10

.3
3

13
0

38
4.

68
6

0
25

5.
46

7
0

18
4.

83
6

M
ol

D
Q

N
0

9
1.

77
3

0
20

4.
03

5
0

13
2.

26
3

0
15

3.
46

5
0

12
2.

33
3

gr
ap

h-
G

A
0

29
2.

57
3

0
51

9.
04

13
0

33
2.

91
3

0
16

3.
35

4
0

19
2.

73
4

Pa
si

th
ea

0
33

4.
14

5
0

52
10

.2
8

14
0

30
5.

01
6

0
20

5.
26

7
0

22
4.

62
6

R
E

IN
V

E
N

T
0

32
4.

18
6

0
36

7.
81

10
0

36
4.

91
6

0
27

5.
52

7
0

21
4.

68
6

SM
IL

E
S-

G
A

0
25

4.
46

6
0

31
9.

82
13

0
22

4.
33

6
0

18
5.

25
7

0
17

4.
79

7
SM

IL
E

S-
LS

T
M

-H
C

0
69

6.
99

9
0

98
15

.5
1

19
0

88
8.

81
11

0
28

6.
42

8
0

20
5.

22
7

SM
IL

E
S-

VA
E

0
30

4.
14

6
0

40
10

.0
6

13
0

26
4.

66
6

0
17

5.
27

7
0

19
4.

82
6

3D
SB

D
D

–
–

–
–

–
–

–
–

0
12

5.
19

7
0

20
7.

20
9

0
44

8.
10

11
Po

ck
et

2M
ol

0
64

8.
67

9
0

10
3

20
.4

2
26

0
84

23
.8

2
33

0
34

7.
48

10
0

21
6.

56
9

Po
ck

et
Fl

ow
0

26
5.

75
9

0
48

8.
64

13
0

64
8.

09
11

0
23

4.
82

6
0

20
4.

33
6

R
es

G
en

0
6

1.
64

2
–

–
–

–
0

14
3.

41
5

0
16

4.
70

6
0

20
4.

09
6

Ta
rg

et
D

iff
14

0
17

3
16

0.
00

17
0

61
17

6
11

2.
90

13
0

51
51

51
.0

0
51

–
–

–
–

–
–

–
–

31


	Introduction
	Related Works
	Models
	Experiments
	Experiment Setup
	Oracle
	Model Setup

	Experiment Results
	Generation Performance and Efficiency
	Binding Affinities and Poses
	Pharmaceutical Properties
	Molecule Generation Quality


	Discussion
	Conclusion
	Appendix

