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Abstract
Tight performance specifications in combination with operational constraints make model predic-
tive control (MPC) the method of choice in various industries. As the performance of an MPC
controller depends on a sufficiently accurate objective and prediction model of the process, a sig-
nificant effort in the MPC design procedure is dedicated to modeling and identification. Driven by
the increasing amount of available system data and advances in the field of machine learning, data-
driven MPC techniques have been developed to facilitate the MPC controller design. While these
methods are able to leverage available data, they typically do not provide principled mechanisms
to automatically trade off exploitation of available data and exploration to improve and update the
objective and prediction model. To this end, we present a learning-based MPC formulation using
posterior sampling techniques, which provides finite-time regret bounds on the learning perfor-
mance while being simple to implement using off-the-shelf MPC software and algorithms. The
performance analysis of the method is based on posterior sampling theory and its practical effi-
ciency is illustrated using a numerical example of a highly nonlinear dynamical car-trailer system.
Keywords: Thompson sampling, posterior sampling , control, predictive control, regret bounds

1. Introduction

Many autonomous systems of practical relevance such as autonomous cars, delivery drones, or
chemical synthesis processes need to be optimally controlled using limited input authority subject
to safety specifications in terms of state constraints. To meet these requirements, model predictive
control (MPC) techniques have been developed since the 1970’s. A distinct property of MPC is
the possibility to ensure state and input constraint satisfaction in a principled way while providing
approximately optimal control performance. As a result, MPC has enabled the development of a
wide range of high performance control applications as discussed, e.g., in Morari and Lee (1999);
Qin and Badgwell (2000).

The central mechanism of MPC is based on solving an open-loop optimal control problem, the
MPC problem, at discrete time instances based on the current system state. More precisely, the
future system evolution starting from the currently measured system state is simultaneously pre-
dicted and optimized in real time using a prediction model of the plant. Due to uncertainties in the
prediction model and external disturbances, however, only the first element of the resulting optimal
input sequence is applied to the system. At each time instance, the procedure of prediction and
optimization is repeated, which introduces state feedback and therefore allows for disturbance com-
pensation. Nevertheless, the resulting control performance heavily relies on a sufficiently accurate
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prediction model of the underlying system dynamics, which typically results in time-consuming
system modeling and identification procedures. In addition to the prediction model, the closed loop
behavior is essentially determined through the objective function used in the MPC problem. While
it is commonly assumed that the objective is given in closed form it may not be explicitly available,
e.g., in case of complex or interactive applications. For example, the objective of a pick and place
application could be determined by a person who provides feedback whether objects are placed
correctly. The MPC objective function would then need to be infered from noisy samples.

To account for the modeling challenge, MPC approaches that are capable of leveraging learning-
based prediction models have been investigated, see e.g. Hewing et al. (2018); Carron et al. (2019);
Kamthe and Deisenroth (2018); Koller et al. (2018); Soloperto et al. (2018), which generally assume
availability of sufficiently informative system data. However, by passively relying on available data,
the resulting prediction model will only improve performance if the data is informative for the
current task. Another option to generate sufficiently informative task-independent system data is to
apply classical offline system identification procedures as described e.g. in Ljung (1998). While this
enables sensible model estimation and even completely data-driven MPC controllers as proposed
in Yang and Li (2015); Coulson et al. (2019); Berberich et al. (2019), the main limitation is the high
cost of obtaining informative data regardless of the control objective. Therefore, such approaches
can become impractical, especially for nonlinear or high dimensional systems.

To balance between passive knowledge exploitation and objective-independent exploration, ef-
fective exploration-exploitation strategies have been developed in so-called dual-MPC approaches,
see e.g. Mesbah (2018) for an overview. Thereby the idea is to consider the potential advantage of
obtaining relevant data in the future, e.g. through approximate stochastic dynamic programming as
in Hanssen and Foss (2015); Klenske and Hennig (2016); Heirung et al. (2017); Arcari et al. (2020).
While these techniques show promising results for simple tasks up to two state dimensions in com-
bination with very short MPC prediction horizons, they are, so far, fundamentally limited to systems
of low complexity. In addition, due to the rather crude approximation of the underlying stochastic
dynamic programming problem, no theoretical performance guarantees have been reported so far.

The goal of this paper is to address these limitations for episodic learning tasks through a
Bayesian learning-based MPC controller that automatically trades off exploration and exploitation
while maintaining the computational complexity of conventional MPC. This is achieved by combin-
ing MPC with posterior sampling for reinforcement learning (RL) as originally proposed in Strens
(2000) and theoretically investigated by Osband et al. (2013) and Osband and Van Roy (2014).

To trade off extraction of informative data and exploitation of already cumulated data, we pro-
pose a simple mechanism that samples an MPC controller at the beginning of each episode accord-
ing to its posterior probability of being optimal with respect to the uncertain system dynamics and
objective. Thereby, initial uncertainty about the optimal soft-constrained MPC controller leads to
exploration of MPC controllers and generates explorative data collection in closed loop. As the
posterior belief about the optimal soft-constrained MPC controller gets more certain through such
explorative episodes, the MPC samples begin to aggregate around the optimal soft-constrained MPC
controller for the plant, therefore automatically trading off exploration and exploitation. The result-
ing learning-based MPC controller yields a standard MPC problem and can be implemented using
available algorithms and software packages, such as Wang and Boyd (2010); Houska et al. (2011);
Domahidi et al. (2012); Zanelli et al. (2017). The presented MPC allows for a rigorous, finite-
time performance analysis with respect to the a-priori unknown optimal soft-constrained MPC con-
troller for a specific system at hand by applying results from model-based RL, relating the degree

2



BAYESIAN MODEL PREDICTIVE CONTROL

of sub-optimality of a model-based controller to the respective model discrepancy that vanishes at a
provable learning rate.

In the remainder of the paper we begin by formalizing the considered class of system dynamics
and objective functions, provide the necessary background on MPC and state the formal problem
formulation using the notion of Bayesian expected regret. Afterwards, the learning-based MPC
scheme is presented, analyzed, and demonstrated using a highly nonlinear learning task.

2. Model predictive control as an approximate optimal control policy

We consider discrete-time stochastic dynamical systems of the form

x(k + 1) = f(x(k), u(k); θf ) + w(k), k = 0, 1, 2, .., N − 1 (1)

with inputs u(k) ∈ Rm, states x(k) ∈ Rn, parameters θf ∈ Rnθf , zero mean σw-sub-Gaussian
process noise w(k) ∼ Qw, and random initial condition x(0) ∼ Qx(0). The system is subject
to input constraints u(k) ∈ U ⊆ Rm and state constraints x(k) ∈ X ⊆ Rn, which should be
satisfied point-wise in time. The control objective is to minimize a time-varying stage cost function
` : N× X× U→ R along system trajectories up to a finite time horizon N , i.e. minimizing

EW

[
N−1∑
k=0

`(k, x(k), u(k); θ`)

]
, (2)

where W := [w(0), w(1), .., w(N − 2)] and θ` ∈ Rnθ` parametrizes the objective function.
While many relevant control problems can be stated in the above form, it is generally intractable

to compute an optimal control policy that minimizes (2), which motivates the use of MPC tech-
niques. A simple yet efficient approximate control strategy to minimize (2) is based on repeatedly
solving a constrained optimal control problem initialized at the currently measured state x(k) in a
shrinking horizon fashion. While corresponding MPC formulations vary greatly in their complexity,
the most simplistic formulation, sometimes referred to as nominal MPC, often provides sufficient
practical properties in terms of performance and constraint satisfaction. Thereby we optimize over
a control sequence {ui|k} subject to state and input constraints while neglecting zero mean additive
disturbances. The resulting MPC problem is given by

Jθk (x) := min
ui|k

cεI(ε) +
N−1∑
i=k

`(i, xi|k, ui|k; θ`) (3a)

s.t. xk|k = x, ε ≥ 0, (3b)

xi+1|k = f(xi|k, ui|k; θf ), i = k, .., N − 2, (3c)

xi|k ∈ X(εi), i = k, .., N − 1, (3d)

ui|k ∈ U, i = k, .., N − 1, (3e)

where the additional cost term cεI(ε) together with (3d) corresponds to a soft-constraint reformu-
lation of the state constraints xi|k ∈ X, accounting for the fact that closed loop system trajectories
might differ from nominal predictions and therefore ensuring feasibility of (3). For example, if
X = {x ∈ Rn|g(x) ≤ 0ng} a soft-constraint reformulation can be obtained as X(εi) = {x ∈
Rn|g(x) ≤ εi1ng} with εi ≥ 0, and I(ε) = c>1,εε+ c2,εε

>ε (Kerrigan and Maciejowski, 2000).
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In the following, we denote the expected closed loop cost-to-go at time k and state x as

V θ
θ̃,k

(x) := EW

N−1∑
j=k

`(j, x(j), u(j); θ`)

∣∣∣∣∣∣
x(k) = x,
u(j) = πθ̃(j, x(j)),
x(j + 1) = f(x(j), u(j); θf ) + w(j)

 (4)

with θ := (θ`, θf ) and πθ̃(j, x(j)) := u∗j|j(x; θ̃), being the first element of the optimal input se-

quence of the MPC problem (3) at time step j with parameters θ̃ := (θ̃`, θ̃f ).

3. Problem formulation

We consider the case of unknown system dynamics and objective parametrization. More specifi-
cally, the learning problem is to improve the performance of the MPC controller πθ through data-
based refinements of a-priori unknown parameters θ. The efficient collection of system data with
respect to the objective (2) is carried out through repeated episodic interactions with the system (1).
During each episode e = 0, 1, .., NE − 1, we need to provide a control policy that trades off in-
formation extraction and knowledge exploitation when applied to system (1) at each sampling time
step k = 0, 1, .., N − 1. The corresponding data, obtained up to NE episodes, is denoted by

DNE :=
{

(k, xk,e, uk,e, f(xk,e, uk,e; θf ) + wk,e, `(k, xk,e, uk,e; θ`) + εk,e)
N−1
k=0

}NE−1
e=0

(5)

with zero mean σε-sub-Gaussian measurement noise εk,e on objective observations. Prior knowl-
edge about the system parameters θ such as production or sensor tolerances of the plant to be
controlled is considered to be given as θ ∼ Qθ. In the following, θe ∼ Qθ|De denotes the posterior
belief about θ during episode e after data (5) has been observed. The learning progress based on
acquired data (5) after NE episodes is measured w.r.t. the Bayesian cumulative expected regret

CR(NE) := Eθ,θe,De

[
NE−1∑
e=0

∆e

]
with episodic regret ∆e := Ex

[
V θ
θe,0(x)− V θ

θ,0(x)
]
. (6)

Here, the regret ∆e during each learning episode is taken with respect to the optimal soft-constrained
MPC in terms of the nominal model and objective accuracy, that is, the MPC controller based on (3)
using the true system parameters θ.

4. Bayesian model predictive control
The proposed learning-based MPC controller is based
on posterior sampling as first proposed in the general
reinforcement learning (RL) setting by Strens (2000).
The resulting procedure is given in the Bayesian MPC
Algorithm and works as follows. Based on the prior in-
formation Qθ about the system (1) and objective (2), a
parameter realization θe = (θ`,e, θf,e) is sampled from
the posterior belief at the beginning of each episode.
The sample parametrizes the MPC problem (3) during
the e-th episode, which results in an MPC controller
that is sampled according to its a-posteriori probability
of being optimal.

Bayesian MPC Algorithm

Data: Parametric model f , `; Prior Qθ
Initialize D0 = ∅
for episodes e = 0, 1, .., NE do

sample θe ∼ Qθ|De
for time steps k = 0, 1, .., N − 1 do

apply u(k) = πθe(k, x(k))
measure objective and state

end
extend data set to obtain De+1

end
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By applying the sampled controller u(k) = πθe(k, x(k)), we obtain measurements of the state
evolution and the objective value, leading to an update of the data set to De+1 afterN time steps. The
collected data then refines the posterior belief about θ and the process is repeated in the subsequent
episode. This mechanism naturally causes exploration in case of large uncertainties in the posterior
distribution Qθ|De due to rich variation in system trajectories through diverse MPC controller sam-
ples. At the same time, this mechanism also exploits collected knowledge as the posterior belief
starts to cumulate around a consistent model of the true system. As a consequence, the performance
of the sampled MPC will converge to that of the nominally optimal soft-constrained MPC.

5. Bound on finite-time learning performance

We apply the analysis provided by Osband et al. (2013); Osband and Van Roy (2014) to bound
the cumulative regret (6) w.r.t. the nominal soft-constrained MPC controller using the true system
dynamics. First, we reformulate the regret (6) in terms of the optimal cost-to-go that corresponds
to the sampled parameters θe in episode e. This allows us in a second step to express the regret
in terms of the learning progress of the system dynamics and objective function. By enforcing a
regularity assumption on the expected cost-to-go under sampled MPC controllers we finally bound
the regret in terms of posterior mean estimation errors of f and `, allowing us to state the desired
regret bound.

For the instant regret in episode e we have that

Eθ,θe,x,De [∆e] = Eθ,x,De

Eθe
[
V θ
θe,0(x)︸ ︷︷ ︸

Measured

−V θ
θ,0(x)︸ ︷︷ ︸

Unknown

|θ, x,De

] .
Since V θ

θ,0(x) is unknown, we instead consider the regret in terms of the sampled MPC controller
applied to the corresponding sampled system, for which it is optimal:

Eθ,θe,x,De
[
∆̃e

]
= Eθ,x,De

Eθe
[
V θ
θe,0(x)︸ ︷︷ ︸

Measured

−V θe
θe,0

(x)︸ ︷︷ ︸
Known

|θ, x,De

] . (7)

Using standard Thompson sampling (posterior matching) arguments we can verify that

Eθ,θe,x,De
[
∆e − ∆̃e

]
= EDe,x

[
Eθ,θe

[
∆e − ∆̃e|De, x

]]
⇒ Eθ,θe,x,De [∆e] = Eθ,θe,x,De [∆̃e]

holds, since θ|De and θe are equally distributed, yielding equally distributed MPC controllers πθ|De ,
and πθe , i.e. equally distributed time/state-to-input mappings, as well as equally distributed regrets1

∆e and ∆̃e (Russo and Van Roy, 2014).
Next, the goal is to express the regret ∆̃e explicitly in terms of the posterior estimation accuracy

of the functions f and ` to be learned instead of the episodic cost difference (7). As introduced in
Osband et al. (2013), we define the recursive operator

T θ
θ̃,k
V (x) := `(k, x, πθ̃(k, x); θ) + Ew

[
V (x+)|x+ = f(x, πθ̃(k, x); θ) + w

]
(8)

1. Formally this requires that ∆e is measurable with respect to the σ-algebra generated by the observed data De.
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at time steps k = 0, 1, .., N − 1 to express the cost-to-go for system parameters θ under an MPC
controller using potentially different parameters θ̃. The cost under the optimal soft-constrained
MPC (4) can therefore be written as V θ

θ,k(x) = T θθ,kV θ
θ,k+1(x), in which case T θθ,k relates to the

Bellman operator. Repeated application of this relation allows us to eliminate the term V θ
θe,0

(x)
in (7). We sketch the corresponding derivation for the special case of zero process noise, i.e. w(k) =
0, for which we expand ∆̃e(x) recursively using (8):

V θ
θe,0(x)− V θe

θe,0
(x) = `(0, x, πθe(0, x); θ) + V θ

θe,1(f(x, πθe(0, x); θ))− `(0, x, πθe(0, x); θe)

− V θe
θe,1

(f(x, πθe(0, x); θe)) + V θe
θe,1

(f(x, πθe(0, x); θ))− V θe
θe,1

(f(x, πθe(0, x); θ))

=
(
T θθe,0 − T

θe
θe,0

)
V θe
θe,1

(x) + V θ
θe,1(x(1))− V θe

θe,1
(x(1))

=
(
T θθe,0 − T

θe
θe,0

)
V θe
θe,1

(x) +
(
T θθe,1 − T

θe
θe,1

)
V θe
θe,2

(x(1)) + V θ
θe,2(x(2))− V θe

θe,2
(x(2))

...

=
N−1∑
k=0

(
T θθe,k − T

θe
θe,k

)
V θe
θe,k+1(x(k)) + V θ

θe,N (x(N))︸ ︷︷ ︸
=0

−V θe
θe,N

(x(N))︸ ︷︷ ︸
=0

,

where x(0) = x and x(k + 1) = f(x(k), πθe(k, x(k)); θ). Including again the process noise w(k),
this result enables us to bound

E[∆̃e] ≤E

[
N−1∑
k=0

Ew(k)

[
|V θeθe,k+1(f(x(k), u(k); θ) + w(k))− V θeθe,k+1(f(x(k), u(k); θe) + w(k))|

]]
+

E

[
N−1∑
k=0

|`(k, x(k), u(k); θ)− `(k, x(k), u(k); θe)|

]
, (9)

where the outer expectation is taken w.r.t. θ, θe, x,De. Consequently, we can bound the second
term in (9) in terms of Eθ,x,De [Eθe [

∑N−1
k=0 |`(k, x(k), u(k); θ) − `(k, x(k), u(k); θe)| | θ, x,De]],

that is, bounding the conditional posterior mean error of the cost |`(.; θ) − `(.; θe)| based on the
real problem parameter realization θ, initial condition x, and observed data De up to episode e. To
derive a similar bound on the first term in (9) with respect to the conditional posterior mean error of
the dynamics, we follow Osband and Van Roy (2014) and assume the following regularity property
on the expected cost-to-go.

Assumption 1 For all θe ∈ Rnθ and x+, x̃+ ∈ X there exists a constant LV > 0 such that

Ew(k)
[
|V θe
θe,k+1(x

+ + w(k))− V θe
θe,k+1(x̃

+ + w(k))|
]
≤ LV

∥∥x+ − x̃+∥∥
2
.

Note that Assumption 1 can, e.g., be satisfied for the standard case of linear dynamics and positive
definite quadratic objectives. This allows us to bound the first term in (9) in a similar fashion by
Eθ,x,De [Eθe [

∑N−1
k=0 LV ‖f(x(k), u(k); θ)− f(x(k), u(k); θe)‖2 | θ, x,De]].

The previously outlined analysis steps provide a bound on the expected regret in terms of the
deviation between the posterior mean estimates of f and `, conditioned on observed data, and the
true underlying system dynamics and objective function. As first proposed by Russo and Van Roy
(2014) for the case of real-valued functions in the bandit optimization setting and later extended by
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Osband and Van Roy (2014) to vector-valued functions in the context of RL, the magnitude of this
deviation can be described using two distinct measures of complexity. The first measure is given by
the classical Kolmogorov dimensions dimK(`) and dimK(f) describing the complexity of ` and f
in the parameters θ, see, e.g., Russo and Van Roy (2014, Section 7.1). The other measure is called
Eluder dimension, denoted by dimE(`) and dimE(f) and describes the complexity of the mean
inference problem based on sequentially obtained measurements. More details and explicit bounds
on dimE(`) can be found in Osband and Van Roy (2014, Section 4.1). Using these measures of
complexity, we get the following regret bound as an immediate consequence of Osband and Van Roy
(2014, Theorem 1) with Õ neglecting terms that are logarithmic in NE .

Corollary 1 Let Assumption 1 hold. If there exist constants c` and cf such that for all admissible
x ∈ Rn, u ∈ Rm, θ ∈ Rnθ` , and k = 0, 1, .., N it holds `(k, x, u; θ`) ≤ c`, and f(x, u; θf ) ≤ cf ,
then it follows that

CR(NE) ≤ Õ
(
σε
√

dimK(`)dimE(`)NEN + LV σw
√

dimK(f)dimE(f)NEN
)
.

As a direct consequence of Osband and Van Roy (2014, Proposition 2) we obtain the following
bound for the important special case of linear Bayesian regression.

Corollary 2 Let the assumptions of Corollary 1 hold. If f(x, u; θf ) = θ>f Φf (x, u) and l(x, u; θf ) =

θ>` Φ`(x, u) with θ` ∈ Rn` and θf ∈ Rnf×n, then

CR(NE) ≤ Õ
(
σε
√
n`NEN + LV σwn

√
nnfNEN

)
.

While Corollary 1 provides a general regret bound in terms of dimE and dimK , Corollary 2 ensures
a finite-time learning progress through a sub-linear bound on the cumulated regret in case of linear
Bayesian regression. However, also in the general case of Corollary 1, the regret bound scales
naturally with the process and measurement noise, as well as with the regularity property of the
expected cost-to-go according to Assumption 1.

Note that the regret bounds are valid for the objective function (3a) including the slack variables
that indicate constraint violations. Consequently, the cumulative regret in this case also bounds the
cumulated amount of expected constraint violation during different learning episodes.

6. Numerical results

We consider the problem of learning how to drive a car-trailer system with partially known dynamics
backwards. Starting from a random initial system configuration, the goal is to reach an uncertain
goal position as depicted in Figure 1 (left) with the car and trailer being horizontally aligned. The
system dynamics according to Figure 1 (middle) are obtained through a Euler-forward discretization
with sampling time Ts = 0.1[s] of the model dynamics presented in Rouchon et al. (1993). By
denoting x+ := x(k + 1), x := x(k), and u := u(k) we get a prediction model of the form
x+ = f(x, u; θf ) + w with states x = [yc, φ, δ, κ, xc, vc]

>, inputs u = [ωδ, ac], and dynamics

x+c = xc + Tsvc y+c = yc + Tsvc sin(φ) v+c = vc + Tsac
φ+ = φ+ Tsa

−1v tan(δ) δ+ = δ + θ>1 Φ1(x) κ+ = κ+ θ>2 Φ2(x).

The process noise w ∼ Qw accounts for model mismatch and is given as Qw = N(0,Σw) with
Σw = diag(Ts[0.03, 0.017, 0.1, .01, 0.01, 0.01]). State and input constraints are |κ−φ| ≤ 0.7 [rad],
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Random initial
condition

?

Uncertain desired
target position

Figure 1: Left: Problem setting of steering a partially known trailer system from a random initial
condition to an uncertain target position. Middle: Car-trailer system. Right: Sampled
regret ∆e and median of 200 different systems over 250 learning episodes.

x > 1 [m], |δ| > 0.7 [rad], |ωδ| ≤ 1.22 [rad], and |a| ≤ 2[m/s2]. The unknown terms in δ+ and
κ+ are parametrized by features Φ1(x) = ωδ and Φ2(x) = [v sin(κ − φ), v tan(δ) cos(κ − φ)]>

and parameters θ1 and θ2, describing the steering dynamics and the trailer geometry. The objective
of reaching the goal configuration can be encoded into a terminal cost `(N − 1, x, u) := φ2 + κ2 +
v2 + y2t + x2t + θ`Φ3(x), with `(i, x, u) = 0 for i = 0, 1, ..N − 2, where Φ3(x) = [x2c , xc, y

2
c , yc]

>

describes the desired target position. After each episode, we obtain very noisy feedback from, e.g.,
a vision system or a person that is modeled by zero mean normally distributed measurement noise
ε` ∼ N(0, 0.52).

For learning, we consider a prior distribution Qθ that corresponds to a standard deviation of
0.45 [m] in the trailer length, 10 [s/deg] in steering dynamics, and 0.5 [m] in the desired position
[xd, yd]

>. Note that the theoretical results from Corollary 1 only hold, if the states and objectives are
bounded within one episode, which is practically fulfilled in this example due to the MPC controller
that ensures bounded input signals.

In Figure 1 (right), we plot the measured difference between the optimal and sampled MPC
(=sampled regret), simulated with 200 different system and objective realizations that are sampled
according to their prior distribution Qθ. During the first 15 episodes the median drops quickly to a
slowly degrading regret, depending on the process noise and measurement noise magnitude.

7. Conclusion

In this paper, we considered episodic learning tasks for unknown dynamical systems and objective
functions subject to state and input constraints. To enable efficient, easily implementable learning-
based control, we combined Bayesian posterior sampling theory with model predictive control tech-
niques. The learning performance of the proposed approach can formally be bounded in terms of
the regret w.r.t. the optimal model predictive controller. The efficiency of the algorithm was demon-
strated in simulation using a reverse driving task with a nonlinear car-trailer system.
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