
PACER: Progress-Aligned Curation for
Error-Resilient Imitation Learning

Shreyas Kumar and Ravi Prakash
Robert Bosch Centre for Cyber-Physical Systems

Indian Institute of Science, Bengaluru, India
{shreyaskumar, ravipr}@iisc.ac.in

Abstract: Imitation learning from human demonstrations offers a powerful
framework for robotic skill acquisition, eliminating the need for explicit reward
specification. However, in realistic low-data settings, where only a handful of
demonstrations are available for each task, demonstrations are not only expen-
sive to collect but can also be imperfect: operators may experience fatigue, vary
in execution strategies or timing, and occasionally introduce brief corrections or
deviations, such as unintended motions or hesitations, that can occur at arbitrary
stages of task execution. To address these challenges, we introduce PACER, a
progress-aligned framework that aligns demonstrations in latent task phase and
robustly filters local corruptions before policy learning. PACER enables reli-
able imitation from sparse and noisy data, yielding policies that better capture
intended behavior and outperform standard behavioral cloning and alignment
baselines across manipulation and locomotion domains respectively by roughly
45% and improves episodic returns by over 50% on average. Code available at:
anonymous.4open.science/r/PACER.

Keywords: Imitation Learning, Imperfect Demonstrations, Learning

1 Introduction

Robots that can acquire skills directly from human demonstrations promise to reduce the burden
of hand-designed reward functions and enable rapid deployment in unstructured environments. Im-
itation learning (IL) provides a direct way to train such policies by mapping observed states to
demonstrated actions. However, in realistic settings, demonstrations are both expensive to collect
and often imperfect. Operators may vary in timing and execution strategies, experience fatigue, or
introduce brief unintended deviations such as slip-ups or hesitations. These imperfections are es-
pecially problematic in low-data regimes, where each demonstration carries significant weight for
policy learning.

Two recurring challenges arise in this setting. First, pace variability, demonstrations of the same
task may unfold at different speeds, so the same stage of task execution can appear at different time
indices across demonstrations. Second, local corruptions, short but notable deviations in actions,
which are not random noise but biased errors, can mislead a policy if treated as ground truth.

We propose PACER (Progress-Aligned Curation for Error-Resilient imitation learning), a frame-
work that addresses both challenges jointly. PACER first learns a state-dependent latent task phase
that provides a shared progress variable for temporal alignment across demonstrations. It then uses
robust statistics in a leave-one-out consensus scheme to detect and down-weight corrupted segments.
Finally, these consensus signals are used to construct refined pseudo-labels that repair corrupted
samples before policy training. The result is a simple weighted behavioral cloning procedure that
remains stable and robust even when demonstrations are sparse and noisy.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

Contributions. Our contributions are threefold: 1. We introduce a learned, state-dependent latent
task phase that enables temporal alignment across demonstrations with varying paces. 2. We adapt
robust statistical tools (medians, median absolute deviation, Tukey reweighting) in a leave-one-out
consensus scheme to identify and filter local corruptions without letting demonstrations validate
themselves. 3. We design a pseudo-label refinement procedure that leverages consensus anchors, di-
rectional alignment, and temporal smoothing to repair corrupted samples, enabling robust imitation
learning with a simple weighted Huber behavioral cloning loss.

We evaluate PACER on manipulation and locomotion domains with limited and corrupted demon-
strations, showing that it consistently improves policy robustness and fidelity compared to behavioral
cloning and alignment-only baselines.

2 Related Work

Phase variables and temporal alignment. Movement primitives encode trajectories with an ex-
plicit phase or progress variable to synchronize executions across different paces [1, 2]. Beyond
hand-crafted schedules, differentiable sequence alignment via soft-DTW has enabled learning with
time-warping losses [3], and progress can be estimated directly from observations using represen-
tation learning (e.g., time-contrastive signals) [4]. Task-sketch alignment methods such as TACO
jointly align weak supervision with demonstrations while learning policies [5]. Our work adopts
the idea of a phase variable but learns a state-only monotone phase and uses it strictly as a syn-
chronization coordinate before robust aggregation. Notably, generic time-warping objectives align
sequences but do not by themselves detect or suppress short, biased action deviations; in the absence
of additional robustness, corrupted segments may also be time-warped into agreement.

Robust imitation from imperfect demonstrations. A complementary line of work focuses on ro-
bustness when demonstrations are noisy or suboptimal. Approaches include symmetric-loss objec-
tives and median-of-means formulations [6, 7], as well as confidence-based methods that reweight
data using (possibly noisy) quality scores. For example, Wu et al. propose 2IWIL and IC-GAIL,
which combine confidence with unlabeled data through importance weighting and occupancy-
measure matching [8]. Other methods estimate demonstrator expertise more explicitly: ILEED
jointly learns a policy and state-dependent expertise using demonstrator identities, motivated by
crowd-sourced settings where proficiency varies widely [9]. While effective at filtering suboptimal
contributors, such approaches often assume broad state coverage or large datasets (e.g., millions of
games in chess) to reliably infer expertise. In contrast, PACER operates in few-demo regimes and
targets short, within-trajectory corruptions, aligning demonstrations by phase and applying robust
statistics locally without requiring demonstrator identities or extensive data.

Reward-learning and noise modeling under suboptimality. VILD tackles diverse-quality
demonstrations by explicitly modeling a noise density and learning a reward alongside demon-
stration quality via a variational IRL/RL procedure; this addresses compounding error in naive
regression-style estimators and improves data-efficiency with importance sampling [10]. In real-
world crowdsourced demos, VILD demonstrates robustness but requires substantial environment
interaction during RL optimization (e.g., millions of transitions), which may be impractical in some
settings. Our approach differs in staying within a pure IL/BC regime: we repair labels using phase-
local consensus and robust reweighting, then train with a weighted Huber loss, avoiding additional
rollouts.

Robust statistics used in PACER. We rely on classical robust tools—medians and the median
absolute deviation (MAD, with the Gaussian consistency factor 1.4826) [11], Tukey’s biweight for
redescending reweighting [12], and the Huber loss for training [13]. Our contribution is not these
estimators themselves but their integration into a leave-one-out, per-phase consensus that curates
short local corruptions before standard behavioral cloning.

2

Positioning. Where alignment-only methods typically assume clean labels once synchronized,
and robustness-only methods often assume temporally aligned data, PACER combines a learned
state-only phase with per-phase robust curation and pseudo-label construction. This yields a simple
training objective (weighted Huber behavioral cloning) while addressing both pace variability and
short corruptions observed in real demonstrations. Compared to expertise-reweighting (ILEED) and
reward-learning with noise models (VILD) that can be data-hungry or require environment dynam-
ics, PACER emphasizes low-data practicality and label repair at the phase-local level.

3 Methodology

3.1 Problem Formulation

We are given a set of N demonstrations {Di}Ni=1, where each demonstration Di consists of a time-
ordered sequence of state-action pairs:

Di = {(xi,t, ai,t)}Ti

t=1 ,

with xi,t ∈ Rdx representing the state and ai,t ∈ Rda denoting the corresponding action at time t.

Demonstrations may include short segments of local corruption, such as unintended deviations or
perturbations, but are assumed to share a consistent underlying task intent. That is, all demonstra-
tions aim to complete the same task, even if they differ in timing or minor execution details.

We aim to robustly extract the underlying task intent so that a learned policy can reproduce the
intended behavior while disregarding short corruptions. Two sources of variability make this non-
trivial:

1. Pace variability: Demonstrations may progress at different rates; the same task phase can
occur at different points in time across demonstrations.

2. Local corruptions: Short segments may exhibit biased deviations in action, which are not
merely stochastic noise but notable shifts.

Our approach consists of two steps: (i) align all demonstrations using a shared phase variable that
captures task progression, and (ii) compute robust per-phase statistics. These statistics are intended
to represent typical behavior at each phase while mitigating the influence of transient corruptions.

3.2 Phase Alignment

We define a phase variable τ ∈ [0, 1] to represent task progression across demonstrations. Unlike
absolute time, τ depends only on the state, enabling alignment even when demonstrations run at
different speeds.

To estimate τ , we use a scoring function gψ : X → R, parameterized by a small neural network.
The requirement is monotonicity, i.e. for t > t′,

gψ(xi,t) > gψ(xi,t′).

We enforce this with a pairwise ranking loss:

Lrank =
∑
i

∑
t>t′

log
(
1 + exp

(
m− (gψ(xi,t)− gψ(xi,t′))

))
,

where m > 0 is a margin that enforces separation between earlier and later states, preventing col-
lapse. Finally, scores are normalized to [0, 1] to yield τi,t.

3.3 Robust Consensus Statistics

We discretize the phase interval [0, 1] into B equal bins. Each sample (xi,t, ai,t) is assigned to the
bin corresponding to its phase value τi,t. Formally, for bin b ∈ {0, . . . , B − 1} we define

3

Ib = {(i, t) | τi,t ∈ [bB , b+1
B)},

which is the set of indices of all samples across demonstrations whose phase lies within the interval
of bin b. Thus, bin b always represents the same fraction of task completion across all demonstra-
tions. Longer demonstrations contribute more samples to each bin, while shorter ones contribute
fewer.

For each bin b, we collect all samples indexed by Ib and compute robust summaries that capture the
typical behavior at that phase of the task while resisting corruption. The median action and median
state

αa[b] = median{ ai,t : (i, t) ∈ Ib }, αs[b] = median{xi,t : (i, t) ∈ Ib },
serve as stable anchors, representing what demonstrations usually do at that phase. The median
magnitudes

βa[b] = median{ ∥ai,t∥ : (i, t) ∈ Ib }, βs[b] = median{ ∥ẋi,t∥ : (i, t) ∈ Ib }.
capture the typical strength of actions and the typical rate of state change, giving a sense of the pace
of execution. To characterize local task dynamics, we compute approximate tangents by differencing
the per-bin medians, yielding an action tangent ta[b] from αa[b] and a state tangent ts[b] from αs[b].

3.4 Trust Estimation via LOO Residuals

To ensure that corrupted demonstrations do not validate themselves, all per-sample trust computa-
tions are performed in a leave-one-out (LOO) manner. When evaluating a sample from demonstra-
tion i, the bin-level consensus statistics are recomputed without including that same demonstration.
Formally, for bin b,

I(−i)b = {(j, u) ∈ Ib : j ̸= i}.

To identify which samples are reliable and which should be down-weighted, we define ri,t as the
action residual in bin b.

ri,t = ∥ai,t − α(−i)
a [b]∥.

This is the distance between the actual action and the bin’s median action. Large residuals signal the
samples that disagree with the phase consensus.

Residuals must be normalized because some bins are naturally more variable than others. We use
the median absolute deviation (MAD), a robust measure of spread:

MAD(−i)
a [b] = 1.4826×median

{
|r(−i)j,u −median{r(−i)m,v : (m, v) ∈ I(−i)b }| : (j, u) ∈ I(−i)b

}
.

The constant 1.4826 ensures that for Gaussian data, MAD matches the standard deviation. Unlike
variance, MAD is stable even if a minority of points are extreme outliers.

By dividing each residual by the robust scale, we obtain a robust z-score:

z
(−i)
i,t =

r
(−i)
i,t

MAD(−i)
a [b] + ε

,

where ε > 0 prevents division by zero. This dimensionless score says how many robust standard
deviations away the sample lies from the median. Values near zero mean strong agreement; large
values indicate deviation.

To translate these scores into trust values, we employ the Tukey biweight function

w
(−i)
i,t =


(
1− (z

(−i)
i,t /c)2

)2
, z

(−i)
i,t ≤ c,

0, z
(−i)
i,t > c,

w
(−i)
i,t ← max(w

(−i)
i,t , wmin),

with cutoff c ∈ [3, 5]. Samples close to the median receive weights near one, moderate deviations are
smoothly down-weighted, and extreme outliers are entirely discarded. A small floor, wi,t prevents
vanishing gradients. This acts like an attention filter, retaining the bulk of consistent demonstrations
while rejecting local corruptions.

4

3.5 Pseudo-Labels and Policy Learning

For each phase bin b, we consolidate the robust summaries into a structured descriptor, termed a
ribbon token:

zb =
(
αa[b], βa[b], αs[b], βs[b], ta[b], ts[b], MAD[b]

)
.

Each token thus encodes both consensus behavior and the degree of variability present at that phase.

Given a sample (xi,t, ai,t) from demonstration i, assigned to bin b, we refine its raw label into a
pseudo-label y∗i,t. This pseudo-label integrates information from the demonstration itself with the
consensus ribbon token, while respecting the trust score wi,t. The procedure unfolds in five steps:

1. Debiasing toward the anchor: Raw actions are softly corrected toward the leave-one-out
median action α

(−i)
a [b]:

y
(1)
i,t = γi,t ai,t + (1− γi,t)α

(−i)
a [b],

with
γi,t = 1− λdebias (1− wi,t), γi,t ∈ [0, 1].

When a sample is consistent (wi,t ≈ 1), the debiased label remains close to the original
action. When trust is low, the target is shifted toward the per-bin consensus. This ensures
we repair the label toward what most demos do at that phase.

2. Alignment with the ribbon tangent: Each bin provides a canonical forward direction.
When state geometry is informative, say for manipulation tasks, the state tangent ts[b] is
chosen; otherwise the action tangent ta[b] serves as a fallback:

tdir[b] =

{
ts[b], if available,
ta[b], otherwise.

This choice ensures that progress is consistently expressed relative to the ribbon, indepen-
dent of individual demonstration deviations.

3. Sideways attenuation: The debiased label is decomposed relative to tdir[b]:

y
(1)
∥ =

(
y
(1)
i,t · tdir[b]

)
tdir[b], y

(1)
⊥ = y

(1)
i,t − y

(1)
∥ .

Perpendicular components are attenuated in proportion to corruption:

y
(2)
i,t = y

(1)
∥ + (1− ρi,t) y

(1)
⊥ , ρi,t = ρ0(1− wi,t)1{state tangent available}.

Here ρ0 ∈ [0, 1] sets the maximum shrinkage applied when trust is minimal. Thus, in tasks
where there is a clear geometric path (1 = 1), low-trust samples are pulled toward the
ribbon, while in tasks without such a path (1 = 0) the adjustment is disabled.

4. Speed regularization: The action magnitude is softly adjusted toward the robust bin speed
βa[b]:

si,t = (1− ηi,t) ∥y(2)i,t ∥+ ηi,t βa[b], ηi,t = η0(1− wi,t).

Here η0 ∈ [0, 1] controls the maximum influence of the consensus speed when trust is
minimal. The final scaled target is

y
(3)
i,t = si,t

y
(2)
i,t

∥y(2)i,t ∥+ ε
.

Thus, high-trust samples (wi,t≈1) retain their original magnitude, while low-trust samples
are gradually rescaled toward the bin-level consensus pace.

5. Temporal smoothing: To encourage coherence over time, we apply an exponential moving
average (EMA) across consecutive targets in the same demonstration:

y∗i,t = (1− κi,t) y
(3)
i,t + κi,t y

∗
i,t−1,

where κi,t increases when both the current and previous samples have low trust, thereby
smoothing uncertain regions more strongly.

5

Training then reduces to a standard weighted behavioral cloning loss:

L = Ei,t
[
wi,tHuber(fθ(xi,t)− y∗i,t)

]
.

All handling of corrupted demonstrations is encoded in the pseudo-label construction, while the
learning stage itself remains simple and stable.

4 Experiments

We evaluate PACER in two domains: (i) manipulation with a Franka wiping task, and (ii) locomo-
tion with Hopper-v4. In both settings, demonstrations are intentionally constructed to include short
segments of unintended behavior, capturing realistic operator slip-ups.

Figure 1: Franka wiping demonstrations. Each panel depicts an end-effector trajectory during the
wiping task. Red segments highlight portions of the motion influenced by injected perturbations in
the action space, representing unintended deviations from the intended circular path.

Franka wiping demonstrations. The task requires the robot to follow a circular wiping trajectory
on a planar surface. To simulate realistic operator behavior, demonstrations are generated in MuJoCo
with natural variability in execution speed and with controlled perturbations (highlighted in red in
Fig. 1) that introduce localized deviations in end-effector velocity. The system state is defined by
the end-effector (EE) Cartesian position (x, y), and the control input corresponds to the EE velocity
command (ẋ, ẏ).

Hopper demonstrations. Demonstrations are generated in MuJoCo by collecting expert rollouts
from a PPO policy and augmenting them with short segments of perturbed actions, which locally
alter joint behavior while preserving the overall task structure. Early terminations are retained to
capture variability in demonstration quality, producing a dataset that includes both successful and
imperfect rollouts.

Baselines. We compare PACER against standard behavioral cloning variants, BC, Weighted-BC,
and BC-RNN. In addition, we include ILEED [9], which introduces a state and demonstration de-
pendent expertise variable ρ(s, i) that adjusts the likelihood of observed actions. In the continuous-
action setting, as considered here, ρ scales the covariance of the Gaussian policy (Σ 7→ Σ/ρ). Details
are deferred to the Appendix.

Evaluation protocol. For Hopper-v4 we report episodic return under two evaluation settings:
clean, corresponding to runs without test-time noise, and perturbed, where controlled action pertur-
bations are introduced at test time. For Franka wiping we evaluate trajectory accuracy with respect

6

to the reference circle using two metrics: (i) root mean squared error (RMSE, in meters) measuring
average deviation, and (ii) maximum deviation (MaxDev, in meters) measuring the worst-case error.
All results are averaged over three seeds; we report mean ± standard deviation together with the
95% confidence interval (CI) computed across per-seed means.

Method Clean Return ↑ Perturbed Return ↑
BC 1231.1 ± 153.8 [174.0] 895.10 ± 21.70 [24.60]
BC-RNN 451.10 ± 143.3 [162.1] 372.40 ± 115.7 [130.9]
Weighted-BC 1671.9 ± 723.2 [818.4] 1040.5 ± 10.60 [12.00]
ILEED 492.50 ± 116.0 [131.3] 487.20 ± 117.1 [132.5]
PACER 2545.1 ± 647.6 [732.9] 1876.4 ± 653.7 [739.7]

Table 1: Hopper-v4. Episodic returns (higher is better). Values are mean ± std with 95% CI in
brackets, n=3 seeds.

Figure 2: Franka wiping rollouts. Rollouts of learned policies on the circular wiping task. PACER
adheres most closely to the reference path with smaller radial deviation and reduced phase drift,
consistent with the quantitative gains reported in Table 2.

Method RMSE ↓ MaxDev ↓
BC 0.1733 ± 0.0166 [0.0188] 0.3239 ± 0.0297 [0.0336]
BC-RNN 0.2445 ± 0.0265 [0.0300] 0.4791 ± 0.0484 [0.0548]
Weighted-BC 0.1492 ± 0.0273 [0.0309] 0.2804 ± 0.0337 [0.0381]
ILEED 0.1909 ± 0.0180 [0.0204] 0.3590 ± 0.0492 [0.0557]
PACER 0.0818 ± 0.0180 [0.0204] 0.1356 ± 0.0264 [0.0299]

Table 2: Franka wiping (MuJoCo). Geometric metrics in meters (lower is better). Values are mean
± std with 95% CI in brackets, n=3 seeds.

Results: Franka wiping. PACER achieves the lowest trajectory errors (Table 2). Compared to
the strongest baseline (Weighted-BC), PACER reduces RMSE by roughly 45% (from 0.1492m to
0.0818m) and more than halves MaxDev (from 0.2804m to 0.1356m), indicating tighter adherence
to the target circle. Qualitative overlays in Figure 2 mirror these trends.

Results: Hopper-v4. PACER attains the highest returns in both evaluation conditions (Table 1).
Relative to the best-performing BC variant (Weighted-BC), PACER improves mean return by over
50% in the clean setting (from 1671.9 to 2545.1) and shows a similar gain under induced test-
time perturbations. The demo-weighted variant, Weighted-BC, narrows the gap but remains below
PACER.

7

5 Conclusion

We studied imitation learning from small collections of demonstrations that contain short, unin-
tended deviations. PACER addresses this setting by aligning trajectories in task progress and form-
ing robust per-phase targets before policy learning. Concretely, PACER aggregates actions within
phase bins using median statistics, down-weights outliers with Tukey biweights, and applies a leave-
one-out consensus so that no demonstration can validate its own deviation. A single MLP is then
trained with a weighted Huber objective on these repaired targets. The intuition is that progress-
aligned consensus recovers the intended behavior at each stage of the task while suppressing local-
ized errors that arise in individual rollouts.

Under the reported protocols on locomotion (Hopper-v4) and manipulation (Franka wiping), PACER
achieved higher episodic returns and lower trajectory error than behavioral cloning variants (BC,
Weighted-BC, BC-RNN) and ILEED. All methods used the same executed actions for supervision
and comparable model/optimization settings; the principal difference is how supervision targets
are constructed. In our experiments, ILEED, designed to model demonstrator-level expertise, was
less effective when deviations were brief and occurred within trajectories. PACER’s phase-wise
consensus is directly aligned with this failure mode, which likely explains the observed gains.

Beyond empirical performance, PACER is simple to deploy: after computing progress and robust
per-phase summaries, training reduces to standard behavioral cloning. The intermediate quantities
(per-phase medians, scales, weights) provide interpretable diagnostics that expose where demon-
strations agree or conflict, which can aid dataset inspection and future curation.

This work has limitations. PACER assumes a meaningful progress coordinate and benefits most
when deviations are short relative to the trajectory; performance may degrade under long-horizon or
globally biased corruptions, or when progress is poorly estimated. The method introduces a small
set of robustness hyperparameters (number of bins, smoothing window, Tukey cutoff) that mediate
bias-variance trade-offs. Promising directions include learning progress directly from observations
in richer sensory settings, adapting the consensus step to capture uncertainty beyond medians, in-
tegrating PACER with sequence or diffusion policies, combining label repair with limited online
interaction for iterative refinement, and expanding evaluation to broader real-world tasks and op-
erators. These steps aim to retain PACER’s simplicity while increasing its coverage beyond the
localized-deviation regime evaluated here.

8

A Implementation Details

A.1 Baselines

BC uses the same MLP and optimization as PACER but trains on executed actions a with unit
weights. Weighted-BC (Traj-BC) applies a per-demo scalar weight proportional to an empirical
corruption mass (down-weighting more corrupted demonstrations). BC-RNN uses a GRU over
short sequences with MSE on action prediction.

ILEED (continuous actions). We follow the continuous-action variant in Beliaev et al. [9]. The
policy is a mixture of M diagonal Gaussians; a backbone network outputs {π(s), µ(s), σ(s)}. A
state- and demonstration-dependent expertise variable ρ(s, i) = σ

(
⟨fϕ(s), ωi⟩

)
with ρ ∈ [ρmin, 1]

modulates the demonstrator likelihood by scaling the covariance: Σ 7→ Σ/ρ2. For a single Gaussian
component, the log-likelihood is

logN
(
a;µ, Σ

ρ2

)
= − 1

2

[
d log(2π) + log |Σ| − 2d log ρ+ ρ2(a− µ)⊤Σ−1(a− µ)

]
.

and the mixture likelihood marginalizes across components using the softmax weights of α(s). The
auxiliary latent-dynamics objective predicts zt+1 from (zt, at) where z = fϕ(s), trained with a
Smooth-ℓ1 loss. Optimization proceeds in two stages: (i) warm-up of the GMM policy with ρ ≡
1, and (ii) joint training of the policy, expertise, and auxiliary dynamics. Each demonstration is
assigned a distinct identity i. At test time we use the mixture mean as the deterministic action.

B Hyperparameters

Category / Parameter Value

BC / PACER / Weighted-BC / ILEED (Shared optimization)
Network width (MLP hidden size) 128
Optimizer / LR Adam / 1× 10−3

Batch size 8192
Epochs 240
Gradient clip (global norm) 1.0

BC-RNN
GRU hidden size 128
Sequence length / stride 32 / 16
Batch size 64
Learning rate / Epochs 1× 10−3 / 240

PACER
Phase bins B 96
Tukey cutoff c 4.685
Min sample weight wmin 0.02
LOO debias λdebias 0.5
Magnitude blend η0 0.5
EMA coefficient κ 0.0

ILEED
Mixture components M 5
State embed dim k 16
Expertise floor ρmin 0.05
Aux dynamics weight λaux 1× 10−2

Warm-up: epochs / LR 80 / 1× 10−3

Joint: epochs / LR 160 / 6× 10−4

Table 3: Hyperparameters. Values used in all reported experiments unless otherwise noted.

9

C Pseudocode

Algorithm 1 PACER: Progress-Aligned Curation for Error-Resilient Imitation Learning

Require: Demos D = {(xi,t, ai,t)}; bins B; Tukey cutoff c; floor wmin; hyperparams λdebias, ρ0, η0, κ.
1: τ ← PHASEESTIMATE(D) ▷ state-only ranking→ [0, 1]

2: {Ib}B−1
b=0 ← PHASEBINS(τ, B)

3: S ← ROBUSTBINSTATS(D, τ, B) ▷ medians/magnitudes/tangents

4: for all (i, t) with (i, t) ∈ Ib do
5: w ← LOOWEIGHT(i, t, b,S, c, wmin)
6: y∗ ← PSEUDOLABEL(i, t, b,S, w, λdebias, ρ0, η0, κ)
7: Accumulate L += w ·Huber(fθ(xi,t)− y∗)
8: end for
9: θ⋆ ← argminθ L; return fθ⋆

10: function PHASEESTIMATE(D)
11: Train scorer gψ with pairwise ranking loss∑

i

∑
t>t′ log

(
1 + exp

(
m− (gψ(xi,t)− gψ(xi,t′))

))
12: Normalize scores to τ ∈ [0, 1]; return τ
13: end function

14: function ROBUSTBINSTATS(D, τ, B)
15: For each bin b:

αa[b] = median{ai,t}, βa[b] = median{∥ai,t∥}, αs[b] = median{xi,t}

16: Tangents: ta[b]←∆αa[b]; ts[b]←∆αs[b] ▷ finite-diff across bins
17: return {αa, βa, αs, ta, ts}
18: end function

19: function LOOWEIGHT(i, t, b,S, c, wmin)
20: α

(−i)
a [b]← median action in bin b excluding demo i ▷ leave-one-out

21: r(−i) ← ∥ai,t − α
(−i)
a [b]∥

22: MAD(−i) ← 1.4826 ·median
∣∣ r(−i) −median(r(−i))

∣∣
23: z ← r(−i)

MAD(−i) + ε
; w ← max

(
1[z ≤ c] (1− (z/c)2)2, wmin

)
24: return w
25: end function

26: function PSEUDOLABEL(i, t, b,S, w, λdebias, ρ0, η0, κ)
27: Debias toward anchor: γ = 1− λdebias(1− w); y(1) = γai,t + (1− γ)α

(−i)
a [b]

28: Direction choice: tdir ∈ {ts[b], ta[b]} (prefer ts[b] if available)
29: Sideways attenuation: project y(1) onto tdir:

y∥ = (y(1) · t̂)t̂, y⊥ = y(1) − y∥, y(2) = y∥ + (1− ρ) y⊥, ρ = ρ0(1− w)1{ts[b]}

30: Speed blend: η = η0(1− w); s = (1− η)∥y(2)∥+ η βa[b]; y(3) = s
y(2)

∥y(2)∥+ ε

31: EMA smoothing: y∗ = (1− κ) y(3) + κ y∗
prev with κ ↑ when w,wprev are low

32: return y∗

33: end function

10

References
[1] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical movement

primitives: learning attractor models for motor behaviors. Neural computation, 25(2):328–
373, 2013.

[2] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann. Probabilistic movement primitives.
Advances in neural information processing systems, 26, 2013.

[3] M. Cuturi and M. Blondel. Soft-dtw: a differentiable loss function for time-series. In Interna-
tional conference on machine learning, pages 894–903. PMLR, 2017.

[4] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain.
Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 1134–1141, 2018. doi:10.1109/ICRA.
2018.8462891.

[5] K. Shiarlis, M. Wulfmeier, S. Salter, S. Whiteson, and I. Posner. Taco: Learning task decom-
position via temporal alignment for control, 2018. URL https://arxiv.org/abs/1803.

01840.

[6] V. Tangkaratt, N. Charoenphakdee, and M. Sugiyama. Robust imitation learning from noisy
demonstrations. arXiv preprint arXiv:2010.10181, 2020.

[7] L. Liu, Z. Tang, L. Li, and D. Luo. Robust imitation learning from corrupted demonstrations,
2022. URL https://arxiv.org/abs/2201.12594.

[8] Y.-H. Wu, N. Charoenphakdee, H. Bao, V. Tangkaratt, and M. Sugiyama. Imitation learning
from imperfect demonstration, 2019. URL https://arxiv.org/abs/1901.09387.

[9] M. Beliaev, A. Shih, S. Ermon, D. Sadigh, and R. Pedarsani. Imitation learning by estimating
expertise of demonstrators, 2022. URL https://arxiv.org/abs/2202.01288.

[10] V. Tangkaratt, B. Han, M. E. Khan, and M. Sugiyama. Vild: Variational imitation learning
with diverse-quality demonstrations, 2019. URL https://arxiv.org/abs/1909.06769.

[11] P. J. Rousseeuw and C. Croux. Alternatives to the median absolute deviation. Journal of the
American Statistical Association, 88(424):1273–1283, 1993.

[12] K. Kafadar. The efficiency of the biweight as a robust estimator of location. Journal of Re-
search of the National Bureau of Standards, 88(2):105, 1983.

[13] P. J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics,
35(1):73 – 101, 1964. doi:10.1214/aoms/1177703732. URL https://doi.org/10.1214/

aoms/1177703732.

11

http://dx.doi.org/10.1109/ICRA.2018.8462891
http://dx.doi.org/10.1109/ICRA.2018.8462891
https://arxiv.org/abs/1803.01840
https://arxiv.org/abs/1803.01840
https://arxiv.org/abs/2201.12594
https://arxiv.org/abs/1901.09387
https://arxiv.org/abs/2202.01288
https://arxiv.org/abs/1909.06769
http://dx.doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Phase Alignment
	Robust Consensus Statistics
	Trust Estimation via LOO Residuals
	Pseudo-Labels and Policy Learning

	Experiments
	Conclusion
	Implementation Details
	Baselines

	Hyperparameters
	Pseudocode

