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ABSTRACT

Robustness and privacy are two fundamental security properties that machine
learning models require. Without balance between robustness and privacy leads to
robust models with high privacy risks. Obtaining machine learning models with
high adversarial robustness and privacy performance remains an open problem. In
order to enhance privacy performance of robust models, we employ counterfactual
explanations as a method to mitigate privacy risks while concurrently maintaining
robust model accuracy, reducing the privacy risk of the robust model to the level
of random guessing and using counterfactual explanations to generate adversarial
examples for the first time. We analyze the similarities and differences between
adversarial examples and counterfactual explanations and utilize these properties
to design the generation method. We conduct an in-depth analysis of the advan-
tages offered by counterfactual explanations compared to traditional adversarial
examples. Our study indicates that the correlation between robustness and privacy
is strong and the ideal balance state of accuracy, robustness, and privacy is with
95% adversarial examples involved in model training.

1 INTRODUCTION

Adversarial attack is adding an imperceptible perturbation to the input image that leads a machine
learning model to misclassify the perturbed input image with high confidence (Goodfellow et al.,
2015). Adversarial examples are inputs that have been perturbed by attackers. To build adversarially
robust machine learning models that can defend adversarial attacks, a variety of defense strategies
have been put forth (Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017; Madry et al., 2018).
Adversarial training, a training scheme that involves supplementing the training datasets with ad-
versarial examples, is one of the most popular and effective defense strategies (Goodfellow et al.,
2015).

With the growing development and application of adversarial example generation techniques in
real-world settings, the issue of protecting privacy in data-analytic training has gained significant
attention. Severe privacy issues are raised by privacy attacks, especially the privacy risks on robust
models (Fredrikson et al., 2015; Ganju et al., 2018; Salem et al., 2020). Compared to non-robust
models trained on original examples, robust models trained on adversarial examples pose a greater
risk to privacy (Song et al., 2019). Defenses against such attacks on robust models have proven
largely ineffective, despite higher risks.

To enhance the non-robust model privacy performance, a variety of techniques are frequently em-
ployed (Huang et al., 2021; Liu et al., 2022). When privacy alone is taken into account, they func-
tion perfectly. However, these techniques weaken the ability of robust models to predict outcomes,
making the models unable to function normally (Song et al., 2019). The privacy risk caused by
adversarial examples remains an open problem.

The connection between adversarial robustness and privacy received significant interest. Recent
discussions suggest that there may be a fundamental trade-off, as achieving both robustness and
privacy within the same model appears unfeasible (Zhang et al., 2019; Hopkins et al., 2023). A
primary factor contributing to privacy risks is the generalization gap between adversarial and original
examples (Yeom et al., 2018). Privacy attackers can readily detect differences in distribution between
these two types of examples, which increases privacy risks in robust models.
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(a) (b) (c) (d)

Figure 1: Adversarial examples generated by our method (a) are closer to the original sample (d)
with better privacy performance. The perturbations of adversarial examples generated on grayscale
image datasets by previous methods such as (b) and (c) are more obvious and perceptible. The per-
turbation is inconsistent with the definition of adversarial examples. (a) Counterfactual adversarial
example (b) PGD adversarial example (c) AdvGAN adversarial example (d) MNIST dataset

Moreover, adversarial perturbations added on adversarial examples are imperceptible as its definition
(Goodfellow et al., 2015). When the same adversarial example generation method is used in the
grayscale datasets and RGB datasets, the perturbations on the grayscale samples are obvious and
meaningless. As shown in Figure 1 (b) and (c), these are the samples of adversarial examples
generated by two different approaches, and the perturbations are far from imperceptible as a main
characteristic of adversarial examples.

In this work, we propose generating adversarial examples that are aligned with the original data dis-
tribution. We achieve this by using counterfactual explanations to create in-distribution adversarial
examples. We analyze and leverage these shared characteristics to enhance the privacy performance
of adversarial examples. Furthermore, the adversarial examples produced are more semantic and
meaningful due to the explainable nature of counterfactual explanations. We make the contributions
as follows:

• We apply counterfactual explanations to generate adversarial examples for the first time.
We design the counterfactual adversarial examples with the analysis of similarities and
differences between counterfactual explanations and adversarial examples.

• We mitigate the privacy leakage of robust models during the algorithm design process for
the first time. It includes separating adversarial example generating and model training
processes, finding sparse adversarial examples, and projecting the samples into latent space
with the autoencoder.

• We generate semantic adversarial perturbations instead of meaningless noise. It provides
an important opportunity to advance the understanding of the differences between counter-
factual explanations and adversarial examples of the same original sample.

2 COUNTERFACTUAL EXPLANATIONS AND ADVERSARIAL EXAMPLES

In this section, we analyze the similarities and differences between counterfactual explanations and
adversarial examples. By utilizing both, we generate counterfactual adversarial examples aimed at
reducing the privacy risks in robust models.

Counterfactual explanation is a technique used in explainable AI. Counterfactual explanations sug-
gest what should be different in the input instance to change the outcome of an AI system (Guidotti,
2024). Recently, it has been suggested that there is a similarity and connection between counterfac-
tual explanations and adversarial examples (Pawelczyk et al., 2022; Freiesleben, 2022).

Given an image-label pair (x, y) and a classifier f , an adversarial example is a perturbed image
x̃ = x + δ, which is mis-classified by the model, i.e., f(x̃)̸=y, which is the untargeted adversarial
example, f(x̃) = ỹ, for targeted adversarial example.

For the same pair(x, y) and the classifier f , a counterfactual explanation is a perturbed image
x′ = x + δ′, f(x′)̸=y, use the generating process to explain why x belong to class y. f(x′)̸=y
to explain the reason why x belong to class y other than class y′. The definitions for both untargeted
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and targeted adversarial examples share similarities. The commonalities between counterfactual
explanations and adversarial examples are as follows:

• Both involve adding perturbations to the original sample.
• The perturbed samples are intended to alter the model’s prediction.

The generated sample displays commonalities between adversarial examples and counterfactual ex-
planations in the initial stage of generating. However, as the process proceeds, counterfactual expla-
nations emphasize interpretability, focusing on when and why the predicted classification changes.
By the end of the generating process, the counterfactual explanation resembles another class. In con-
trast, the perturbation of the adversarial example remains imperceptible to humans, in other words,
seeking uninterpretability. The new features of the adversarial example are strong enough to change
model prediction, but the adversarial example still looks similar to the original sample. While the
new features of counterfactual explanation should be obvious and interpretable for humans, and its
constraint of minimal perturbation can be negligible without considering computation efficiency.

Moreover, adversarial examples and counterfactual explanations have different constraints. For
counterfactual explanations, interpretability is key, meaning the altered sample must be noticeably
distinct from the original. In contrast, adversarial examples involve imperceptible perturbations.
While both forms of perturbation shift the predicted class, the extent of the sample modification
varies. The crucial distinction is that a counterfactual explanation is visibly different from its origi-
nal, while an adversarial example closely resembles the original.

Figure 2: An illustration for the difference between the adversarial example and the counterfactual
explanation generated from the same original sample

To clarify the relationship between counterfactual explanations and adversarial examples, we use
a simple picture to demonstrate, as shown in Figure 2. Adversarial examples and counterfactual
explanations both change the class of the sample, so they both cross the dicision boundary. At some
point in the generation process, adversarial examples and counterfactual explanations may share the
same tendency in direction to change key features for class alteration. But their constraints differ, so
there are distance between the generated samples.

By considering the similarities and differences between counterfactual explanations and adversarial
examples, we create counterfactual adversarial examples. This involves locating the nearest neigh-
bor of the original sample from another class. We generate adversarial examples of the original
by producing counterfactual explanations of the neighbor sample. During the counterfactual gen-
eration, the features of the generated sample shift from the neighbor’s attributes to resemble the
original. The result is an adversarial example with characteristics of the original sample, while still
retaining some features from the neighbor class. This ensures that the adversarial example incor-
porates features from the neighbor sample, enough to alter the model’s prediction rather than being
identical to the original sample.

To ensure privacy protection, we need an appropriate counterfactual explanation method. There
are different types of counterfactual explanation generation methods (Guidotti, 2024). However,
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not all of them effectively reduce privacy risks. The privacy concerns associated with generative
models, such as GAN and others, remain a prominent issue (Hitaj et al., 2017; Hayes et al., 2019).
Consequently, counterfactual explanation methods based on generative models are excluded from
consideration. In contrast, autoencoders offer improved privacy performance, making them the best
choice for generating counterfactual explanations.

Autoencoders enhance data privacy by obfuscating sensitive information while retaining essential
features for various applications. Several studies propose innovative approaches utilizing autoen-
coders to address privacy concerns in different domains (Ding et al., 2023; Jamshidi et al., 2024; Liu
et al., 2023). Samples generated in the latent space exhibit features that are less perceptible to hu-
mans after decoded, aligning more closely with the definition of adversarial examples. Latent space
enhances data privacy by inferring cluster locations and scales from connection numbers alone,
eliminating the need for node-level data and protecting data privacy (Hajihassani et al., 2020). Ad-
ditionally, leveraging a latent space navigation strategy can generate diverse synthetic samples while
addressing privacy concerns, minimizing the risk of near-duplicates and supporting effective deep
model training (Raja, 2024).

To keep privacy risks minimal, we select a method that prioritizes protecting the privacy of the
original samples. To reduce the privacy risk of adversarial examples, the key is to decrease the gen-
eralization gap between the adversarial example dataset and the training dataset. We use a sparsity
loss term in the counterfactual explanations to make the data distribution of adversarial examples
more similar to the original dataset. This approach reduces the privacy risk cause by disparity be-
tween these two data distributions. Sparsity can enhance privacy in neural networks. Research has
shown that introducing sparsity in neural networks can bolster their data privacy, ultimately leading
to improved privacy without compromising task performance (Chen et al., 2020).

Another reason for increased privacy risks in adversarial examples is the privacy leakage of indi-
vidual data. The adversarial example loss term is usually calculated on the same individual sample
iteratively, and the prediction model is more likely to remember the sample in the process of adver-
sarial example generating and model training. We use the counterfactual explanation method that
calculates the prototype of every classification instead, and the loss term can guide the algorithm to
generate the adversarial examples close to the average shape of the targeted classification, instead of
the ones that easily cause privacy leakage of individual data.

3 COUNTERFACTUAL ADVERSARIAL EXAMPLES

3.1 COUNTERFACTUAL ADVERSARIAL EXAMPLES

For an original sample x with ground truth y, we need to find an adversarial example xadv = x+ δ
, with both xadv and x ⊆ RD where RD represents the D-dimensional feature space. To ensure the
robustness of the model, adversarial examples are employed in the model training process, with an
objective function as Equation 1 shows. It means that the prediction f(xadv) is changed into another
class with the minimal perturbation added to sample x.

argmax
i

fi(xadv) ̸= yi (1)

We changed the starting point of the computation process due to the differences between adversarial
examples and counterfactual explanations. We identify the neighbor sample xnb in the training set
that is closest to the sample x but belongs to a different class, designating it as the neighbor sample.
The autoencoder utilizes an encoder to project the sample x from the feature space onto the latent
space, resulting in g(x). Through a decoder, g(x) can be restored to the sample x in the original
feature space. g(x) and g(xnb) should be as close as possible to generate the adversarial examples
that look similar to the original sample x.

min ||g(x)− g(xnb)||2 (2)

By generating counterfactual explanation cf(xnb) of the neighbor sample xnb, it produces the ad-
versarial example xadv for the original sample x. The counterfactual explanation cf(xnb) have the
characteristic of the original sample x due to the aim of the counterfactual explanation generation
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method, produce samples that are similar to the targeted sample. The whole process enhances spar-
sity of the adversarial example distribution, fostering greater similarity between the data distribution
of the adversarial example dataset and the original training dataset. The approach aims to safeguard
the data privacy of the original samples.

xadv = cf(xnb) (3)

3.2 MITIGATING PRIVACY RISK OF ADVERSARIAL EXAMPLES

3.2.1 PRIVACY AND GENERALIZATION GAP

To mitigate data privacy risks of adversarial examples, it is essential to minimize the generalization
error, which is the prediction accuracy difference between the training and the corresponding test
datasets.

min(

∑
x∈Dtrain

I(f (x) = y)

|Dtrain|
−

∑
x∈Dtest

I(f (x) = y)

|Dtest|
) (4)

I(·) is the indicator function, utilized for statistically counting the accurate quantity of data.

To decrease the generalization error of the test dataset and the training dataset, we decouple the
adversarial examples generating process from the model training process. The original training
dataset is used to generate adversarial but remains unseen to the prediction model, so the prediction
model will not remember the original training dataset. Adversarial examples are employed for robust
model training, while the original training dataset is retained for model evaluation. Both training and
test datasets are new data for robust models by the approach, thereby enhancing the privacy of robust
models.

After the process above, the key problem is that the model performance varies between the original
training dataset and the adversarial example dataset. Specifically, the model accuracy on the original
training dataset is lower than that on the adversarial example dataset. To ensure more accurate
predictions on the original training dataset, it is crucial to minimize the prediction error of the model
on both non-robust examples and adversarial examples, as shown in Equation 5 and Equation 6.
Because the training and the test dataset are both unfamiliar when the model is applied for prediction,
these two equations can be equivalent when the data privacy is well protected in the adversarial
example generation process.

min(

∑
x∈Dtrain

I(f (xadv) = y)

|Dtrain|
−

∑
x∈Dtrain

I(f (x) = y)

|Dtrain|
) (5)

min(

∑
x∈Dtrain

I(f (xadv) = y)

|Dtrain|
−

∑
x∈Dtest

I(f (x) = y)

|Dtest|
) (6)

3.2.2 MITIGATING PRIVACY RISKS BY COUNTERFACTUAL EXPLANATIONS

We improved the counterfactual explanations method (Van Looveren & Klaise, 2021) to make the
generated samples with more characteristics of adversarial examples and less privacy risk. The
method produces samples towards the prototype of each class. Firstly, the counterfactual explana-
tions generated by the method exhibit the imperceptible nature of adversarial examples. Secondly,
these explanations are directed towards the prototype of the ground-truth y which x belongs to,
rather than focusing solely on individual sample x. The samples produced by this approach have
the average and collective characteristics of the whole class, without leaking the special and unnec-
essary characteristics of an individual sample. Moreover, the adversarial examples xadv generated
by this approach encapsulate more meaningful features related to the ground-truth y of sample x,
rather than isolated characteristics of sample x or perturbations as meaningless noise. This is the
reason why the method can facilitate the acquisition of necessary features for adversarial examples
and concurrently safeguard data privacy simultaneously.

L = Lpred + LAE + Lsparse + Lproto (7)

As shown in Equation 7, there are four main loss terms in counterfactual explanations, the loss
term Lpred for the correct model prediction, the loss term LAE for the transformation into target
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classification, the loss term Lsparse for the sparsity of the generated perturbation,and the loss term
Lproto for the prototype of the target label. More details about loss function in supplementary
materials.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

We utilize CNN as the machine learning model architecture. The CNN model structure used in the
experimentcontains three dropout layers, as greater dropout layers often yield better generalization
effects (Song et al., 2019). We ensure consistency in each experiment by employing the same model
architecture for both adversarial example generation and training processes. The models are all fully
trained but do not overfit with the training datasets to reduce the impact of the generalization gap
as much as possible. We separate the adversarial examples generation and training process of all
generation methods instead of put the two processes together as the original generation method to
mitigate the impact of the machine learning model itself. To assess the privacy risk of these CNN
models, we employ a membership inference attack (MIA). MIA attackers aim to determine whether
given data belongs to a training set (Shokri et al., 2017). It is a technique widely used to evaluate
how much privacy is compromised during the training process. All experiments are conducted
under the black-box MIA setting. The attacker model can only achieve the prediction results of the
training model. Our research aims to reduce the privacy risk of adversarial examples and explore
the relationship between robustness and privacy, contrasting with white-box MIA studies focusing
on the model’s inherent data privacy leakage. We utilize a state-of-the-art attack method specifically
designed for robust models (Song et al., 2019).

4.2 EXPERIMENT RESULTS

Table 1: Data point quantities of adversarial examples and original training dataset

ADVERSARIAL EXAMPLE METHOD QUANTITIES
OUR METHOD 53539

PGD 55000
ADVGAN 11579

ORIGINAL MNIST DATASET 60000

We compare the number of adversarial examples generated by different methods. Table 1 illustrates
the contrast between the quantities of adversarial examples generated by all experiment methods and
the original MNIST training dataset. The MNIST dataset consists of 60,000 training samples. To
ensure that the total number of data is roughly equal to our method, we generate 55,000 adversarial
examples with PGD method, and our method generates a total of 53,539 adversarial examples. In
contrast, the AdvGAN method produced only 11,579 adversarial examples.

Our counterfactual adversarial examples method reduced the MIA accuracy to 50.00%, extremely
approaching the minimal random guessing probability. It is even lower than the MIA accuracy for
non-robust models, which stood at 50.46%. In comparison with other robust models, our model
maintained the lowest membership inference attack accuracy and achieved the highest training and
testing accuracy in the meantime, as indicated in Table 2. The PGD method can produce the largest
quantity of adversarial examples, but the accuracy and the privacy performance are not as good as
other methods. The AdvGAN method achieved quite a good performance on accuracy and privacy
risk with the least samples among all datasets, but the method based on the GAN model is more
vulnerable to membership inference attack (Hayes et al., 2019). Therefore, if the quantity of the
adversarial examples generated by the AdvGAN method is closer to the MNIST dataset, the privacy
performance may be not as good as the other methods. The result indicates that our method has the
best performance on accuracy and privacy among these adversarial example generation methods.
It not only verifies that the counterfactual explanation method can reduce more privacy risks than
previous methods, but also shows that the counterfactual explanation method is truly promising for
improving adversarial example generation.
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Table 2: Accuracy of training, test and membership inference attack with different adversarial ex-
ample methods

ADVERSARIAL EXAMPLE
METHOD

TRAINING ACCURACY TEST ACCURACY MIA ACCURACY

XAE 73.56% 75.27% 50.00%
PGD 71.95% 70.80% 50.79%

ADVGAN 73.35% 73.11% 50.21%

4.3 PRIVACY RISKS DIFFENRENCE BETWEEN COUNTERFACTUAL ADVERSARIAL
EXAMPLES AND ORIGINAL DATASETS

(a) (b)

Figure 3: Comparison between original dataset and adversarial example datasets, (a) MNIST dataset
(b) Counterfactual adversarial example dataset

We conduct further analysis to understand the performance differences between adversarial exam-
ples and original datasets on data privacy. They both are analyzed by the same t-SNE method with
the same iteration (Van der Maaten & Hinton, 2008). The t-SNE method is a dimensionality reduc-
tion approach to analyzing samples. If the samples share more similarities than other samples, they
are closer than the others in the result. Figure 3(a) shows the original similarity among all the labels
on the MNIST dataset. All the samples are gathered by their ground truth because samples belong-
ing to the same label are the most alike in contrast to the other labels. The samples in classes 3,5,8
look more alike in their shapes, as a result, these three labels are closer than other labels, same as
classes 7,9,4. As shown in Figure 3(b), it is difficult for the t-SNE method to extinguish the dispari-
ties of the samples from different classes. One of the reasons is that our generating method starts at
a data point that belongs to another class different from the original sample. This may explain why
counterfactual adversarial examples have better privacy performance against MIA than the original
datasets.

4.4 ANALYSIS OF PRIVACY RISKS ON DIFFERENT ADVERSARIAL EXAMPLE DATASETS

We conduct further analysis to understand the performance differences between different methods on
data privacy. The t-SNE setting remains the same with the experiment in Section 4.3. It is evident
that samples generated by the PGD method are more dispersed, showcasing clearer distinctions
among various classes, as shown in Figure 4(a). The result can elucidate its higher membership
inference attack accuracy. While the disparity is minor in some classes, significant disparities exist in
others for the AdvGAN method as shown in Figure 4(b). Compared to other methods, the adversarial
examples generated by our method are gathered together despite the different labels. As shown in
Figure 4(c), it is difficult for the t-SNE method to extinguish the disparities of the samples from
different classes. One of the reasons is that our method generates perturbations on latent space, other
than the high-dimensional feature space. This may explain why our method produces adversarial
examples with much lower privacy risk than other adversarial example generation methods.
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(a) (b) (c)

Figure 4: Data Distribution Comparison between different adversarial example methods, (a) PGD
adversarial example dataset (b) AdvGAN adversarial example dataset (c) Counterfactual adversarial
example dataset

4.5 THE BEST BALANCE AND TRADE-OFF BETWEEN ACCURACY, ROBUSTNESS AND
PRIVACY

To find the best balance and trade-off between accuracy, robustness, and privacy, and analyze the
correlation between robustness and privacy, we investigated the model’s robustness and privacy by
altering the proportion of adversarial examples in the training set. To decrease the effect of data
point increment, we control the quantity of training data at 53539, the same as the data point amount
in our adversarial example generating method. As privacy performance decreases, robustness no-
tably increases, as illustrated in Table 3. With a larger the proportion of counterfactual adversarial
examples, the model’s privacy strengthens, while an increased the proportion of original samples
correlates with higher model accuracy. However the correlation between model robustness and pri-
vacy is not strictly linear. The peak of training accuracy is with 10% counterfactual adversarial
examples training the machine learning model, while the peak of test accuracy is with 20% coun-
terfactual adversarial examples, rather than original samples. With 90% counterfactual adversarial
examples training model, the privacy performance is at the same level as the original samples, but the
robustness is highly reinforced with such a big proportion of adversarial examples. We believe that
the model performance of accuracy, robustness and privacy achieved the desired balance with about
95% counterfactual adversarial examples to get much higher model performance on the accuracy, a
reasonable decrease on robustness and a slight and acceptable increase in privacy risk.

Table 3: Accuracy of training, test and membership inference attack with different adversarial ex-
ample methods

ROBUST DATA
RATIO

TRAINING
ACCURACY

TEST
ACCURACY

MIA
ACCURACY

0% 99.42% 98.80% 50.46%
10% 99.77% 98.83% 52.05%
20% 99.66% 98.95% 51.63%
30% 99.5% 98.68% 51.64%
40% 99.40% 98.69% 51.38%
50% 99.18% 98.54% 51.42%
60% 98.92% 98.44% 51.18%
70% 98.66% 98.17% 50.98%
80% 98.01% 97.66% 50.76%
90% 96.65% 96.45% 50.38%
95% 94.91% 94.92% 50.07%
99% 87.58% 88.46% 50.01%

100% 73.56% 75.27% 50.00%
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5 CONCLUSION

In this paper, we aimed to create in-distribution adversarial examples by leveraging the similarities
and differences between adversarial examples and counterfactual explanations to reduce the privacy
risks of robust models. By utilizing counterfactual explanations from the nearest neighbor class,
we generated adversarial examples with enhanced privacy. Our proposed counterfactual adversarial
examples offer better privacy protection, more meaningful and semantic perturbations, and maintain
an acceptable level of accuracy. Although we have improved the method for other kinds of training
datasets and obtained certain effects, there are still deficiencies in the targeted adversarial examples,
such as two classes of excessive distance. Constrained by the length of the paper, we will leave it as
future work.
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