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Adversarial Learning Semantic Volume for 2D/3D
Face Shape Regression in the Wild

Hongwen Zhang , Qi Li , and Zhenan Sun , Senior Member, IEEE

Abstract— Regression-based methods have revolutionized 2D
landmark localization with the exploitation of deep neural
networks and massive annotated datasets in the wild. However,
it remains challenging for 3D landmark localization due to the
lack of annotated datasets and the ambiguous nature of land-
marks under the 3D perspective. This paper revisits regression-
based methods and proposes an adversarial voxel and coordinate
regression framework for 2D and 3D facial landmark localization
in real-world scenarios. First, a semantic volumetric representa-
tion is introduced to encode the per-voxel likelihood of positions
being the 3D landmarks. Then, an end-to-end pipeline is designed
to jointly regress the proposed volumetric representation and the
coordinate vector. Such a pipeline not only enhances the robust-
ness and accuracy of the predictions but also unifies the 2D and
3D landmark localization so that the 2D and 3D datasets could be
utilized simultaneously. Further, an adversarial learning strategy
is exploited to distill 3D structure learned from synthetic datasets
to real-world datasets under weakly supervised settings, where an
auxiliary regression discriminator is proposed to encourage the
network to produce plausible predictions for both the synthetic
and real-world images. The effectiveness of our method is
validated on benchmark datasets 3DFAW and AFLW2000-3D for
both 2D and 3D facial landmark localization tasks. The experi-
mental results show that the proposed method achieves significant
improvements over the previous state-of-the-art methods.

Index Terms— 2D/3D facial landmark localization, semantic
volumetric representation, joint voxel and coordinate regression,
auxiliary regression adversarial learning.

I. INTRODUCTION

FACIAL landmark localization is an essential step for the
subsequent processing of face images. During the last

decades, a significant amount of research has been dedicated
to solving this problem. For 2D facial landmark localization,
nearly-saturated performance [1], [2] has been achieved on
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near-frontal face images thanks to the exploitation of deep
neural networks and the availability of massive annotated face
datasets. However, advances in 3D facial landmark localization
remain limited due to the depth ambiguity and the lack of fully
annotated face images in the wild.

Over the past few years, regression based methods for
facial landmark localization have shown their effectiveness
on addressing issues such as occlusions, expressions, and
head poses presented in real-world face images. Following the
pioneering work of Explicit Shape Regression (ESR) [3], cas-
caded regression methods [4]–[7] attempt to learn the mapping
from shape-index features to landmark coordinates. Although
these methods could achieve highly accurate results for nearly
frontal face images, their performances are barely satisfactory
under the case of bad initializations or face images with large
head poses etc. On the other hand, heatmap regression based
methods [2], [8] estimate the heatmap for each individual
landmark instead. Such a heatmap representation encodes the
likelihood of each position being a specific landmark. The
heatmap regression strategy avoids the inefficient learning
of non-linear mapping from feature space to landmark posi-
tions, thus has greatly facilitated solving landmark localization
problems including face alignment [2], [8] and human pose
estimation [9], [10]. Heatmap regression based methods are
also generalized to 3D landmark localization problems as well.
In [11], Pavlakos it et al. extend the 2D heatmap to its 3D ver-
sion and show its effectiveness in the application of 3D human
pose estimation. Although these heatmap regression based
methods could work well when facial components are visible,
they might produce blurred heatmaps when there are invisible
landmarks due to occlusions, making it unstable and error-
prone to estimate landmark positions from those multi-mode
heatmaps. Moreover, for 3D landmark localization, directly
employing 3D heatmap for each landmark is cumbersome
and memory-demanding especially when the number of target
landmarks increases.

Meanwhile, though there are massive real-world datasets
annotated with 2D landmarks, it’s difficult to obtain ground-
truth 3D facial landmarks for face images in the wild.
Existing datasets annotated with 3D landmarks are typi-
cally comprised of synthetic face images which are created
through rendering [12] or profiling algorithms [13], hence the
variations on appearance are limited when compared with
real-world datasets. Although existing methods could pro-
duce reliable results for those synthetic datasets, it is barely
satisfactory when applying them to real-world images due to
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the gap between two domains. To alleviate this, the two-step
strategy is employed to lift the 2D estimations to 3D shapes.
Typical two-step approaches [14]–[16] perform 2D landmark
localization at first and then obtain the 3D face shape through
depth estimation or 3D face model fitting. Though such a
strategy is effective, it is suboptimal and sensitive to the result
of 2D landmark localization.

Furthermore, when given 3D face shape estimations on
real-world images, human vision is capable to distinguish
those faulty estimations from the correct ones. Based on
the prior of facial geometric structure, it is easy for the
human to tell which part is less implausible and infer the
missing part even under extreme occlusions. However, it is
non-trivial to incorporate the prior knowledge into deep neural
networks. There are several attempts to make use of the prior
knowledge of geometric structure via designing handcrafted
geometric constraints [17], [18]. In addition, adversarial learn-
ing recently is also exploited to improve the performance of 3D
human pose estimation [19].

Motivated by the above observations, we propose an end-
to-end framework for 2D and 3D facial landmark localization,
and exploit adversarial learning to distill the structure of the
3D face shape learned from fully annotated synthetic images
to real-world images without depth annotations.

To this end, we first introduce the semantic volumetric
representation for the 3D face shape. Compared with the
conventional volumetric representation [11], the proposed vol-
umetric representation is more compact while still preserving
the semantic information of landmarks. Based on such a vol-
umetric representation, an end-to-end network is proposed for
robust and accurate facial landmark localization. Specifically,
the backbone of the network consists of two parts, namely a
volume estimator and a coordinate regressor, which are used
to predict volumetric representations and coordinate vectors
of 3D face shapes respectively. With the proposed pipeline,
the network could be simultaneously trained with images
annotated with both 2D and 3D landmarks. To further leverage
information from both 2D and 3D datasets, we propose an
auxiliary regression adversarial learning strategy to improve
the generalization performance of the network, where the
volume estimator is treated as the generator, and an auxiliary
regression volume discriminator is employed to encourage
the volume estimator to generate plausible volumes. In this
way, the proposed framework could be trained in a weakly
supervised manner and leverage both synthetic datasets and
real-world datasets.

To summarize, the main contributions of this work are listed
as follows.

• A semantic volumetric representation is introduced for
the 3D face shape. The dimensionality of the proposed
representation is fixed regardless of the number of target
landmarks. Such a representation provides an effective
and efficient solution for generic 3D landmark localiza-
tion, which could also facilitate related problems such as
3D human pose estimation.

• A joint voxel and coordinate regression pipeline is
designed for facial landmark localization. Such a pipeline
enables end-to-end training and improves the robustness

and accuracy of landmark localization. Moreover, 2D and
3D landmark localization could be unified in the proposed
pipeline so that both 2D and 3D annotated datasets could
be leveraged simultaneously.

• An auxiliary regression adversarial learning strategy is
proposed to better distill the 3D geometric structures
learned from synthetic datasets to real-world images. This
strategy facilitates the effective and stable training of the
network and enhances its performance on 3D landmark
localization in challenging scenarios. To the best of our
knowledge, we are the first to exploit adversarial learning
on the task of 3D facial landmark localization.

An early version of this work appeared in [20]. We have
made significant extensions to our previous work in two main
aspects. First, we upgrade the compact volumetric representa-
tion to its semantic version, obtaining better localization per-
formance. Second, we exploit an adversarial learning strategy
under the weakly supervised setting for 3D facial landmark
localization in real-world scenarios.

The remainder of this paper is organized as follows.
Section II briefly reviews previous works related to ours.
Details of the proposed method are presented in Section III.
Experimental results are presented in Section IV. Finally,
Section V concludes the paper.

II. RELATED WORK

A significant amount of work has been introduced for
landmark localization in the last decades. In this section,
we briefly review previous work related to ours, including
methods on 2D and 3D landmark localization, and adversarial
learning for dense prediction tasks.

A. 2D Landmark Localization

Treating the 2D landmark localization task as a regression
problem has become a common practice in recent years. These
methods fall roughly into two categories: coordinate regres-
sion based method and heatmap regression based method.
For the former category, cascaded regression methods [3]–[5]
employ cascaded regressors to learn the mapping from shape-
indexed features to increments of landmark coordinate vec-
tors. Deep neural networks such as Convolutional Neural
Networks (CNNs) [21], [22] and Recurrent Neural Networks
(RNNs) [23], [24] have also been exploited as regressors to
predict the facial landmark shapes. To avoid inefficient learn-
ing of the pixel-to-coordinate mapping, heatmap regression
based methods [2], [8], [10] cast landmark localization as
regressing the heatmaps of landmarks instead of coordinate
vectors. Methods of this category pursue regressing clear and
accurate 2D heatmaps for target landmarks. For example,
Stacked Hourglass Networks [10] uses the symmetric topol-
ogy and intermediate supervision, which has been demon-
strated to be effective in both applications of human pose
estimation [10] and face alignment [2]. Several state-of-the-art
works [1], [2], [25] built upon this architecture achieve nearly
saturate performance on 2D landmark localization. Despite
their effectiveness, it is usually unstable to estimate the posi-
tions from multi-mode heatmaps of those invisible landmarks.
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Very recently, instead of adopting the maximum operation,
Sun et al. [26] propose to infer the landmark coordinate from
its heatmap through the integral operation, which allows end-
to-end training and shows its effectiveness on human pose
estimation.

B. 3D Landmark Localization

Two-step strategy is one of the popular solutions to 3D
landmark localization problems which performs 2D landmark
estimations at first and then predicts the depth information for
these 2D landmarks [14]–[16]. On the other hand, Pavlakos
et al. [11] introduce the volumetric representation for 3D body
joints and show that predicting joints in a discretized 3D
space could be more effective for 3D human pose estima-
tion. The volumetric representation proposed in [11] could
be viewed as a natural extension of the 2D heatmap, which
is highly demanding for memory and computation. Although
regressing such a representation in a coarse-to-fine manner
could alleviate this problem [11], it still cannot avoid the
curse of dimensionality when the number of target landmarks
increases. Therefore, this method can not be easily generalized
to other 3D object landmark localization problems. In contrast,
we propose to encode the positions of all landmarks in a single
volume with the dimensionality fixed regardless of the number
of landmarks, providing a much more efficient solution for
generic 3D landmark localization.

For 3D landmark localization in the wild, one of the
significant challenges is the lack of annotated data. Recently,
several attempts have been made to tackle this problem in a
weakly supervised manner. For instance, Tung et al. [27] com-
bine adversarial priors with the reconstruction loss from re-
projection of 3D predictions for weakly supervised 2D-to-3D
lifting. Zhou et al. [17] introduce a geometric constraint for 3D
human pose to regularize the learning of 3D pose estimation
under the weakly supervised setting. Further, Yang et al. [19]
extend it under an adversarial learning framework by introduc-
ing a multi-source discriminator to enforce the pose estimator
to generate plausible poses on unannotated in-the-wild images.
However, little to no work has investigated weakly supervised
learning for the task of 3D facial landmark localization. In this
work, we treat 2D annotations as weak labels and develop a
novel framework to leverage 2D annotated data for 3D facial
landmark localization under the weakly supervised setting.

C. Adversarial Learning for Dense Prediction

As an emerging technique, Generative Adversarial Net-
works (GANs) [28] have achieved impressive results in var-
ious tasks such as image generation and editing. A typical
GAN comprises two competing modules: a generator and a
discriminator. The discriminator learns to distinguish between
samples produced by the generator and real samples, while the
generator learns to produce samples that are indistinguishable
from real ones. Various improvements [29]–[32] have been
proposed for more stable and easy training of GANs, and
their applications are far beyond image generation. Among
them, side information [33], [34] and auxiliary tasks [32] are
exploited in adversarial learning to enhance performance of

the generator, which also facilitates traditional tasks such
as classification [35] and regression [36]. Moreover, the con-
ditional GANs [31], [37] have been adopted as a general-
purpose solution for dense prediction problems such as image
style transfer, image segmentation, human pose estimation and
parsing. These problems typically involve pixel-level mapping
from input images to structured label maps, which has inher-
ent relationships with heatmap regression based methods for
landmark localization.

For image segmentation, Hung et al. [38] design a fully-
convolutional discriminator to enforce the outputs of the
segmentation network more spatially close to the ground-truth,
so that unlabeled images can be leveraged to enhance the
segmentation model. Similar ideas have also been applied
in human parsing. Liu et al. [39] introduce adversarial net-
works on both feature maps and structured labels for cross-
domain human parsing. Luo et al. [40] develop the Macro-
Micro adversarial network to enforce the local and semantic
consistency of the parsing results. For human pose estimation,
Chou et al. [41] propose to impose the adversarial loss upon
heatmaps, which encourages the pose estimator to produce
reasonable poses. Chen et al. [42] design a multi-task network
to generate both pose heatmaps and occlusion heatmaps,
where two discriminators are adopted to distinguish between
plausible estimations and implausible ones. The key to the
success of the previous work is the idea of the adversarial
learning strategy that helps the produced label maps more
geometrically reasonable. In this work, we exploit adversarial
learning to encourage the predicted volumes, which could
be viewed as label maps with 3D structures, to be more
geometrically reasonable under the weakly supervised setting.

III. METHOD

As illustrated in Fig. 1, the backbone of the proposed
method consists of two parts, i.e. a volume estimator and
a coordinate regressor. In addition, an auxiliary regression
volume discriminator is proposed for adversarial training of
our network. In the following subsections, we firstly introduce
the proposed volumetric representation for the 3D face shape,
then we present the joint voxel and coordinate regression for
unified 2D and 3D landmark localization. Finally, we describe
the adversarial training strategy for 3D landmark localization
in a weakly supervised manner.

A. Semantic Volumetric Representation

Previous works [11], [43] have shown that encoding the
landmark positions into heatmap-like or volumetric represen-
tations could provide much more discriminative information
than naively concatenating the coordinate vectors of 2D or 3D
landmarks. This kind of dense supervision makes it easier for
fully convolutional networks to learn pixel to pixel mappings,
and has been widely used in tasks such as facial landmark
localization [8] and human pose estimation [10], [43].

For 3D landmark localization, the volumetric representation
proposed in [11] encodes the position of a specific land-
mark in a volume with a 3D Gaussian centered around the
ground truth position. This idea extends the typically used 2D
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Fig. 1. Illustration of the proposed framework. The backbone network of our method consists of a volume estimator G and a coordinate regressor P .
Besides, an auxiliary regression volume discriminator D is employed to encourage the volume estimator to generate plausible volumes, where the encoder of
the auto-encoder based discriminator shares weights with the coordinate regressor.

heatmap in a natural manner, which leads to a representation
with much larger dimensionality. Although regressing such
a representation in a coarse-to-fine manner could alleviate
this problem, the curse of dimensionality cannot be avoided
when the number of target landmarks increases. Instead of
representing each landmark individually in a single volume,
we propose the semantic volumetric representation to encode
positions of all target landmarks in a more compact manner
while preserving their semantic relationship through different
colors. Specifically, for the 3D face shape s with N target
landmarks {sn}N

n=1, N different colors {cn}N
n=1 are bound with

each landmark, where cn = [cn
1 , cn

2 , cn
3 ] is a triplet denoting

the color value of R, G and B channel for the n-th landmark
respectively. Coordinates of all target landmarks are converted
into a colored (i.e. 3 channels in this case) 3D volume V with
the size of w×h ×d . Let Vl,i, j,k denote the l-th channel color
value of the voxel located at (i, j, k). For the n-th landmark
located at sn = (xn, yn, zn), its contribution to Vl,i, j,k can be
written as:

vn
l,i, j,k = cn

l
1

(2π)
3
2 σ 3

e
− (xn−i)2+(yn− j)2+(zn−k)2

2σ2 , (1)

where the kernel size σ is set empirically. For the 3D face
shape with N target landmarks, the overall contribution to
Vl,i, j,k takes as the maximum value in {vn

l,i, j,k }N
n=1:

Vl,i, j,k = max
n

vn
l,i, j,k . (2)

Hence, the dimensionality of the representation is fixed regard-
less of the number of target landmarks. Compared with
the compact volumetric representation [20], which could be
viewed as a greyscale volume discarding semantic meaning
of landmark points, the colored variant proposed here is more
discriminative as shown later in our experiments.

Analogously, for the 2D face shape {sn = (xn, yn, 0)}N
n=1

without depth annotations (zn is set as 0 for notation simplic-
ity), we could create the semantic heatmap H with the size of
w × h in a similar manner. Specifically, the l-th channel color
value of the pixel located at (i, j) can be calculated as:

Hl,i, j = max
n

cn
l

1

2πσ 2 e
− (xn−i)2+(yn− j)2

2σ2 . (3)

Note that such a heatmap could also be viewed as a volume
with the size of w × h × 1. In addition, given a 3D volume,
the corresponding semantic heatmap could also be obtained
through marginalizing the volume along the z dimension:

Hl,i, j =
∑

k

Vl,i, j,k . (4)

In this way, the semantic heatmap could be seen as a byproduct
of the proposed semantic volumetric representation. Fig. 2
visualizes the 3D face shape and the corresponding volumetric
and heatmap representations. It is worth noting that, in this
paper, we also refer to the semantic volumetric representation
as semantic volume or volume for simplicity.

B. Joint Voxel and Coordinate Regression

Cascaded regression is wildly employed in 2D landmark
localization. Such a strategy could make full use of the
regressors and progressively refine the output of the networks.
Our method follows this technique and decouples the facial
landmark localization problem into the following two sub-
tasks. The first one aims to regress the ideal volumetric repre-
sentations of landmarks in a coarse-to-fine manner. The second
one aims to regress the coordinate vectors of landmarks from
the predicted volumetric representations and the input image.

1) Coarse-to-fine Volume Estimator: The volume estimator
G learns the mapping from pixels of the input image I to
the volumetric representations V : G(I) → V . Inspired by
previous works [10], [11] on 2D and 3D human pose esti-
mation, we also adopt the Stacked Hourglass Networks [10]
with intermediate supervision and skip connection. Specifi-
cally, the volume estimator consists of M stacked Hourglass
modules [10] of which supervisions are ground-truth volumes
denoted as V = {Vm}M

m=1. Then, the volume estimator is
trained using the voxel-wise mean squared error loss:

Lvox(V|I) =
M∑

m

∑

l,i, j,k

∥∥∥Gm(I)l,i, j,k − Vm
l,i, j,k

∥∥∥
2
, (5)

where Gm(·) denotes the volume outputted by the m-th Hour-
glass module.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on February 22,2020 at 08:45:42 UTC from IEEE Xplore.  Restrictions apply. 



4530 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 9, SEPTEMBER 2019

Fig. 2. Visualization of different representations. (a) 3D plot of a face shape
in the coordinate system; (b) The compact volumetric representation; (c) The
semantic volumetric representation; (d) The semantic heatmap obtained by
marginalizing the corresponding semantic volumetric representation; (e) The
correspondence between landmark indexes and colors. For both compact
and semantic volumetric representation, the voxel values are indicated by
the density of the point cloud. For the semantic volumetric representation
and heatmap, voxels/pixels around different landmarks are colored with the
corresponding colors. For simplicity, volumetric representation is also referred
to as volume in this paper. Best viewed in electronic form.

As pointed out in [11], making accurate prediction along
the z dimension is much more challenging than another two
dimensions. Hence, regressing volumes with the increasing
resolution along the z dimension in a coarse-to-fine manner
could be more effective and robust. In practice, the resolution
d of Vm takes the number from preset values and progressively
increases along with m.

2) Coordinate Regressor: Typical coordinate regression
based methods predict the coordinate vectors or their incre-
ments directly from image features, while typical heatmap
regression based methods [8], [10], [44] retrieve the coordi-
nates of landmarks from the peak points of the corresponding
heatmaps. In our case, however, the conventional “taking-
maximum” operation is no longer applicable since the posi-
tions of all landmarks are encoded into a single volume.
By combining the two forms of regression based methods,
we propose to infer coordinates of landmarks from both
volumetric representations and the corresponding input image
for robust landmark localization.

To this end, we adopt a coordinate regressor P to learn
the mapping from volumetric representations V = {Vm}M

m=1
and the input image I to the corresponding coordinate vec-
tor s: P (V, I) → s. Inspired by the work on 3D object

recognition [45] and hand pose estimation [46], we employ
3D convolution kernels instead of 2D kernels in our coordinate
regressor. The 3D convolution is typically used to extract
features from both spatial and temporal dimensions for video
analysis problems [47], hence it could be more naturally
adopted to extract 3D information from the volumetric repre-
sentation. The proposed coordinate regressor consists of five
3D convolutional layers, with batch normalization and Leaky
ReLU activation added in between and a fully connected layer
at the end. For training, we employ L2 regression loss to
measure the error of predicted coordinate vectors:

Lcoord(s|V, I) = ‖s − P (V, I)‖2
2 , (6)

where s denotes the concatenated vector of the ground-truth
landmark coordinates.

3) Unified 2D/3D Facial Landmark Localization: Since the
semantic heatmap and 2D coordinate vector are byproducts
under the proposed framework, we can naturally adopt a
mixed training technique utilizing both 2D and 3D datasets
simultaneously. Let I2D and I3D denote the 2D and 3D
datasets respectively. Each training sample {I, s,V} consists
of the input image I, the ground-truth face shape s, and
the ground-truth volumes V created according to s, where
s = {(xn, yn)}N

n=1 and V = {Hm}M
m=1 for 2D datasets,

s = {(xn, yn, zn)}N
n=1 and V = {Vm}M

m=1 for 3D datasets.
Then, the loss function for the volume estimator G is unified
as:

Lvox(V|I)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M∑

m

∑

l,i, j

∥∥∥∥∥
∑

k

Gm(I)l,i, j,k − Hm
l,i, j

∥∥∥∥∥

2

, i f I ∈ I2D

M∑

m

∑

l,i, j,k

∥∥∥Gm(I)l,i, j,k − Vm
l,i, j,k

∥∥∥
2
, i f I ∈ I3D.

(7)

The loss function for the coordinate regressor P is also unified
as:

Lcoord(s|V, I) =
{∥∥[s]2D − [P (V, I)]2D

∥∥2
2 , i f I ∈ I2D

‖s − P (V, I)‖2
2 , i f I ∈ I3D,

(8)

where [·]2D denotes the operator extracting 2D coordinates
from 3D coordinate vector. With the proposed unified frame-
work, the network can be jointly trained with both synthetic
images fully annotated with 3D landmarks and real-world
images annotated with only 2D landmarks.

4) Two-stage Training: Instead of training the whole net-
work from scratch, we adopt a two-stage training scheme
which is more stable and effective in our experiments. The
two subnetworks mentioned above are pre-trained separately
for each sub-task beforehand and finally fine-tuned as an
integrated one. Specifically, at the pre-training stage, the vol-
ume estimator is trained with input images and ground-
truth volumes. Meanwhile, the coordinate regressor is trained
with ground-truth volumes (concatenated with the downsam-
pled input images) and the corresponding coordinate vectors.
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At the fine-tuning stage, the coordinate regressor is attached to
the volume estimator, and the whole network is fine-tuned with
joint supervision of both ground-truth volumes and coordinate
vectors. Formally, the whole network is trained in an end-to-
end manner using the weighted sum of two regression loss
terms at the final stage:

L = Lvox(V|I) + λcoordLcoord(s|V̂, I), (9)

where V̂ = {Gm(I)}M
m=1 denotes the predicted volumes, and

λcoord is used to balance the two terms.

C. Auxiliary Regression Adversarial Learning

Existing 2D annotated face datasets consist of real-world
images covering a diverse range of poses, expressions, occlu-
sions and illuminations. For the task of 3D landmark localiza-
tion, those 2D annotations could be regarded as weak labels
due to the lack of depth information. For better leveraging
2D and 3D annotated datasets, we further adopt the adversar-
ial training strategy to distill the geometric structures from
3D annotated datasets to real-world images. To this end,
the volume estimator is treated as a generator which aims
at producing plausible volumes for both synthetic and real-
world images. Meanwhile, a volume discriminator is adopted
to distinguish ground-truth volumes from those generated by
the volume estimator. During training, the volume estimator
is learned to estimate volumes that are indistinguishable from
the ground-truth ones. In this way, the volume estimator is
regularized so that the estimations on real-world images are
imposed to have a similar distribution with the ground-truth
volumes.

1) Auxiliary Regression Volume Discriminator: The dis-
criminator D is designed to tell whether the volumes are
geometric plausible or not. Since a plausible face shape for a
particular image may still be inaccurate for another face image,
the input of the discriminator contains the concatenation of
the volumes and their corresponding face images. For training
the discriminator, those inputs comprising the ground-truth
volumes are treated as real samples, and those comprising vol-
umes predicted by the estimator G on both 2D and 3D datasets
are treated as fake samples. Moreover, the discriminator adopts
an autoencoder-like architecture and computes reconstruction
errors Lreal and L f ake for real samples and fake samples,
respectively. Specifically, for real samples, the discriminator is
optimized to reconstruct volumes similar to the given ground-
truths, i.e., minimizing Lreal . On the other hand, for fake
samples, the discriminator is optimized to reconstruct volumes
different to the given estimations, i.e., maximizing L f ake. In
this way, the discriminator could be viewed as an energy
function which assigns low energy to real samples and high
energy to fake ones. Formally, both Lreal and L f ake adopt the
voxel-wise mean squared error loss, which could be written
as:

Lreal(V, I) =
M∑

m=1

∥∥Vm − Dm(V, I)
∥∥2

2

L f ake(V̂, I) =
M∑

m=1

∥∥∥V̂m − Dm(V̂, I)
∥∥∥

2

2
, (10)

Algorithm 1 The Training Process of the Proposed Method

where Dm(·, ·) denotes the m-th volume reconstructed by the
discriminator.

As shown in previous work on GAN technique, utilizing
side information in the GAN framework could improve the
training procedure [32]. Motivated by this, we assign the
discriminator an auxiliary task, that is, regressing landmark
coordinates from the input images and volumes. In practice,
the encoder of the discriminator shares weights with the coor-
dinate regressor P , and the discriminator is optimized along
with the coordinate regression loss. Therefore, the overall loss
function for training the discriminator is written as follows:

LD =
∑

I∈I3D

Lreal(V, I) + λauxLcoord(s|V, I)

+
∑

I∈I2D∪I3D

(
−μtL f ake(V̂, I) + λauxLcoord(s|V̂, I)

)
,

(11)

where the weight λaux is used to balance the auxiliary
regression loss and reconstruction loss. Inspired by previous
work [30], [41], we introduce a variable μt ∈ [0, 1] to control
the learning procedure of the discriminator and generator.
Formally, the variable μt is initialized as 0 and updated at
each training step t using the following equation:

μt+1 = μt + λμ(γLreal (V, I) − L f ake(V̂, I)), (12)

where λμ and γ are two hyper-parameters. During training,
μt is used to control the emphasis on L f ake, and adjusted
proportionally according to the gap between γLreal and L f ake.
In this way, the discriminator is optimized more adaptively so
that the training of GAN could be more stable.

2) Adversarial Training of Volume Estimator: Under the
proposed framework, the volume estimator G is treated as a
generator and aims to produce geometrically plausible volumes
for given images. The discriminator punishes the volume
estimator when its predictions are far from being satisfactory.
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Specifically, besides the volume regression loss, the volume
estimator G is optimized with the training signals back-
propagated from the discriminator and the coordinate regres-
sor, including the coordinate regression loss Lcoord(s|V̂, I) and
the adversarial loss Ladv(V̂, I), where

Ladv(V̂, I) =
M∑

m=1

∥∥∥V̂m − D(V̂m , I)
∥∥∥

2

2
. (13)

The total loss for the volume estimator G is written as:

LG =
∑

I∈I2D∪I3D

Lvox(V|I) + λcoordLcoord(s|V̂, I)

+ λadvLadv(V̂, I). (14)

We also pretrain the volume estimator and coordinate
regressor before adopting the adversarial training strategy. At
the pre-training stage, the volume estimator and coordinate
regressor are optimized by the loss function Eq. (5) and
Eq. (6) respectively, using the synthetic dataset fully annotated
with 3D landmarks. After that, the synthetic dataset with 3D
annotations and the real-world dataset with 2D annotations
are mixed for training. During this stage, the generator (i.e.
volume estimator) and discriminator are optimized alternately
under the proposed auxiliary regression adversarial learning
framework. The whole training process is summarized in
Algorithm 1.

IV. EXPERIMENTS

In this section, we evaluate the proposed method on both 2D
and 3D facial landmark localization tasks. We first describe
the implementation details of the proposed method. Then,
we introduce the datasets as well as the evaluation metrics used
in our experiments. After that, we present the experimental
results of the proposed method. In the end, we conduct ablation
study to investigate the effectiveness of components proposed
in our method.

A. Experimental Settings

The proposed network takes a 256 × 256 face image as
input and outputs predictions of the volumetric representa-
tion and the coordinate vector. Following the setting of [11],
four Hourglass modules are stacked together as the volume
estimator (i.e. M = 4) and output volumes with the size
of 64 × 64 × d , where the resolution d in z-dimension is
chosen from the set {1, 2, 4, 64} successively. The Gaussian
kernel size in Eq. (1) is empirically set as σ = 1. The
weights used in Eqs. (9), (11) and (14) are set as λcoord = 1,
λaux = 0.1 and λadv = 0.001 respectively. Among them,
parameters λcoord and λaux are simply selected in order to
make values of the corresponding terms have similar scales
with respect to the overall loss function. The parameter λadv

is selected to be relatively small so that the original regression
terms could still play dominant roles in LG . The hyper-
parameters used in Eq. (12) are set as λμ = 0.001 and
γ = 0.7 respectively in our experiments, which is followed the
setting of BEGAN [30]. During training, data augmentation
techniques, such as rotation (±40Â°), scaling (0.7 to 1.3),
color jittering (±30% channel-wise) and flipping, are applied

randomly to input images. In the experiments, the network is
pre-trained for 20 epochs on a 3D dataset, and then the model
is fine-tuned for 10 epochs on the same 3D dataset or trained
for 20 epochs on the mixture of 2D and 3D datasets. We
adopt the ADAM [48] optimization algorithm with an initial
learning rate of 2.5 × 10−4 to train the model, and reduce the
learning rate to 2.5 × 10−5 after 20 epochs. Our approach is
implemented using PyTorch.

B. Time Complexity

In the proposed framework, only the volume estimator and
coordinate regressor are involved during testing. Our model
(with 4 Hourglass modules) can run in realtime, with the speed
of 23fps tested on an NVIDIA TITAN Xp GPU. The most
time-consuming part of our model is the volume estimator
since it takes about 10ms for one Hourglass module to process
an image. The introduced execution time of the coordinate
regressor is minor since it accounts for less than 2ms during
testing. In practical usage, we can reduce the number of
Hourglass modules from 4 to 2 to double the speed while
obtaining comparable results (see Table V). It is also worth
noting that the speed of our approach using either the semantic
or compact volume is nearly the same since only several layers
are different in the network architecture.

C. Datasets

We evaluate the proposed method on multiple face datasets
including synthetic datasets with 3D annotations and real-
world datasets with 2D annotations. Details of these datasets
used in our experiments are listed below.

3DFAW [12] is provided by organizers of the 3D Face
Alignment in the Wild (3DFAW) Challenge [12]. It con-
tains more than 23000 face images from BU-4DFE [49],
BP4D-Spontaneous [50] and MultiPIE [51]. For each face
image in the dataset, 66 3D facial landmarks as well as
the face bounding box are annotated. The 3D points are
annotated consistently using a model-based structure-from-
motion technique [52]. The 3DFAW dataset is divided into
three subsets: training set, validation set and test set, con-
taining 13969, 4725 and 4912 face images, respectively. Our
method is trained on the training set and tested on both the
validation and test set. It should be noted that the ground-truth
3D landmarks of the test set are not publicly available. Hence
the evaluation results on the test set are provided by 3DFAW
Challenge organizers via the CodaLab platform1.

300W-LP [13] contains 61225 synthetic face images across
large poses ranging from −90Â° to 90Â°. Those images are
synthesized from 300W [53] using the 3D morphable model
based profiling algorithm proposed in [13]. For each face, 68
3D landmarks are retrieved from the parameters of the 3D
morphable model, using the released code of [13]. In our
experiments, the depth values are normalized to have zero
mean. The 300W-LP dataset is only used for training, and our
method is evaluated on the AFLW2000-3D dataset mentioned
below.

1https://competitions.codalab.org/competitions/10261
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AFLW [54] is a large-scale real-world dataset for facial
landmark localization, which contains 25,993 faces covering
large variations in appearance and environmental conditions.
The original dataset provides up to 21 annotated points visible
on each face. To obtain 2D landmarks under 3D perspec-
tive, we use the algorithm proposed in [2] to augment the
annotations to 68 landmarks. In our experiments, 20000 faces
exclusive of those in AFLW2000-3D [13] are used as 2D
training data.

AFLW2000-3D [13] contains 2000 face samples selected
from the AFLW [54] dataset, introduced by Zhu et al. [13]
along with the 300W-LP dataset. The 68 3D landmarks anno-
tated in AFLW2000-3D are consistent with those of 300W-LP.
We use the AFLW2000-3D dataset only for testing in
our experiments, following the common protocol in the
literature [13], [55].

D. Evaluation Metrics

For fair comparison, same evaluation metrics are adopted
as in previous works [12], [13].

For evaluation on 3DFAW datasets, the Ground Truth
Error (GTE) and Cross View Ground Truth Consistency
Error (CVGTCE) are used to measure the performance as
recommenced in the 3DFAW Challenge [12]. GTE is defined
as the average point-to-point Euclidean error normalized by the
distance between the outer corners of the eyes, which could
be computed as:

GT E(s, ŝ) = 1

N

N∑

n=1

∥∥sn − ŝn
∥∥

2

ri
(15)

where s and ŝ are the prediction and ground truth respec-
tively, and ri denotes the normalized distance of the i -th
image.

CVGTCE is proposed in the 3DFAW Challenge and aims
at evaluation of the cross-view consistency of the predicted
landmarks, which is defined as follows:

CV GT C E(s, ŝ, p) = 1

N

N∑

n=1

∥∥(αRsn + t) − ŝn
∥∥

2

ri
(16)

where the parameter p = {α, R, t} denotes the rigid transfor-
mation, i.e. scale, rotation and translation, which are obtained
by minimizing the follow objective function:

{α, R, t} = arg min
α,R,t

N∑

n=1

∥∥ŝn − (
αRsn + t

)∥∥
2 (17)

For evaluation on AFLW2000-3D, the metric is chosen
as the Normalized Mean Error (NME), which is defined as
the average point-to-point Euclidean error normalized by the
square root of the bounding box size. The formulation of NME
could be written as the same as Eq. (15), where the normalized
distance ri is adapted as the bounding box size. Note that the
bounding box size is calculated from 2D landmarks for both
tasks of 2D and 3D facial landmark localization, which is
consistent with previous work [2], [56].

TABLE I

COMPARISON OF GROUND TRUTH ERROR (GTE)
ON THE VALIDATION SET OF 3DFAW

E. 3D Facial Landmark Localization

In this subsection, we compare our approach with existing
methods on synthetic dataset 3DFAW and real-world dataset
AFLW2000-3D for the task of 3D facial landmark localization.

1) Evaluation on 3DFAW: Since both the training and
testing samples of 3DFAW are comprised of synthetic images,
we train the network with 3D dataset without using the adver-
sarial learning strategy. The evaluation on 3DFAW consists of
two parts. The first part is evaluated on the validation set, and
the second part is the performance evaluation on the test set
where results are provided by the challenge organizers.

Table I shows the comparison results of GTE on the
validation set. It can be observed that the proposed method out-
performs others, most of which except our previous work [20]
are based on the two-step strategy. For comparison with top
ranked methods on the 3DFAW Challenge, we further evaluate
our method on the test set. Comparisons of both CVGTCE and
GTE on the 3DFAW test set are reported in Table II. Note that
the ground truth 3D landmarks of the test set are not available
to the participants, and the numbers for all methods are taken
from the CodaLab leaderboard and literature [12], [58]. Our
method achieves the best result in comparison with other
methods, including the previously top-ranked method [15] and
Tulyakov et al. [58] which is built upon a 3D variant of
cascaded regression method. The previous top two methods,
Bulat and Tzimiropoulos [15] and Tulyakov et al. [58], belong
to heatmap regression based methods and coordinate regres-
sion based methods respectively. Our method outperforms
them considerably since the proposed joint voxel and coor-
dinate regression pipeline combines merits of the robustness
of heatmap regression based methods and the accuracy of
coordinate regression based methods. In addition, the end-to-
end regression of 3D landmark shapes also contributes to the
superior performance over those methods using the two-step
strategy, which typically perform the 2D landmark localization
followed by depth prediction. Our method proposed in this
paper also outperforms our previous work [20], which uses
compact volumes as regression targets of the volume estimator.
It can be seen in Table II that there is around 7% improvement
over the previously best method [15] and 3% improvement
over our previous work JVCR [20]. Fig. 5 shows example
results of the proposed method on the 3DFAW validation set.

2) Evaluation on AFLW2000-3D: We further evaluate our
method on AFLW2000-3D to demonstrate the effectiveness of
our method on face images with large poses and appearance
variations. In this case, our model is trained on 300W-LP
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TABLE II

COMPARISONS OF CROSS VIEW GROUND TRUTH CONSISTENCY
ERROR (CVGTCE) AND GROUND TRUTH ERROR (GTE)

ON THE TEST SET OF 3DFAW

TABLE III

COMPARISON OF NORMALIZED MEAN ERROR (NME) ON AFLW2000-3D

Fig. 3. Comparison of Cumulative Errors Distribution (CED) curves on
AFLW2000-3D. 68 landmarks with 3D coordinate are considered in the
evaluation. Curve of other methods are borrowed from literature [56].

and AFLW datasets using the proposed adversarial learning
strategy after the pre-training stage on 300W-LP. Compar-
isons of NME and CED curves against other state-of-the-
art methods are shown in Table III and Fig. 3 respectively.
Our method outperforms all previous methods including two-
step strategy based method 3D-FAN [2] and 3D face model
based methods such as 3DSTN [55] and PRN [56]. Likewise,
our method also obtains significant improvement over the
most recent state-of-the-art [56] and our previous work [20].
Besides the proposed end-to-end pipeline, our success could
also be attributed to the adversarial learning of the model
since it helps to distill structural constraints from 3D annotated
datasets to real-world images. This would be further demon-
strated in our ablation experiments later. Example results
of our method on AFLW2000-3D are depicted in Fig. 6.
It can be seen that our method is robust to occlusions
and large appearance variations occurred in real-world face
images.

Fig. 4. Comparison of Cumulative Errors Distribution (CED) curves on
AFLW2000-3D. 68 landmarks with 2D coordinate are considered in the
evaluation. Curve of other methods are borrowed from literature [56].

F. 2D Facial Landmark Localization

We also compare our method with other state-of-the-arts on
AFLW2000-3D for 2D facial landmark localization task. In
this case, only 2D coordinates are involved in the evaluation
and Normalized Mean Error (NME) is chosen as the evaluation
metric. Note that the model is trained in the same way as
the model evaluated on AFLW2000-3D in the 3D case. The
CED curves for various methods are shown in Fig. 4. The
proposed method achieves superior performance compared
with others. To further evaluate the proposed method across
poses, we report NME on three subsets which are divided
according to their head yaw angles. The comparison with exist-
ing methods for 21 and 68 landmarks are shown in Table IV.
The results of RCPR [60], ESR [3], and SDM [4] are obtained
from [13] and these methods have been retrained on 300W-
LP for adaptation to large poses. Our method is barely
surpassed by 3D-FAN [2] when evaluating 21 landmarks,
where only visible landmarks are involved in the evaluation
and performances of existing methods are nearly saturated.
The inferior performance on the evaluation of 21 landmarks
is also in part due to the inconsistency of the annotation
schemes, since the ground-truth 21 landmarks with visible
labels provided in AFLW are not perfectly aligned with the
corresponding subset of 68 landmarks. When considering all
68 landmarks, the testing case is consistent with the training
and our method outperforms others considerably. It can be
seen from Table IV that the proposed method achieves superior
performance especially for middle and large poses.

G. Ablation Study

Several components proposed in our method jointly con-
tribute to the success of our method. To evaluate the efficacy
of each component, we conduct ablation experiments using
different configurations of our method. We first give compre-
hensive investigations on the introduced semantic volumetric
representation, then validate the two-stage training scheme,
and finally give deeper analyses of the proposed auxiliary
regression adversarial learning strategy.

1) Semantic volumetric representation: For ablation exper-
iments in this part, we train the network with the 300W-LP
dataset without using the adversarial learning strategy and
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TABLE IV

COMPARISON OF NME (%) ON AFLW2000-3D. ONLY 2D COORDINATES ARE INVOLVED IN THE EVALUATION

Fig. 5. Example results of the proposed method on 3DFAW. The upper row shows the face images as well as the 2D facial landmark localization results.
The lower row shows the predicted volumetric representations (left) and 3D facial landmarks (left). Red and blue indicate the ground-truth and estimated
landmark shapes respectively.

report results on the AFLW2000-3D dataset. To demonstrate
the advantage of the proposed semantic volumetric represen-
tation over the compact volumetric representation, we replace
the supervision of the volume estimator with the compact
volumetric representation.

a) Number of hourglass modules: We vary the number
of stacked Hourglass modules from 1 to 8 for comprehensive
analyses. As shown in Table V, approaches using semantic
volumes as the supervision outperform those using the com-
pact ones, which is consistent across different numbers of
Hourglass modules adopted in the volume estimator. More-
over, the one stacked network supervised by semantic volumes
obtains the result comparable to the two or three stacked
network supervised by compact volumes, though nearly a
half to a third of parameters are retained. This suggests
that the semantic volume is preferred especially in practical
applications where the computational power is limited. It is
also worth noting that the improvement brought by using
more Hourglass modules is marginal and becomes saturated
especially when the stacked number is greater than 4.

b) Number of target landmarks: We also investigate the
impact of the number of target landmarks. The following three
subsets selected from the original 68 landmark annotations are
used as new target landmark shapes for training and evaluation.
The first subset contains 5 points including eye centers, nose
tip and mouth corners. The second subset contains 21 points
semantically similar to the annotation scheme of AFLW. The
third subset contains the remaining 51 points after removing
the 17 points of the face’s boundary from 68 points. The
landmark definitions are consistent during the training and
evaluation phases. For fair comparison, the bounding box
size calculated from 68 points is used as the normalization
distance for the evaluation of all subsets. Results of our method
with respect to the different number of target landmarks are
reported in Table VI. It can be seen that the proposed semantic
volumetric representation is superior to the compact one
regardless of the number of target landmarks. What’s more,
the semantic volumes bring significantly more improvement
over the compact volumes when decreasing the number of
target landmarks. This is because the compact volumes are
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Fig. 6. Example results of the proposed method on AFLW2000-3D. Images are arranged in the same layout as Fig. 5.

TABLE V

3D FACIAL LANDMARK LOCALIZATION PERFORMANCE (NME %)
OF APPROACHES SUPERVISED WITH COMPACT VOLUMES VERSUS

SEMANTIC VOLUMES ON AFLW2000-3D.

TABLE VI

3D FACIAL LANDMARK LOCALIZATION PERFORMANCE (NME %) OF

ABLATION APPROACHES REGARDING THE DIFFERENT NUMBER OF

TARGET LANDMARKS ON AFLW2000-3D

more ambiguous when the target landmark shapes become
sparser, which makes it more difficult for the coordinate
regressor to infer the relationships between landmarks. The
semantic volume overcomes this issue since such a represen-
tation encodes the landmark relationships and contains more
complete information.

c) Appearance of the semantic volume: The color assign-
ment strategy and kernel size σ contribute to the variant
appearance of the semantic volume. Intuitively, assigning
contrasting colors to adjacent landmarks and adopting a
smaller kernel size would make the volume clearer from the

TABLE VII

3D FACIAL LANDMARK LOCALIZATION PERFORMANCE (NME %) OF

APPROACHES ADOPTING DIFFERENT COLOR ASSIGNMENT STRATEGY
AND KERNEL SIZE σ ON AFLW2000-3D

perspective of human being. To evaluate whether these alter-
native options could help in boosting the performance, we
randomize the landmark indexes to assign colors and vary
the kernel size σ from 0.5 to 5 as well. Table VII reports
performance of approaches adopting different color assign-
ment strategies and kernel sizes. As can be seen, adopting
either sorted or random color assignment strategy could result
in similar performance, which means that the appearance
of volumes has no direct impact on the final results. This
could be due to the fact that the volumes are intermediate
representations in our network and the coordinate regres-
sor is learned in an end-to-end manner. On the other side,
adopting larger kernel sizes of the volume is feasible in
our model. When σ � 1, approaches with different kernel
sizes achieve similar performance. However, the performance
gets inferior when the kernel size is too small (σ < 1).
One reasonable explanation is that the volumes become too
sparse when the kernel size is too small, making it harder
for the coordinate regressor to infer landmark shapes from
them.

2) Two-stage training: The two-stage training scheme is
shown to be more stable and effective in our experiments. As
an alternative, the one-stage training scheme refers to training
the whole network from scratch. Table IX reports the results
of approaches using different training schemes. It can be
seen that the approach adopting the two-stage training scheme
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TABLE VIII

2D FACIAL LANDMARK LOCALIZATION PERFORMANCE (NME %)
OF APPROACHES USING DIFFERENT TRAINING

STRATEGIES ON AFLW2000-3D

TABLE IX

3D FACIAL LANDMARK LOCALIZATION PERFORMANCE (NME %) OF
APPROACHES ADOPTING ONE-STAGE VERSUS TWO-STAGE TRAINING

SCHEME ON AFLW2000-3D

Fig. 7. Qualitative comparison of ablation approaches adopting one-stage
(the top row) and two-stage (the bottom row) training schemes on the AFLW
dataset.

achieves higher performance. This could be further confirmed
by visualization of the volumes estimated by approaches using
different schemes. As observed in Fig. 7, the network could
produce much clearer volumes when adopting the two-stage
training scheme.

3) Auxiliary regression adversarial learning: Finally,
we conduct experiments to investigate the efficacy of the
auxiliary regression adversarial learning strategy proposed
in this paper. Experimental settings using different learning
strategies are denoted as follows:

· Baseline refers to the approach adopting the backbone
network where only the 3D dataset (300W-LP) is used for
training.

· Baseline-mix refers to the approach adopting the unified
training strategy where 3D and 2D datasets (300W-LP and
AFLW) are used for training.

· Adversarial refers to the approach adopting the proposed
auxiliary regression adversarial learning strategy where 3D and
2D datasets (300W-LP and AFLW) are used for training.

a) Adversarial learning: For 3D facial landmark local-
ization, the performance of approaches using different strate-
gies and different numbers of stacked Hourglass are shown
in Fig. 8. It can be observed that the unified training strategy
is helpful to improve the generalization of the network on real-
world images where the 2D dataset is involved in the training
procedure. Moreover, the adversarial training strategy further
improves the results since the 3D structural constraints are
better distilled from the 3D dataset to 2D dataset. Qualitative

Fig. 8. 3D facial landmark localization performance (NME %) of approaches
using different training strategies on AFLW2000-3D.

Fig. 9. Qualitative comparison of ablation approaches on the AFLW dataset.
The three rows are results of (from top to bottom) Baseline, Baseline-mix and
Adversarial respectively.

Fig. 10. NME curves of ablation approaches across training epochs on
AFLW2000-3D.

comparison of ablation approaches is also shown in Fig. 9.
The unified training of 2D and 3D datasets improves the 3D
predictions on images taken under challenging scenarios, and
the results are further refined through adversarial learning.
Meanwhile, the proposed strategies also facilitate 2D facial
landmark localization task as well. To further validate this,
Table VIII reports performance of ablation approaches across
different head poses for 2D facial landmark localization. It
can be seen that the adversarial training strategy could bring
significant improvements over baseline methods for all ranges
of the head pose.

b) Auxiliary regression task: The auxiliary regression
task of discriminator contributes to stable training of the
proposed network. To validate this, the discriminator and
coordinate regressor are isolated so that there is no weight
sharing between them. Such an experiment setting is denoted
as Adversarial-w/o-sharing. For different ablation approaches,

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on February 22,2020 at 08:45:42 UTC from IEEE Xplore.  Restrictions apply. 



4538 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 9, SEPTEMBER 2019

Fig. 11. Curves of γLreal −L f ake , Lreal and L f ake vs. global steps during the adversarial learning procedure. (a)(b)(c) The parameter λadv varies from
0.0001 to 0.01 with the parameter λaux fixed as 0.1. (d)(e)(f) The parameter λaux varies from 0 to 1 with the parameter λadv fixed as 0.001. Note that
λaux = 0 indicates the case where the discriminator and coordinate regressor are isolated so that there is no weight sharing between them.

NME across different training epochs on AFLW2000-3D are
reported in Fig. 10. It can be seen that the proposed auxiliary
regression adversarial learning strategy could facilitate stable
training as the model converges faster and achieves a lower
error.

To gain deeper insights into the role the auxiliary regression
task plays on the adversarial learning procedure, we conduct
experiments varying the parameters λadv and λaux , which
are two essential parameters for training the generator and
discriminator respectively. Curves of Lreal and L f ake as well
as γLreal −L f ake vs. global steps are shown in Fig. 11, where
we fix one parameter of them and vary another parameter for
comparison. As observed from Fig. 11a and 11d, increasing
either λadv or λaux has similar effect on the training procedure.
Both these two cases enlarge the gap between γLreal and
L f ake, which means that they all contribute to hindering
the discriminator from differentiating fake samples between
the real ones. This could help to stabilize the adversarial
learning procedure since GAN is typically unstable when the
discriminator gets too strong too quickly. However, the inher-
ent mechanisms of how these two parameters work upon
the model are different. When increasing λadv , the generator
(i.e. volume estimator) is encouraged to produce fake samples
with lower reconstruction error. This could be concluded from
Fig. 11b and 11c, where curves of Lreal are similar, while
curves of L f ake become lower with the increasing of λadv . On
the other hand, when increasing λaux , the discriminator assigns
higher reconstruction error for both real and fake samples as
shown in Fig. 11e and 11f. This could be explained by the
extra regularization imposed by the auxiliary regression task,

which makes the discriminator’s job harder. Such regulariza-
tion facilitates the stable training and results in a better model
with higher performance.

V. CONCLUSION

In this paper, we propose the adversarial voxel and coor-
dinate regression framework for 2D and 3D facial landmark
localization. First, the semantic volumetric representation is
introduced to encode positions of all landmarks in a single
volume while still preserving their semantic information. The
dimensionality of such a color indexed representation could
be reduced greatly compared with the conventional channel
indexed volumetric representation. By combining the merits
of both heatmap regression and coordinate regression based
methods, the proposed joint voxel and coordinate regression
provides a promising solution for robust and accurate facial
landmark localization. Meanwhile, 2D and 3D landmark local-
ization problems could be unified in the proposed framework
so that 2D and 3D datasets could be leveraged simultaneously.
To further utilize different types of existing datasets, we exploit
adversarial learning to distill the 3D structure of face shapes
learned from fully annotated datasets to real-world images
without depth annotations. The proposed auxiliary regression
adversarial learning strategy effectively enhances the per-
formance of landmark localization in challenging scenarios.
Experimental results on both 2D and 3D landmark localization
demonstrate the effectiveness of the proposed method. In
future work, we will consider exploiting the proposed pipeline
in the context of 3D human pose estimation.
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