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Abstract

The rapid development of Large Vision Lan-001
guage Models (LVLMs) often comes with002
widespread hallucination issues, making cost-003
effective and comprehensive assessments in-004
creasingly vital. Therefore, we introduce the005
FIHA (Fine-graIned Hallucination evAluation),006
a multidimensional hallucination evaluation007
method for LVLMs that is LLM-free and008
annotation-free. FIHA can generate QA pairs009
on any image dataset at minimal cost, enabling010
hallucination assessment from both image and011
caption. Based on this approach, we intro-012
duce a benchmark (FIHA-v1) consisting of di-013
verse questions on various images from MS014
COCO and Foggy Cityscapes. Furthermore,015
we use the Davidson Scene Graph (DSG) to or-016
ganize the structure among QA pairs, in which017
we can increase the reliability of the evalua-018
tion. We evaluate representative models us-019
ing FIHA-v1, highlighting their limitations and020
challenges. Our code and data can be found021
here: anonymized link022

1 Introduction023

Large Vision-Language Models (LVLMs) such as024

MiniGPT-4 (Zhu et al., 2023) and LLaVA (Liu025

et al., 2023b), which extend Large Language Mod-026

els (LLMs) by incorporating visual encoders, have027

shown prominent capabilities in visual understand-028

ing and generation (Zhang et al., 2024). How-029

ever, LVLMs suffer from the issue of hallucination,030

which can lead to misinterpretation or erroneous as-031

sertions of the visual inputs, thus hindering the per-032

formance of models in multi-modal tasks (Huang033

et al., 2023). Specifically, the models may describe034

objects that do not exist in the image or incorrect035

object attributes and their relation. Generating such036

unreliable content will greatly reduce the model’s037

credibility. Therefore, it is crucial to establish a038

benchmark for evaluating the hallucination level of039

LVLMs.040

Previous studies (Li et al., 2023d; Wang et al., 041

2023b,a), as shown in Table 1, primarily employ 042

a Question Generation (QG) module to create a 043

set of validation questions and expected answers. 044

These generated questions are then used to evaluate 045

hallucinations in LVLMs. Despite the compelling 046

success of the existing work, they still face two 047

main challenges: (1) The existing work overlooks 048

the dependency between different kinds of ques- 049

tions. For example, if the answer to “Is there a 050

bike?” is no, dependent questions like “Is the bike 051

yellow?” should be skipped. (2) Additionally, most 052

prior work heavily relies on human annotations 053

(Wang et al., 2023a) or LLMs (Li et al., 2023c) to 054

generate QA pairs used in hallucination evaluation, 055

which can be costly or labor-intensive. 056

To mitigate these limitations, we propose Fine- 057

grained Hallucination Evaluation (FIHA), an auto- 058

matic evaluation framework for fine-grained and di- 059

verse hallucinations in large-scale vision-language 060

models. The framework takes either images or cap- 061

tions as input to generate QA pairs by extracting 062

objects, attributes, and entity relations from the 063

images or captions. Then, it creates QA pairs by 064

incorporating multiple forms of questioning (e.g., 065

“what,” “who,” “which,” etc.) and allowing for free- 066

form responses. To organize all the QA pairs into 067

a tree-like structure, we introduce the Davidson 068

Scene Graph (DSG) (Cho et al., 2023). With DSG, 069

the response at each leaf node depends on the cor- 070

rectness of the root node answer, increasing the 071

difficulty of model inference. Our QA pairs cover 072

various types of questions, including misleading, 073

narrative, and interrogative questions. This type of 074

tree structure allows for a progressive deepening of 075

questions, enabling a comprehensive evaluation of 076

the model’s understanding of the image. 077

We make the following key contributions 078

through this work: 079

• To the best of our knowledge, FIHA is the 080

first automated hallucination evaluation frame- 081
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Table 1: Comparison with other benchmarks. Dis. denotes Discriminative and Gen. denotes Generative.

Evaluation Methods
Discriminative Hallucination Task Type

Use DSG LLM Free Annotation Free
Object Attribute Relation Dis. Gen.

POPE (Li et al., 2023d) ✓ × × ✓ × × ✓ ✓
NOPE (Lovenia et al., 2023) ✓ × × ✓ × × × ✓
CIEM (Hu et al., 2023a) ✓ ✓ × ✓ × × × ✓
AMBER (Wang et al., 2023a) ✓ ✓ ✓ ✓ ✓ × ✓ ×
MHaluBench (Chen et al., 2024) ✓ ✓ × × ✓ × × ×
FIHA (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

work that is LLM-free and annotation-free.082

This approach not only scales efficiently but083

also minimizes labor and associated costs.084

• Based on FIHA, we generate a fine-grained085

evaluation benchmark FIHA-v1 that includes086

QA pairs evaluating various types of halluci-087

nations and the semantic dependency relation088

organized by DSG.089

• We evaluate and analyze several mainstream090

open-source and close-source LVLMs with091

FIHA-v1, providing valuable insights into092

their performance.093

2 Method094

In this section, we mainly introduce the FIHA095

(Fine-graIned Hallucination evAluation), an effec-096

tive framework for evaluating fine-grained halluci-097

nation in LVLMs without the need for any manual098

annotations. FIHA extracts information from both099

the image and its caption. Given an image I and100

its caption C, we aim to query the LVLMs with101

the generated questions QI for the image and QC102

for the caption, in order to assess whether the re-103

sponses are hallucinated. Compared to POPE, we104

have not only added detection at the attribute and105

relation levels, but also the QA pairs are no longer106

limited to yes/no type answers.107

An overview of our method is provided in Fig-108

ure 1. The subsequent parts will detail the proce-109

dures to produce the QA pairs.110

2.1 Extract Information from Caption111

Many datasets have corresponding captions for im-112

ages, which highly summarize the information in113

the images. At the same time, natural language is114

more abstract compared to directly observable im-115

ages, and it is also more prone to illusions. There-116

fore, we use the corresponding captions from the117

image dataset to extract objects, attributes, and re-118

lations. Given a caption C describing the image,119

our final objective is to produce sets of question- 120

answer tuples {QC
i , A

C
i , L

C
i }Ni=1, where QC

i repre- 121

sents a question, AC
i denotes the gold answer, and 122

LC
i indicates the label (i.e., object, attribute, and 123

relation) of the corresponding QA pair. Our main 124

challenge lies in generating a diverse set of ques- 125

tions that cover all the information encapsulated 126

within the caption. Unlike previous methodologies 127

(Wang et al., 2023a; Li et al., 2023d; Lovenia et al., 128

2023; Hu et al., 2023a) which rely on human an- 129

notators, our proposed approach utilizes traditional 130

NLP models and tools to extract effective infor- 131

mation. The overall method is described by the 132

following steps: 133

Extract Object and Attribute from Caption 134

spaCy is a free and open-source natural language 135

processing (NLP) library capable of performing a 136

variety of complex NLP tasks. We primarily uti- 137

lize its part-of-speech tagging feature to extract 138

objects while simultaneously extracting their corre- 139

sponding attributes, such as numerals, adjectives, 140

and verbs. Here, we have obtained all the ground 141

truth objects and their attributes: GC
O,A = {O1 : 142

A1, O2 : A2, .., On : An}, where n is the number 143

of objects. 144

Extract Relation from Caption Stanford 145

CoreNLP offers a suite of powerful natural 146

language processing capabilities, enabling users 147

to easily perform various linguistic analyses on 148

text, which is also the reason we chose it for 149

extracting relations. Here, we have obtained all the 150

ground truth relations: GC
R = {R1 : playing,R2 : 151

standing on, .., Rm : is with}, where m is the 152

number of relations. 153

2.2 Extract Information from Image 154

Because the information carried by the image it- 155

self is much greater than what is described in the 156

caption, we consider extracting the necessary infor- 157

mation directly from the image. Given a image I , 158

our final objective is to produce sets of question- 159

answer tuples {QI
i , A

I
i , L

I
i }Ni=1, where QI

i repre- 160
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Question Generation

Ground Truth
Information

Closely Related Objects
traffic light, bicycle, sidewalk, bench

Answer QA Type

Object  Yes/No 
Existence

A: Yes.

A: Yes.

A: Yes.

A: Blue.

A: Yes.

Q: Is there a person?

Q: Is there a skateboard?

Q: Is the skateboard on
the road?

Q: What color is the car?

Q: Is person riding the
skateboard?
Q: Is there a bench near
the sidewalk?

 Image Caption 
A person riding a skateboard

on a road.

Q: Is there a person?
A: Yes.                       Object-Existence

Negative Questions

Narrative Questions

NLP Tools

Generate from Captions

Ground 
Truth

Information

Q: Is there a skateboard?
A: Yes.                      Object-Existence

Q: Is there a person riding?
A: Yes.                      Relation-Existence

Q: Is there a skateboard on the
road?
A: Yes.                      Relation-Existence

Q: Is there a bag on the street?
A: Yes.                      Object-Existence

Q: which street the person is
on?
A: None.                      Attribute-location

Negative Questions

Q: Where is the person?
A: Road.                      Attribute-Location

Q: How many skateboard are
there?
A: One.                      Attribute-Counting

Question Generation

Independent

Independent

Dependent on
Q2

Dependent on
Q1,Q2

Independent

Dependent on
Q5

A1: Yes.    

A2: No.

Answer

A5: Yes.

Label

Final Result

       True

      False

Initial Result

DSG Mechanism

Q1: Is there a person?

Q2: Is there a skateboard?

Q3: Is the skateboard on
the road?
Q4: Is the person
riding the skateboard?

Q5: Is there a bench?

Q6: Is there a bench
near the sidewalk?

A: No.

Attribute Yes/No 
Existence

Attribute  Interogative
Color

Relation  Yes/No 
Existence

Generate from Images

CV Tools

A3: Yes.           True

A4: Yes.           True

      False

A6: No.        True

       True

      False

      False

      False

      False

      False

Figure 1: Overview of FIHA framework. FIHA extracts entities, attributes, and relations from images and captions
respectively, and generates comprehensive and diverse questions to thoroughly detect model hallucinations. In the
Figure, we can see that no LLM (Achiam et al., 2023) or additional manual annotations are used.

sents a question, AI
i denotes the gold answer, and161

LI
i indicates the label of the corresponding QA162

pair.163

Extract Object and Attribute from Image Fast164

R-CNN (Girshick, 2015) is a fast object detection165

method based on Region-based Convolutional Net-166

works, and it is a classic approach in the field167

of object detection. In this step, we obtain the168

ground truth objects and attributes.: GI
O,A = {O1 :169

A1, O2 : A2, .., On : An}, where n is the number170

of objects.171

Extract Relation from Image Here, we employ172

RelTR (Cong et al., 2022), a method for gener-173

ating sparse scene graphs by decoding visual ap-174

pearances and learning subject and object queries175

from the data. Using this method, we have ob-176

tained all the ground truth relations: GI
R = {R1 :177

behind,R2 : near, .., Rm : wearing}, where m178

is the number of relations.179

2.3 Generate Question Answer Pairs180

At this point, we have obtained the objects, at-181

tributes, and relations as illustrated in Figure 2.182

Subsequently, questions will be formulated for183

querying LVLMs based on this information.184

Question Formulation After obtaining the rele-185

vant information, we generate a series of questions186

Figure 2: Example of extracted information.

that are directed at the object, attribute, and rela- 187

tion level. For the object level, we generate ques- 188

tions like "Is there any {objk}?" where 189

{objk} comes from GOi and COi. Similarly, 190

we formulate diverse questions involving the at- 191

tributes of objects such as "What {color} is 192

the {objk}?" as well as relations between the 193

objects such as "Is there a {obj1} near 194

the {objk}?". Similar to the method described 195

in subsection 2.1 our formulated questions also in- 196

clude the interrogative and negative questions. To 197

generate such a free-form formulation of questions, 198

we prompt an LLM with some in-context examples 199

so that meaningful questions are produced. After 200

generating the questions we classify them into three 201
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main and several subcategories similar as described202

in subsection 2.1.203

Interrogative Questions In contrast to previous204

studies (Li et al., 2023d; Wang et al., 2023a) that205

focus solely on Yes/No questions for hallucina-206

tion evaluation, our approach introduces greater207

diversity by generating questions incorporating in-208

terrogative words such as "what," "who," "which,"209

"where," and "how many". These questions elicit210

free-form responses, with no more than three211

words.212

Negative Questions Motivated from Lovenia et al.213

(2023) we also focus on producing questions that214

elicit responses indicating the absence of objects,215

their attributes, and relations. Such questions are216

answered with negative pronouns such as "none",217

"nobody", "nowhere", "zero", "neither", etc.218

Misleading Questions According to Li et al.219

(2023d) LVLMs are prone to hallucinate the ob-220

jects that mostly appear with the actual objects221

present in an image. Inspired by these insights, we222

have identified similar information from objects,223

attributes, and relations based on the ground truth,224

thereby generating misleading questions.225

Narrative Questions At first, we generate ques-226

tions that sequentially query a scene description,227

we denoted them narrative questions. In this frame-228

work, the Davidsonian Scene Graph (DSG) (Cho229

et al., 2023) plays a role similar to post-processing230

by chaining the QA pairs to form a tree-like struc-231

ture. The root node addresses the existence of ob-232

jects, followed by questions about the attributes of233

the root node objects in the next layer, and subse-234

quently, questions about the relations between ob-235

jects in the following layers. For instance, we have236

a list of questions LQ = {Q1 : Independent,Q2 :237

Depends on Q1}. Before determining if the an-238

swer to Q2 is correct, we first assess Q1, which239

concerns the accuracy related to the root node.240

2.4 Answer Generation241

In the case where the dataset lacks captions, this242

step is responsible for finding the answers to the for-243

mulated questions. We employ a pretrained VQA244

model (Li et al., 2023b) which provides answers to245

the formulated questions conditioned on the image.246

The findings by Li et al. (2023d) suggest that the247

small vision language models produce shorter an-248

swers with fewer hallucinations compared to main-249

stream LVLMs and therefore a reasonable choice250

for our task. The retrieved answer Ai to the ques-251

Figure 3: Statistics of all issues generated by image and
caption from MS COCO.

Table 2: The number of QA pairs generated from differ-
ent datasets.

Dataset From Image From Caption

MS COCO (500) 25699 13007
Foggy Cityscapes (150) 7232 2801

tion Qi can have either Yes/No or free-form an- 252

swers with no more than three words. 253

3 Experiments 254

In this section, we randomly selected a subset of 255

data from MS COCO and Foggy Cityscapes., used 256

FIHA to generate corresponding QA pairs, and 257

tested and analyzed the hallucination levels of some 258

mainstream LVLMs. 259

3.1 Data Processing and Analysis 260

We randomly selected 500 images from the MS 261

COCO dataset and 150 images from the Foggy 262

Cityscapes. Using the process described in Section 263

3, we generated tens of thousands of QA pairs. The 264

detailed data can be found in Table 2. Next, we 265

will analyze the types of questions generated by the 266
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Table 3: Evaluation results of LVLMs on questions generated from images and captions, respectively. F1 (Gen)
refers to a text similarity metric, for which we employ BERTScore to measure the quality of responses to open-ended
questions.

Model
Question Generated from Image Question Generated from Caption

ACC P. R. F1 F1 (Gen) ACC P. R. F1 F1 (Gen)

MS COCO
mPLUG-Owl (Ye et al., 2023) 42.1 70.2 61.4 43.7 15.2 31.4 61.6 55.5 31.2 11.4
MiniGPT-4 (Zhu et al., 2023) 23.5 27.5 22.2 22.1 21.6 15.9 25.7 28.8 14.2 18.4

MultiModal-GPT (Gong et al., 2023) 59.1 46.4 47.1 46.6 16.1 23.8 39.6 45.7 22.1 10.8
LLaVA-1.5-7B (Liu et al., 2023b) 77.8 77.0 65.9 67.7 21.4 50.7 64.9 67.5 50.5 13.7

LLaVA-1.5-13B (Liu et al., 2023b) 78.9 80.9 66.4 68.3 20.9 47.6 64.2 65.5 48.5 13.8
InstructBLIP (Dai et al., 2023) 84.7 83.3 78.6 80.4 21.8 65.7 69.5 77.4 64.2 14.1

GPT-4V (OpenAI, 2024) 87.2 81.4 86.3 85.5 25.2 70.3 71.5 75.8 69.3 22.7

Foggy Cityscapes
mPLUG-Owl (Ye et al., 2023) 64.8 60.2 51.1 42.7 18.6 29.5 58.9 51.6 25.6 29.3
MiniGPT-4 (Zhu et al., 2023) 30.1 30.2 27.6 28.1 9.4 23.4 34.4 37.8 23.0 11.6

MultiModal-GPT (Gong et al., 2023) 50.2 48.7 46.1 45.8 17.6 28.1 43.9 47.9 25.4 24.5
LLaVA-1.5-7B (Liu et al., 2023b) 67.7 68.4 56.2 52.9 19.7 29.1 50.0 49.2 25.8 27.5

LLaVA-1.5-13B (Liu et al., 2023b) 68.1 71.5 56.1 52.3 18.8 28.9 49.2 49.8 25.5 27.7
InstructBLIP (Dai et al., 2023) 70.9 75.6 60.2 58.8 20.3 32.8 58.3 53.2 30.5 29.2

GPT-4V (OpenAI, 2024) 76.3 70.1 64.6 66.0 16.2 33.7 53.3 51.7 32.1 21.7

pipeline.267

The Figure 3 illustrates the distribution of ques-268

tion types generated from images and captions. The269

proportion of questions related to object, attribute,270

and relation is relatively balanced, reflecting the271

rationality of the method design. It is noteworthy272

that the abundance of the Interrogative category273

reflects FIHA’s effective capability in generating274

tasks of the generation type, thereby enabling a275

more effective assessment of hallucinations.276

3.2 Experimental Results277

3.2.1 FIHA Overall Results278

As shown in Table 3, the hallucination levels of the279

seven mainstream LVLMs evaluated using FIHA280

are presented. It’s worth highlighting that GPT-4V281

excels in both image and caption QA pairs, achiev-282

ing the best performance among the evaluated mod-283

els. The second-best performer is Instruct BLIP,284

which significantly outperforms other models ex-285

cept GPT 4V across most metrics. Additionally, we286

have observed that model parameters are also sig-287

nificant factors affecting performance. For instance,288

LLaVA 13B provides a more comprehensive im-289

provement over the 7B version.290

3.2.2 FIHA Fine-Grained Results291

Benefiting from the comprehensiveness of FIHA,292

we are able to evaluate the model’s performance293

from more dimensions. Referencing the results of294

the Table 4, we will proceed with further analysis. 295

Object Hallucination It can be observed that even 296

after introducing more negative samples, the Ac- 297

curacy and Precision of the models remain high, 298

indicating that most models have a strong capabil- 299

ity to determine whether an object exists or not. In 300

comparison, the Recall is somewhat lower, indi- 301

cating that the model still has a tendency to lean 302

towards affirmative responses. 303

Attribute Hallucination It is evident that this part 304

of the hallucination is much more difficult to iden- 305

tify. Compared to the object itself, its color, quan- 306

tity, size, and so on are indeed more challenging to 307

judge. Even the best-performing GPT-4V has an F1 308

score of less than 80 on regular data. Moreover, the 309

performance of the vast majority of models plum- 310

mets on special datasets, indicating that the robust- 311

ness of existing LVLMs needs to be enhanced. 312

Relation Hallucination This part is the most chal- 313

lenging, with GPT 4V’s F1 score on regular data 314

not even reaching 60. The DSG we introduced has 315

further increased the difficulty; to accurately de- 316

termine the answer to the relation within the tree 317

structure, one must first correctly ascertain the ex- 318

istence of each of the two objects individually. 319
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Table 4: The results of a more fine-grained assessment of LVLMs from the perspectives of object, attribute, and
relation. The results are based on statistics from QA pairs generated by captions.

Model
Object Attribute Relation

ACC P. R. F1 ACC P. R. F1 ACC P. R. F1

MS COCO
mPLUG-Owl (Ye et al., 2023) 57.3 75.7 47.3 48.0 20.6 55.7 53.5 20.4 22.7 56.5 55.8 22.7
MiniGPT-4 (Ye et al., 2023) 66.2 59.5 62.6 59.5 9.6 12.8 9.2 9.4 4.7 12.1 11.4 4.9

MultiModal-GPT (Ye et al., 2023) 51.6 54.1 51.5 42.5 16.0 39.2 42.8 15.8 12.1 30.8 39.6 11.8
LLaVA-1.5-7B (Ye et al., 2023) 79.2 82.4 77.5 78.4 27.9 55.6 56.7 27.8 47.9 59.1 69.7 44.7

LLaVA-1.5-13B (Liu et al., 2023b) 70.8 80.6 70.2 68.3 34.3 56.4 59.7 33.7 42.1 58.3 66.6 48.1
InstructBLIP (Dai et al., 2023) 84.6 87.7 81.4 84.2 61.0 62.2 76.2 55.6 57.5 61.0 75.7 52.1

GPT-4V (OpenAI, 2024) 90.8 87.7 89.8 88.6 83.6 77.7 85.2 79.8 66.2 61.2 73.2 58.3

Foggy Cityscapes
mPLUG-Owl (Ye et al., 2023) 52.9 32.3 50.0 39.2 15.7 54.8 52.1 15.3 11.8 34.6 46.9 11.1
MiniGPT-4 (Ye et al., 2023) 62.1 60.6 58.4 57.8 9.6 25.1 14.6 9.3 8.5 23.2 26.5 8.5

MultiModal-GPT (Ye et al., 2023) 52.9 59.7 52.6 42.1 12.6 33.9 38.6 12.5 11.5 33.3 39.4 11.4
LLaVA-1.5-7B (Ye et al., 2023) 54.0 63.3 54.0 44.4 11.5 33.2 46.0 10.8 15.4 47.8 48.9 15.1

LLaVA-1.5-13B (Liu et al., 2023b) 54.2 62.8 54.2 44.6 11.3 31.4 46.3 10.6 14.9 47.0 48.6 14.6
InstructBLIP (Dai et al., 2023) 54.2 65.2 53.9 44.2 20.7 55.1 54.6 20.6 15.9 48.5 49.2 15.6

GPT-4V (OpenAI, 2024) 61.8 69.6 59.2 54.5 11.1 37.0 33.1 11.0 20.4 50.5 50.4 20.3

Table 5: The performance decrease in various model
metrics after introducing DSG.

Model ACC↓ P.↓ R.↓ F1↓ F1 (Gen)↓

mPLUG-Owl (Ye et al., 2023) 29.6 22.1 14.0 28.7 14.2
MiniGPT-4 (Zhu et al., 2023) 62.6 51.8 62.1 61.2 42.3

MultiModal-GPT (Gong et al., 2023) 21.3 27.6 21.9 24.3 12.9
LLaVA-1.5-7B (Liu et al., 2023b) 4.2 11.7 4.5 4.8 5.7
LLaVA-1.5-13B (Liu et al., 2023b) 2.7 8.1 3.3 3.6 5.1

InstructBLIP (Dai et al., 2023) 5.7 9.6 5.7 5.7 6.9
GPT-4V (OpenAI, 2024) 6.0 9.9 5.4 8.4 3.9

4 Analysis320

4.1 What is the Impact of Introducing the321

DSG?322

To reasonably increase the difficulty of hallucina-323

tion assessment, we introduced the DSG mecha-324

nism. As introduced in Section3.3, by reorganizing325

the problem into a tree structure, the judgment of326

each leaf node depends on the correctness of the327

root node’s judgment. In this section, we quantita-328

tively analyze the impact brought by the DSG.329

Table 5 shows the changes in metrics for each330

model before and after introducing DSG. It can be331

seen that stronger models like GPT-4V and LLaVA332

are less affected, while the metrics for other models333

have dropped by more than half. The reason might334

be that these weaker models do not perform well335

on object-level questions. Therefore, after the intro-336

duction of the DSG, they are marked as failed on all337

related leaf node questions, leading to a significant338

impact.339

4.2 Is the Information Extracted from Images 340

More Comprehensive? 341

As shown in Figure 1, we extract information from 342

both the image and the caption to construct QA 343

pairs. Typically, the image itself contains more 344

abundant information. In this section, we will ver- 345

ify whether the information extracted from the im- 346

age is more comprehensive and diverse. 347

We have separately counted six indicators re- 348

lated to image and caption, mainly focusing on the 349

three directions of object, attribute, and relation. 350

As shown in Figure 4, it is evident that the informa- 351

tion extracted from the image surpasses the other 352

in both comprehensiveness and richness. This in- 353

dicates that FIHA has successfully extracted more 354

fine-grained information from the images, aligning 355

with expectations and demonstrating the rationale 356

and effectiveness of FIHA’s methods. 357

4.3 Why are Our Benchmark Results Lower 358

Than Others? 359

It’s easy to see that our test results are lower than 360

others, indicating that FIHA can detect more diffi- 361

cult and distinct issues. We analyzed that there are 362

mainly three reasons: firstly, we added a large num- 363

ber of misleading negative samples, and since the 364

model tends to give affirmative answers (Section 365

3.2.1), this increased the difficulty of evaluation. 366

Secondly, the role of DSG directly impacts the 367

results (2.3). Finally, the comprehensiveness of 368

FIHA is more challenging than methods that focus 369
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Figure 4: Comparison of the richness of information
extracted from image and caption.

primarily on object-level.370

Table 6: The accuracy of QA pairs generated from dif-
ferent datasets.

Dataset From Image From Caption

MS COCO (500) 98.2 96.0
No Foggy (50) 98.1 96.1

Medium Foggy (50) 97.6 94.5
Dense Foggy (50) 96.3 94.1

4.4 How Reliable is the Benchmark371

Generated by the Framework?372

To test the how reliable is the benchmark, we check373

the accuracy of QA pairs with assist of YOLOv8374

(Reis et al., 2024) and manully check. First, it can375

be observed from the results presented in Table 4376

that the QA pairs generated from the captioning377

are highly reliable, achieving a 96% accuracy rate378

in sample from MSCOCO datasets , the QA pairs379

is 100% consistent with the captions. However,380

due do Blip2 can sometimes encounter hallucina-381

tion, QA pairs sometimes generated QA which382

answers do not match the questions. Besides, ques-383

tions and answers generated directly from images384

posed a few challenges. The pipeline use Bottom-385

up Attention (Anderson et al., 2018) and Fast R-386

CNN (Girshick, 2015) can perform with a 98.2%387

precision rate in detecting objects from everyday388

scenes—similar to the type of images in the MS389

COCO dataset—the remaining 1.8% error can still390

create incorrect QA pairs. For example, it some-391

times fails to identify specific details, such as ears,392

in an image. Another challenge is feature extrac-393

tion, for example, when the color of a horse was394

identified as black, but the horse was white or light395

gray. These rare inaccuracies represent one of the 396

weak points of this framework, emphasizing the 397

need for ongoing improvement in object detection 398

and feature extraction technologies. Overall, the re- 399

liability of the FIHA in generating datasets to eval- 400

uate the hallucinations of LVLMs is remarkably 401

high; the dataset generated from captions performs 402

exceptionally well, with perfect accuracy. 403

4.5 How Robust and Generalizable is the 404

Framework? 405

To evaluate the robustness and generalization abil- 406

ity of the FIHA framework’s generated from im- 407

age appproach, we conducted tests on complex 408

scenes. Specifically, we used Foggy Cityscapes 409

datasets (Cordts et al., 2016) in challenging con- 410

ditions. We select 150 images in total with 50 411

images with three foggy level: dense, medium and 412

no foggy to compare the influence of noise to the 413

accuaracy of framework. For the QA generated 414

from images approach: As shown in Table 6, in the 415

dense condition, the accuracy of problem 96.3% 416

for QA generated from images and 94.1% for QA 417

generated from captions while medium is 97.6% 418

and 94.5%, no foggy is 98.1% and 94.1%. The 419

no foggy result remain same as mscoco. We ob- 420

serve that the model showed less confidence overall 421

while it maintained over 99% confidence level for 422

the main object but significantly lower confidence 423

for minor or surrounding objects. Extracting fea- 424

ture such as color. This is becuase adverse weather 425

degrades image quality, making accurate identifi- 426

cation difficult. There are lots of previous study 427

on object detection on sepcial scene (Wang et al., 428

2022). In foggy weather scenarios, the scattering 429

and absorption of light by water droplets and par- 430

ticulate matter cause object features in images to 431

become blurred or lost, presenting a significant 432

challenge for target detection. Some feature such 433

as color become invisble. For example, both the 434

LLM and frcnn is easily to misrecongize the sliver 435

into white. In summary, the FIHA framework is 436

sufficiently robust and generalizes well, maintain- 437

ing accurate classification with multiple data sets 438

and in challenging image scenarios. It is able to 439

adapt to almost any dataset to produce question- 440

answer pairs for the assessment of hallucinations. 441

5 Related Work 442

In this section, we mainly discuss existing Large 443

Vision Language Models (LVLMs) and the halluci- 444

7



nation problems that exist in LVLMs.445

5.1 Large Vision Language Model446

With the success of pretraining techniques in Large447

Language Models (LLMs) and Vision Foundation448

Models (VFMs), many researchers (Alayrac et al.,449

2022; Li et al., 2023a) have been expanding lan-450

guage models to comprehend real-world images451

through LVLMs with in-context or few-shot learn-452

ing capabilities. As a result, there has been a surge453

in visual instruction-adapted LVLMs (Liu et al.,454

2023b; Zhu et al., 2023; Dai et al., 2023; Gong455

et al., 2023), demonstrating remarkable generaliza-456

tion performance across various Vision-Language457

(VL) tasks. Most of these studies utilized GPT-4458

to generate multimodal instruction tuning datasets459

and multi-stage pretraining to align the visual in-460

formation with the pretrained LLM. For example,461

Liu et al. (2023b) utilized the visual encoder out-462

put as input for LLaMA (Touvron et al., 2023) and463

trained both networks to align on the generated464

visual instruction dataset. Zhu et al. (2023) inte-465

grated Vicuna (Peng et al., 2023) as a language466

decoder and only fine-tuned the cross-modal align-467

ment network with extended image captions from468

ChatGPT. Likewise, both Gong et al. (2023) and469

Dai et al. (2023) used various instruction-tailored470

VL datasets. However, the former adopted BLIP2471

(Li et al., 2023b) as its foundational architecture472

while the latter initialized from Flamingo (Alayrac473

et al., 2022).474

Despite the advancements of LVLMs, they re-475

main encumbered by the persistent challenge of hal-476

lucinations when generating textual output. These477

issues significantly hinder their effectiveness in var-478

ious vision-language tasks (Rohrbach et al., 2018).479

5.2 Hallucination in LVLMs480

Recently, there has been growing research attention481

directed towards the phenomenon of hallucination482

in LVLMs. Among these works, some studies, as483

shown in Table 1, have concentrated on halluci-484

nation detection and evaluation (Li et al., 2023d;485

Wang et al., 2023b,a; Jing et al., 2023), and some486

have developed methods to mitigate hallucination487

(Liu et al., 2023a; Zhou et al., 2023; Yin et al.,488

2023; Jing and Du, 2024). Though the issue of hal-489

lucination is studied extensively, only a few works490

have focused on fine-grained hallucination detec-491

tion in LVLMs. For instance, Li et al. (2023d)492

proposed a novel evaluation metric "POPE" to eval-493

uate hallucinations in LVLMs by pooling questions494

about the ground truth objects. They showed that 495

existing state-of-the-art LVLMs are highly prone 496

to object-level hallucinations. Wang et al. (2023b) 497

introduced "HaELM," a framework for detecting 498

hallucinations. They utilized LLM to generate a 499

hallucinatory dataset and then fine-tuned LLaMA 500

to identify hallucinatory responses from LVLMs. 501

The aforementioned line of research either exclu- 502

sively focused on object-level hallucination or re- 503

quired training for the detection of hallucination. 504

To address these challenges, Wang et al. (2023a) in- 505

troduced "AMBER," a comprehensive benchmark 506

capable of assessing both generative and discrim- 507

inative tasks, such as object attribute and relation 508

hallucination. Though this work developed a fine- 509

grained hallucination framework, it required hu- 510

man annotators to annotate the object existence, 511

object attribute, and object relation information for 512

discriminative tasks. 513

In contrast to the aforementioned studies, our 514

work differs by being applicable to any existing 515

dataset or unseen images for generating probing 516

questions related to object existence, attributes, and 517

relations for evaluating LVLMs hallucination. In- 518

stead of relying on human annotators, we use an 519

object detection model that performs better in ob- 520

ject detection tasks than LLMs. Our work does not 521

require any additional information for an image to 522

generate probing questions. 523

6 Conclusion 524

In recent years, large vision language models have 525

developed quickly, but hallucinations remain a se- 526

rious concern. Current hallucination evaluation 527

methods face problems like high costs, limited 528

scope, and lack of generalization. Thus, we intro- 529

duce FIHA, a multi-dimensional detection method 530

that requires no LLMs and no annotations. FIHA 531

can automatically create high-quality QA pairs for 532

any image dataset. We conducted a thorough anal- 533

ysis of the performance of mainstream LVLMs, 534

identified the issues, and proposed potential meth- 535

ods for improvement. In the future, we will delve 536

deeper into methods for alleviating hallucinations. 537

Liminations 538

FIHA has comprehensive features and maintains 539

a high overall quality. Despite the limitations dis- 540

cussed in the previous analysis section, there are ad- 541

ditional constraints in some aspects. The generated 542

QA primarily focuses on the existence, attributes, 543
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and relations of main objects in the images, while544

lacking in QA for surrounding and minor objects.545

This is due to the FRCNN’s lower confidence in546

detecting small and less obvious objects.547
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A Details of the Experimental Setup747

Datasets We used two datasets: the MSCOCO(Lin748

et al., 2014) and the Foggy Cityscapes(Cordts et al.,749

2016). MSCOCO is a large image dataset devel-750

oped by Microsoft, officially known as Microsoft751

Common Objects in Context. This dataset aims to752

advance the development of computer vision tasks753

such as object detection, segmentation, and image754

captioning. This dataset contains over 330,000755

images, of which more than 200,000 images are756

annotated, covering 80 different object categories.757

Foggy Cityscapes is a synthetic fog dataset that758

simulates fog in real-world scenes. Each foggy im-759

age is rendered using clear images and depth maps760

from Cityscapes. Consequently, the annotations761

and data split in Foggy Cityscapes are inherited762

from Cityscapes.763
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