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Abstract

The rapid development of Large Vision Lan-
guage Models (LVLMs) often comes with
widespread hallucination issues, making cost-
effective and comprehensive assessments in-
creasingly vital. Therefore, we introduce the
FIHA (Fine-gralned Hallucination evAluation),
a multidimensional hallucination evaluation
method for LVLMs that is LLM-free and
annotation-free. FIHA can generate QA pairs
on any image dataset at minimal cost, enabling
hallucination assessment from both image and
caption. Based on this approach, we intro-
duce a benchmark (FIHA-v1) consisting of di-
verse questions on various images from MS
COCO and Foggy Cityscapes. Furthermore,
we use the Davidson Scene Graph (DSG) to or-
ganize the structure among QA pairs, in which
we can increase the reliability of the evalua-
tion. We evaluate representative models us-
ing FIHA-v1, highlighting their limitations and
challenges. Our code and data can be found
here: anonymized link

1 Introduction

Large Vision-Language Models (LVLMs) such as
MiniGPT-4 (Zhu et al., 2023) and LLaVA (Liu
et al., 2023b), which extend Large Language Mod-
els (LLMs) by incorporating visual encoders, have
shown prominent capabilities in visual understand-
ing and generation (Zhang et al., 2024). How-
ever, LVLMs suffer from the issue of hallucination,
which can lead to misinterpretation or erroneous as-
sertions of the visual inputs, thus hindering the per-
formance of models in multi-modal tasks (Huang
et al., 2023). Specifically, the models may describe
objects that do not exist in the image or incorrect
object attributes and their relation. Generating such
unreliable content will greatly reduce the model’s
credibility. Therefore, it is crucial to establish a
benchmark for evaluating the hallucination level of
LVLMs.

Previous studies (Li et al., 2023d; Wang et al.,
2023b,a), as shown in Table 1, primarily employ
a Question Generation (QG) module to create a
set of validation questions and expected answers.
These generated questions are then used to evaluate
hallucinations in LVLMs. Despite the compelling
success of the existing work, they still face two
main challenges: (1) The existing work overlooks
the dependency between different kinds of ques-
tions. For example, if the answer to “Is there a
bike?” is no, dependent questions like “Is the bike
yellow?” should be skipped. (2) Additionally, most
prior work heavily relies on human annotations
(Wang et al., 2023a) or LLMs (Li et al., 2023c) to
generate QA pairs used in hallucination evaluation,
which can be costly or labor-intensive.

To mitigate these limitations, we propose Fine-
grained Hallucination Evaluation (FIHA), an auto-
matic evaluation framework for fine-grained and di-
verse hallucinations in large-scale vision-language
models. The framework takes either images or cap-
tions as input to generate QA pairs by extracting
objects, attributes, and entity relations from the
images or captions. Then, it creates QA pairs by
incorporating multiple forms of questioning (e.g.,
“what,” “who,” “which,” etc.) and allowing for free-
form responses. To organize all the QA pairs into
a tree-like structure, we introduce the Davidson
Scene Graph (DSG) (Cho et al., 2023). With DSG,
the response at each leaf node depends on the cor-
rectness of the root node answer, increasing the
difficulty of model inference. Our QA pairs cover
various types of questions, including misleading,
narrative, and interrogative questions. This type of
tree structure allows for a progressive deepening of
questions, enabling a comprehensive evaluation of
the model’s understanding of the image.

We make the following key contributions
through this work:

* To the best of our knowledge, FIHA is the
first automated hallucination evaluation frame-
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Table 1: Comparison with other benchmarks. Dis. denotes Discriminative and Gen. denotes Generative.

Discriminative Hallucination Task Type
Evaluation Methods Object  Attribute  Relation Dis. Gen Use DSG LLM Free Annotation Free
POPE (Li et al., 2023d) v X X v X X v v
NOPE (Lovenia et al., 2023) v X X v X X X v
CIEM (Hu et al., 2023a) v v X v X X X v
AMBER (Wang et al., 2023a) v v Ve v v X Ve X
MHaluBench (Chen et al., 2024) v v X X v X X X
FIHA (ours) v v v v v v v v

work that is LLM-free and annotation-free.
This approach not only scales efficiently but
also minimizes labor and associated costs.

* Based on FIHA, we generate a fine-grained
evaluation benchmark FIHA-v1 that includes
QA pairs evaluating various types of halluci-
nations and the semantic dependency relation
organized by DSG.

* We evaluate and analyze several mainstream
open-source and close-source LVLMs with
FIHA-v1, providing valuable insights into
their performance.

2 Method

In this section, we mainly introduce the FIHA
(Fine-gralned Hallucination evAluation), an effec-
tive framework for evaluating fine-grained halluci-
nation in LVLMs without the need for any manual
annotations. FIHA extracts information from both
the image and its caption. Given an image I and
its caption C, we aim to query the LVLMs with
the generated questions Q' for the image and Q¢
for the caption, in order to assess whether the re-
sponses are hallucinated. Compared to POPE, we
have not only added detection at the attribute and
relation levels, but also the QA pairs are no longer
limited to yes/no type answers.

An overview of our method is provided in Fig-
ure 1. The subsequent parts will detail the proce-
dures to produce the QA pairs.

2.1 Extract Information from Caption

Many datasets have corresponding captions for im-
ages, which highly summarize the information in
the images. At the same time, natural language is
more abstract compared to directly observable im-
ages, and it is also more prone to illusions. There-
fore, we use the corresponding captions from the
image dataset to extract objects, attributes, and re-
lations. Given a caption C' describing the image,

our final objective is to produce sets of question-
answer tuples {QY, A, LY} |, where Q¢ repre-
sents a question, AZ-C denotes the gold answer, and
LZ-C indicates the label (i.e., object, attribute, and
relation) of the corresponding QA pair. Our main
challenge lies in generating a diverse set of ques-
tions that cover all the information encapsulated
within the caption. Unlike previous methodologies
(Wang et al., 2023a; Li et al., 2023d; Lovenia et al.,
2023; Hu et al., 2023a) which rely on human an-
notators, our proposed approach utilizes traditional
NLP models and tools to extract effective infor-
mation. The overall method is described by the
following steps:

Extract Object and Attribute from Caption
spaCly is a free and open-source natural language
processing (NLP) library capable of performing a
variety of complex NLP tasks. We primarily uti-
lize its part-of-speech tagging feature to extract
objects while simultaneously extracting their corre-
sponding attributes, such as numerals, adjectives,
and verbs. Here, we have obtained all the ground
truth objects and their attributes: G87 4 =101 :
A1,09 : A, .., O, : Ay}, where n is the number
of objects.

Extract Relation from Caption Stanford
CoreNLP offers a suite of powerful natural
language processing capabilities, enabling users
to easily perform various linguistic analyses on
text, which is also the reason we chose it for
extracting relations. Here, we have obtained all the
ground truth relations: G4 = { Ry : playing, Ry :
standing on, .., Ry, : is with}, where m is the
number of relations.

2.2 Extract Information from Image

Because the information carried by the image it-
self is much greater than what is described in the
caption, we consider extracting the necessary infor-
mation directly from the image. Given a image I,
our final objective is to produce sets of question-
answer tuples {Q!, AF, LIYN || where Q! repre-
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Figure 1: Overview of FIHA framework. FIHA extracts entities, attributes, and relations from images and captions
respectively, and generates comprehensive and diverse questions to thoroughly detect model hallucinations. In the
Figure, we can see that no LLM (Achiam et al., 2023) or additional manual annotations are used.

sents a question, AiI denotes the gold answer, and
Li] indicates the label of the corresponding QA
pair.

Extract Object and Attribute from Image Fast
R-CNN (Girshick, 2015) is a fast object detection
method based on Region-based Convolutional Net-
works, and it is a classic approach in the field
of object detection. In this step, we obtain the
ground truth objects and attributes.: GIQ 4 =1{01:
A1,09 : Ag, .., O, : Ay}, where n is the number
of objects.

Extract Relation from Image Here, we employ
RelTR (Cong et al., 2022), a method for gener-
ating sparse scene graphs by decoding visual ap-
pearances and learning subject and object queries
from the data. Using this method, we have ob-
tained all the ground truth relations: G% ={R;:
behind, Ry : near, .., Ry, : wearing}, where m
is the number of relations.

2.3 Generate Question Answer Pairs

At this point, we have obtained the objects, at-
tributes, and relations as illustrated in Figure 2.
Subsequently, questions will be formulated for
querying LVLMs based on this information.

Question Formulation After obtaining the rele-
vant information, we generate a series of questions

Caption Objects and Attributes Relations
cat: {numeral: [one], [
adjective: [yellow], .
A yellow cat verb: [lying]} {sub)ect. Ayelllow cat,
is lying on a ’ relation: is lying on,
big truck truck: {numeral: [one], Object bigtiiclcy

adjective: [big],
verb: []} ]
}

Figure 2: Example of extracted information.

that are directed at the object, attribute, and rela-
tion level. For the object level, we generate ques-
tions like "Is there any {obji}?" where
{objir} comes from GO; and C'O;. Similarly,
we formulate diverse questions involving the at-
tributes of objects such as "What {color} is
the {objr}?" as well as relations between the
objects suchas "Is there a {obji;} near
the {objr}?". Similar to the method described
in subsection 2.1 our formulated questions also in-
clude the interrogative and negative questions. To
generate such a free-form formulation of questions,
we prompt an LLM with some in-context examples
so that meaningful questions are produced. After
generating the questions we classify them into three



main and several subcategories similar as described
in subsection 2.1.
Interrogative Questions In contrast to previous
studies (Li et al., 2023d; Wang et al., 2023a) that
focus solely on Yes/No questions for hallucina-
tion evaluation, our approach introduces greater
diversity by generating questions incorporating in-
terrogative words such as "what," "who," "which,"
"where," and "how many". These questions elicit
free-form responses, with no more than three
words.
Negative Questions Motivated from Lovenia et al.
(2023) we also focus on producing questions that
elicit responses indicating the absence of objects,
their attributes, and relations. Such questions are
answered with negative pronouns such as "none”,
"nobody", "nowhere", "zero", "neither", etc.
Misleading Questions According to Li et al.
(2023d) LVLMs are prone to hallucinate the ob-
jects that mostly appear with the actual objects
present in an image. Inspired by these insights, we
have identified similar information from objects,
attributes, and relations based on the ground truth,
thereby generating misleading questions.
Narrative Questions At first, we generate ques-
tions that sequentially query a scene description,
we denoted them narrative questions. In this frame-
work, the Davidsonian Scene Graph (DSG) (Cho
et al., 2023) plays a role similar to post-processing
by chaining the QA pairs to form a tree-like struc-
ture. The root node addresses the existence of ob-
jects, followed by questions about the attributes of
the root node objects in the next layer, and subse-
quently, questions about the relations between ob-
jects in the following layers. For instance, we have
a list of questions L® = {Q : Independent, Qs :
Depends on @Q1}. Before determining if the an-
swer to (o is correct, we first assess (1, which
concerns the accuracy related to the root node.

2.4 Answer Generation

In the case where the dataset lacks captions, this
step is responsible for finding the answers to the for-
mulated questions. We employ a pretrained VQA
model (Li et al., 2023b) which provides answers to
the formulated questions conditioned on the image.
The findings by Li et al. (2023d) suggest that the
small vision language models produce shorter an-
swers with fewer hallucinations compared to main-
stream LVLMs and therefore a reasonable choice
for our task. The retrieved answer A; to the ques-
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Figure 3: Statistics of all issues generated by image and
caption from MS COCO.

Table 2: The number of QA pairs generated from differ-
ent datasets.

Dataset From Image  From Caption
MS COCO (500) 25699 13007
Foggy Cityscapes (150) 7232 2801

tion (); can have either Yes/No or free-form an-
swers with no more than three words.

3 Experiments

In this section, we randomly selected a subset of
data from MS COCO and Foggy Cityscapes., used
FIHA to generate corresponding QA pairs, and
tested and analyzed the hallucination levels of some
mainstream LVLMs.

3.1 Data Processing and Analysis

We randomly selected 500 images from the MS
COCO dataset and 150 images from the Foggy
Cityscapes. Using the process described in Section
3, we generated tens of thousands of QA pairs. The
detailed data can be found in Table 2. Next, we
will analyze the types of questions generated by the



Table 3: Evaluation results of LVLMs on questions generated from images and captions, respectively. F1 (Gen)
refers to a text similarity metric, for which we employ BERTScore to measure the quality of responses to open-ended

questions.

Question Generated from Image

Question Generated from Caption

Model

ACC P R. F1 F1(Gen) ACC P R. F1  F1(Gen)
MS COCO
mPLUG-OwI (Ye et al., 2023) 42.1 702 614 437 15.2 314 616 555 312 114
MiniGPT-4 (Zhu et al., 2023) 235 275 222 221 21.6 159 257 288 142 18.4
MultiModal-GPT (Gong et al., 2023)  59.1 464 47.1 46.6 16.1 23.8 39.6 457 221 10.8
LLaVA-1.5-7B (Liu et al., 2023b) 778 77.0 659 67.7 214 50.7 649 67.5 505 13.7
LLaVA-1.5-13B (Liu et al., 2023b) 789 809 664 68.3 20.9 476 642 655 485 13.8
InstructBLIP (Dai et al., 2023) 84.7 833 78.6 804 21.8 65.7 695 774 642 14.1
GPT-4V (OpenAl, 2024) 872 814 863 855 252 703 715 75.8 69.3 22.7
Foggy Cityscapes
mPLUG-OwI (Ye et al., 2023) 64.8 60.2 51.1 427 18.6 29.5 589 51.6 256 29.3
MiniGPT-4 (Zhu et al., 2023) 30.1 302 27.6 28.1 9.4 234 344 378 230 11.6
MultiModal-GPT (Gong et al., 2023) 50.2 48.7 46.1 4538 17.6 28.1 439 479 254 24.5
LLaVA-1.5-7B (Liu et al., 2023b) 67.7 684 562 529 19.7 29.1 50.0 492 258 27.5
LLaVA-1.5-13B (Liu et al., 2023b)  68.1 71.5 56.1 523 18.8 289 492 498 255 27.7
InstructBLIP (Dai et al., 2023) 709 75.6 602 58.8 20.3 32.8 583 532 305 29.2
GPT-4V (OpenAl, 2024) 76.3 70.1 64.6 66.0 16.2 33.7 533 517 321 21.7

pipeline.

The Figure 3 illustrates the distribution of ques-
tion types generated from images and captions. The
proportion of questions related to object, attribute,
and relation is relatively balanced, reflecting the
rationality of the method design. It is noteworthy
that the abundance of the Interrogative category
reflects FIHA’s effective capability in generating
tasks of the generation type, thereby enabling a
more effective assessment of hallucinations.

3.2 Experimental Results
3.2.1 FIHA Opverall Results

As shown in Table 3, the hallucination levels of the
seven mainstream LVLMs evaluated using FIHA
are presented. It’s worth highlighting that GPT-4V
excels in both image and caption QA pairs, achiev-
ing the best performance among the evaluated mod-
els. The second-best performer is Instruct BLIP,
which significantly outperforms other models ex-
cept GPT 4V across most metrics. Additionally, we
have observed that model parameters are also sig-
nificant factors affecting performance. For instance,
LLaVA 13B provides a more comprehensive im-
provement over the 7B version.

3.2.2 FIHA Fine-Grained Results

Benefiting from the comprehensiveness of FIHA,
we are able to evaluate the model’s performance
from more dimensions. Referencing the results of

the Table 4, we will proceed with further analysis.

Object Hallucination It can be observed that even
after introducing more negative samples, the Ac-
curacy and Precision of the models remain high,
indicating that most models have a strong capabil-
ity to determine whether an object exists or not. In
comparison, the Recall is somewhat lower, indi-
cating that the model still has a tendency to lean
towards affirmative responses.

Attribute Hallucination It is evident that this part
of the hallucination is much more difficult to iden-
tify. Compared to the object itself, its color, quan-
tity, size, and so on are indeed more challenging to
judge. Even the best-performing GPT-4V has an F1
score of less than 80 on regular data. Moreover, the
performance of the vast majority of models plum-
mets on special datasets, indicating that the robust-
ness of existing LVL.Ms needs to be enhanced.

Relation Hallucination This part is the most chal-
lenging, with GPT 4V’s F1 score on regular data
not even reaching 60. The DSG we introduced has
further increased the difficulty; to accurately de-
termine the answer to the relation within the tree
structure, one must first correctly ascertain the ex-
istence of each of the two objects individually.



Table 4: The results of a more fine-grained assessment of LVLMs from the perspectives of object, attribute, and

relation. The results are based on statistics from QA pairs generated by captions.

Object Attribute Relation

Model ACC P R FlI ACC P R Fl ACC P R Fl

MS COCO
mPLUG-Owl (Ye etal., 2023)  57.3 757 473 480 206 557 53.5 204 227 565 558 227
MiniGPT-4 (Ye et al., 2023) 662 595 626 595 96 128 92 94 47 121 114 49
MultiModal-GPT (Ye etal., 2023) 51.6 541 515 425 160 392 428 158 121 30.8 396 11.8
LLaVA-1.5-7B (Yeetal, 2023) 792 824 775 784 279 556 567 278 479 59.1 69.7 447
LLaVA-1.5-13B (Liuetal., 2023b) 708 80.6 702 683 343 564 597 337 421 583 666 48.1
InstructBLIP (Dai et al., 2023)  84.6 877 814 842 610 622 762 556 575 610 757 52.1
GPT-4V (OpenAl, 2024) 90.8 877 89.8 88.6 836 777 852 798 662 612 732 583

Foggy Cityscapes

mPLUG-Owl (Ye etal,2023) 529 323 500 392 157 548 521 153 118 346 469 11.1
MiniGPT-4 (Ye et al., 2023) 62.1 606 584 578 96 251 146 93 85 232 265 85
MultiModal-GPT (Ye etal., 2023) 529 59.7 526 42.1 126 339 386 125 115 333 394 114
LLaVA-1.5-7B (Yeetal,2023) 540 633 540 444 115 332 460 108 154 478 489 15.1
LLaVA-1.5-13B (Liu et al, 2023b) 542 628 542 446 113 314 463 106 149 470 486 146
InstructBLIP (Dai et al., 2023) 542 652 539 442 207 551 546 206 159 485 492 156
GPT-4V (OpenAl, 2024) 61.8 69.6 592 545 11.1 370 33.1 110 204 505 504 203

Table 5: The performance decrease in various model
metrics after introducing DSG.

Model ACC, PJ R. Fl] FI(Gen)]
mPLUG-OwI (Ye et al., 2023) 29.6 221 140 287 14.2
MiniGPT-4 (Zhu et al., 2023) 62.6 518 62.1 612 423
MultiModal-GPT (Gong et al., 2023)  21.3  27.6 219 243 12.9
LLaVA-1.5-7B (Liu et al., 2023b) 42 117 45 438 5.7
LLaVA-1.5-13B (Liu et al., 2023b) 2.7 81 33 36 5.1
InstructBLIP (Dai et al., 2023) 5.7 9.6 5.7 5.7 6.9
GPT-4V (OpenAl, 2024) 6.0 99 54 84 3.9

4 Analysis

4.1 What is the Impact of Introducing the
DSG?

To reasonably increase the difficulty of hallucina-
tion assessment, we introduced the DSG mecha-
nism. As introduced in Section3.3, by reorganizing
the problem into a tree structure, the judgment of
each leaf node depends on the correctness of the
root node’s judgment. In this section, we quantita-
tively analyze the impact brought by the DSG.

Table 5 shows the changes in metrics for each
model before and after introducing DSG. It can be
seen that stronger models like GPT-4V and LLaVA
are less affected, while the metrics for other models
have dropped by more than half. The reason might
be that these weaker models do not perform well
on object-level questions. Therefore, after the intro-
duction of the DSG, they are marked as failed on all
related leaf node questions, leading to a significant
impact.

4.2 Is the Information Extracted from Images
More Comprehensive?

As shown in Figure 1, we extract information from
both the image and the caption to construct QA
pairs. Typically, the image itself contains more
abundant information. In this section, we will ver-
ify whether the information extracted from the im-
age is more comprehensive and diverse.

We have separately counted six indicators re-
lated to image and caption, mainly focusing on the
three directions of object, attribute, and relation.
As shown in Figure 4, it is evident that the informa-
tion extracted from the image surpasses the other
in both comprehensiveness and richness. This in-
dicates that FIHA has successfully extracted more
fine-grained information from the images, aligning
with expectations and demonstrating the rationale
and effectiveness of FIHA’s methods.

4.3 Why are Our Benchmark Results Lower
Than Others?

It’s easy to see that our test results are lower than
others, indicating that FIHA can detect more diffi-
cult and distinct issues. We analyzed that there are
mainly three reasons: firstly, we added a large num-
ber of misleading negative samples, and since the
model tends to give affirmative answers (Section
3.2.1), this increased the difficulty of evaluation.
Secondly, the role of DSG directly impacts the
results (2.3). Finally, the comprehensiveness of
FIHA is more challenging than methods that focus
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Figure 4: Comparison of the richness of information
extracted from image and caption.
primarily on object-level.

Table 6: The accuracy of QA pairs generated from dif-
ferent datasets.

Dataset From Image  From Caption
MS COCO (500) 98.2 96.0
No Foggy (50) 98.1 96.1
Medium Foggy (50) 97.6 94.5
Dense Foggy (50) 96.3 94.1

4.4 How Reliable is the Benchmark
Generated by the Framework?

To test the how reliable is the benchmark, we check
the accuracy of QA pairs with assist of YOLOvV8
(Reis et al., 2024) and manully check. First, it can
be observed from the results presented in Table 4
that the QA pairs generated from the captioning
are highly reliable, achieving a 96% accuracy rate
in sample from MSCOCO datasets , the QA pairs
is 100% consistent with the captions. However,
due do Blip2 can sometimes encounter hallucina-
tion, QA pairs sometimes generated QA which
answers do not match the questions. Besides, ques-
tions and answers generated directly from images
posed a few challenges. The pipeline use Bottom-
up Attention (Anderson et al., 2018) and Fast R-
CNN (Girshick, 2015) can perform with a 98.2%
precision rate in detecting objects from everyday
scenes—similar to the type of images in the MS
COCO dataset—the remaining 1.8% error can still
create incorrect QA pairs. For example, it some-
times fails to identify specific details, such as ears,
in an image. Another challenge is feature extrac-
tion, for example, when the color of a horse was
identified as black, but the horse was white or light

gray. These rare inaccuracies represent one of the
weak points of this framework, emphasizing the
need for ongoing improvement in object detection
and feature extraction technologies. Overall, the re-
liability of the FIHA in generating datasets to eval-
uate the hallucinations of LVLMs is remarkably
high; the dataset generated from captions performs
exceptionally well, with perfect accuracy.

4.5 How Robust and Generalizable is the
Framework?

To evaluate the robustness and generalization abil-
ity of the FIHA framework’s generated from im-
age appproach, we conducted tests on complex
scenes. Specifically, we used Foggy Cityscapes
datasets (Cordts et al., 2016) in challenging con-
ditions. We select 150 images in total with 50
images with three foggy level: dense, medium and
no foggy to compare the influence of noise to the
accuaracy of framework. For the QA generated
from images approach: As shown in Table 6, in the
dense condition, the accuracy of problem 96.3%
for QA generated from images and 94.1% for QA
generated from captions while medium is 97.6%
and 94.5%, no foggy is 98.1% and 94.1%. The
no foggy result remain same as mscoco. We ob-
serve that the model showed less confidence overall
while it maintained over 99% confidence level for
the main object but significantly lower confidence
for minor or surrounding objects. Extracting fea-
ture such as color. This is becuase adverse weather
degrades image quality, making accurate identifi-
cation difficult. There are lots of previous study
on object detection on sepcial scene (Wang et al.,
2022). In foggy weather scenarios, the scattering
and absorption of light by water droplets and par-
ticulate matter cause object features in images to
become blurred or lost, presenting a significant
challenge for target detection. Some feature such
as color become invisble. For example, both the
LLM and frenn is easily to misrecongize the sliver
into white. In summary, the FIHA framework is
sufficiently robust and generalizes well, maintain-
ing accurate classification with multiple data sets
and in challenging image scenarios. It is able to
adapt to almost any dataset to produce question-
answer pairs for the assessment of hallucinations.

5 Related Work

In this section, we mainly discuss existing Large
Vision Language Models (LVLMs) and the halluci-



nation problems that exist in LVLMs.

5.1 Large Vision Language Model

With the success of pretraining techniques in Large
Language Models (LL.Ms) and Vision Foundation
Models (VFMs), many researchers (Alayrac et al.,
2022; Li et al., 2023a) have been expanding lan-
guage models to comprehend real-world images
through LVLMs with in-context or few-shot learn-
ing capabilities. As a result, there has been a surge
in visual instruction-adapted LVLMs (Liu et al.,
2023b; Zhu et al., 2023; Dai et al., 2023; Gong
et al., 2023), demonstrating remarkable generaliza-
tion performance across various Vision-Language
(VL) tasks. Most of these studies utilized GPT-4
to generate multimodal instruction tuning datasets
and multi-stage pretraining to align the visual in-
formation with the pretrained LLM. For example,
Liu et al. (2023b) utilized the visual encoder out-
put as input for LLaMA (Touvron et al., 2023) and
trained both networks to align on the generated
visual instruction dataset. Zhu et al. (2023) inte-
grated Vicuna (Peng et al., 2023) as a language
decoder and only fine-tuned the cross-modal align-
ment network with extended image captions from
ChatGPT. Likewise, both Gong et al. (2023) and
Dai et al. (2023) used various instruction-tailored
VL datasets. However, the former adopted BLIP2
(Li et al., 2023b) as its foundational architecture
while the latter initialized from Flamingo (Alayrac
et al., 2022).

Despite the advancements of LVLMs, they re-
main encumbered by the persistent challenge of hal-
lucinations when generating textual output. These
issues significantly hinder their effectiveness in var-
ious vision-language tasks (Rohrbach et al., 2018).

5.2 Hallucination in LVLMs

Recently, there has been growing research attention
directed towards the phenomenon of hallucination
in LVLMs. Among these works, some studies, as
shown in Table 1, have concentrated on halluci-
nation detection and evaluation (Li et al., 2023d;
Wang et al., 2023b,a; Jing et al., 2023), and some
have developed methods to mitigate hallucination
(Liu et al., 2023a; Zhou et al., 2023; Yin et al.,
2023; Jing and Du, 2024). Though the issue of hal-
lucination is studied extensively, only a few works
have focused on fine-grained hallucination detec-
tion in LVLMs. For instance, Li et al. (2023d)
proposed a novel evaluation metric "POPE" to eval-
uate hallucinations in LVLMs by pooling questions

about the ground truth objects. They showed that
existing state-of-the-art LVLMs are highly prone
to object-level hallucinations. Wang et al. (2023b)
introduced "HaELM," a framework for detecting
hallucinations. They utilized LLM to generate a
hallucinatory dataset and then fine-tuned LLaMA
to identify hallucinatory responses from LVLMs.
The aforementioned line of research either exclu-
sively focused on object-level hallucination or re-
quired training for the detection of hallucination.
To address these challenges, Wang et al. (2023a) in-
troduced "AMBER," a comprehensive benchmark
capable of assessing both generative and discrim-
inative tasks, such as object attribute and relation
hallucination. Though this work developed a fine-
grained hallucination framework, it required hu-
man annotators to annotate the object existence,
object attribute, and object relation information for
discriminative tasks.

In contrast to the aforementioned studies, our
work differs by being applicable to any existing
dataset or unseen images for generating probing
questions related to object existence, attributes, and
relations for evaluating LVLMs hallucination. In-
stead of relying on human annotators, we use an
object detection model that performs better in ob-
ject detection tasks than LLMs. Our work does not
require any additional information for an image to
generate probing questions.

6 Conclusion

In recent years, large vision language models have
developed quickly, but hallucinations remain a se-
rious concern. Current hallucination evaluation
methods face problems like high costs, limited
scope, and lack of generalization. Thus, we intro-
duce FIHA, a multi-dimensional detection method
that requires no LLMs and no annotations. FIHA
can automatically create high-quality QA pairs for
any image dataset. We conducted a thorough anal-
ysis of the performance of mainstream LVLMs,
identified the issues, and proposed potential meth-
ods for improvement. In the future, we will delve
deeper into methods for alleviating hallucinations.

Liminations

FIHA has comprehensive features and maintains
a high overall quality. Despite the limitations dis-
cussed in the previous analysis section, there are ad-
ditional constraints in some aspects. The generated
QA primarily focuses on the existence, attributes,



and relations of main objects in the images, while
lacking in QA for surrounding and minor objects.
This is due to the FRCNN’s lower confidence in
detecting small and less obvious objects.
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A Details of the Experimental Setup

Datasets We used two datasets: the MSCOCO(Lin
et al., 2014) and the Foggy Cityscapes(Cordts et al.,
2016). MSCOCO is a large image dataset devel-
oped by Microsoft, officially known as Microsoft
Common Objects in Context. This dataset aims to
advance the development of computer vision tasks
such as object detection, segmentation, and image
captioning. This dataset contains over 330,000
images, of which more than 200,000 images are
annotated, covering 80 different object categories.
Foggy Cityscapes is a synthetic fog dataset that
simulates fog in real-world scenes. Each foggy im-
age is rendered using clear images and depth maps
from Cityscapes. Consequently, the annotations
and data split in Foggy Cityscapes are inherited
from Cityscapes.
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