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ABSTRACT

How can we ensure that Large Vision-Language Models (LVLMs) maintain strong
attention to visual input throughout the inference process? Recent advancements in
Large Vision-Language Models (LVLMs) have demonstrated significant progress
across multiple domains. However, these models still face the inherent challenge
of integrating vision and language for collaborative inference, which often leads
to "hallucinations," outputs that are not grounded in the corresponding images.
Many efforts have been made to address these challenges, but each approach comes
with its own limitations, such as high computational costs or expensive dataset
annotation. Worse still, many of them fail to recognize the crucial role of visual
attention in guiding the model’s response generation. In our research, we identify
a key limitation in current LVLMs: the model’s diminishing attention to visual
input as the number of generated tokens increases, which results in performance
degradation. To address this challenge, we propose Image attention-guided Key-
value merging cOllaborative Decoding (IKOD), a collaborative decoding strategy
that generates image-focused sequences using key-value merging. This method
derives logits from shorter sequences with higher image attention through key-
value merging and combines them with those from the original decoding process,
effectively mitigating attention decay. Importantly, IKOD requires no additional
training or external tools, making it highly scalable and applicable to various
models.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs), such as GPT, LLaMA, and Vicuna (Brown
et al., 2020; Touvron et al., 2023; Chiang et al., 2023) have profoundly impacted the development
of Large Vision-Language Models (LVLMs), enabling significant progress accross various domains
like literature (Yang et al., 2024), agriculture (Zhu et al., 2024a), visual content generation (Zhu
et al., 2024b) and robotics (Ding et al.). However, LVLMs face inherent limitations in precisely
aligning vision and language modalities for collaborative inference. These shortcomings can lead
to LVLMs’ trustworthy problems like "hallucinations," where the model generates information not
grounded in the images. These problems have led to significant challenges in critical fields such as
finance (Kang & Liu, 2023) and medical diagnosis (Chen et al., 2024a), adversely impacting the
accuracy and safety of decision-making processes within these systems. Therefore, addressing this
issue is crucial for enhancing the performance and reliability of LVLMs. Motivated by the concerns
of misalignment between vision and language, various approaches have been proposed to address
the issue of misalignment, including instruction tuning (Liu et al., 2023a; Zhao et al., 2023; Lin
et al., 2023), post-hoc techniques (Zhou et al., 2023; Yin et al., 2023) and contrastive decoding (Leng
et al., 2023; Wang et al., 2024; Zhang et al., 2024). While these methods have demonstrated some
success, they often rely heavily on additional datasets, external tools, or computational resources. For
instance, post-hoc methods depend on external tools such as pre-trained vision-language models (Liu
et al., 2023b) and closed-source large models (Brown et al., 2020), which limits their potential for
widespread application and incurs high inference costs. Moreover, many of them are inspired by
methods designed specifically for single-modal language models, failing to recognize the crucial role
of visual attention in guiding the model’s response generation.
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To address these challenges, we analyze the relationship between LVLM’s performance and its visual
attention. Our observations show key limitations in current LVLMs: as the number of generated
tokens increases, the model’s attention to the image gradually diminishes. Further experiments reveal
that this reduction in attention negatively impacts the model’s performance. Based on these findings,
we propose an Image attention-guided Key-value merging cOllaborative Decoding strategy (IKOD),
a collaborative decoding strategy that generates image-focused sequences while retaining most of
the essential information in the response. This approach involves obtaining logits with high image
attention from short sequences through compressing KV Cache and merging them with the logits
derived from the original decoding process, which can alleviate the decline in attention. Another
advantage of our method is that it requires no additional training and does not rely on external tools.

Our primary contributions can be summarized as follows: (1) We investigate the relationship between
Large Vision-Language Models (LVLMs) performance and their visual attention, revealing that as the
sequence length increases, the model’s attention to the image diminishes. This diminishing attention
leads to performance degradation and errors in the generated responses. (2) We introduce IKOD,
an image attention-guided key-value merging collaborative decoding strategy. This method endows
text sequence with high attention on image using key-value merging and integrates the augmented
decoding process with the original decoding process to obtain a more accurate output distribution.
(3) IKOD does not require additional training or external tools, which is more easily applicable to
various models.

2 PRELIMINARIES

In this section, we discuss two fundamental components in Large Vision-Language Models (LVLMs):
the inference process and the self-attention mechanism in transformer-based architectures. These
concepts are crucial for understanding how LVLMs combine visual and textual information to
generate meaningful responses.

2.1 INFERENCE IN LVLMS

Large Vision-Language Models (LVLMs) commonly have three key components (Liu et al., 2024c;
Dai et al., 2023; Zhu et al., 2023): a vision encoder, a connector and a language model. For the
visual input v, a pre-trained vision encoder is employed to extract visual features zv . The connector
primarily involves two types: the Q-former and the MLP. The Q-former functions as a query-based
mechanism that interacts with the visual features and the instruction, generating a set of latent
embeddings that capture the task-relevant image features. In contrast, the MLP connector applies
a series of fully connected layers to transform the visual features into a representation that can be
directly fed into the language model. The aligned visual features can be formulated as follows:

xv = H(xI , zv), (1)

where H(·) denotes the connector module and xI is the input instruction. In the inference process,
the generated token can be defined as sampled from a probability distribution:

p(Y |x, xv) =

L∏
t=1

p(yt|y<t, x, xv), (2)

where y<t represents the sequence of generated tokens up to time step t− 1, and x is the input text
tokens and L is the length of the generated sequence.

2.2 SELF-ATTENTION IN TRANSFORMER

Transformers have revolutionized the field of deep learning, particularly in natural language pro-
cessing, due to their self-attention mechanism. The self-attention mechanism enables the model
to capture long-range dependencies and interactions between tokens in a sequence by computing
attention scores for each pair of tokens.

For an input sequence of tokens X = {x1, x2, . . . , xn}, each token xt is first linearly projected into
three vectors: a query qt, a key kt, and a value vt through learned weight matrices WQ, WK , and
WV , respectively:
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Figure 1: Image attention across different layers and heads of LLaVA 1.5 7b. More examples are
avaliable in Appendix A.2.2

Qt = xtWQ, Kt = XtWK = [k1, k2, . . . , kt], Vt = XtWV = [v1, v2, . . . , vt],

where Xt represents the entire input sequence when generating xt, both Kt and Vt are concatenations
of the keys and values for all tokens in the sequence.

The self-attention mechanism is computed in parallel for all tokens in the sequence by packing the
queries, keys, and values into matrices Qt, Kt, and Vt, respectively. The output of the self-attention
mechanism for the entire sequence can be written as:

Zt = softmax
(
QtK

T
t√

dk

)
Vt, (3)

where Zt represents the matrix of outputs. In addition to the self-attention mechanism, the residual
connection (often referred to as a "skip connection") is used to add the input of the previous layer
directly to the output of the current layer.

Zfinal = Zprev + FFN(Zprev), (4)

here, Zprev is the feature from the previous layer, and FFN(·) is the self-attention network. Conse-
quently, the generated token can be defined as:

p(Y |x, xv) =

L∏
t=1

p(yt|y<t, x, xv) =

L∏
t=1

p(yt|Qt,Kt, Vt). (5)

The self-attention mechanism enables transformers to effectively capture long-range dependencies
between tokens in a sequence, enhancing the model’s ability to understand complex data patterns.
However, this architecture for current LVLMs still has a limitation: the model’s attention to the image
decreases as the token length increases.

3 KEY INSIGHT

3.1 IMAGE ATTENTION WEAKENS WITH INCREASING SEQUENCE LENGTH

Visual attention within Large Vision-Language Models (LVLMs) has been identified as a distinctive
pattern that significantly influences the performance of these models (Lin et al., 2024; Yu et al.,
2024a). Inspired by this, we explore the relationship between image attention and token position in
the LVLMs’ responses.

We randomly sample 5,000 images from the MSCOCO validation dataset (Lin et al., 2014) for our
analysis. The prompt used for generating responses is, "Describe this image in detail." Within this
context, we examine the correlation between the model’s image attention and the token positions in
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Figure 2: Comparison of average and maximum attention across the generated tokens for LLaVA-1.5,
VILA, and SVIT models.

its responses. Specifically, for each token t with the total sequence length L, we obtain the attention
map at i-th layer and j-th head by:

Atti,jt = softmax

(
Qi,j

t (Ki,j
t )T√
d

)
, (6)

where Qi,j
t ∈ R1×d and Ki,j

t ∈ RL×d. For better comparison, we select the first 20% and the last
20% of the tokens from each sequence. We then compare the image attention across different layers
and heads, analyzing how the attention varies between early and late tokens in the sequence. As shown
in Figure 1, we present the visualization of image attention in LLaVA-1.5, where each line represents
a different layer. We observe a significant difference between the last 20% of tokens and the first 20%.
Specifically, in the last 20%, image attention significantly decreases for most patches. To further
validate our findings, we visualize the density distribution of the relationship between attention and
token positions using a kernel density estimate (KDE) (The details can be seen in Appendix A.2.1).
For each token, we calculate its relative position in the sequence and the average image attention
across different heads. As shown in Figure 3, we observe that image attention diminishes as the
sequence length increases, which further confirms our findings. We also show average and maximum
image attention scores across different heads on different models in Figure 7 in Appendix A.2.2.

Figure 3: Image attention across different
layers and heads of LLaVA-1.5 during re-
sponse generation, showing the relationship
between relative position in the sequence and
the average image attention across different
heads. More examples can be found in Ap-
pendix A.2.2.

3.2 WEAKENED IMAGE ATTENTION LEADS TO
PERFORMANCE DIMINISHMENT IN THE MODEL

After observing that the model’s image attention
weakens as the sequence length increases, we are
prompted to consider a question: Does the weak-
ened image attention effect LVLMs’ performance?
To address this, we conduct a detailed analysis to
investigate the relationship between image attention
and model performance. The phenomenon of hallu-
cinations in LVLMs refers to instances where these
models generate content that is not grounded in the
provided image. Such hallucinations are generally
viewed as indicators of weak performance in LVLMs,
as the generated descriptions or responses deviate
from the visual information, leading to inaccuracies
in output (Liu et al., 2024a). Therefore, we exam-
ine how visual attention impacts the performance of LVLMs by exploring its connection to the
phenomenon of hallucination. Following the setting in 3.1, we visualize the density distribution
of the average image attention of tokens and the positions of hallucinated tokens, as illustrated in
Figure 4. We conduct experiments on two LVLMs, LLaVA-1.5 and InstructBLIP. As the sequence
increases, there’s a noticeable pattern where the visual attention decreases, indicating weakened
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attention towards tokens appearing later in the sequence. Besides, the hallucinated tokens are more
concentrated in areas with low attention, which suggests lower image attention is more likely to cause
the model to make errors. Additionally, it’s interesting to note that we find InstructBLIP’s attention to
be much greater than LLaVA’s, which may be related to the use of the Q-Former structure. More
examples are shown in Appendix A.2.2.

(a) LLaVA-1.5 (b) InstructBLIP

Figure 4: Relationship between image attention and model performance on LLaVA-1.5 and Instruct-
BLIP.

4 METHOD

While Large Vision-Language Models (LVLMs) have made great progress in integrating visual and
textual modalities, they often face challenges in maintaining strong visual attention as sequence length
increases. To address these limitations, we propose an Image Attention-Guided key-value merging
strategy that selectively integrates key and value vectors based on their importance derived from
image attention scores. We first propose the Image Attention-Guided Key-Value Merging Approach
in Section 4.1. In Section 4.2, we introduce a collaborative decoding strategy to further enhance the
cabilities of LVLMs. Finally, in Section 4.3, we present adaptive plausibility constraints to improve
the model’s capacity for managing long-sequence image processing. The overall framework of our
method is illustrated in Figure 5.

4.1 IMAGE ATTENTION-GUIDED KEY-VALUE MERGING

In this section, we propose a key-value merging strategy that prioritizes the integration of visual
features by selectively merging key and value vectors based on their importance determined by image
attention scores. The core idea is to identify anchor points in the key-value vectors that aggregate
surrounding contextual information. By recognizing the significance of visual attention in Large
Vision-Language Models (LVLMs), we can develop policies to predict which vectors in the key-value
storage will be most relevant for upcoming inference tasks. This approach helps reduce sequence
length and mitigates the problem of diminishing image attention.

Our method ensures that LVLM maintains a strong focus on crucial visual elements, thereby im-
proving the quality of generated tokens. During the key-value merging stage, this approach involves
two primary steps: 1) selecting important key-value anchors based on the layer-wise sum of image
attention scores, and 2) merging vectors based on the selected anchors.

Anchors Selection. Suppose the model has L layers in total, each with K heads. The text sequence
including instruction and generated tokens has T tokens. Consider the j-th attention head in the i-th
layer, the original key and value are ki,j and vi,j respectively. The attention for the token yt in text
sequence can be denoted as Atti,jt . Overall, we can calculate the attention score for each token in each
layer based on the visual attention, denoted as Si

t =
∑

j Atti,jt [image_index], where image_index
refers to the index of the image tokens. Consequently, we obtain independent attention scores for
each layer. Since we expect all the tokens in text sequence to have higher attention on image, we
pay more attention to the tokens with lower attention scores, which commonly appear at the end
of sequence and are more relevant with the query token. Thus we select these tokens as anchors
to augment them, while merging the remaining tokens’ keys and values into the closest anchors’.
Notably, we protect the most recent token as it has great association with query token. Then we sort
the tokens except the last token (protected token) based on their attention scores reversely for each
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Attention

query

𝑝𝑝𝜃𝜃(𝑦𝑦𝑡𝑡|𝑄𝑄𝑡𝑡 ,𝐾𝐾𝑡𝑡 ,𝑉𝑉𝑡𝑡)𝑝𝑝𝜃𝜃(𝑦𝑦𝑡𝑡|𝑄𝑄𝑡𝑡 , �𝐾𝐾𝑡𝑡 , �𝑉𝑉𝑡𝑡)

𝑝𝑝𝜃𝜃 𝑦𝑦𝑡𝑡 𝑄𝑄𝑡𝑡 ,𝐾𝐾𝑡𝑡 ,𝑉𝑉𝑡𝑡 + 𝛼𝛼𝑝𝑝𝜃𝜃(𝑦𝑦𝑡𝑡|𝑄𝑄𝑡𝑡 , �𝐾𝐾𝑡𝑡 , �𝑉𝑉𝑡𝑡)

Image
Begin

Image
End

Merge Merge Protected KV

Visual Input V:

Cache Merging

Output:
The image features 
a white dog and a 
cup…

LVLM

Anchor token

Merged token

Protected token

Low attention on image

High attention on image

Anchor KV

person cup chair

person cup chair

Figure 5: The overall framework of IKOD. We select the tokens with lower attention on image in text
sequence to be anchors while merging the remaining tokens’ keys and values (KVs) into the closest
anchors’, resulting in a compressed KV Cache namely a shorter contextual sequence with higher
attention on image. Then we combine the logits derived from the compressed KV Cache with the
original logits to get a output distribution more grounded in image.

layer, resulting in the indices {tik|k = 1, 2, ..., T − 1} in ascending order, where i indicates layer
i. Given an anchor ratio λ, the top K = λ× (T − 1) tokens in each layer are selected as anchors,
yielding the following set:

Di
k =


{0, ...,

⌊
ti1+ti2

2

⌋
}, k = 1

{
⌊
tik−1+tik

2

⌋
+ 1, . . . ,

⌊
tik+tik+1

2

⌋
}, 1 < k < K

{
⌊
tiK−1+tiK

2

⌋
, ..., T − 1}, k = K

, (7)

where ⌊·⌋ denotes the floor function. The division indicates that each token is divided into the closest
anchor token’s group across various layer, attributed to the strong contextual associations of close
tokens.

Key-Value Merging. When generating the next token, T + 1, in each layer, we average all the
key-value vectors corresponding to each division Di

k and merge them into Ki,j
t and V i,j

t . Specifically,
we compute the averaged key and value for the j-th head of the i-th layer as follows:

K̃i,j
t,k =

1

|Di
k|
∑

m∈Di
k

Ki,j
m , Ṽ i,j

t,k =
1

|Di
k|
∑

m∈Di
k

V i,j
m , (8)

where Di
k is the set of all positions in division k for layer i, and |Di

k| represents the number of
elements in that division. Next, we concatenate the averaged key and value vectors across all
divisions, along with the previous tokens and protected token, to obtain the final merged key and
value for the j-th head of the i-th layer: K̂i,j

t and V̂ i,j
t .

This approach allows us to obtain a shorter, more image-focused decoding strategy by merg-
ing keys and values based on image attention, which can be formulated as p(yt|y<t, x, xv) =

pθ(yt|Qt, K̂t, V̂t). By selectively emphasizing tokens that carry contextual information, it ensures
that the model maintains consistent alignment with the visual content while reducing the sequence
length.

4.2 COLLABORATIVE DECODING WITH ORIGINAL DECODING STRATEGY

Relying solely on image-focused decoding result in the model failing to fully capture detailed
information. The detailed experiment of this issue can be found in Section 5.2. To address this
concern, we propose combining the original inference decoding with a shorter sequence decoding
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that is more focused on the image. This approach is expected to enhance decoding while maintaining
the stability of the inference process.

Building on the key-value merging discussed in Section 4.1, we derive the following equation:

p(yt|y<t, x, xv) = pθ(yt|Qt,Kt, Vt) + αpθ(yt|Qt, K̂t, V̂t), (9)

where α is a hyper-parameter that balances the original inference decoding with the image-focused
decoding. By effectively leveraging both the standard and image-focused decoding strategies, our
method seeks to improve the model’s performance. This integration of key-value merging with
adaptive decoding represents a significant step towards more image-conditioned language generation.

4.3 ADAPTIVE PLAUSIBILITY CONSTRAINTS

Though collaborative decoding based on image attention enhance the LVLMs’ alignment, there
still exists a challenge. The logits of some implausible tokens may be unexpectedly enhanced.
Those tokens with very low confidence are commonly implausible or hallucinated, not grounded
in images. Through image-guided key-value merging, these logits with low confidence may be
enhanced as well, affecting the performance of LVLMs. To tackle this issue, we draw inspiration
from previous works (Li et al., 2022; Leng et al., 2024) and adopt an adaptive plausibility constraint
for our method. Specifically, we select next token from those tokens whose probabilities exceed a
predefined confidence level in the original output distribution, denoted as follows:

Vhead (y<t) = {yt ∈ V : p(yt|y<t, x, xv) ≥ βmax
w

p(w|y<t, x, xv)},

p(yt|y<t, x, xv) = 0, if yt /∈ Vhead (y<t) ,
(10)

where V is the output vocabulary of LVLM and β is a hyper-parameter between 0 and 1 to control the
truncation of the next token distribution. A larger β means a more strict restriction to the selection of
next token, retaining only high-probability tokens.

5 EXPERIMENT

In this section, we evaluate IKOD in aligning vision and language modalities in LVLMs and improving
the model performance. We aim to answer the following questions: (1) Can IKOD reduce hallucina-
tion in LVLMs? (2) How does IKOD improve model performance in comprehensive benchmarks?
(3) Does the key component of IKOD contribute to the model’s performance?

5.1 EXPERIMENTAL SETTINGS

Evaluation Benchmarks. We conduct evaluations on both hallucination benchmarks and compre-
hensive benchmarks. Specially, this includes: (1) Hallucination benchmarks (POPE (Li et al., 2023b),
CHAIR (Rohrbach et al., 2018)). (2) Comprehensive benchmarks (VQAv2 (Goyal et al., 2017), Sci-
enceQA (SQA) (Lu et al., 2022), MME (Fu et al., 2024), MMBench (Liu et al., 2023c), MM-Vet (Yu
et al., 2023b), COCO Caption (Chen et al., 2015)). More details are provided in Appendix A.3.

Baselines. First, We compare our approach to existing decoding methods: Nucleus sampling (p =
0.1), Greedy search, OPERA (Huang et al., 2023), VCD (Leng et al., 2024), HALC (Chen et al.,
2024b) and AGLA (An et al., 2024). Furthermore, We compare the performance of IKOD with other
LVLM preference tuning methods, including Silkie (Li et al., 2023a), LLaVA-RLHF (Sun et al.,
2023), and RLHF-V (Yu et al., 2024b). More details about these methods can be found in Appendix
A.4.

Implementation Details. Following previous research (An et al., 2024; Leng et al., 2024), We utilize
LLaVA-1.5 (Liu et al., 2024b) and InstructBLIP (Dai et al., 2023) with the language decoder Vicuna
7B as the backbone models. In all experiments unless specially mentioned, we adopt Greedy search
as the base decoding strategy for IKOD and other methods. The comprehensive pararmeter settings
are detailed in Appendix A.5. For compared methods, we follow the suggested settings in their
respective papers and released codes to ensure a fair comparison, and the random seed is fixed to 100
coherently. All experiments are conducted on a single NVIDIA A100 GPU.
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Table 1: F1 score on POPE-MSCOCO dataset. We Bold the best results and underline the second
best results.

Model Decoding Random Popular Adversarial Average

LLaVA1.5

Nucleus 81.07 80.30 77.81 79.73
Greedy 85.50 84.37 82.32 84.06
OPERA 84.52 85.38 81.51 83.20
VCD 87.91 85.83 82.16 85.30
HALC 84.48 83.53 81.51 83.17
AGLA 86.32 85.21 83.27 84.93
IKOD 89.88 87.86 83.11 86.95

InstructBLIP

Nucleus 81.13 78.75 77.83 79.24
Greedy 86.98 84.31 82.13 84.47
OPERA 87.12 82.22 80.73 84.54
VCD 85.72 83.21 81.24 83.39
HALC 87.05 84.29 82.17 84.50
AGLA 87.00 84.35 81.86 84.40
IKOD 87.57 85.15 82.46 85.06

Table 2: Evaluation results on COCO caption benchmark. Lower CHAIRS and CHAIRI indicate
fewer hallucinations, and higher recall and BLEU-4 indicate better performance.

Model Decoding CHAIRS ↓ CHAIRI ↓ Recall ↑ BLEU-4 ↑ Avg. Len

LLaVA-1.5

Nucleus 57.2 14.6 76.5 3.1 105.6
Greedy 50.0 12.0 81.9 4.8 101.0
OPERA 48.6 11.2 82.6 4.9 95.2
VCD 50.8 11.8 81.1 4.5 100.9
HALC 40.2 8.1 77.1 5.0 94.2
AGLA 50.0 12.1 81.9 4.8 100.6
IKOD 36.4 8.8 80.9 5.2 99.5

InstructBLIP

Nucleus 57.6 14.8 71.9 2.8 111.1
Greedy 46.2 10.4 76.4 4.9 102.4
OPERA 50.6 12.6 75.9 0.8 97.3
VCD 52.4 12.2 76.8 4.9 98.6
HALC 60.2 18.0 74.8 3.9 106.0
AGLA 46.4 10.4 76.5 5.0 102.4
IKOD 39.8 6.9 78.8 4.6 119.2

5.2 EXPERIMENTAL RESULTS

Results on POPE. The text instruction we used for POPE is "Is there object in this the image? Please
answer this question with one word." Table 1 presents the results on POPE-MSCOCO dataset (Li et al.,
2023b) across various baselines and backbone models. The F1 scores are reported for three distinct
task types: Random, Popular, and Adversarial. Notably, significant improvements are observed when
comparing IKOD with other methods, thereby underscoring its efficacy in enhancing the performance
of LVLMs.

Results on CHAIR. In the CHAIR benchmark, we randomly select 500 images from MSCOCO
validation dataset (Lin et al., 2014) to conduct an evaluation. We adopt "Please describe this image in
detail." as the text instruction. The results compared with other methods are presented in Table 2.
Obviously, IKOD outperforms other approaches on CHAIRS and CHAIRI metrics significantly. In
BLEU-4 scores and recall scores, IKOD achieve superior performance, effectively improving the
accuracy of the generated captions. Moreover, IKOD does not shorten the generated sequence length,
demonstrating its ability to preserve diversity in the output. This comparasion indicates that IKOD
effectively mitigate hallucinations and improve modality alignment in LVLMs.

Results on Comprehensive Benchmark. We provide a comprehensive benchmark comparison
between IKOD and other approaches, as illustrated in Table 3 and Table 4. Despite the varied
strategies used for different LVLMs, IKOD consistently outperforms other LVLMs in comprehensive
benchmarks. This comparison underscores IKOD’s exceptional ability to integrate image and text
modalities, leading to an enhancement in LVLMs’ performance. To have a detailed comparison,
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we evaluate the perception and cognition ability of IKOD and other decoding methods on MME
benchmark, where IKOD has a better performance as well. Details are shown in Appendix A.7

Table 3: The performance of adopting IKOD on LLaVA-1.5 across comprehensive benchmarks.

Method VQAv2 ↑ SQAI ↑ VQAT ↑ MME ↑ MMBench ↑ MM-Vet ↑ COCO-caption ↑
LLaVA-1.5 76.5 66.8 46.0 1458.8 64.3 30.5 56.6

+ IKOD 76.7 68.1 46.1 1489.4 64.4 31.1 56.8

Ablation Studies - KV merging Strategy. In section 4.1, we select the tokens with lower attention
on image in text sequence as anchors while merging other tokens’ Keys and Values into the anchors’.
To verify its effectiveness, we conduct an ablation study and compare the performance of three KV
merging strategies. Specially, we randomly selecting tokens (Random), selecting high attention
tokens (High Attention), selecting low attention tokens (Low Attention (Ours)) as anchors, and other
tokens’ KVs are merged. The comparison results are presented in Table 5. It’s obvious that our
method, namely selecting low attention tokens as anchors, has the best performance across all ratios.
This is reasonable as the tokens with low attention on image are commonly appears at the end of the
sequence, which are more relevant with the last token namely query token. Retaining these tokens
and merging other tokens can reserve more contextual information and get a shorter sequence with
higher attention on image, contributing to generating more rational text grounded in image.

Table 4: Comparison between IKOD and other preference construction approaches across hallucina-
tion and comprehensive evaluation benchmarks.

Metric LLaVA-1.5 + Vlfeedback + Human-Preference + RLHF-V + IKOD

CHAIRS ↓ 45.0 43.6 44.0 44.6 36.4
CHAIRi ↓ 10.1 9.4 9.3 7.9 8.8
POPE ↑ 85.9 83.7 81.5 86.2 87.0
SciQA-IMG ↑ 66.8 66.2 65.8 67.1 68.1
MM-Vet ↑ 30.5 31.2 31.1 30.9 31.1
MMBench ↑ 63.0 63.9 60.4 63.6 64.4
MME ↑ 1458.8 1432.7 1490.6 1498.3 1489.4

Table 5: F1 Score comparison of different KV merging strategies across various anchor ratios on
POPE-MSCOCO dataset under random setting.

KV Merging Strategies 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Random 86.12 86.84 85.31 84.64 83.44 83.36 83.38 81.53 79.73
High Attention 77.57 81.33 84.62 83.86 82.58 83.05 83.51 84.79 85.42
Low Attention(Ours) 87.68 88.37 86.68 87.38 88.83 89.88 88.35 87.60 78.44

Effect of Anchor Ratio λ. The anchor ratio λ is an important hyper-parameter reflecting the degree
of KV Cache compression. A higher λ indicates more tokens are reserved and a lower degree of KV
Cache compression, and λ = 1 implies the original generation procedure with full cache. We conduct
an analysis on POPE-MSCOCO dataset to explore its effect. The results are depicted in Figure 6.
We can easily draw the conclusion that when λ is too small or too big the model’s performance are
restricted, and λ = 0.4 is the best anchor ratio for both LLaVA-1.5 and InstructBLIP. The explanation
for this phenomenon could be summarized into two points: (1) Lower λ means less tokens are selected
as anchors, along with an excessive compressed KV Cache, resulting in a significant information loss
which is adverse to the next token generation. (2) Higher λ means the tokens with low attention on
image are not augmented enough by KV Cache compression. Based on the analysis, we set λ to 0.4
unless sepecially stated to get a better performance. More ablation studies and case studies can be
found in Appendix A.8 and Appendix A.9 respectively.

6 RELATED WORK

6.1 LARGE VISION-LANGUAGE MODELS

In recent years, significant advancements in Large Language Models (LLMs) (Brown et al., 2020;
OpenAI, 2023; Touvron et al., 2023) have fueled the development of Large Vision-Language Models
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(a) LLaVA-1.5 (b) InstructBLIP

Figure 6: IKOD performance on POPE-MSCOCO dataset across different anchor ratios λ on LLaVA-
1.5 and InstructBLIP.

(LVLMs). These models effectively integrate large-scale pre-trained vision models into the LLMs’
representation space. LVLMs are generally classified into two main types: MLP-based models and
Q-former-based models. These models have demonstrated strong performance by combining LLMs
with image inputs, achieving notable success in image comprehension tasks. However, despite these
successes, LVLMs are not without flaws. They often encounter issues like "hallucinations," where
the generated outputs fail to accurately reflect the content of the input image.

To address these challenges, recent studies have focused on methods such as instruction tuning (Lin
et al., 2023; Dai et al., 2024; Liu et al., 2024c), post-processing (Zhou et al., 2023; Yin et al., 2023),
preference tuning (Yu et al., 2023a; Zhou et al., 2024), and decoding strategies (Huang et al., 2023;
Chen et al., 2024b) to enhance the alignment between visual and textual information. However, these
approaches often come with significant drawbacks. Instruction tuning and preference tuning methods
require costly dataset annotation, introduce unintended biases, and demand extensive computational
resources. Post-processing solutions correct hallucinated tokens in real-time, often relying on external
tools like pre-trained vision-language models and stronger foundational models.

6.2 DECODING STRATEGIES FOR LVLMS

Decoding strategies are crucial for large models, as they determine how the model generates cor-
responding responses based on images and instructions. Additionally, they can enhance model
performance without the need for training. They play a pivotal role in shaping the output’s quality,
relevance, and coherence. Traditional strategies such as greedy decoding, nucleus sampling, beam
search, provide a variety of options for large models in terms of output diversity, reliability, and cer-
tainty balance between randomness and relevance. Recently, decoding strategies for large foundation
models have primarily concentrated on contrasting logits across different layers (Chuang et al., 2023),
applying logit penalties (Huang et al., 2023), and employing contrastive decoding (Leng et al., 2023;
Chen et al., 2024b).

7 CONCLUSION

In this paper, we investigate the impact of sequence length on image attention in Large Vision-
Language Models (LVLMs), specifically focusing on how attention weakens as the sequence pro-
gresses. Our analysis revealed a significant reduction in image attention towards the end of sequences,
which correlates with a higher occurrence of hallucinated tokens and performance degradation in the
model. To address this issue, we introduce an image attention-guided Key-Value Merging strategy,
designed to enhance the model’s focus on visual elements by selectively merging key and value
vectors based on their attention scores. Furthermore, we propose a collaborative decoding method
named IKOD that combines the logits derived from the compressed KV Cache and original logits to
obtain a output distribution more grounded in image. Our experiments demonstrate that IKOD can not
only mitigate hallucinations in LVLMs but also enhance their comprehensive capacities, dismissing
the need for additional training or external tools and making it applicable to various models.
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IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

REPRODUCIBILITY STATEMENT

For our empirical results, we provide a comprehensive overview of baseline details delve into the
details of the experimental sttings, all of which can be found in Section 5.1, Appendices A.3, A.4 and
A.5. Additionally, in Appendix A.9, we offer detailed case demonstrations and comparisons. It is
worth noting that we are committed to open source the code related to our research after publication.
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A APPENDIX

A.1 LIMITATIONS

Though there are many strengths for IKOD, we still acknowledge that it has some limitations. As we
obtain an augmented view on input image through key-value merging, it’s not always beneficial in
some cases. When the input image has some misleading information, excessive focus on the image
could make models prone to generating responses that go against common sense. Moreover, the
hyper-parameter α modulating the balance of augmented and original output distributions and the
anchor ratio λ controlling the degree of KV Cache compression need to be set manually, which limits
its convenience to some extent. In the future study we will try to explore self-adaptive methods to
substitute them.

A.2 IMPLEMENTATION ABOUT THE VISUALIZATION

A.2.1 DETAILS ABOUT THE VISUALIZATION METRIC

KDE is a non-parametric way to estimate the probability density function of a random variable by
smoothing out the data points. The idea behind KDE is to estimate the distribution of data points by
placing a kernel function on each data point and summing them up to create a smooth estimate of the
data’s probability density. For two-dimensional data x and y, the KDE is defined by the following
formula:

f̂(x, y) =
1

nhxhy

n∑
i=1

K

(
x− xi

hx
,
y − yi
hy

)
, (11)

where:
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• f̂(x, y) is the estimated density at the point (x, y).
• n is the number of data points.
• K(·) is the kernel function, typically a Gaussian kernel:

K(u, v) =
1

2π
e−

1
2 (u

2+v2)

• hx and hy are the bandwidth parameters, which control the smoothness of the density
estimate. We set both hx and hy to 0.5 in our analysis.

A.2.2 MORE EXAMPLES OF VISUALIZATION OF ATTENTION IN LVLMS

We conduct an analysis on the relationship between image attention and token position across different
Large Vision-Language Models (LVLMs), as well as the relationship between image attention and
model performance. We present the visualization in Figure 7. A similar phenomenon IS observed
across different models: as the sequence length increases, image attention diminishes, particularly
towards tokens appearing later in the sequence. Also we find that weakened attention is correlated
with a higher concentration of hallucinated tokens in areas with low attention, indicating that reducing
image attention is more likely to lead to errors in the model.

A.3 EVLAUATION METRICS AND BENCHMARKS

POPE. The Polling-based Object Probing Evaluation (POPE) (Li et al., 2023b) is a widely-used
benchmark to assess object halucination in LVLMs, which contains 27,000 Yes/No questions in
three datasets: MSCOCO (Lin et al., 2014), A-OKVQA (Schwenk et al., 2022), GQA (Hudson &
Manning, 2019). Each dataset has three nagative sample settings: random, popular, adversarial. It
adpots Accuracy, Precision, Recall, and F1 score as the evaluation metrics.

CHAIR. Caption Hallucination Assessment with Image Relevance (CHAIR) (Rohrbach et al., 2018)
is a popular method to evaluate object hallucination in image caption tasks. It compares generated
objects with grounde-truth objects to calculate the degree of hallucination. CHAIR evaluate object
hallucination from two dimensions: instance-level and sentence-level, denoted as CHAIRI and
CHAIRS respectively, which are computed as:

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}|

CHAIRS =
|{captions with hallucinated objects}|

|{all captions}|

VQAv2. VQAv2 (Goyal et al., 2017) balances the popular VQAdataset (Antol et al., 2015) by
collecting complementary images such that every question in the balanced dataset is associated with
a pair of similar images that result in two different answers to the question. It has approximately
twice the number of image-question pairs.

SQA. ScienceQA (SQA) (Lu et al., 2022) is a benchmark that consists of 21k multimodal mul-
tiple choice questions within the domain of science, along with annotations of their answers and
corresponding lectures and explanations.

MME. Multimodal Large Language Model Evaluation (MME) (Fu et al., 2024) is a comprehensive
benchmark to assess the capabilities of LVLMs in multimodal tasks. It evaluates models with the
total score of Accuracy and Accuracy+ across two primary dimensions: perception and cognition,
containing 10 and 4 meticulously designed subtasks respectively.

MMBench. MMBench (Liu et al., 2023c) is a meticulously curated dataset expanding the scope
of evaluation questions and abilities. It introduces a rigorous CircularEval strategy which leverages
large language models to convert free-form predictions into pre-defined choices, resulting in more
accurate evaluation results.

MM-Vet. MM-Vet (Yu et al., 2023b) is an evaluation benchmark to assess the performance of LVLMs
on complicated multimodal tasks, which focus on six core vision-language capabilities: recognition,
knowledge, optical character recognition (OCR), spatial awareness, language generation, and math.

COCO Caption. The Microsoft COCO Caption dataset (Chen et al., 2015) contains over one and a
half million captions corresponding to more than 330,000 images. It used an evaluation server to
score candidate captions using popular metrics, including BLEU, METEOR, ROUGE and CIDEr.
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(a) Image attention across different layers and heads in svit 13b.

(b) Image attention across different layers and heads in VILA 7b.

(c) Image attention across different layers and heads
of svit 13B during response generation.

(d) Image attention across different layers and heads
of VILA 7B during response generation.

(e) Relationship between image attention and model
performance on svit.

(f) Relationship between image attention and model
performance on VILA.

Figure 7: More examples of attention visualization.
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A.4 OVERVIEW OF THE BASELINES

LLaVA-1.5. LLaVA-1.5 (Liu et al., 2024b) is an improvement based on LLaVA (Liu et al., 2024c). It
modifies with a CLIP-ViT-L-336px visual backbone and MLP projection and incorporates academic-
task-oriented VQA data with response formatting prompts, achieving state-of-the-art across 11
benchmarks at that time.

InstructBLIP. InstructBLIP (Dai et al., 2023) utilizes an instruction-aware Query Transformer to
extracts informative features tailored to the given instruction, demonstrating significant instruction
following ability. It achieves state-of-the-art zero-shot performance across 13 datasets and also excels
in some finetuned downstream tasks, like ScienceQA.

OPERA. OPERA (Huang et al., 2023) is a novel MLLM decoding method based on an Over-trust
Penalty and a Retrospection-Allocation strategy. It adds a penalty to the model logits to mitigate the
over-trust issue on summary token, along with a rollback strategy to correct the token selection.

VCD. Visual Contrastive Decoding (VCD) (Leng et al., 2024) calibrates model’s outputs through
contrasting output distributions derived from original and distorted visual inputs, thus reducing the the
over-reliance on statistical bias and unimodal priors, significantly mitigating the object hallucination
issue across different LVLMs.

HALC. HALC (Chen et al., 2024b) is a plug-and-play decoding algorithm to mitigate object hallucina-
tion in LVLMs. It operates on both local and global contexts, integrating a robust auto-focal grounding
mechanism to correct hallucinated tokens and a specialized beam search algorithm promoting further
visually matched generations.

AGLA. AGLA (An et al., 2024) leverages an image-prompt matching scheme to get an augmented
view of the input image where prompt-relevant content is reserved while others are masked. With
the augmented view, models can calibrate the output distribution by integrating generative global
features and discriminative local features.

Silkie. Silkie (Li et al., 2023a) utilizes AI annotation to build a vision-language feedback (VLFeed-
back) dataset. With preference distillation througth direct preference optimization (DPO) on it, Silkie
achieves more comprehensive improvements compared to human-annotated preference datasets.

LLaVA-RLHF. LLaVA-RLHF (Sun et al., 2023) introduces Reinforcement Learning from Human
Feedback (RLHF) from the text domain to the task of vision-language alignment. With the propsed
Factually Augmented RLHF, it augments the reward model with additional factual information and
alleviates the reward hacking phenomenon in RLHF, resulting in a performance improvement.

RLHF-V. RLHF-V (Yu et al., 2024b) collects human preference on segment-level and performance
dense direct preference optimization on it, achieveing state-of-the-art performance in trustworthiness
among open-source LVLMs at that time.

A.5 EXPERIMENTAL SETTINGS

In all experimental setups, we fix anchor ratio λ to 0.4 and β to 0.1 unless explicitly stated otherwise.
For POPE and CHAIR, We set α to 2 for LLaVA-1.5, while setting α to 1.1 for InstructBLIP. For
MME, α is set to 0.8, and λ is set to 0.9 and 0.8 for LLaVA-1.5 and InstructBLIP respectively. For
other benchmarks, the hyper-parameters are the same as POPE’s on LLaVA-1.5.

A.6 POPE EXPERIMENT DETAILS

We show the full results on POPE-MSCOCO dataset in Table 6. From the table, we can see that
the proposed decoding strategy IKOD consistently outperforms other methods in terms of accuracy
and F1 Score across nearly all settings, especially on random setting, demonstrating the significant
strength of our method. Though we don’t achieve the best performance on adversarial setting, which
may be attributed to the frequent co-occurence schemes in pretrained datasets and our excessive
attention on image, IKOD still gains the suboptimal results, proving its superiority.
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Table 6: POPE results on MSCOCO dataset. Higher accuracy and F1 score indicate better perfor-
mance. Bold indicates the best results of all methods.

Setting Model Decoding Accuracy Precision Recall F1 Score

Random

LLaVA-1.5

Nucleus 82.97 91.24 72.93 81.07
Greedy 87.07 97.28 76.27 85.50
OPERA 86.30 97.14 74.80 84.52
VCD 88.37 91.49 84.60 87.91
HALC 86.27 97.14 74.73 84.48
AGLA 87.73 97.56 77.40 86.32
Ours 90.17 92.58 87.33 89.88

InstructBLIP

Nucleus 81.37 82.07 80.27 81.16
Greedy 87.97 94.81 80.33 86.97
OPERA 88.07 94.61 80.73 87.12
VCD 86.77 93.05 79.47 85.72
HALC 88.03 94.82 80.47 87.05
AGLA 88.00 94.88 80.33 87.00
Ours 88.23 92.77 82.93 87.57

Popular

LLaVA-1.5

Nucleus 82.10 89.31 72.93 80.30
Greedy 85.87 84.39 76.27 84.37
OPERA 85.30 94.68 74.80 85.38
VCD 86.03 87.10 84.60 85.83
HALC 85.27 94.68 74.73 83.53
AGLA 86.57 94.78 77.40 85.21
Ours 87.93 88.39 87.33 87.86

InstructBLIP

Nucleus 79.23 78.46 80.60 79.51
Greedy 85.00 88.60 80.33 84.27
OPERA 84.93 88.14 80.73 84.27
VCD 83.97 87.33 79.47 83.21
HALC 85.00 88.49 80.47 84.29
AGLA 85.10 88.80 80.33 84.35
Ours 85.53 87.48 82.93 85.15

Adversarial

LLaVA-1.5

Nucleus 79.20 83.38 72.93 77.81
Greedy 83.63 89.51 76.20 82.32
OPERA 83.07 89.74 74.67 81.51
VCD 81.63 79.86 84.60 82.16
HALC 83.07 89.81 74.60 81.51
AGLA 84.47 90.20 77.33 83.27
Ours 82.27 79.33 87.27 83.11

InstructBLIP

Nucleus 77.40 76.08 79.93 77.96
Greedy 82.47 83.77 80.53 82.12
OPERA 82.51 83.55 80.93 82.22
VCD 81.63 83.02 79.53 81.24
HALC 82.50 83.74 80.67 82.17
AGLA 82.17 83.30 80.47 81.86
Ours 82.33 81.87 83.07 82.46

A.7 MME EXPERIMENT DETAILS

To compare the performance of IKOD and other decoding methods, we conduct comprehensive
experiments on MME benchmark based on the backbones of LLaVA-1.5 and InstructBLIP. As
illustrated in Table 7 and 8, our method achieve the best performance on perception capability and
suboptimal results on cognition capability for LLaVA-1.5. For InstructBLIP, despite IKOD lags
behind VCD on perception capability, it surpasses all other methods on cognition capability, further
demonstrate IKOD can improve LVLMs’ comprehensive capacities. As for the subtasks, each method
has its own advantages, so we don’t make a specific comparison.
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Table 7: Results on MME perception-related tasks.

Model Decoding Existence Count Position Color Posters Celebrity Scene Landmark Artwork OCR Perception
Total

LLaVA-1.5

Nucleus 180.00 101.67 111.67 140.00 105.10 111.76 144.50 122.50 101.75 100.00 1218.95
Greedy 195.00 158.33 123.33 155.00 129.59 133.53 154.75 163.25 121.00 125.00 1458.79
VCD 185.00 153.33 133.33 138.33 130.27 152.94 148.25 166.00 123.50 130.00 1460.96
AGLA 195.00 155.00 133.33 160.00 142.86 133.53 156.25 164.50 114.50 132.50 1487.47
Ours 195.00 173.33 128.33 160.00 129.59 137.65 156.50 159.25 117.25 132.50 1489.41

InstructBLIP

Nucleus 168.33 51.67 56.67 115.00 117.01 97.65 147.00 132.75 92.75 80.00 1058.82
Greedy 185.00 60.00 50.00 120.00 141.84 80.00 160.00 159.25 91.50 65.00 1112.59
VCD 185.00 60.00 51.67 123.33 150.68 97.65 156.50 161.50 96.00 102.50 1184.83
AGLA 185.00 60.00 50.00 120.00 141.84 82.65 160.50 160.00 91.50 65.00 1116.48
Ours 185.00 55.00 48.33 105.00 156.80 92.35 159.50 154.25 89.25 87.50 1132.99

Table 8: Results on MME cognition-related tasks.

Model Decoding Common Sense
Reasoning

Numerical
Calculation

Text
Translation

Code
Reasoning

Cognition
Total

LLaVA-1.5

Nucleus 107.86 60.00 57.50 97.50 322.86
Greedy 120.71 50.00 50.00 77.50 298.21
VCD 120.71 47.50 57.50 72.50 298.21
AGLA 115.00 37.50 50.00 62.50 265.00
Ours 120.00 55.00 57.50 67.50 300.00

InstructBLIP

Nucleus 72.86 90.00 50.00 40.00 252.86
Greedy 97.86 47.50 50.00 45.00 240.36
VCD 102.14 45.00 57.50 47.50 252.14
AGLA 97.86 47.50 50.00 45.00 240.36
Ours 99.29 42.50 70.00 45.00 256.79

A.8 ABLATION STUDIES

A.8.1 EFFECT OF α

α is an important hyper-parameter which modulates the level of amplification between original and
augmented output distributions, as formulated in Equation 9. Figure 8 demonstrates the outcomes
of an ablation study focusing on α, from where we can observe the trend of model’s performance
increasing first and then decreasing as α grows, and the best α are 2 and 1.1 for LLaVA-1.5 and
InstructBLIP respectively. When α is small, the effect of amplification is not obvious. Conversely,
too large α could break the balance of original and augmented output distribution, distorting model’s
inherent parameter information.

(a) LLaVA-1.5 (b) InstructBLIP

Figure 8: IKOD performance on POPE-MSCOCO dataset across different α on LLaVA-1.5 and
InstructBLIP.

A.8.2 EFFECT OF β

β controls the adaptive plausible constraint in Equation 10. As the constraint is set based on the max
logit of candidate tokens, it may not work for greedy decoding. So we adopt nucleus sampling (p
= 0.1) to explore the effect of β. The ablation results are shown in Figure 9. β = 0, implying no
constraint, has suboptimal performance, validating our rationale for implementing this constraint.
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(a) LLaVA-1.5 (b) InstructBLIP

Figure 9: IKOD performance on POPE-MSCOCO dataset under the random setting across different
β on LLaVA-1.5 and InstructBLIP.

For LLaVA-1.5, F1 score increases first and then decreases as β increases, while for InstructBLIP, F1
score grows continuously, indicating that the best threshold for the constraint is low for LLaVA-1.5
and high for InstructBLIP. Too large β may exclude the valid tokens unexpectedly. When applied, we
encourage users to set it to a rational value, like 0.1.

A.8.3 EFFECT OF DIFFERENT SAMPLING STRATEGIES

Following VCD’s setting (Leng et al., 2024), we conduct an ablation study on various sampling
strategies using POPE-MSCOCO dataset under the random setting with LLaVA-1.5 backbone. In
addition to the greedy search approach discussed in the main paper, this experiment includes four
additional sampling strategies: Top P sampling (specifically, p = 0.9), Top K sampling (specifically,
k = 50), Nucleus s, and Top K sampling with temperature normalization (k = 50, temp = 1.5/0.7).
Results are presented in Table 9. We can observe that applying IKOD, irrespective of the sampling
strategy employed, consistently contributes to hallucination mitigation in LVLMs. This consistency
underscores the versatility and effectiveness of IKOD in enhancing the alignment of vision and
language in LVLMs.

Table 9: An ablation study of different sampling strategies.

Sampling Strategy w. IKOD Accuracy Precision Recall F1 Score

Top P No 86.63 96.14 76.33 85.10
Yes 89.60 91.17 87.07 89.33

Top K No 82.97 91.24 72.93 81.07
Yes 88.53 90.99 85.53 88.18

Nucleus No 82.97 91.24 72.93 81.07
Yes 88.57 91.00 85.60 88.22

Top K+Temperature 0.7 No 86.93 96.63 76.53 85.42
Yes 89.97 92.07 87.47 89.71

Top K+Temperature 1.5 No 86.27 95.26 76.33 84.75
Yes 89.47 91.75 86.73 89.17

A.9 CASE STUDIES

We leverage CHAIR evaluation as a case study to qualitatively compare the decoding outputs of IKOD
with other methods. Responses generated by IKOD and other decoding methods including OPERA,
VCD, HALC and AGLA incorporating LLaVA-1.5 and InstructBLIP backbones are demonstrated
in Figure 10 and 11 respectively. In all plots, red fonts indicate the hallucinated contents, including
any of object existence, attribute or relationship hallucinations. We can see that IKOD effectively
mitigates object hallucinations without loss of details, which is consistent with the results in Table 2.
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IKOD: The image features a brown horse pulling a red carriage 
with a white wheel. The horse is standing on a dirt road, and 
the carriage is parked next to a building. The horse is wearing a 
harness, and the carriage is attached to the horse's harness, 
indicating that it is being used for transportation. The horse and 
carriage are positioned in the foreground, and the scene is set 
in a dirt-covered area, creating a unique and picturesque 
setting.

OPERA: The image features a brown and white horse standing 
next to a horse-drawn carriage. The horse is positioned on the 
left side of the carriage, while the carriage is on the right side. 
The horse appears to be wearing a harness, indicating that it is 
ready to pull the carriage.\n\nIn addition to the horse and 
carriage, there are two people visible in the scene. One person 
is standing closer to the left side of the horse, while the other 
person is positioned near the right side of the carriage.

VCD: The image features a brown horse standing next to a red 
carriage, which is being used as a horse-drawn carriage. The 
horse is wearing a harness and is pulling the carriage, creating a 
picturesque scene. The carriage is large and spacious, providing 
ample room for the passengers.\n\nIn the background, there 
are a few trees, adding to the overall ambiance of the scene. 
The horse and carriage are the main focus of the image, 
showcasing the traditional mode of transportation.

HALC: The image features a brown horse with a white face, 
standing on a road next to a carriage. The horse is wearing a 
harness and appears to be pulling the carriage. The carriage is 
red and white, and it is positioned behind the horse.\n\nThere
are two people in the scene, one standing closer to the horse 
and the other further away. The person near the horse seems 
to be attending to the horse or the carriage, while the other 
person is standing further back, possibly observing the scene or 
waiting for their turn to ride in the carriage.

AGLA: The image features a brown horse standing on a road, 
pulling a carriage with a red and white color scheme. The horse 
is positioned in the center of the scene, with the carriage 
behind it. The carriage has a bench seat, and the horse is 
wearing a harness, indicating that it is ready for a ride.\n\nIn 
addition to the horse and carriage, there are two people visible 
in the scene. One person is standing near the left side of the 
horse, while the other person is located on the right side of the 
horse. The presence of these individuals suggests that they 
might be passengers or caretakers of the horse and carriage.

IKOD: The image features a brown and white dog skillfully 
riding a skateboard down a street, likely in a parade or a street 
event. The dog is the center of attention, as it appears to be the 
main attraction for the crowd of people watching the dog skate. 
There are several people in the scene, with some of them 
standing near the dog and others watching from a 
distance.\n\nThe crowd is spread out, with some standing close 
to the dog and others standing further back, observing the 
spectacle. The dog and the skateboard are positioned in the 
center of the scene, capturing the audience's attention and 
creating a lively atmosphere

OPERA: The image features a brown and white dog skillfully 
riding a skateboard down a street. The dog appears to be 
enjoying the ride and is the main focus of the 
scene.\n\nSeveral people are watching the dog from various 
positions along the street. Some are standing closer to the dog, 
while others are further away, observing the unique sight. A 
chair can be seen in the background, possibly belonging to one 
of the onlookers.\n\nIn addition to the people and the dog, 
there are a couple of handbags visible in the scene, likely 
belonging to some of the spectators.

VCD: The image features a brown and white dog skillfully riding 
a skateboard down a street. The dog appears to be enjoying the 
ride, and it is the main focus of the scene. \n\nThere are 
several people watching the dog from various positions along 
the street. Some are standing closer to the dog, while others 
are further away. A few chairs are scattered around the scene, 
with one near the left side of the image and another on the 
right side. \n\nIn addition to the people and chairs, there are a 
couple of handbags placed on the ground, one near the center 
of the image and the other closer to the right side.

HALC: The image features a brown and white dog skillfully 
riding a skateboard down a street. The dog appears to be 
enjoying the ride, and it is the main focus of the scene. 
\n\nThere are several people watching the dog's performance, 
with some standing closer to the dog and others further away. 
A few chairs are scattered around the area, possibly for the 
spectators to sit and enjoy the show. Additionally, there are a 
couple of umbrellas in the scene, one near the left side and 
another towards the right side, possibly providing shade for the 
onlookers.

AGLA: The image features a brown and white dog skillfully 
riding a skateboard down a street. The dog appears to be 
enjoying the ride, and it is the main focus of the scene. 
\n\nThere are several people watching the dog's performance 
from various positions around the street. Some are standing 
closer to the dog, while others are further away. A few chairs 
can be seen scattered around the area, possibly for spectators 
to sit and enjoy the show.\n\nIn addition to the people and 
chairs, there are a couple of handbags placed on the ground, 
possibly belonging to the onlookers. The overall atmosphere 
seems lively and entertaining as the dog showcases its talent 
on the skateboard.

Figure 10: Two examples of generated captions by different decoding methods with LLaVA-1.5
backbone.
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IKOD: The image features a long wooden bench placed in a 
room with a white wall and a stairway. The bench is placed in 
the center of the room, with a few steps leading up to the 
stairway. There are two paintings on the wall, one on the left 
and one on the right side of the stairway, adding to the room‘s 
aesthetic. The bench and the paintings are positioned in the 
room, creating a cozy and artistic atmosphere.

OPERA: The image depicts a spacious room with a wooden 
bench placed in front of a staircase. The bench is positioned 
near the bottom of the staircase, creating a cozy and inviting 
atmosphere. There are two paintings hanging on the wall above 
the bench, adding a touch of artistic flair to the space.  In 
addition to the bench and paintings, there are several potted 
plants scattered throughout the room, giving it some greenery 
and life. A vase can be seen on the left side of the room, adding 
a decorative element to the space. Overall, the room exudes a 
warm and welcoming ambiance, perfect for relaxation or 
socializing.

VCD: The image features a long wooden bench placed in a 
room with a white wall and a staircase. The bench is situated in 
the middle of the room, with a potted plant placed on the left 
side of the bench. There are two paintings hanging on the wall, 
one on the left side and the other on the right side of the room. 
The paintings are positioned close to the bench, with one on 
the left and the other on the right side of the bench. The room 
has a spacious feel, with a lot of space between the bench and 
the paintings.

HALC: The image features a narrow staircase leading up to the 
second floor of an office building. Alongside the stairs, there is 
a wooden bench placed against the wall. A painting can be seen 
on one side of the room, while another painting hangs above 
the staircase landing. Two potted plants are also present in the 
scene, with one located near the bottom left corner and the 
other towards the top right corner. These elements create a 
cozy atmosphere within the space.

AGLA: The image features a long wooden bench placed in a 
room with a staircase. The bench is situated near the staircase, 
with a painting on the wall above it. There are two paintings on 
the wall, one on the left and one on the right side of the room. 
The bench is positioned in the center of the room, with a 
potted plant placed on the left side of the bench. The room has 
a clean and organized appearance, with a sense of elegance 
and sophistication.

IKODThe image features a young boy sitting on a set of stairs, 
holding a tennis racket. He is wearing a red jacket and jeans, 
and appears to be in a happy and excited state. The tennis 
racket is positioned in his hand, ready to be used for a fun game 
or practice session. The boy is sitting on the stairs, and the 
tennis racket is placed in his hand, making it a great moment 
captured in the scene.

OPERA: The image features a young boy sitting on a set of stairs, 
holding a tennis racket. He is wearing a red hoodie and jeans, 
and appears to have a big smile on his face. The tennis racket is 
positioned close to the boy, indicating that he is ready to play 
or practice with it. There are several other objects in the scene, 
including a backpack and a handbag placed on the floor near 
the stairs. Additionally, a pair of shoes can be seen on the right 
side of the image.

VCD: The image features a young child sitting on a set of stairs, 
holding a tennis racket. The child is wearing a red jacket and 
jeans, and appears to be enjoying the moment. The tennis 
racket is positioned close to the child, and there is a shoe 
placed near the child's left foot. The scene is set in a house, 
with a chair placed nearby.

HALC: The image features a young boy sitting on the stairs, 
holding a tennis racket. He is wearing a red jacket and jeans, 
and appears to be enjoying his time playing with the tennis 
racket. A person can also be seen in the background, possibly 
accompanying the child or watching him play.  There are several 
other objects scattered around the scene, including two shoes 
placed near the steps, one at the bottom of the staircase and 
another closer to the top. Another shoe can be found further 
up the stairs, close to the railing. Additionally, there is a 
handbag located towards the right side of the image, likely 
belonging to someone nearby. 

AGLA: The image features a young boy sitting on a set of stairs, 
holding a tennis racket. He is wearing a red jacket and jeans, 
and appears to be enjoying the moment. The tennis racket is 
positioned close to the boy, and there are several other objects 
scattered around the scene, including a backpack and a shoe. 
The overall atmosphere is casual and relaxed, with the boy 
seemingly content with his tennis racket.

Figure 11: Two examples of generated captions by different decoding methods with InstructBLIP
backbone.
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