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ABSTRACT

Training on test-time data enables deep learning models to adapt to dynamic en-
vironmental changes, enhancing their practical applicability. Online adaptation
from source to target domains is promising but it remains highly reliant on the
performance of source pretrained models. In this paper, we investigate whether
test-time adaptation (TTA) methods can continuously improve models trained via
self-supervised learning (SSL) without relying on source pretraining. We intro-
duce a self-supervised TTA protocol after observing that existing TTA approaches
struggle when directly applied to self-supervised models with low accuracy on the
source domain. Furthermore, we propose a collaborative learning framework that
integrates SSL and TTA models, leveraging contrastive learning and knowledge
distillation for stepwise representation refinement. We validate our method on
diverse self-supervised models, including DINO, MoCo, and iBOT, across TTA
benchmarks. Extensive experiments validate the effectiveness of our approach in
SSL, showing that it achieves competitive performance even without source pre-
training.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable advancements across various fields (He
et al., |2016; |Dosovitskiy et al., 2021} (Chen et al., [2017; |Redmon et al. |2016) of computer vision
and are increasingly becoming a standard tool in the industry (Wang et al.| 2023} Wu et al., 2024}
Kerbl et al.,[2023)). However, the issue of performance degradation due to domain shift (Shimodaira,
2000) between training and test datasets remains an unresolved challenge, even when distributional
differences appear to be minimal (Recht et al.,|2018)). To address this challenge, Test-Time Training
(TTT) introduces a new paradigm in domain adaptation by training at test-time to address distribu-
tional shifts between training and test data (Sun et al.| 2020} Liu et al., 2021} |Gandelsman et al.,
2022). Building on the principles of TTT, various protocols have been developed to extend its prac-
ticality. Test-Time Adaptation (TTA) further extends this idea by adapting a pretrained model to
the test domain without requiring access to source data, addressing concerns related to privacy and
memory constraints (Wang et al., 2021; [Zhang et al., 2022; |[Niu et al.| |2023; [Lee et al., [2024)), and
Continual Test-Time Adaptation (CTTA) extends TTA by assuming a continuously evolving test dis-
tribution, where the model adapts sequentially over time (Wang et al., [2022; Brahma & Rail 2023;
Liu et al., 2024b; [Han et al., [2025)).

Despite many achievements of TTA, discussions on the pretraining model prepared using source data
and corresponding labels have been limited. For example, as shown in Figure[Ta] conventional TTA
required a pretraining model trained on CIFAR10 (Krizhevsky et al.,|2009) to adapt to CIFAR10C
(i.e., corruption set), but this model did not perform well on CIFAR100C. In other words, a separate
pretraining model had to be prepared for each target domain. This limitation poses challenges in
terms of practical efficiency and generality.

Along with this, our study began with a simple question: “Is the computational cost of pretraining
the source model negligible compared to the adaptation process for unlabeled target data in TTA?”
We unveil the training time required for TTA methods using a pretrained source model in Figure
shedding light on the overlooked cost of source domain training and bringing it into the discussion.
Optimizing the pretraining process of the source model is a practical matter, especially considering
that labeled source data is often unavailable or prohibitively expensive to obtain. A simple solution
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is to leverage the zero-shot performance of a self-supervised model trained through Self-Supervised
Learning (SSL) on large-scale datasets (Caron et al., 2021; (Chen et al., [2021} |Zhou et al.l 2022;
Cherti et al.l 2023} |Oquab et al.,2024). This approach enhances generalization without requiring
explicit supervision from the source domain, thereby mitigating the computational burden associated
with pretraining while maintaining competitive adaptation performance in target domains. Specif-
ically, we improve computational efficiency by designing a distance-based classifier that utilizes
class prototypes obtained only through forward passes.
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(a) Concept of Self-Supervised TTA.

In this paper, we conduct an empirical inves-
tigation into the effectiveness of existing TTA
approaches on self-supervised models without
domain-specific knowledge and explore the fea-
sibility of applying SSL for TTA. Figure [2a] and
[2b] show that the primary TTA approaches, En-
tropy Minimization (EM) (Wang et al., 2021)) and
Consistency Regularization (CR) (Wang et al.|
2022), are not readily applicable to SSL models.
EM method minimizes predictive entropy based
on the observation that lower entropy indicates
higher model accuracy. While it has been demon-
strated to be effective for conventional TTA, its
applicability remains challenging in SSL models,
where low entropy does not ensure accurate pre-
dictions. Furthermore, CR approaches that lever-
age pseudo-labels to maintain predictive consis-
tency also suffer from the inaccuracy of pseudo-
labels based on the low domain accuracy of SSL
models.
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Figure 1: (a) Conventional TTA methods re-
quire a separate pretraining for each source do-
main, whereas our Self-Supervised TTA elimi-
nates the need for source-specific pretraining by
leveraging self-supervised learning. (b) Train-

Given that the SSL model does not seamlessly
extend to TTA, we introduce a novel framework
called Adapt Without Source pretraining (AWS).

ing time comparison between the source pre-
training of the conventional TTA and our ap-
proach.

The proposed method consists of three key com-

ponents. First, contrastive learning enhances the representation capability for both source and tar-
get domains. Second, knowledge distillation preserves the generalization ability of the initial SSL
model. Third, mutual learning integrates the advantages of different predictions from the SSL and
target models. Figure |[2c|presents the TTA performance of a source model trained with supervised
learning on the source domain and a self-supervised model, DINO (Caron et al., [2021). Compared
to EM and CR approaches, which fail to enhance the performance of SSL models, our method
demonstrates its effectiveness in improving TTA performance for SSL models. Notably, despite the
initial performance gap on the target domain, our approach surpasses the source-pretrained model,
highlighting the potential for advancing TTA using SSL models.

2 RELATED WORK

2.1 TEST-TIME ADAPTATION

Distributional discrepancies between the source and target domains present a significant challenge
during the deployment of DNNs (Shimodairal [2000), and TTT introduces a learning approach that
operates during test time (Sun et al., 2020). TTT mitigates domain shift by adopting supervised
learning on the source domain and self-training on unlabeled target domain data (Liu et al., 2021}
Gandelsman et al 2022} |Osowiechi et al., 2024)). In contrast, TTA emphasizes the impracticality
of accessing source domain data and instead proposes an adaptation strategy that is solely applied
at test time using a source pretrained model (Wang et al., [2021). The main solution for TTA is
the EM-based approach (Niu et al. 2022} 2023} [Lee et al., |2024; |[Zhang et al., |2025a). The EM
approach updates only the normalization layer and filters out inaccurate samples from the obser-
vation that samples with low entropy perform relatively well. Moreover, CTTA proposes a so-
lution to address scenarios involving continuous domain shifts (Wang et al., [2022). CR is a pri-
mary solution in CTTA and has gained prominence for its effectiveness in stabilizing adaptation
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Figure 2: Analysis of self-supervised models in test-time adaptation. (a) The relationship be-
tween entropy and loss for source pretrained and SSL models. SSL models tend to exhibit higher
loss for the same entropy level and may decrease the entropy of incorrect predictions, thereby in-
creasing the true risk. (b) The accuracy of pseudo-labels for different target domains. SSL models
generate pseudo-labels with lower accuracy compared to source pretrained models, which hinders
performance improvement due to the propagation of inaccurate supervision signals. (c) Comparison
of accuracy across different TTA approaches. Our AWS achieves improved performance for the SSL
model compared with EM (Wang et al.,2021) and CR (Wang et al.| 2022) methods.

Table 1: Comparison of different adaptation protocols. Existing protocols require training on
source images and labels (z*, y*) during pretraining process and adapting the model to target images
(«?). Self-Supervised Test-Time Adaptation is based on unlabeled images (z*), which is not the
source domain, and does not involve training on the source data. For source domain, only a forward
pass over full or few-shot is performed, without backpropagation.

Setting Pretrained model Learning procedure

Image Label Training loss Test loss (data distribution)
Source-Free Domain Adaptation Yes (z%)  Yes (y*) L(xt) -
Test-Time Training - - L(x*,y°) + L(z*) L(x?) (Stationary)
Fully Test-Time Adaptation Yes (z%)  Yes (y*) - L(x?) (Stationary)
Continual Test-Time Adaptation Yes (z°)  Yes (y°) - L(z') (Continually changing)
Self-Supervised Test-Time Adaptation  Yes (z*) No - L(z') (Continually changing)

over time (Wang et al.||2022; |Brahma & Rail 2023} [Liu et al., 2024bzal). The CR approach utilizes a
teacher-student framework (Tarvainen & Valpola, 2017) that updates all model parameters, enabling
gradual adaptation through Exponential Moving Average (EMA) update. By leveraging pseudo la-
bels generated by an augmented teacher model, CR enforces consistency throughout the adaptation
process.

2.2  SELF-SUPERVISED LEARNING

The training of increasingly deeper and more complex DNNs demands large amounts of data. How-
ever, the expensive cost of human annotation presents challenges for supervised learning. SSL has
been proposed as an alternative, leveraging unlabeled data for various downstream tasks (Oord et al.}
2018; |He et al., 2020; (Chen et al., 2021} [2020} (Caron et al., 2021} |Zhou et al.| 2022} |Oquab et al.,
2024). CPC (Oord et al.l |2018)) introduces a representation learning approach based on probabilis-
tic contrastive learning for future prediction. MoCo (He et al., 2020) employs a memory bank and
a momentum encoder to facilitate contrastive learning with a large and consistent set of negative
samples. SimCLR (Chen et al.| [2020) leverages strong data augmentations and a contrastive loss
to maximize similarity between augmented views of the same instance. DINO (Caron et al., [2021])
adopts a self-distillation and teacher-student framework with a momentum encoder. iBOT (Zhou
et al.| 2022) proposes a mask prediction-based SSL framework through masked image modeling.

In this paper, we empirically investigate the effectiveness of TTA strategies in practical scenarios
where labels are unavailable during the source pretraining phase. Furthermore, we propose Self-
Supervised TTA, which leverages an SSL model as the source model and integrates it into the TTA.
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3  SELF-SUPERVISED TEST-TIME ADAPTATION

We begin with preliminary on the Self-Supervised TTA protocol in Section[3.1] We then detail the
construction of prototype classifier within this protocol and introduce our proposed method, AWS,
comprising contrastive learning, knowledge distillation, and mutual learning in Section[3.2]

3.1 PRELIMINARY

We briefly summarize the well-known adaptation protocols for simple comparison in Table |1} in-
cluding the method replacing the source pre-training process in Figure [3| and the overview of our
method is also illustrated in Figure ]

LI CHY ENHEET T Building a Classifier without Backpropagation

Source Model. Conventional TTA proto-
cols (Wang et all 2021} |Zhang et all 2022}
Niu et al., 2023 Wang et al., 2022; Liu et al.|
2024bza) are based on supervised learning of a
source model g, o fs using labeled source do-
main data (z°,y®) € {X*, )*}, where g and
fs represent the classifier and feature extractor
of the source model, respectively. Instead of re-
quiring pretraining on the source domain, we
employ a self-supervised model fg trained on
an unlabeled data z* € X*. We compute fea-
ture prototypes from either a subset or the en-
tire source dataset to align the representation of Figure 3: A framework without source pre-
the SSL model with each class and construct a training. We construct a prototype classifier only
classifier gy . Further details on the g are pro- through forward passes without a training process
vided in Section[3.21 on the source domain (p denotes prototype).

Target Adaptation. We follow the CTTA protocol (Wang et al., 2022), which assumes a contin-
uously changing environment without explicit domain boundaries, to assess the adaptability of the
SSL model to the target domain. The target model g, o f; is initialized from the SSL model gy © fiql-
Our main objective is to adapt to the target domain by leveraging an online stream of unlabeled
target data ¢ € X'* while minimizing the mean error as the domain gradually shifts.

3.2 METHODOLOGY

We briefly outline the intuition of our design. A self-supervised model offers generalizable repre-
sentations but lacks source-specific knowledge; when adapted to the target domain, this limitation
often leads to noisy and unreliable pseudo-labels. We aim to avoid relying solely on pseudo-labels
and design a collaborative framework that leverages the SSL model’s generalizable representations
together with the target model’s domain-specific representations.

Prototype Classifier. A self-supervised model typically requires a task-specific classifier to predict
each class for downstream classification (Grill et al., [2020; [Caron et al., [2021). Linear probing
and the k-nearest neighbor (k-NN) classifier are widely used methods for building a classifier that
aligns with each class (Oord et al.l 2018 He et al.l |2020; |Chen et al., [2020). However, linear
probing necessitates backpropagation for gradient computation, whereas the k-NN classifier entails
substantial computational and memory overhead due to the requirement of storing a large number
of feature representations. Inspired by the prototype-based classification in few-shot learning (Snell
et al., 2017; Mensink et al., 2013) and continual learning (Rebuffi et al., |2017; Hou et al.| |2019),
we establish a prototype . for each class ¢ and employ a cosine similarity-based classifier. Using
only the forward pass enhances computational efficiency. The prediction probability for each class
is given by

exp(a i COS(ft(QL‘)7MC))
icc exp(o - cos(fi(x), i)’

where cos(+,-) denotes the cosine similarity between two vectors, o represents the logit scaling
factor, C' denotes the total number of classes and p.. is the mean of features for each class ¢ for the
source dataset {X'®, *} of the SSL model, i.e., p. = ﬁ Zyg fss1(z®).

pe(y = clz) = 5 (1)

4
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Figure 4: Overview of our AWS framework. Contrastive learning refines representations by lever-
aging pseudo-labels while maintaining stability, knowledge distillation preserves generalization by
aligning feature representations to mitigate overfitting under domain shifts, and mutual learning im-
proves adaptation by integrating the generalization ability of the SSL model with the domain-specific

knowledge of the target model through pseudo-labeling.

Contrastive Learning. Through a contrastive loss function, distance-based classifiers benefit from
improved performance while enabling the gradual refinement of representations (Oord et al.| 2018;
Chen et al., 2020; [Cha et al., [2021; 'Wen et al.| [2024)). Building on the need for robustness against
uncertainty induced by domain shifts, we introduce an approximately correct contrastive learning
method that integrates a refined segmentation of multiple prediction candidates (Zhang et al.|[2024)).
Compensating for the low accuracy in the target domain, we identify samples sharing a pseudo label
T* within the top-k predictions as positive samples. Conversely, when no common prediction exists
among 7", which denotes the top-n predictions with n > k, the sample is treated as a negative

instance. For ambiguous samples that do not fit either category, contrastive loss is not applied.
Accordingly, the indicator function is defined as

1L, if TPOTr#0
0, otherwise.

(n > k) )

We estimate the relationships among samples predicted as positive, ambiguous, or negative using the
indicator function. By applying contrastive loss to these approximately correct sample relationships,
we actively leverage the initial classification capability of the SSL model while ensuring stability.
The approximately correct contrastive learning loss is defined as follows:

5B 1;; EXP(Sfj)
B Og B 9
=T 2 L > k1 exp(S})

where S}; represents the cosine similarity between f;(x;) and f;(2;), and B denotes the batch size.

3)

Knowledge Distillation. As a fundamental technique for transferring knowledge between models,
knowledge distillation (Hinton et al., |2015) has demonstrated effectiveness in various domains, in-
cluding model compression (Romero et al., 2014} Zagoruyko & Komodakis}[2017), mitigating catas-
trophic forgetting (Rebutffi et al., 2017} [Hou et al.| 2019)), improving zero-shot performance (Vem-
ulapalli et al.| 2024; [Zhang et al., [2025b). To preserve generalization performance and mitigate
overfitting under continuous domain shifts, we transfer knowledge from the SSL model to the tar-
get model. By reducing the discrepancy between feature representations, we retain the knowledge
embedded in the SSL model while ensuring prediction consistency in the prototype classifier, which
relies on cosine similarity between feature vectors and weight vectors of the classifier. To this end,
we propose a knowledge distillation loss that aligns normalized feature vectors, facilitating stable
knowledge transfer while preserving the geometric structure of the feature space.

B
1 _ —
ﬁkd = EZ”ft(xz) _fssl(xi)”Q’ (4)
=1

where f(z) = ”}tggu denotes normalized feature vector, and || - ||2 represents the Frobenius norm.
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Mutual Learning. A self-supervised model demonstrates generalization performance by training
on large-scale datasets, whereas a target model acquires domain-specific knowledge through adapta-
tion. Drawing insight from studies suggesting that collaborative learning between models enhances
robustness to noisy labels (Han et al.| 2018} |Yu et al., |[2019; [Wei et al.,|2020)), we propose a collab-
orative mutual learning framework to integrate the strengths of these distinct predictive tendencies.
To adapt the model to the target domain, we update the SSL model’s classifier using pseudo labels
generated by the target model, which maintains relatively high accuracy. This enables classifier
refinement while preserving the fixed embeddings of the SSL. model. Furthermore, we maximize
the mutual information between predicted probability distributions to capture relational information
between samples, leveraging the SSL model’s representational capabilities. The collaborative loss
for mutual knowledge transfer is formulated as follows:

B
1 .
Lml = EZ [%(pfSlvpf)_FI(pfapfSl)]a (5)
=1
loss for SSL loss for target

where p! denotes the probability obtained by applying the softmax function to g; o f;(x;) and p! =
argmax(p!). I(p, q) represents the mutual information (Ji et al., 2019), and H(p, q) is cross entropy
between two probability distributions p and q.

The total loss function of the proposed method, which consists of approximately correct contrastive
learning, knowledge distillation, and mutual learning, is formulated as follows:

Laws = Lot + MdLlrd + Amilmis 6)

where Aiq and A,,,; are hyperparameters for knowledge distillation loss and mutual loss, respectively.

4 EXPERIMENTS

In this section, we begin by evaluating proposed Self-Supervised TTA protocol using DINO (Caron
et al., 2021}, MoCo (Chen et al.,2021), and iBOT (Zhou et al., 2022). We also assess our method-
ology under the conventional protocol, which uses a source pretrained model. We first provide the
experimental setup including the datasets, models, and the compared methods in Section 4.1} Sec-
tion[4.2]describes the results for the self-supervised models and Section[4.3]for the source pretrained
model.

4.1 EXPERIMENTAL SETUP

Datasets and Models. We conduct our experiments on standard CTTA benchmarks, in-
cluding ImageNet-to-ImageNetC (Hendrycks & Dietterich, [2018), CIFAR10-to-CIFAR10C, and
CIFAR100-to-CIFAR100C (Krizhevsky et al., 2009). ImageNetC, CIFARI0C, and CIFAR100C
are corruption sets for each source data, with 15 types of 4 main categories, which serve as sequen-
tial target domains. Following (Wang et al., 2022; Liu et al.| |2024bfa)), we sequentially adapt the
pretrained model to 15 target domains with the highest corruption level of 5 and evaluate its online
prediction performance by measuring the mean error rate. Following (Liu et al., 2024bza), we adopt
ViT-B/16 (Dosovitskiy et al., |2021)) as the backbone network. We present experimental results for
both source pretrained and self-supervised models, using DINO (Caron et al., [2021)), MoCo (Chen
et al.| [2021)), and iBOT (Zhou et al.,[2022)) as SSL models.

Compared Methods. We compare our AWS with the well-known state-of-the-art methods:
Tent (Wang et al., [2021), CoTTA (Wang et al., [2022)), SAR (Niu et al., [2023), PETAL (Brahma
& Rail 2023), COME (Zhang et al, 2025a)), VIDA (Liu et al.l 2024b), and Continual-MAE (Liu
et al.| [2024a). ViDA and Continual-MAE require additional training as they incorporate an extra
adapter into the source model. This makes it challenging to apply them using self-supervised mod-
els. Therefore, we do not include their results on self-supervised models.

Implementation Details. We employ the SGD optimizer with a momentum of 0.9 for training on
the target domain. The batch size is 64 for ImageNetC and 16 for CIFAR datasets. The learning
rate is set to le-4 x % for the source pretrained models, and we select the range of [1e-3, 1e-4,

le-5, le-6] x % for the self-supervised models. More implementation details in Appendix
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Table 2: Classification error rate (%) for ImageNet-to-ImageNetC with self-supervised mod-
els. Mean (%) denotes the average error rate across 15 target domains. Gain (%) represents the
improvement over “No Adapt”. FS denotes the few-shot setup that utilizes a prototype classifier
constructed with 30 samples per class. The bold indicates best performance.

Time t
Pretrained g g 5 S g 2 s g 5 5 g &
ain g S g S S 9 IS ) & 5 & 7 5 .
Method g s g P 5 IS S ) L kS S g S o) & | Mean| Gainf
Model S 5 g R % § S Bl & .550 $ \5 g S
o

No Adapt | 857 83.6 857 68.7 865 733 734 643 643 61.8 381 798 657 558 50.8]| 69.2 0.0
Tent 81.8 759 756 673 940 736 734 62.1 627 614 382 754 679 519 486 | 673 +1.9
CoTTA 982 99.1 993 687 787 72.0 709 699 649 61.7 410 781 59.8 529 518 7I.1 -1.9

DINO SAR 81.0 735 733 688 91.0 73.0 72.1 61.8 625 61.1 382 746 676 517 485| 66.6 +2.6
PETAL 97.8 98.1 985 680 86.6 747 728 646 646 607 383 802 665 556 512 719 =27

COME 857 835 857 68.6 865 733 734 642 642 61.6 381 803 657 565 51.2| 69.2 +0.0
AWS 659 59.6 60.7 57.8 593 57.0 527 50.8 50.9 503 37.0 526 49.6 450 456 | 53.0 +16.2
AWS-FS | 66.7 61.0 63.0 59.1 615 579 535 523 521 512 39.1 543 507 463 47.7| 544 +148

No Adapt | 91.2 89.5 92.1 799 902 798 82.6 743 764 803 43.1 854 712 526 59.6| 765 0.0

Tent 912 895 921 799 902 79.8 827 743 764 804 431 854 712 527 59.7| 76.6 -0.1
CoTTA 969 943 98.1 80.8 956 827 838 746 76.1 781 429 867 709 521 59.0| 782 -1.7
MoCo SAR 91.1 89.1 912 799 90.7 787 820 726 73.7 780 416 854 688 51.0 572 | 754 +1.1

PETAL 969 943 98.1 80.8 956 827 839 748 762 778 429 864 7.1 519 592 782 -1.7
COME 91.1 89.1 91.1 799 908 787 819 726 73.0 77.1 413 852 687 513 575| 753 +1.2
AWS 894 819 801 713 765 70.1 705 612 60.7 639 438 627 614 485 502 | 66.1 +10.4
AWS-FS | 90.1 829 81.1 731 772 718 712 627 626 649 460 63.6 622 510 51.7| 674 +9.1

No Adapt | 86.1 842 869 693 87.6 746 733 623 625 603 36.1 785 622 489 472 | 68.0 0.0

Tent 86.1 840 872 688 884 713 712 60.5 613 603 363 794 632 47.1 48.0| 675 +0.5
CoTTA 86.1 843 870 693 87.6 773 733 61.8 619 60.0 36.1 780 619 484 46.7| 68.0 +0.0
iBOT SAR 857 832 851 688 879 709 713 60.0 61.1 603 362 783 627 47.1 477 | 67.1 +0.9

PETAL 86.1 843 870 693 87.6 773 733 61.6 618 599 360 779 619 483 467 | 679  +0.1
COME 86.2 842 870 692 87.6 745 733 624 625 603 362 784 662 489 47.1| 68.0 +0.0
AWS 564 51.5 534 533 55.0 525 485 463 48.1 46.6 348 474 446 405 42.8 | 481 +19.9
AWS-FS | 582 533 552 55.6 560 543 50.8 487 49.7 484 364 498 458 423 443 | 499 +18.1

Table 3: Summary of mean classification error (%) on CIFAR10C and CIFAR100C with self-
supervised models. The number of parentheses indicate the performance gain over “No Adapt”.

Pretrained Model \ DINO MoCo iBOT

Method \ CIFAR10C CIFAR100C \ CIFAR10C CIFAR100C \ CIFAR10C CIFAR100C
No Adapt 44.3 (0.0) 64.1 (0.0) 42.2 (0.0) 64.2 (0.0) 48.0 (0.0) 65.6 (+0.0)
Tent 43.5 (+0.8) 62.9 (+1.2) 42.7 (-0.5) 64.4 (-0.2) 45.8 (+2.2) 53.3 (+12.3)
CoTTA 44.3 (+0.0) 64.1 (+3.0) 42.2 (+0.0) 64.3 (-0.1) 46.6 (+1.4) 65.2 (+0.4)
SAR 43.2 (+1.1) 54.9 (+9.2) 42.2 (+0.0) 64.2 (+0.0) 40.2 (+7.8) 51.2 (+14.4)
PETAL 36.4 (+7.9) 60.2 (+3.9) 42.2 (+0.0) 64.6 (-0.4) 46.0 (+2.0) 56.3 (+9.3)
COME 42.6 (+1.7) 61.1 (+3.0) 42.2 (+0.0) 64.2 (+0.0) 45.0 (+3.0) 60.5 (+5.1)
AWS [Ours] 26.8 (+17.5) 50.6 (+13.5) 40.7 (+1.5) 62.1 (+2.1) 30.1 (+17.9) 50.2 (+15.4)
AWS-FS [Ours] 28.2 (+16.1) 52.5 (+11.6) 43.9 (-1.7) 64.3 (-0.1) 31.6 (+16.4) 51.9 (+13.7)

4.2 RESULTS ON SELF-SUPERVISED MODELS

ImageNet-to-ImageNetC. The experimental results on ImageNetC using each self-supervised
model (Caron et al., 2021} (Chen et al., [2021} [Zhou et al.l 2022) are represented in Table For
“No Adapt”, where each model is evaluated on the target without updates, the error rates are 69.2%
(DINO), 76.5% (MoCo), and 68.0% (iBOT). With DINO, our method records 53.0%, improving
over “No Adapt” by 16.2%. It records 66.1% with MoCo and 48.1% with iBOT. On ImageNetC,
AWS achieves the lowest error rate among all compared methods, marking a substantial improve-
ment. An additional explanation is provided in Appendix [H]

CIFAR10-to-CIFAR10C & CIFAR100-to-CIFAR100C. In Table 3] we summarize the mean error
rates on CIFAR benchmarks for SSL models. On CIFAR10C, the error rates for “No Adapt” are
44.3% (DINO), 42.2% (MoCo), and 48.0% (iBOT). AWS reduces them to 26.8%, 40.7%, 30.1%,
corresponding to improvements of 17.5%, 1.5%, 17.9%. On CIFAR100C, our method shows 50.6%,
62.1%, and 50.2% with DINO, MoCo, and iBOT, respectively. These correspond to gains of 13.5%,
2.1%, and 15.4% over “No Adapt”. AWS consistently reduces error across both benchmarks, un-
derscoring its effectiveness under distributional shift. We provide the full results for all corruption
types in Appendix [H]

Few-Shot Classifier Evaluation. In Tables 2] and [3] we report the performance of AWS-FS below
the row of AWS. The few-shot classifier is constructed from the source data using 30 images per
class, and the ablation on the number of samples is presented in Appendix Bl Although AWS-FS
tends to show slightly lower gain than AWS, it still achieves consistently significant improvements
with respect to existing methods. For instance, on CIFAR10C with iBOT (Table[3), AWS-FS records
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Figure 5: Feature visualization. We compare the t-SNE results on CIFAR10C under Gaussian
noise. (above) The results of the source pretrained model. (below) The results of the SSL. model,
DINO.

the error rate of 31.6%, which is 1.5% higher than AWS (30.1%) yet still lower than all other
baselines.

4.3 RESULTS ON SOURCE PRETRAINED MODEL

Table [] presents the mean error rates on Im-
ageNetC and CIFAR datasets with a source
pretrained model. “No Adapt”, which eval-

Table 4: Summary of mean classification er-
ror (%) with source pretrained models. Results
uates the source pretrained model directly on are reported on ImageNetC, CIFARI0C, and CI-

the target, records 55.8% (ImageNetC), 28.2% FAR100C.
(CIFAR10C), and 35.4% (CIFAR100C). On  “pMeothod
ImageNetC, we achieve the best performance

ImageNetC CIFAR10C  CIFAR100C

; ¢ No Adapt 558(0.0)  282(0.0)  35.4(0.0)
of 39.4%, surpassing the prior state-of-the-  Tent 51.0(+4.8)  235(+47)  321(+3.3)
art method, Continual-MAE. We achieve error g/‘g{TA 55423 (+11(;06) %‘6‘2 “?2) ;‘ég (+g~g)
rates of 10.8% on CIFAR10C and 20.4% on - pra; Sracrrs) gduse osoud
FAR100C. Compared to the prior state-of-the-  ViDA 434 (+124) 207 (+7.5)  27.3(+8.1)
: Continual-MAE | 425 (+133) 12,6 (+15.6)  26.4 (+9.0)
art method, we observe performance gains of COME 4583 266(LE)  25.6(108)
1.8% and 5.2%, respectively. Overall, AWS  Aws [Ours] 39.4(+16.4) 108 (+17.4)  20.4 (+15.0)

consistently achieves the lowest error rates on
self-supervised models and also improves performance with source pretrained model across multi-
ple benchmarks. These results demonstrate the robustness and adaptability of our method.

5 FURTHER ANALYSIS

Feature Visualization. We provide t-SNE (Van der Maaten & Hinton, 2008) visualization results
to analyze the effect of TTA methods on the distribution of representations in Figure[5] After adap-
tation, we extract features from the Gaussian noise corruption in CIFAR10C using both the source
pretrained model and the self-supervised model, DINO. Existing approaches are typically designed
to preserve the initial representations by updating only normalization layers or employing an EMA
model. Consequently, these conservative update strategies demand high initial performance of the
source model, leading to dependency on its initial state. In contrast, we observe that the proposed
method exhibits improved decision boundaries for both the source pretrained model and the self-
supervised model.

Hyperparameter Analysis. The proposed method involves four hyperparameters: k, n, Agq, and
Ami- We conduct a grid search in Table E] to analyze the sensitivity across all datasets using the
source pretrained model. According to Table the best performing configurations of [k, n] are
[1, 5] for ImageNetC and CIFAR10C, and [1, 2] for CIFAR100C. Moreover, Aq and A,; represents
that the best performance is obtained with A\ = 0.01 and \,,,; = 0.4. We observe that our method
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Table 5: AWS ablation experiments. We investigate the sensitivity of hyperparameters in the
proposed method. IN-C, C10-C, and C100-C are ImageNetC, CIFAR10C, and CIFAR100C, respec-
tively.

(a) Hyperparameter [k, n). (b) Hyperparameter )\ . (c) Hyperparameter \,,;.
[k,n] IN-C CI10-C C100-C Ara IN-C C10-C C100-C Ami  IN-C C10-C  C100-C
1,2] 395 115 204 0 406 11.1 22.3 0 438 137 25.1
1,3] 395 11.0 20.5 0.01 394 108 204 0.1 414 128 239
1,5] 394 108 20.7 0.02 40.1 11.2 22.5 02 403 117 215
(3,10] 40.1 572 23.1 0.03 419 11.7 24.9 03 398 11.6 20.8
[5,20] 404 N/A 24.8 0.04 436 115 26.9 04 394 108 20.4

Table 6: Domain generalization performance Table 7: Effect of each component, such as
on ImageNetC. Results (%) are error rates on un- Contrastive Learning (CL), Knowledge Distilla-

seen domains. tion (KD), and Mutual Learning (ML).
Method | Directly test on unseen domains | Unseen CL KD ML IN-C Cl0-C Cl00-C
etho asaline

| bri. contrast elastic pixelate jpeg | Mean| I\jo Adapt [Baseline] igi %23 ;33
No Adapt | 264 91.4 57.5 380 362| 499 4 427 21.3 21.8
Tent 258 919 570 372 357| 495 y j v 3;15'2 Zi-3 %gﬂ
CoTTA |253 88.1 557 364 34.6| 480 Y s oas b =
ViDA 24.6 682 49.8 347 34.1| 423 . ’ .
AWS 24.8 659 47.1 341 335 411 v 4 v 39.4 10.8 204

not only exhibits low sensitivity to hyperparameters but also surpasses previous methods across a
wide range of hyperparameter settings.

Domain Generalization. In Table[6] we evaluate the domain generalization performance on Ima-
geNetC. Following ViDA (Liu et al.,2024b), we adapt to 10 corruption types from ImageNetC under
the CTTA protocol, and subsequently evaluate performance on the 5 remaining unseen corruption
types. We achieve an 8.8% improvement over No Adapt and surpasses the previous state-of-the-art
by 1.2%. These results indicate that the proposed method acquires generalized knowledge and en-
hances representational capacity during adaptation, thereby improving performance on unseen target
domains.

Effectiveness of Individual Components. Table [7] presents an ablation study evaluating the con-
tribution of each component in our method, including CL, KD, and ML. First, we apply CL to
enhance the representational capability of the SSL model and reduce error from 55.8% to 43.4% on
ImageNetC. These results indicate that applying CL individually can effectively improve adaptation.
Second, when KD is introduced to CL, we observe that it mitigates forgetting during adaptation and
results in comparable or even lower mean error than using CL alone (row4). Third, adding ML to
the combination of CL and KD achieves the best performance across all datasets, demonstrating that
ML provides additional benefits for further performance improvement (row6). The ablation study
suggests that each component contributes to complementary aspects of the adaptation process.

6 CONCLUSION

In this paper, we investigate the feasibility of integrating self-supervised models into TTA and ex-
plore effective strategies to enhance their adaptability within this scenario. We address the primary
challenge of applying self-supervised models to TTA, the absence of a classifier, by proposing a pro-
totype classifier without extra training and cost. Furthermore, we propose AWS, composed of CL,
KD, and ML, to effectively leverage the expressive representations of self-supervised models while
reducing reliance on source-specific knowledge for more stable adaptation. Extensive experiments
demonstrate that our proposed AWS is highly effective not only in the self-supervised setting but
also in the conventional supervised setting. Based on these results, we expect this study to contribute
to expanding the potential of self-supervised models in TTA and hope that future research will build
on these findings.
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APPENDIX

The appendix provides supplementary analyses and experimental details. In Appendix [A] we report
the hyperparameter settings used in our experiments. We then investigate how the number of samples
used to construct the few-shot classifier influences performance in Appendix |B} We further extend
our evaluation to natural domain shift scenarios in Appendix [C} and describe the parameter update
strategy of our framework in Appendix [D} Appendix [E]includes prediction shifts after adaptation
and Appendix [F] provides a comparison of adaptation time. We provide the semantic segmentation
results in Appendix[G] We offer the full results across all benchmarks with additional explanations in
Appendix[H] Finally, a brief note on the use of large language models (LLMs) is given in Appendix I}

A  HYPERPARAMETERS IN EXPERIMENTS

In this section, we describe the learning rate configuration used in our experiments on SSL models.
For fair comparison, we select the learning rate that yields the lowest mean error within the range
defined in [1e-3, le-4, le-5, le-6]x tchsize,

1. DINO

* Learning rate (ImageNetC) [1e-3 (Tent, SAR, CoTTA), 1e-4 (PETAL, AWS), le-5, 1e-6
(COME)] % batc6h4SlZe

* Learning rate (CIFAR10C) [1le-3 (CoTTA, PETAL), 1e-4 (Tent, SAR, COME), 1le-5
(AWS), 16-6] % batcé14SIZe

* Learning rate (CIFAR100C) [1e-3 (SAR, PETAL), 1e-4 (Tent, COME, CoTTA), le-5
(AWS), 16-6] % batcé14SlZe

2. MoCo

* Learning rate (ImageNetC) [1e-3 (CoTTA, PETAL), 1e-4 (SAR, COME, AWS), 1le-5, 1e-6
(Tent)] X batcg14512e

* Learning rate (CIFAR10C) [1e-3 (SAR, COME, CoTTA), le-4, 1e-5(AWS), 1e-6 (Tent,
PETAL)] % batcélzlze

* Learning rate (CIFAR100C) [1e-3 (CoTTA, COME, SAR), le-4, 1e-5(AWS), 1e-6 (Tent,
PETAL)] % batcglzlze

3. iBOT

* Learning rate (ImageNetC) [le-3, 1e-4 (Tent, SAR, CoTTA, PETAL, AWS), le-5, 1le-6
(COME)] % batcél;lze

* Learning rate (CIFAR10C) [1e-3 (SAR, CoTTA), 1e-4 (Tent, COME), le-5, 1e-6 (PETAL,
AWS)] % batcél;lze

* Learning rate (CIFAR100C) [1e-3 (Tent, SAR, CoTTA, PETAL), 1le-4 (COME), le-5,
le-6 (AWS)] x bachsize

B EFFECT OF THE NUMBER OF FEW-SHOT SAMPLES

We study the applicability of AWS when the classifier is con- 75 - p———
structed using a subset of the source data. To this end, we
evaluate the effect of varying the number of samples (/V) and
compare it with the full-shot setting, where the entire dataset
is used. Specifically, we compare the mean error rates on Ima-
geNetC using DINO backbone across three different seeds. As
shown in Figure [6] the performance is close to that achieved
using the entire dataset as NV increases. Notably, N = 30 few-
shot setting requires only 3% of the source data compared to
the full-shot setting. Nevertheless, the performance gap to the o
full-shot setting remains within 1%. We observe that a classi-

fier constructed with a subset of data can achieve performance

close to the full-shot classifier. This observation suggests that  Figure 6: Effect of # of samples.
our method has the potential to maintain its effectiveness even

in more challenging scenarios.

Mean Error (%)

13510 20 30 50 100
Number of Samples (N)
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C NATURAL DOMAIN SHIFT SCENARIOS

In Table [8] we provide experiments on natural domain shift datasets to extend the validity of the
proposed method in real-world natural changes. We conduct on ImageNet-R (Hendrycks et al.,
2021), V2 (Recht et al.l 2019), Sketch (Wang et al.l 2019) as a target for ImageNet (Deng et al.,
2009) source. We compare the results of our method with Tent (Wang et al.,|2021), CoTTA (Wang
et al.,2022), SAR (Niu et al.,[2023)) and FOA (Niu et al., 2024). Our method consistently achieves
improved performance, demonstrating the effectiveness of AWS.

Table 8: Classification accuracy (%) for ImageNet-to-ImageNet-R/V2/Sketch.

\ Source Pretrained \ DINO \ MoCo \ iBOT
Method
R V2 Sketch R V2 Sketch R V2 Sketch R V2 Sketch

No Adapt 59.5 75.4 449 39.3 56.9 24.3 26.6 52.8 18.3 40.6 59.1 25.0
TENT 63.9 75.2 49.1 39.6 57.0 24.4 26.6 532 18.3 41.3 59.1 25.1
CoTTA 63.5 75.4 50.0 39.5 57.0 25.5 21.7 52.1 11.2 41.1 59.2 26.8
SAR 63.3 75.1 48.7 39.8 57.0 24.5 38.0 54.2 19.0 41.4 59.0 25.1
FOA 63.8 75.4 544 42.1 57.1 31.5 20.6 52.6 8.1 44 4 59.0 35.6
AWS [Ours] 69.3 75.4 544 45.0 57.5 38.0 35.8 53.5 25.6 48.8 59.6 40.0

D PARAMETER UPDATE STRATEGY

We use both SSL model and target model in our framework. The SSL model, trained on large-scale
datasets, ensures generalization performance, whereas the target model initialized from it acquires
domain-specific knowledge through adaptation. While maintaining the generalized feature repre-
sentations of the SSL. model, we intend to improve the classifier through pseudo labels of the target
model that has relatively high accuracy. In AWS, the encoder f,4; is kept frozen during adaptation
and the classifier gsg; is updated. Table|§| shows EMA updates for fs; and a fixed classifier g ;.

Table 9: Effect of parameter update strategy for SSL. models.

Method | Source Pretrained] DINO| MoCol| iBOT|
gssi (Frozen) 39.9 53.0 73.0 48.1
fsst (Update) 40.0 54.5 70.5 49.7
AWS [Ours| 394 53.0 69.5 48.1

E PREDICTION SHIFTS AFTER ADAPTATION

Figure [7]illustrates the change in predictions during adaptation, based on the initial predictions of
the source model. The results demonstrate that our method significantly improves predictions on
samples initially misclassified by the source model. We interpret this as evidence that our represen-
tation learning-based approach is less affected by confirmation bias and more effective at improving
the initial model.

TENT COTTA AWS (Ours)

S o S o S
© 2 2198 20936 o2 4557 18577 © 2 2026 21108
2= 2= 2=
© © ©
2 2 2
8 Q @ E () CILJ ()] ©
o 3573 o 3074 o 14161
‘0 & Samples ‘0 L Samples o 8 Samples
m m o

False True False True False True

After Adaptation After Adaptation After Adaptation

Figure 7: Prediction shifts after adaptation with respect to the source model’s initial predictions.
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F ADAPTATION TIME COMPARISON

We compare the adaptation time for 15 domains from ImageNet-to-ImageNetC in Table Our
concern about presenting the comparison of adaptation times in the paper is that the adaptation
scenarios may depend on the experimental setup, and we emphasize the efficiency of the pretraining
time.

Table 10: Comparison of adaptation cost.

Protocol | Source Pretraining Time | Target Adaptation Time (15 domains) | Total Time]
TTA 1h8m?23sx300epochs 8m31s (Tent) — 54m17s (ViDA) < 342h9m17s
SSTTA | 1m56s (Few-shot) — 36m15s (Full) 15m30s (Ours) < 51m45s

G EFFECTIVENESS ON SEMANTIC SEGMENTATION

In Table [TT] we present semantic segmentation CTTA results on the Cityscapes-to-ACDC bench-
mark (Cordts et al., 2016} |Sakaridis et al.,|2021). The four weather conditions (fog, night, rain, and
snow) serve as targets over three sequential rounds and performance is summarized by the overall
mean mloU. We compare our method with Tent (Wang et al.| [2021)), CoTTA (Wang et al. [2022),
SVDP (Yang et al) 2024)), and Hybrid-TTA (Park et al. |[2025). While our method is devised for
classification, we report the results without adding any segmentation-specific losses or modules,
leaving room for further improvements via task-tailored components.

Table 11: Comparison of performance on Cityscapes-to-ACDC under CTTA scenario.

Time t

Round ! 2 3 Meant | Gain
Method Fog Night Rain Snow | Fog Night Rain Snow | Fog Night Rain Snow

Source 69.1 403 597 578 | 69.1 403 597 57.8 | 69.1 403 59.7 578 56.7 /
Tent 69.0 402 60.1 573 | 683 390 60.1 563 | 675 378 59.6 550 55.7 -1.0
CoTTA 709 412 624 597 | 709 41.1 626 597 | 709 41.0 627 597 58.6 +1.9
CoTTA + Ours 714 433 652 631 731 443 669 632 | 727 443 672 633 61.5 +4.8
SVDP 721 440 652 63.0 | 722 445 659 635 | 721 442 656 63.6 61.1 +4.4
SVDP + Ours 71.8 447 666 630 725 456 68.0 637 | 71.3 432 668 63 61.7 +5.0
Hybrid-TTA 703 445 651 632 | 718 482 671 637 | 712 493 671 633 62.1 +5.4
Hybrid-TTA +Ours | 70.2 442 650 63.0 724 475 665 641 | 722 473 664 644 62.3 +5.6

H FULL-RESULTS ON IMAGENETC, CIFAR10C, AND CIFAR100C

We provide full-results for ImageNet-to-ImageNetC, CIFAR10-to-CIFAR10C, and CIFAR100-to-
CIFAR100C in Tables and [T4] respectively. Each table includes 15 corruption types for each
source dataset. The error is measured in an online manner under sequential target domains. The
number in parentheses under ‘“Pretrained Model” indicate the accuracy on source domain. For Ima-
geNetC, the source pretrained model attains 83.6% source accuracy, but the self-supervised models
fall notably, recording 63.1% (DINO), 60.6% (MoCo), and 65.9% (iBOT). The lack of source spe-
cific knowledge in a SSL model results in higher initial target error (No Adapt)—69.2% (DINO),
76.5% (MoCo), and 68.0% (iBOT)—compared with 55.8% for the source pretrained model. With
limited source specific knowledge and low initial performance, existing TTA methods struggle to
achieve significant gains on SSL models. For example, Tent improves over “No Adapt” by 4.8% on
the source pretrained model but only 1.9%, -0.1%, and 0.5% on DINO, MoCo, and iBOT, respec-
tively. Meanwhile, AWS achieves significant improvements over “No Adapt”, with 16.4% (source
pretrained), 16.2% (DINO), 10.4% (MoCo), and 19.9% (iBOT), showing consistent gains across
both source pretrained and self-supervised models.

I PoLICY ON LARGE LANGUAGE MODELS

We only used ChatGPT for minor English editing and language polishing of the manuscript.
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Table 12: Full-results for ImageNet-to-ImageNetC under CTTA scenario. Mean (%) denotes the
average error rate across 15 target domains.

Time t
Pretrained s L g =} g >4 § L
F 5 5 & 8§ 5 & F e £ 5 FF #|Mean Ga
(Sri\dzgce}%) Method 6? § § ;ﬁ' g § S5 ¢ $ g § \59 g £ Mean| Gainf
k)
No Adapt [Baseline] 53.0 51.8 52.1 68.5 78.8 58.5 63.3 499 542 57.7 264 914 575 38.0 36.2| 558 0.0
Tent [ICLR21] 52.2 489 49.2 65.8 73.0 54.5 58.4 44.0 47.7 50.3 239 728 557 344 339| 510 +438
CoTTA [CVPR22] 529 51.6 514 68.3 78.1 57.1 62.0 48.2 52.7 55.3 259 90.0 564 364 352| 548 +1.0
Source SAR [ICLR23] 493 43.8 449 582 60.9 46.1 51.8 41.3 44.1 41.8 23.8 57.2 499 329 32.7| 452 +10.6
pretrained PETAL [CVPR 23] 52.1 482 47.5 66.8 74.0 56.7 59.7 46.8 47.2 52.7 264 913 50.7 32.3 32.0| 523 +35
(Acc. 83.6%) | ViDA [ICLR 24| 47.7 425 429 522 569 45.5 489 389 42.7 40.7 243 52.8 49.1 335 33.1| 434 +124
Continual-MAE [CVPR’24] | 46.3 41.9 42.5 51.4 549 43.3 40.7 34.2 35.8 643 234 60.3 37.5 29.2 31.4| 425 +13.3
COME [ICLR25] 49.3 43.5 445 59.6 60.1 49.4 52.4 41.6 43.6 443 24.1 89.1 459 324 325| 475 +83
AWS [Ours] 43.9 39.6 41.3 489 47.7 42.2 429 35.8 37.3 39.7 23.6 49.8 37.5 309 30.3| 394 +16.4
No Adapt [Baseline] 85.7 83.6 85.7 68.7 86.5 73.3 73.4 64.3 64.3 61.8 38.1 79.8 657 558 50.8| 69.2 0.0
Tent [ICLR21] 81.8 759 75.6 67.3 94.0 73.6 73.4 62.1 62.7 614 382 754 679 519 48.6| 673 +19
CoTTA [CVPR22] 98.2 99.1 99.3 68.7 78.7 72.0 70.9 69.9 649 61.7 41.0 78.1 59.8 529 51.8| 7I.1 -1.9
DINO SAR [ICLR’23 81.0 73.5 73.3 68.8 91.0 73.0 72.1 61.8 62.5 61.1 382 74.6 67.6 51.7 48.5| 66.6 +2.6
(Acc. 63.1%) | PETAL [CVPR® 97.8 98.1 98.5 68.0 86.6 74.7 72.8 64.6 64.6 60.7 38.3 802 66.5 556 51.2| 719 -2.7
COME [ICLR"25] 85.7 83.5 85.7 68.6 86.5 73.3 73.4 64.2 64.2 61.6 38.1 803 657 565 51.2| 69.2 +0.0
AWS [Ours] 65.9 59.6 60.7 57.8 59.3 57.0 52.7 50.8 50.9 50.3 37.0 52.6 49.6 45.0 45.6| 53.0 +16.2
AWS-FS [Ours] 66.7 61.0 63.0 59.1 61.5 57.9 53.5 52.3 52.1 51.2 39.1 543 50.7 463 47.7| 544 +14.8
No Adapt [Baseline] 91.2 89.5 92.1 79.9 90.2 79.8 82.6 74.3 76.4 80.3 43.1 854 71.2 52.6 59.6| 76.5 0.0
Tent [ICLR 21] 91.2 89.5 92.1 79.9 90.2 79.8 82.7 743 76.4 80.4 43.1 854 712 527 59.7| 76.6  -0.1
CoTTA [CVPR22] 96.9 94.3 98.1 80.8 95.6 82.7 83.8 74.6 76.1 78.1 429 86.7 709 52.1 59.0| 78.2 -1.7
MoCo SAR [ICLR 23] 91.1 89.1 91.2 79.9 90.7 78.7 82.0 72.6 73.7 78.0 41.6 854 68.8 51.0 57.2| 754 +I.1
(Acc. 60.0%) | PETAL [CVPR23] 96.9 94.3 98.1 80.8 95.6 82.7 83.9 74.8 76.2 77.8 429 864 71.1 519 59.2| 782 -1.7
COME [ICLR"25] 91.1 89.1 91.1 79.9 90.8 78.7 81.9 72.6 73.0 77.1 41.3 852 687 513 57.5| 753 +1.2
AWS [Ours] 89.4 819 80.1 71.3 76.5 70.1 70.5 61.2 60.7 63.9 43.8 62.7 61.4 485 50.2| 66.1 +10.4
AWS-FS [Ours] 90.1 82.9 81.1 73.1 77.2 71.8 71.2 62.7 62.6 649 46.0 63.6 622 51.0 51.7| 674 +9.1
No Adapt [Baseline] 86.1 84.2 86.9 69.3 87.6 74.6 73.3 62.3 62.5 60.3 36.1 785 622 489 47.2| 68.0 0.0
Tent [ICLR 21] 86.1 84.0 87.2 68.8 88.4 71.3 71.2 60.5 61.3 60.3 36.3 794 63.2 47.1 48.0| 675 +0.5
CoTTA [CVPR22] 86.1 84.3 87.0 69.3 87.6 77.3 73.3 61.8 61.9 60.0 36.1 78.0 619 484 46.7| 68.0 +0.0
iBOT SAR [ICLR’23] 85.7 83.2 85.1 68.8 87.9 70.9 71.3 60.0 61.1 60.3 36.2 783 62.7 47.1 47.7| 67.1 +09
(Acc. 65.9%) | PETAL [CVPR'23] 86.1 84.3 87.0 69.3 87.6 77.3 73.3 61.6 61.8 59.9 36.0 77.9 619 483 46.7| 67.9 +0.1
COME [ICLR"25] 86.2 84.2 87.0 69.2 87.6 74.5 73.3 62.4 62.5 60.3 36.2 784 662 489 47.1| 68.0 +0.0
AWS [Ours] 56.4 51.5 53.4 53.3 55.0 52.5 48.5 46.3 48.1 46.6 34.8 474 44.6 40.5 42.8| 48.1 +19.9
AWS-FS [Ours] 58.2 53.3 55.2 55.6 56.0 54.3 50.8 48.7 49.7 48.4 364 49.8 458 423 443| 499 +18.1

Table 13: Full-results for CIFAR10-to-CIFAR10C
average error rate across 15 target domains.

under CTTA scenario. Mean (%) denotes the

Time t
Pretrained g & 5 o 5 s § 5 é:? g
Model F &5 S £ 5 5 5§ 5 & £ 5 T F & i
s ggs o Method d@ § @Q %7 $ § & fF ¢ RS g E \;9 § £ Mean| Gaint
o

No Adapt 60.1 532 383 199 355 226 18.6 12.1 127 228 53 497 236 247 23.1| 282 0.0
Tent [ICLR21] 57.7 563 294 162 353 162 124 11.0 11.6 149 47 225 159 29.1 195| 235 +4.7
CoTTA [CVPR™22] 58.7 513 33.0 20.1 348 20.0 152 11.1 11.3 185 4.0 347 188 19.0 179| 246 +3.6
SAR [ICLR23] 54.1 47.6 38.0 199 348 226 18.6 12.1 127 228 53 399 236 247 23.1| 266 +1.6
PETAL [CVPR23] 59.9 523 36.1 20.1 347 194 148 115 112 178 44 296 176 192 173 | 244 +38
ViDA [ICLR24] 529 479 194 114 313 133 76 76 99 125 38 263 144 339 182| 207 +75
Continual-MAE [CVPR™24]| 30.6 189 11.5 104 225 139 98 6.6 65 88 40 85 127 92 144 126 +156
COME [ICLR"25] 543 47.1 36.6 199 349 226 18.6 12.1 127 228 53 40.7 234 247 23.1| 266 +1.6
AWS [Ours] 18.7 131 11.0 101 188 9.7 72 7.0 62 95 38 102 124 95 154| 10.8 +174
No Adapt 74.8 745 672 37.0 53.7 347 28.8 27.7 325 48.6 153 442 378 489 39.8| 443 0.0
Tent [ICLR21] 762 7777 68.0 36.3 542 340 272 269 300 457 139 387 353 51.1 368 | 435 +0.8
CoTTA [CVPR22] 74.8 745 67.1 37.1 53.7 347 289 27.6 324 485 153 44.1 377 488 39.7| 443 +0.0
SAR [ICLR23] 76.7 78.1 67.4 364 53.6 340 269 262 29.0 447 13.7 38.1 349 51.8 362 | 432 +1.1
PETAL [CVPR’23] 746 72.1 642 344 49.1 332 245 24.1 240 277 11.2 293 194 36.6 21.8| 364 +79
COME [ICLR25] 764 767 66.7 38.2 51.7 342 265 25.6 28.0 437 133 359 339 533 352| 426 +1.7
AWS [Ours] 51.3 339 358 233 325 26.0 18.3 204 19.6 26.8 12.6 19.1 251 274 295| 268 +17.5
AWS-FS [Ours] 532 356 358 253 339 27.8 20.0 21.7 21.0 29.7 135 205 262 28.0 30.3| 282 +16.1
No Adapt 66.7 662 64.7 36.3 50.8 399 31.5 25.8 32.7 559 140 299 423 454 31.0| 422 0.0
Tent [ICLR21] 67.0 673 65.0 364 514 40.0 31.5 265 346 563 142 303 428 447 324 427 -05
CoTTA [CVPR’22] 66.7 662 64.7 36.3 50.8 399 31.5 25.8 327 559 14.0 299 423 454 31.0| 422 +0.0
SAR [ICLR23] 66.7 662 64.7 36.3 50.8 399 315 25.8 329 556 13.8 29.8 420 452 312| 422 +0.0
PETAL [CVPR’23] 66.7 66.4 64.8 36.3 51.1 395 304 26.1 338 549 140 292 419 447 33.0| 422 +0.0
COME [ICLR25] 66.7 662 64.7 36.3 50.8 399 31.5 25.8 33.0 559 13.8 30.6 422 449 314 | 422 +0.0
AWS [Ours] 66.0 64.5 62.4 34.1 49.9 37.6 27.7 274 325 522 147 26.0 38.1 43.7 33.6| 40.7 +1.5
AWS-FS [Ours] 70.1 68.6 68.2 37.2 539 392 30.6 29.8 35.1 548 17.6 30.1 41.7 457 36.0| 439 -1.7
No Adapt 75.8 754 70.2 51.1 50.1 433 39.5 255 29.3 547 169 487 38.8 59.3 422| 48.0 0.0
Tent [ICLR21] 76.0 76.0 709 51.5 50.5 413 352 237 273 49.1 143 40.7 357 577 37.7| 458 +2.2
CoTTA [CVPR’22] 72.1 684 68.1 559 47.3 484 469 27.8 249 426 19.1 504 360 52.8 379| 46.6 +1.4
SAR [ICLR23] 80.2 81.8 742 41.5 484 27.0 18.1 195 223 260 142 282 31.6 57.8 32.7| 402 +7.8
PETAL [CVPR’23] 76.7 77.0 71.7 49.8 52.1 42.0 359 252 295 483 148 394 356 54.1 37.6| 460 +2.0
COME [ICLR25] 764 767 71.5 52.1 50.8 388 323 234 27.6 450 134 37.1 329 609 355| 450 +3.0
AWS [Ours] 70.1 57.6 544 26.7 364 23.7 151 174 185 259 104 16,5 21.5 293 28.6| 30.1 +17.9
AWS-FS [Ours] 722 60.1 53.5 27.7 385 256 165 19.0 205 29.0 11.0 17.4 233 29.0 30.6| 31.6 +16.4
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Table 14: Full-results for CIFAR100-to-CIFAR100C under CTTA scenario. Mean (%) denotes the
mean error rate across 15 target domains.

Time t
Pretrained g . & 5 . IS - g 5 §F o
Model  |Method F § 5 & & 85 § 5 e £ 5 F F & Meanl Gan
(Src Acc. %) (_‘7""':’ “ § ;’3’ % § & 5§ % % ; § 4’5 5 5
i3
No Adapt 55.0 51.5 269 240 60.5 29.0 21.4 21.1 25.0 352 11.8 34.8 432 56.0 359| 354 0.0
Tent [ICLR21] 53.0 47.0 24.6 22.3 58.5 26.5 19.0 21.0 23.0 30.1 11.8 252 39.0 47.1 33.3| 32.1 433
CoTTA [CVPR’22] 55.0 51.3 25.8 24.1 59.2 289 21.4 21.0 24.7 349 11.7 31.7 404 557 35.6| 348 +0.6
Source SAR [ICLR23] 39.4 31.0 19.8 209 439 22.6 19.1 203 20.2 243 11.8 223 352 32.1 30.1| 262 +9.2
Pretrained PETAL [CVPR’23] 49.2 38.7 24.1 26.3 382 254 194 21.0 193 26.6 154 31.8 283 26.6 29.5| 28.0 +74
(Acc. 92.6%) | VIDA [ICLR24] 50.1 40.7 22.0 21.2 452 21.6 165 179 16.6 25.6 11.5 29.0 29.6 347 27.1| 273 +8.1
Continual-MAE [CVPR24]|48.6 30.7 18.5 21.3 384 222 17.5 193 18.0 248 13.1 27.8 314 355 295| 264 +9.0
COME [ICLR25] 39.5 30.5 19.7 20.7 41.8 225 17.2 202 17.3 23.7 12.8 223 347 322 29.6| 256 +9.8
AWS [Ours] 29.0 24.0 17.2 17.8 30.5 19.3 15.7 16.7 15.7 19.2 11.8 159 259 20.6 27.0 204 +15.0
No Adapt 82.1 80.6 784 579 78.2 557 49.5 52.0 554 69.4 36.3 664 62.6 72.6 64.6| 64.1 0.0
Tent [ICLR21] 80.8 78.8 79.0 583 78.1 55.1 47.9 50.0 52.1 67.3 342 63.2 60.6 76.0 62.0| 629 +1.2
CoTTA [CVPR’22] 82.1 80.6 79.0 579 78.3 55.6 49.5 519 552 693 364 664 62.6 727 645| 64.1 +0.0
DINO SAR [ICLR23] 753 663 71.0 56.1 71.2 51.6 41.2 41.7 42.7 49.9 32.1 48.0 49.5 75.0 514 | 549 +9.2
(Acc. 61.5%) |PETAL [CVPR'23] 81.7 79.0 78.0 57.2 70.5 54.1 48.1 509 46.6 55.0 41.2 63.1 514 69.5 56.2| 60.2 +3.9
COME [ICLR"25] 79.4 759 76.4 629 75.0 54.8 479 469 49.0 62.5 332 583 588 768 58.2| 61.1 +3.0
AWS [Ours] 63.7 52.5 58.8 51.2 59.7 51.2 439 44.7 432 51.6 37.5 45.7 527 499 529 50.6 +13.5
AWS-FS [Ours] 66.2 54.8 60.2 52.6 62.0 529 45.6 47.0 453 53.6 39.0 479 539 52.0 546 525 +11.6
No Adapt 82.8 81.6 83.3 58.5 73.0 60.0 51.7 52.5 56.0 75.0 37.4 56.7 65.6 69.3 59.0| 642 0.0
Tent [ICLR21] 829 81.8 834 585 733 60 51.8 53.0 569 752 375 56.7 66.1 69.1 59.5| 644 -0.2
CoTTA [CVPR22] 82.8 81.6 91.6 57.6 72.8 589 50.8 52 555 745 37.1 559 650 69.0 59.9| 643 -0.1
MoCo SAR [ICLR 23] 82.8 82.6 83.3 585 73.0 60.0 51.7 52.5 56.0 74.8 37.3 57.5 65.6 69.1 59.1| 642 +0.0
(Acc. 59.5%) |PETAL [CVPR’23] 82.9 81.7 91.1 585 73.2 59.7 51.6 52.6 56.2 74.6 37.2 56.2 65.5 68.7 59.5| 646 -04
COME [ICLR25] 82.8 81.6 83.3 585 73.0 60.0 51.7 52.5 559 748 373 57.5 65.6 69.1 59.0| 642 +0.0
AWS [Ours] 82.2 79.6 80.4 56.8 71.5 579 49.6 51.2 52.7 70.1 38.1 53.9 62.5 659 58.7 62.1 +2.1
AWS-FS [Ours] 83.6 81.6 82.3 59.5 72.8 60.3 522 54.6 56.2 71.5 41.1 551 653 67.7 61.1 643 -0.1
No Adapt 81.3 80.3 814 69.2 70.7 62.1 57.1 47.4 489 705 373 715 614 79.6 66.2| 65.6 0.0
Tent [ICLR21] 788 743 76.8 57.7 64.4 455 38.2 38.0 38.5 459 29.7 429 495 713 47.6| 53.3 +12.3
CoTTA [CVPR’22] 789 744 78.0 69.3 67.3 62.8 59.5 47.0 454 66.2 42.0 769 583 843 673| 652 +04
iBOT SAR [ICLR23] 74.6 652 73.2 557 62.1 44.8 38.3 36.9 36.8 44.9 29.5 42.5 48.1 694 45.6| 51.2 +144
(Acc. 61.0%) |PETAL [CVPR23] 76.5 674 71.6 57.3 59.6 52.2 45.1 474 447 54.1 39.5 71.6 485 550 544| 563 493
COME [ICLR25] 79.7 76.2 78.8 664 67.7 56.8 52.1 41.6 413 564 325 62.0 547 805 61.3| 60.5 +5.1
AWS [Ours] 75.6 649 67.0 47.6 60.5 459 37.8 399 39.2 47.7 31.5 445 482 485 51.7 50.2 +154
AWS-FS [Ours| 763 674 69.3 49.6 62.5 47.2 39.4 423 412 49.6 337 456 50.1 503 534 519 +13.7
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