
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHEN TEST-TIME ADAPTATION MEETS
SELF-SUPERVISED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training on test-time data enables deep learning models to adapt to dynamic en-
vironmental changes, enhancing their practical applicability. Online adaptation
from source to target domains is promising but it remains highly reliant on the
performance of source pretrained models. In this paper, we investigate whether
test-time adaptation (TTA) methods can continuously improve models trained via
self-supervised learning (SSL) without relying on source pretraining. We intro-
duce a self-supervised TTA protocol after observing that existing TTA approaches
struggle when directly applied to self-supervised models with low accuracy on the
source domain. Furthermore, we propose a collaborative learning framework that
integrates SSL and TTA models, leveraging contrastive learning and knowledge
distillation for stepwise representation refinement. We validate our method on
diverse self-supervised models, including DINO, MoCo, and iBOT, across TTA
benchmarks. Extensive experiments validate the effectiveness of our approach in
SSL, showing that it achieves competitive performance even without source pre-
training.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable advancements across various fields (He
et al., 2016; Dosovitskiy et al., 2021; Chen et al., 2017; Redmon et al., 2016) of computer vision
and are increasingly becoming a standard tool in the industry (Wang et al., 2023; Wu et al., 2024;
Kerbl et al., 2023). However, the issue of performance degradation due to domain shift (Shimodaira,
2000) between training and test datasets remains an unresolved challenge, even when distributional
differences appear to be minimal (Recht et al., 2018). To address this challenge, Test-Time Training
(TTT) introduces a new paradigm in domain adaptation by training at test-time to address distribu-
tional shifts between training and test data (Sun et al., 2020; Liu et al., 2021; Gandelsman et al.,
2022). Building on the principles of TTT, various protocols have been developed to extend its prac-
ticality. Test-Time Adaptation (TTA) further extends this idea by adapting a pretrained model to
the test domain without requiring access to source data, addressing concerns related to privacy and
memory constraints (Wang et al., 2021; Zhang et al., 2022; Niu et al., 2023; Lee et al., 2024), and
Continual Test-Time Adaptation (CTTA) extends TTA by assuming a continuously evolving test dis-
tribution, where the model adapts sequentially over time (Wang et al., 2022; Brahma & Rai, 2023;
Liu et al., 2024b; Han et al., 2025).

Despite many achievements of TTA, discussions on the pretraining model prepared using source data
and corresponding labels have been limited. For example, as shown in Figure 1a, conventional TTA
required a pretraining model trained on CIFAR10 (Krizhevsky et al., 2009) to adapt to CIFAR10C
(i.e., corruption set), but this model did not perform well on CIFAR100C. In other words, a separate
pretraining model had to be prepared for each target domain. This limitation poses challenges in
terms of practical efficiency and generality.

Along with this, our study began with a simple question: “Is the computational cost of pretraining
the source model negligible compared to the adaptation process for unlabeled target data in TTA?”
We unveil the training time required for TTA methods using a pretrained source model in Figure 1b,
shedding light on the overlooked cost of source domain training and bringing it into the discussion.
Optimizing the pretraining process of the source model is a practical matter, especially considering
that labeled source data is often unavailable or prohibitively expensive to obtain. A simple solution

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

is to leverage the zero-shot performance of a self-supervised model trained through Self-Supervised
Learning (SSL) on large-scale datasets (Caron et al., 2021; Chen et al., 2021; Zhou et al., 2022;
Cherti et al., 2023; Oquab et al., 2024). This approach enhances generalization without requiring
explicit supervision from the source domain, thereby mitigating the computational burden associated
with pretraining while maintaining competitive adaptation performance in target domains. Specif-
ically, we improve computational efficiency by designing a distance-based classifier that utilizes
class prototypes obtained only through forward passes.

Pretrained 

Model ③
Tgt ③Src ③

Pretrained 

Model ②
Tgt ②Src ②

Pretrained 

Model ①
Tgt ①Src ①

Conventional TTA

+ Label

+ Label

+ Label

Ours

Single 

Model

Tgt ③

Tgt ②

Tgt ①

without Label

(a) Concept of Self-Supervised TTA.
Source Model ImageNet CIFAR100
Source Pretraining 1h8m23s×300epochs 9m7s×200epochs
SSL w/ Prototype 36m25s 1m25s
SSL w/ Prototype (Few-Shot) 1m56s 7s

(b) Training time comparison.

Figure 1: (a) Conventional TTA methods re-
quire a separate pretraining for each source do-
main, whereas our Self-Supervised TTA elimi-
nates the need for source-specific pretraining by
leveraging self-supervised learning. (b) Train-
ing time comparison between the source pre-
training of the conventional TTA and our ap-
proach.

In this paper, we conduct an empirical inves-
tigation into the effectiveness of existing TTA
approaches on self-supervised models without
domain-specific knowledge and explore the fea-
sibility of applying SSL for TTA. Figure 2a and
2b show that the primary TTA approaches, En-
tropy Minimization (EM) (Wang et al., 2021) and
Consistency Regularization (CR) (Wang et al.,
2022), are not readily applicable to SSL models.
EM method minimizes predictive entropy based
on the observation that lower entropy indicates
higher model accuracy. While it has been demon-
strated to be effective for conventional TTA, its
applicability remains challenging in SSL models,
where low entropy does not ensure accurate pre-
dictions. Furthermore, CR approaches that lever-
age pseudo-labels to maintain predictive consis-
tency also suffer from the inaccuracy of pseudo-
labels based on the low domain accuracy of SSL
models.

Given that the SSL model does not seamlessly
extend to TTA, we introduce a novel framework
called Adapt Without Source pretraining (AWS).
The proposed method consists of three key com-
ponents. First, contrastive learning enhances the representation capability for both source and tar-
get domains. Second, knowledge distillation preserves the generalization ability of the initial SSL
model. Third, mutual learning integrates the advantages of different predictions from the SSL and
target models. Figure 2c presents the TTA performance of a source model trained with supervised
learning on the source domain and a self-supervised model, DINO (Caron et al., 2021). Compared
to EM and CR approaches, which fail to enhance the performance of SSL models, our method
demonstrates its effectiveness in improving TTA performance for SSL models. Notably, despite the
initial performance gap on the target domain, our approach surpasses the source-pretrained model,
highlighting the potential for advancing TTA using SSL models.

2 RELATED WORK

2.1 TEST-TIME ADAPTATION

Distributional discrepancies between the source and target domains present a significant challenge
during the deployment of DNNs (Shimodaira, 2000), and TTT introduces a learning approach that
operates during test time (Sun et al., 2020). TTT mitigates domain shift by adopting supervised
learning on the source domain and self-training on unlabeled target domain data (Liu et al., 2021;
Gandelsman et al., 2022; Osowiechi et al., 2024). In contrast, TTA emphasizes the impracticality
of accessing source domain data and instead proposes an adaptation strategy that is solely applied
at test time using a source pretrained model (Wang et al., 2021). The main solution for TTA is
the EM-based approach (Niu et al., 2022; 2023; Lee et al., 2024; Zhang et al., 2025a). The EM
approach updates only the normalization layer and filters out inaccurate samples from the obser-
vation that samples with low entropy perform relatively well. Moreover, CTTA proposes a so-
lution to address scenarios involving continuous domain shifts (Wang et al., 2022). CR is a pri-
mary solution in CTTA and has gained prominence for its effectiveness in stabilizing adaptation

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

80

(c) Our approach on SSL

40

20

0

M
e

a
n

 A
c
c
u

ra
c
y
 (

%
)

60

Tent CoTTA AWS (Ours)

Source Model (Base)

SSL Model (Base)

Source Model (TTA)

SSL Model (TTA)

(b) CR approach on SSL

Target domains

Noise Blur Weather Digital

80

60

40

20

0

Low accuracy of 

pseudo labels

(a) EM approach on SSL

7

0

L
o

s
s

Entropy

7

6

5

4

3

2

1

6543210

High loss at 

same entropy

Source Model

SSL Model

Severity Level

1 5…

P
s
e

u
d

o
 L

a
b

e
l 
A

c
c
u

ra
c
y
 (

%
) Source Model

SSL Model

(a) Failure of the EM Method in
SSL model.

80

(c) Our approach on SSL

40

20

0

M
e

a
n

 A
c
c
u

ra
c
y
 (

%
)

60

Tent CoTTA AWS (Ours)

Source Model (Base)

SSL Model (Base)

Source Model (TTA)

SSL Model (TTA)

(b) CR approach on SSL

Target domains

Noise Blur Weather Digital

80

60

40

20

0

Low accuracy of 

pseudo labels

(a) EM approach on SSL

7

0

L
o

s
s

Entropy

7

6

5

4

3

2

1

6543210

High loss at 

same entropy

Source Model

SSL Model

Severity Level

1 5…

P
s
e

u
d

o
 L

a
b

e
l 
A

c
c
u

ra
c
y
 (

%
) Source Model

SSL Model

(b) Failure of the CR Method in
SSL model.

80

(c) Our approach on SSL

40

20

0

M
e

a
n

 A
c
c
u

ra
c
y
 (

%
)

60

Tent CoTTA AWS (Ours)

Source Model (Base)

SSL Model (Base)

Source Model (TTA)

SSL Model (TTA)

(b) CR approach on SSL

Target domains

Noise Blur Weather Digital

80

60

40

20

0

Low accuracy of 

pseudo labels

(a) EM approach on SSL

7

0

L
o

s
s

Entropy

7

6

5

4

3

2

1

6543210

High loss at 

same entropy

Source Model

SSL Model

Severity Level

1 5…

P
s
e

u
d

o
 L

a
b

e
l 
A

c
c
u

ra
c
y
 (

%
) Source Model

SSL Model

(c) Performance comparison in
SSL model.

Figure 2: Analysis of self-supervised models in test-time adaptation. (a) The relationship be-
tween entropy and loss for source pretrained and SSL models. SSL models tend to exhibit higher
loss for the same entropy level and may decrease the entropy of incorrect predictions, thereby in-
creasing the true risk. (b) The accuracy of pseudo-labels for different target domains. SSL models
generate pseudo-labels with lower accuracy compared to source pretrained models, which hinders
performance improvement due to the propagation of inaccurate supervision signals. (c) Comparison
of accuracy across different TTA approaches. Our AWS achieves improved performance for the SSL
model compared with EM (Wang et al., 2021) and CR (Wang et al., 2022) methods.

Table 1: Comparison of different adaptation protocols. Existing protocols require training on
source images and labels (xs, ys) during pretraining process and adapting the model to target images
(xt). Self-Supervised Test-Time Adaptation is based on unlabeled images (xu), which is not the
source domain, and does not involve training on the source data. For source domain, only a forward
pass over full or few-shot is performed, without backpropagation.

Setting Pretrained model Learning procedure
Image Label Training loss Test loss (data distribution)

Source-Free Domain Adaptation Yes (xs) Yes (ys) L(xt) -
Test-Time Training - - L(xs, ys) + L(xt) L(xt) (Stationary)
Fully Test-Time Adaptation Yes (xs) Yes (ys) - L(xt) (Stationary)
Continual Test-Time Adaptation Yes (xs) Yes (ys) - L(xt) (Continually changing)
Self-Supervised Test-Time Adaptation Yes (xu) No - L(xt) (Continually changing)

over time (Wang et al., 2022; Brahma & Rai, 2023; Liu et al., 2024b;a). The CR approach utilizes a
teacher-student framework (Tarvainen & Valpola, 2017) that updates all model parameters, enabling
gradual adaptation through Exponential Moving Average (EMA) update. By leveraging pseudo la-
bels generated by an augmented teacher model, CR enforces consistency throughout the adaptation
process.

2.2 SELF-SUPERVISED LEARNING

The training of increasingly deeper and more complex DNNs demands large amounts of data. How-
ever, the expensive cost of human annotation presents challenges for supervised learning. SSL has
been proposed as an alternative, leveraging unlabeled data for various downstream tasks (Oord et al.,
2018; He et al., 2020; Chen et al., 2021; 2020; Caron et al., 2021; Zhou et al., 2022; Oquab et al.,
2024). CPC (Oord et al., 2018) introduces a representation learning approach based on probabilis-
tic contrastive learning for future prediction. MoCo (He et al., 2020) employs a memory bank and
a momentum encoder to facilitate contrastive learning with a large and consistent set of negative
samples. SimCLR (Chen et al., 2020) leverages strong data augmentations and a contrastive loss
to maximize similarity between augmented views of the same instance. DINO (Caron et al., 2021)
adopts a self-distillation and teacher-student framework with a momentum encoder. iBOT (Zhou
et al., 2022) proposes a mask prediction-based SSL framework through masked image modeling.

In this paper, we empirically investigate the effectiveness of TTA strategies in practical scenarios
where labels are unavailable during the source pretraining phase. Furthermore, we propose Self-
Supervised TTA, which leverages an SSL model as the source model and integrates it into the TTA.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 SELF-SUPERVISED TEST-TIME ADAPTATION

We begin with preliminary on the Self-Supervised TTA protocol in Section 3.1. We then detail the
construction of prototype classifier within this protocol and introduce our proposed method, AWS,
comprising contrastive learning, knowledge distillation, and mutual learning in Section 3.2.

3.1 PRELIMINARY

We briefly summarize the well-known adaptation protocols for simple comparison in Table 1, in-
cluding the method replacing the source pre-training process in Figure 3, and the overview of our
method is also illustrated in Figure 4.

Building a Classifier without Backpropagation

Source Image

SSL

Model

Target

Model

In
it
ia

liz
e

Target Image

𝑝1
𝑝2
𝑝3
𝑝4

𝑝1

𝑝2

𝑝3

𝑝4

𝑝𝑡𝑎𝑟

Prototype Classifier

Figure 3: A framework without source pre-
training. We construct a prototype classifier only
through forward passes without a training process
on the source domain (p denotes prototype).

Source Model. Conventional TTA proto-
cols (Wang et al., 2021; Zhang et al., 2022;
Niu et al., 2023; Wang et al., 2022; Liu et al.,
2024b;a) are based on supervised learning of a
source model gs ◦ fs using labeled source do-
main data (xs, ys) ∈ {X s,Ys}, where gs and
fs represent the classifier and feature extractor
of the source model, respectively. Instead of re-
quiring pretraining on the source domain, we
employ a self-supervised model fssl trained on
an unlabeled data xu ∈ X u. We compute fea-
ture prototypes from either a subset or the en-
tire source dataset to align the representation of
the SSL model with each class and construct a
classifier gssl. Further details on the gssl are pro-
vided in Section 3.2.

Target Adaptation. We follow the CTTA protocol (Wang et al., 2022), which assumes a contin-
uously changing environment without explicit domain boundaries, to assess the adaptability of the
SSL model to the target domain. The target model gt ◦ft is initialized from the SSL model gssl ◦fssl.
Our main objective is to adapt to the target domain by leveraging an online stream of unlabeled
target data xt ∈ X t while minimizing the mean error as the domain gradually shifts.

3.2 METHODOLOGY

We briefly outline the intuition of our design. A self-supervised model offers generalizable repre-
sentations but lacks source-specific knowledge; when adapted to the target domain, this limitation
often leads to noisy and unreliable pseudo-labels. We aim to avoid relying solely on pseudo-labels
and design a collaborative framework that leverages the SSL model’s generalizable representations
together with the target model’s domain-specific representations.

Prototype Classifier. A self-supervised model typically requires a task-specific classifier to predict
each class for downstream classification (Grill et al., 2020; Caron et al., 2021). Linear probing
and the k-nearest neighbor (k-NN) classifier are widely used methods for building a classifier that
aligns with each class (Oord et al., 2018; He et al., 2020; Chen et al., 2020). However, linear
probing necessitates backpropagation for gradient computation, whereas the k-NN classifier entails
substantial computational and memory overhead due to the requirement of storing a large number
of feature representations. Inspired by the prototype-based classification in few-shot learning (Snell
et al., 2017; Mensink et al., 2013) and continual learning (Rebuffi et al., 2017; Hou et al., 2019),
we establish a prototype µc for each class c and employ a cosine similarity-based classifier. Using
only the forward pass enhances computational efficiency. The prediction probability for each class
is given by

pt(y = c|x) = exp(σ · cos(ft(x), µc))∑
i∈C exp(σ · cos(ft(x), µi))

, (1)

where cos(·, ·) denotes the cosine similarity between two vectors, σ represents the logit scaling
factor, C denotes the total number of classes and µc is the mean of features for each class c for the
source dataset {X s,Ys} of the SSL model, i.e., µc =

1
|X s

c |
∑

Ys
c
fssl(x

s).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Continual Test Time Adaptation

Target
Image

SSL
Model

Target
Model

Classifier Knowledge Distillation

Mutual Learning

Positive

Ambiguous

Negative

⋯

⋯

⋯Pr
ob

ab
ili

ty

Pull

Push

Ignore

⋯

⋯

⋯

Classes

Mutual Information Maximization

Consistency Regularization

Top-k Candidates

Components

Contrastive Learning
Knowledge
Distillation

Contrastive
Learning

Mutual
Learning

Collaborative Learning with SSL Model Contrastive Learning, Knowledge Distillation and Mutual LearningOverall Framework

SSL feature

Target feature

Figure 4: Overview of our AWS framework. Contrastive learning refines representations by lever-
aging pseudo-labels while maintaining stability, knowledge distillation preserves generalization by
aligning feature representations to mitigate overfitting under domain shifts, and mutual learning im-
proves adaptation by integrating the generalization ability of the SSL model with the domain-specific
knowledge of the target model through pseudo-labeling.

Contrastive Learning. Through a contrastive loss function, distance-based classifiers benefit from
improved performance while enabling the gradual refinement of representations (Oord et al., 2018;
Chen et al., 2020; Cha et al., 2021; Wen et al., 2024). Building on the need for robustness against
uncertainty induced by domain shifts, we introduce an approximately correct contrastive learning
method that integrates a refined segmentation of multiple prediction candidates (Zhang et al., 2024).
Compensating for the low accuracy in the target domain, we identify samples sharing a pseudo label
T k within the top-k predictions as positive samples. Conversely, when no common prediction exists
among T n, which denotes the top-n predictions with n > k, the sample is treated as a negative
instance. For ambiguous samples that do not fit either category, contrastive loss is not applied.
Accordingly, the indicator function is defined as

1ij =


1, if T k

i ∩ T k
j ̸= ∅

−1, if T n
i ∩ T n

j = ∅ (n > k)

0, otherwise.
(2)

We estimate the relationships among samples predicted as positive, ambiguous, or negative using the
indicator function. By applying contrastive loss to these approximately correct sample relationships,
we actively leverage the initial classification capability of the SSL model while ensuring stability.
The approximately correct contrastive learning loss is defined as follows:

Lcl = −
B∑
i=1

B∑
j=1

1ij∑B
j=1 1ij

log
exp(St

ij)∑B
k=1 exp(S

t
ik)

, (3)

where St
ij represents the cosine similarity between ft(xi) and ft(xj), and B denotes the batch size.

Knowledge Distillation. As a fundamental technique for transferring knowledge between models,
knowledge distillation (Hinton et al., 2015) has demonstrated effectiveness in various domains, in-
cluding model compression (Romero et al., 2014; Zagoruyko & Komodakis, 2017), mitigating catas-
trophic forgetting (Rebuffi et al., 2017; Hou et al., 2019), improving zero-shot performance (Vem-
ulapalli et al., 2024; Zhang et al., 2025b). To preserve generalization performance and mitigate
overfitting under continuous domain shifts, we transfer knowledge from the SSL model to the tar-
get model. By reducing the discrepancy between feature representations, we retain the knowledge
embedded in the SSL model while ensuring prediction consistency in the prototype classifier, which
relies on cosine similarity between feature vectors and weight vectors of the classifier. To this end,
we propose a knowledge distillation loss that aligns normalized feature vectors, facilitating stable
knowledge transfer while preserving the geometric structure of the feature space.

Lkd =
1

B

B∑
i=1

∥f t(xi)− fssl(xi)∥2, (4)

where f(x) = f(x)
∥f(x)∥ denotes normalized feature vector, and ∥ · ∥2 represents the Frobenius norm.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Mutual Learning. A self-supervised model demonstrates generalization performance by training
on large-scale datasets, whereas a target model acquires domain-specific knowledge through adapta-
tion. Drawing insight from studies suggesting that collaborative learning between models enhances
robustness to noisy labels (Han et al., 2018; Yu et al., 2019; Wei et al., 2020), we propose a collab-
orative mutual learning framework to integrate the strengths of these distinct predictive tendencies.
To adapt the model to the target domain, we update the SSL model’s classifier using pseudo labels
generated by the target model, which maintains relatively high accuracy. This enables classifier
refinement while preserving the fixed embeddings of the SSL model. Furthermore, we maximize
the mutual information between predicted probability distributions to capture relational information
between samples, leveraging the SSL model’s representational capabilities. The collaborative loss
for mutual knowledge transfer is formulated as follows:

Lml =
1

B

B∑
i=1

[H(pssli , p̂ti)︸ ︷︷ ︸
loss for SSL

+ I(pti, p
ssl
i )︸ ︷︷ ︸

loss for target

], (5)

where pti denotes the probability obtained by applying the softmax function to gt ◦ ft(xi) and p̂ti =
argmax(pti). I(p, q) represents the mutual information (Ji et al., 2019), and H(p, q) is cross entropy
between two probability distributions p and q.

The total loss function of the proposed method, which consists of approximately correct contrastive
learning, knowledge distillation, and mutual learning, is formulated as follows:

Laws = Lcl + λkdLkd + λmlLml, (6)

where λkd and λml are hyperparameters for knowledge distillation loss and mutual loss, respectively.

4 EXPERIMENTS

In this section, we begin by evaluating proposed Self-Supervised TTA protocol using DINO (Caron
et al., 2021), MoCo (Chen et al., 2021), and iBOT (Zhou et al., 2022). We also assess our method-
ology under the conventional protocol, which uses a source pretrained model. We first provide the
experimental setup including the datasets, models, and the compared methods in Section 4.1. Sec-
tion 4.2 describes the results for the self-supervised models and Section 4.3 for the source pretrained
model.

4.1 EXPERIMENTAL SETUP

Datasets and Models. We conduct our experiments on standard CTTA benchmarks, in-
cluding ImageNet-to-ImageNetC (Hendrycks & Dietterich, 2018), CIFAR10-to-CIFAR10C, and
CIFAR100-to-CIFAR100C (Krizhevsky et al., 2009). ImageNetC, CIFAR10C, and CIFAR100C
are corruption sets for each source data, with 15 types of 4 main categories, which serve as sequen-
tial target domains. Following (Wang et al., 2022; Liu et al., 2024b;a), we sequentially adapt the
pretrained model to 15 target domains with the highest corruption level of 5 and evaluate its online
prediction performance by measuring the mean error rate. Following (Liu et al., 2024b;a), we adopt
ViT-B/16 (Dosovitskiy et al., 2021) as the backbone network. We present experimental results for
both source pretrained and self-supervised models, using DINO (Caron et al., 2021), MoCo (Chen
et al., 2021), and iBOT (Zhou et al., 2022) as SSL models.

Compared Methods. We compare our AWS with the well-known state-of-the-art methods:
Tent (Wang et al., 2021), CoTTA (Wang et al., 2022), SAR (Niu et al., 2023), PETAL (Brahma
& Rai, 2023), COME (Zhang et al., 2025a), ViDA (Liu et al., 2024b), and Continual-MAE (Liu
et al., 2024a). ViDA and Continual-MAE require additional training as they incorporate an extra
adapter into the source model. This makes it challenging to apply them using self-supervised mod-
els. Therefore, we do not include their results on self-supervised models.

Implementation Details. We employ the SGD optimizer with a momentum of 0.9 for training on
the target domain. The batch size is 64 for ImageNetC and 16 for CIFAR datasets. The learning
rate is set to 1e-4× batch size

64 for the source pretrained models, and we select the range of [1e-3, 1e-4,
1e-5, 1e-6]× batch size

64 for the self-supervised models. More implementation details in Appendix A.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Classification error rate (%) for ImageNet-to-ImageNetC with self-supervised mod-
els. Mean (%) denotes the average error rate across 15 target domains. Gain (%) represents the
improvement over “No Adapt”. FS denotes the few-shot setup that utilizes a prototype classifier
constructed with 30 samples per class. The bold indicates best performance.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Pretrained
Model Method

G
au

ss
ia

n

sh
ot

im
pu

ls
e

de
fo

cu
s

gl
as

s

m
ot

io
n

zo
om

sn
ow

fr
os

t

fo
g

br
ig

ht
ne

ss

co
nt

ra
st

el
as

tic
tra

ns

pi
xe

la
te

jp
eg Mean↓ Gain↑

No Adapt 85.7 83.6 85.7 68.7 86.5 73.3 73.4 64.3 64.3 61.8 38.1 79.8 65.7 55.8 50.8 69.2 0.0
Tent 81.8 75.9 75.6 67.3 94.0 73.6 73.4 62.1 62.7 61.4 38.2 75.4 67.9 51.9 48.6 67.3 +1.9
CoTTA 98.2 99.1 99.3 68.7 78.7 72.0 70.9 69.9 64.9 61.7 41.0 78.1 59.8 52.9 51.8 71.1 -1.9

DINO SAR 81.0 73.5 73.3 68.8 91.0 73.0 72.1 61.8 62.5 61.1 38.2 74.6 67.6 51.7 48.5 66.6 +2.6
PETAL 97.8 98.1 98.5 68.0 86.6 74.7 72.8 64.6 64.6 60.7 38.3 80.2 66.5 55.6 51.2 71.9 -2.7
COME 85.7 83.5 85.7 68.6 86.5 73.3 73.4 64.2 64.2 61.6 38.1 80.3 65.7 56.5 51.2 69.2 +0.0
AWS 65.9 59.6 60.7 57.8 59.3 57.0 52.7 50.8 50.9 50.3 37.0 52.6 49.6 45.0 45.6 53.0 +16.2
AWS-FS 66.7 61.0 63.0 59.1 61.5 57.9 53.5 52.3 52.1 51.2 39.1 54.3 50.7 46.3 47.7 54.4 +14.8

No Adapt 91.2 89.5 92.1 79.9 90.2 79.8 82.6 74.3 76.4 80.3 43.1 85.4 71.2 52.6 59.6 76.5 0.0
Tent 91.2 89.5 92.1 79.9 90.2 79.8 82.7 74.3 76.4 80.4 43.1 85.4 71.2 52.7 59.7 76.6 -0.1
CoTTA 96.9 94.3 98.1 80.8 95.6 82.7 83.8 74.6 76.1 78.1 42.9 86.7 70.9 52.1 59.0 78.2 -1.7

MoCo SAR 91.1 89.1 91.2 79.9 90.7 78.7 82.0 72.6 73.7 78.0 41.6 85.4 68.8 51.0 57.2 75.4 +1.1
PETAL 96.9 94.3 98.1 80.8 95.6 82.7 83.9 74.8 76.2 77.8 42.9 86.4 71.1 51.9 59.2 78.2 -1.7
COME 91.1 89.1 91.1 79.9 90.8 78.7 81.9 72.6 73.0 77.1 41.3 85.2 68.7 51.3 57.5 75.3 +1.2
AWS 89.4 81.9 80.1 71.3 76.5 70.1 70.5 61.2 60.7 63.9 43.8 62.7 61.4 48.5 50.2 66.1 +10.4
AWS-FS 90.1 82.9 81.1 73.1 77.2 71.8 71.2 62.7 62.6 64.9 46.0 63.6 62.2 51.0 51.7 67.4 +9.1

No Adapt 86.1 84.2 86.9 69.3 87.6 74.6 73.3 62.3 62.5 60.3 36.1 78.5 62.2 48.9 47.2 68.0 0.0
Tent 86.1 84.0 87.2 68.8 88.4 71.3 71.2 60.5 61.3 60.3 36.3 79.4 63.2 47.1 48.0 67.5 +0.5
CoTTA 86.1 84.3 87.0 69.3 87.6 77.3 73.3 61.8 61.9 60.0 36.1 78.0 61.9 48.4 46.7 68.0 +0.0

iBOT SAR 85.7 83.2 85.1 68.8 87.9 70.9 71.3 60.0 61.1 60.3 36.2 78.3 62.7 47.1 47.7 67.1 +0.9
PETAL 86.1 84.3 87.0 69.3 87.6 77.3 73.3 61.6 61.8 59.9 36.0 77.9 61.9 48.3 46.7 67.9 +0.1
COME 86.2 84.2 87.0 69.2 87.6 74.5 73.3 62.4 62.5 60.3 36.2 78.4 66.2 48.9 47.1 68.0 +0.0
AWS 56.4 51.5 53.4 53.3 55.0 52.5 48.5 46.3 48.1 46.6 34.8 47.4 44.6 40.5 42.8 48.1 +19.9
AWS-FS 58.2 53.3 55.2 55.6 56.0 54.3 50.8 48.7 49.7 48.4 36.4 49.8 45.8 42.3 44.3 49.9 +18.1

Table 3: Summary of mean classification error (%) on CIFAR10C and CIFAR100C with self-
supervised models. The number of parentheses indicate the performance gain over “No Adapt”.
Pretrained Model DINO MoCo iBOT

Method CIFAR10C CIFAR100C CIFAR10C CIFAR100C CIFAR10C CIFAR100C

No Adapt 44.3 (0.0) 64.1 (0.0) 42.2 (0.0) 64.2 (0.0) 48.0 (0.0) 65.6 (+0.0)
Tent 43.5 (+0.8) 62.9 (+1.2) 42.7 (-0.5) 64.4 (-0.2) 45.8 (+2.2) 53.3 (+12.3)
CoTTA 44.3 (+0.0) 64.1 (+3.0) 42.2 (+0.0) 64.3 (-0.1) 46.6 (+1.4) 65.2 (+0.4)
SAR 43.2 (+1.1) 54.9 (+9.2) 42.2 (+0.0) 64.2 (+0.0) 40.2 (+7.8) 51.2 (+14.4)
PETAL 36.4 (+7.9) 60.2 (+3.9) 42.2 (+0.0) 64.6 (-0.4) 46.0 (+2.0) 56.3 (+9.3)
COME 42.6 (+1.7) 61.1 (+3.0) 42.2 (+0.0) 64.2 (+0.0) 45.0 (+3.0) 60.5 (+5.1)
AWS [Ours] 26.8 (+17.5) 50.6 (+13.5) 40.7 (+1.5) 62.1 (+2.1) 30.1 (+17.9) 50.2 (+15.4)
AWS-FS [Ours] 28.2 (+16.1) 52.5 (+11.6) 43.9 (-1.7) 64.3 (-0.1) 31.6 (+16.4) 51.9 (+13.7)

4.2 RESULTS ON SELF-SUPERVISED MODELS

ImageNet-to-ImageNetC. The experimental results on ImageNetC using each self-supervised
model (Caron et al., 2021; Chen et al., 2021; Zhou et al., 2022) are represented in Table 2. For
“No Adapt”, where each model is evaluated on the target without updates, the error rates are 69.2%
(DINO), 76.5% (MoCo), and 68.0% (iBOT). With DINO, our method records 53.0%, improving
over “No Adapt” by 16.2%. It records 66.1% with MoCo and 48.1% with iBOT. On ImageNetC,
AWS achieves the lowest error rate among all compared methods, marking a substantial improve-
ment. An additional explanation is provided in Appendix H.

CIFAR10-to-CIFAR10C & CIFAR100-to-CIFAR100C. In Table 3, we summarize the mean error
rates on CIFAR benchmarks for SSL models. On CIFAR10C, the error rates for “No Adapt” are
44.3% (DINO), 42.2% (MoCo), and 48.0% (iBOT). AWS reduces them to 26.8%, 40.7%, 30.1%,
corresponding to improvements of 17.5%, 1.5%, 17.9%. On CIFAR100C, our method shows 50.6%,
62.1%, and 50.2% with DINO, MoCo, and iBOT, respectively. These correspond to gains of 13.5%,
2.1%, and 15.4% over “No Adapt”. AWS consistently reduces error across both benchmarks, un-
derscoring its effectiveness under distributional shift. We provide the full results for all corruption
types in Appendix H.

Few-Shot Classifier Evaluation. In Tables 2 and 3, we report the performance of AWS-FS below
the row of AWS. The few-shot classifier is constructed from the source data using 30 images per
class, and the ablation on the number of samples is presented in Appendix B. Although AWS-FS
tends to show slightly lower gain than AWS, it still achieves consistently significant improvements
with respect to existing methods. For instance, on CIFAR10C with iBOT (Table 3), AWS-FS records

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

No Adapt Tent CoTTA SAR AWS

S
u
p

e
rv

is
e
d

 M
o

d
e

l
D

IN
O

Figure 5: Feature visualization. We compare the t-SNE results on CIFAR10C under Gaussian
noise. (above) The results of the source pretrained model. (below) The results of the SSL model,
DINO.

the error rate of 31.6%, which is 1.5% higher than AWS (30.1%) yet still lower than all other
baselines.

4.3 RESULTS ON SOURCE PRETRAINED MODEL

Table 4: Summary of mean classification er-
ror (%) with source pretrained models. Results
are reported on ImageNetC, CIFAR10C, and CI-
FAR100C.

Method ImageNetC CIFAR10C CIFAR100C

No Adapt 55.8 (0.0) 28.2 (0.0) 35.4 (0.0)
Tent 51.0 (+4.8) 23.5 (+4.7) 32.1 (+3.3)
CoTTA 54.8 (+1.0) 24.6 (+3.6) 34.8 (+0.6)
SAR 45.2 (+10.6) 26.6 (+1.6) 26.2 (+9.2)
PETAL 52.3 (+3.5) 24.4 (+3.8) 28.0 (+7.4)
ViDA 43.4 (+12.4) 20.7 (+7.5) 27.3 (+8.1)
Continual-MAE 42.5 (+13.3) 12.6 (+15.6) 26.4 (+9.0)
COME 47.5 (+8.3) 26.6 (+1.6) 25.6 (+9.8)
AWS [Ours] 39.4 (+16.4) 10.8 (+17.4) 20.4 (+15.0)

Table 4 presents the mean error rates on Im-
ageNetC and CIFAR datasets with a source
pretrained model. “No Adapt”, which eval-
uates the source pretrained model directly on
the target, records 55.8% (ImageNetC), 28.2%
(CIFAR10C), and 35.4% (CIFAR100C). On
ImageNetC, we achieve the best performance
of 39.4%, surpassing the prior state-of-the-
art method, Continual-MAE. We achieve error
rates of 10.8% on CIFAR10C and 20.4% on CI-
FAR100C. Compared to the prior state-of-the-
art method, we observe performance gains of
1.8% and 5.2%, respectively. Overall, AWS
consistently achieves the lowest error rates on
self-supervised models and also improves performance with source pretrained model across multi-
ple benchmarks. These results demonstrate the robustness and adaptability of our method.

5 FURTHER ANALYSIS

Feature Visualization. We provide t-SNE (Van der Maaten & Hinton, 2008) visualization results
to analyze the effect of TTA methods on the distribution of representations in Figure 5. After adap-
tation, we extract features from the Gaussian noise corruption in CIFAR10C using both the source
pretrained model and the self-supervised model, DINO. Existing approaches are typically designed
to preserve the initial representations by updating only normalization layers or employing an EMA
model. Consequently, these conservative update strategies demand high initial performance of the
source model, leading to dependency on its initial state. In contrast, we observe that the proposed
method exhibits improved decision boundaries for both the source pretrained model and the self-
supervised model.

Hyperparameter Analysis. The proposed method involves four hyperparameters: k, n, λkd, and
λml. We conduct a grid search in Table 5 to analyze the sensitivity across all datasets using the
source pretrained model. According to Table 5a, the best performing configurations of [k, n] are
[1, 5] for ImageNetC and CIFAR10C, and [1, 2] for CIFAR100C. Moreover, λkd and λml represents
that the best performance is obtained with λkd = 0.01 and λml = 0.4. We observe that our method

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: AWS ablation experiments. We investigate the sensitivity of hyperparameters in the
proposed method. IN-C, C10-C, and C100-C are ImageNetC, CIFAR10C, and CIFAR100C, respec-
tively.

(a) Hyperparameter [k, n].

[k, n] IN-C C10-C C100-C
[1, 2] 39.5 11.5 20.4
[1, 3] 39.5 11.0 20.5
[1, 5] 39.4 10.8 20.7
[3, 10] 40.1 57.2 23.1
[5, 20] 40.4 N/A 24.8

(b) Hyperparameter λkd.

λkd IN-C C10-C C100-C
0 40.6 11.1 22.3

0.01 39.4 10.8 20.4
0.02 40.1 11.2 22.5
0.03 41.9 11.7 24.9
0.04 43.6 11.5 26.9

(c) Hyperparameter λml.

λml IN-C C10-C C100-C
0 43.8 13.7 25.1

0.1 41.4 12.8 23.9
0.2 40.3 11.7 21.5
0.3 39.8 11.6 20.8
0.4 39.4 10.8 20.4

Table 6: Domain generalization performance
on ImageNetC. Results (%) are error rates on un-
seen domains.

Method
Directly test on unseen domains Unseen

bri. contrast elastic pixelate jpeg Mean↓
No Adapt 26.4 91.4 57.5 38.0 36.2 49.9
Tent 25.8 91.9 57.0 37.2 35.7 49.5
CoTTA 25.3 88.1 55.7 36.4 34.6 48.0
ViDA 24.6 68.2 49.8 34.7 34.1 42.3
AWS 24.8 65.9 47.1 34.1 33.5 41.1

Table 7: Effect of each component, such as
Contrastive Learning (CL), Knowledge Distilla-
tion (KD), and Mutual Learning (ML).

CL KD ML IN-C C10-C C100-C

No Adapt [Baseline] 55.8 28.2 35.4
✓ 43.4 16.0 27.9

✓ 42.7 21.3 21.8
✓ ✓ 41.6 21.3 23.0

✓ ✓ 43.8 14.1 25.1
✓ ✓ 40.6 11.2 22.2

✓ ✓ ✓ 39.4 10.8 20.4

not only exhibits low sensitivity to hyperparameters but also surpasses previous methods across a
wide range of hyperparameter settings.

Domain Generalization. In Table 6, we evaluate the domain generalization performance on Ima-
geNetC. Following ViDA (Liu et al., 2024b), we adapt to 10 corruption types from ImageNetC under
the CTTA protocol, and subsequently evaluate performance on the 5 remaining unseen corruption
types. We achieve an 8.8% improvement over No Adapt and surpasses the previous state-of-the-art
by 1.2%. These results indicate that the proposed method acquires generalized knowledge and en-
hances representational capacity during adaptation, thereby improving performance on unseen target
domains.

Effectiveness of Individual Components. Table 7 presents an ablation study evaluating the con-
tribution of each component in our method, including CL, KD, and ML. First, we apply CL to
enhance the representational capability of the SSL model and reduce error from 55.8% to 43.4% on
ImageNetC. These results indicate that applying CL individually can effectively improve adaptation.
Second, when KD is introduced to CL, we observe that it mitigates forgetting during adaptation and
results in comparable or even lower mean error than using CL alone (row4). Third, adding ML to
the combination of CL and KD achieves the best performance across all datasets, demonstrating that
ML provides additional benefits for further performance improvement (row6). The ablation study
suggests that each component contributes to complementary aspects of the adaptation process.

6 CONCLUSION

In this paper, we investigate the feasibility of integrating self-supervised models into TTA and ex-
plore effective strategies to enhance their adaptability within this scenario. We address the primary
challenge of applying self-supervised models to TTA, the absence of a classifier, by proposing a pro-
totype classifier without extra training and cost. Furthermore, we propose AWS, composed of CL,
KD, and ML, to effectively leverage the expressive representations of self-supervised models while
reducing reliance on source-specific knowledge for more stable adaptation. Extensive experiments
demonstrate that our proposed AWS is highly effective not only in the self-supervised setting but
also in the conventional supervised setting. Based on these results, we expect this study to contribute
to expanding the potential of self-supervised models in TTA and hope that future research will build
on these findings.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Dhanajit Brahma and Piyush Rai. A probabilistic framework for lifelong test-time adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3582–3591, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):
834–848, 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PmLR, 2020.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF international conference on computer vision,
2021.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei A Efros. Test-time training with masked
autoencoders. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent: A new approach to self-supervised learning, 2020.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
Advances in neural information processing systems, 31, 2018.

Jisu Han, Jaemin Na, and Wonjun Hwang. Ranked entropy minimization for continual test-time
adaptation. In Forty-second International Conference on Machine Learning, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition,
2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations, 2018.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
cal analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340–8349, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition, 2019.

Xu Ji, Joao F Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised
image classification and segmentation. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 9865–9874, 2019.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, July 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Jonghyun Lee, Dahuin Jung, Saehyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang, and Sun-
groh Yoon. Entropy is not enough for test-time adaptation: From the perspective of disentangled
factors. In International Conference on Learning Representations, 2024.

Jiaming Liu, Ran Xu, Senqiao Yang, Renrui Zhang, Qizhe Zhang, Zehui Chen, Yandong Guo,
and Shanghang Zhang. Continual-mae: Adaptive distribution masked autoencoders for continual
test-time adaptation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024a.

Jiaming Liu, Senqiao Yang, Peidong Jia, Ming Lu, Yandong Guo, Wei Xue, and Shanghang Zhang.
Vida: Homeostatic visual domain adapter for continual test time adaptation. In International
Conference on Learning Representations, 2024b.

Yuejiang Liu, Parth Kothari, Bastien Germain van Delft, Baptiste Bellot-Gurlet, Taylor Mordan,
and Alexandre Alahi. TTT++: When does self-supervised test-time training fail or thrive? In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, 2021.

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image
classification: Generalizing to new classes at near-zero cost. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2013.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In International conference on
machine learning. PMLR, 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In Internetional Conference on
Learning Representations, 2023.

Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time model
adaptation with only forward passes. In International Conference on Machine Learning, 2024.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut,
Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without super-
vision. Transactions on Machine Learning Research, 2024.

David Osowiechi, Gustavo A Vargas Hakim, Mehrdad Noori, Milad Cheraghalikhani, Ali Bahri,
Moslem Yazdanpanah, Ismail Ben Ayed, and Christian Desrosiers. Nc-ttt: A noise constrastive
approach for test-time training. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024.

Hyewon Park, Hyejin Park, Jueun Ko, and Dongbo Min. Hybrid-tta: Continual test-time adaptation
via dynamic domain shift detection, 2025.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE/CVF conference
on Computer Vision and Pattern Recognition, 2017.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc: The adverse conditions dataset with
correspondences for semantic driving scene understanding. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 10765–10775, 2021.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 2000.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
ing with self-supervision for generalization under distribution shifts. In International conference
on machine learning. PMLR, 2020.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. Advances in neural information
processing systems, 2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Raviteja Vemulapalli, Hadi Pouransari, Fartash Faghri, Sachin Mehta, Mehrdad Farajtabar, Moham-
mad Rastegari, and Oncel Tuzel. Knowledge transfer from vision foundation models for efficient
training of small task-specific models. In International Conference on Machine Learning, pp.
49345–49367. PMLR, 2024.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In International Conference on Learning
Representations, 2021.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
tions by penalizing local predictive power. Advances in neural information processing systems,
32, 2019.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation. In
Proceedings of Conference on Computer Vision and Pattern Recognition, 2022.

Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A joint
training method with co-regularization. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 13726–13735, 2020.

Yichen Wen, Zhiquan Tan, Kaipeng Zheng, Chuanlong Xie, and Weiran Huang. Provable contrastive
continual learning. In International Conference on Machine Learning, pp. 52819–52838. PMLR,
2024.

Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong
He, and Hengshuang Zhao. Point transformer v3: Simpler, faster, stronger. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2024.

Senqiao Yang, Jiarui Wu, Jiaming Liu, Xiaoqi Li, Qizhe Zhang, Mingjie Pan, Yulu Gan, Zehui Chen,
and Shanghang Zhang. Exploring sparse visual prompt for domain adaptive dense prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does dis-
agreement help generalization against label corruption? In International conference on machine
learning, pp. 7164–7173, 2019.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the per-
formance of convolutional neural networks via attention transfer. In International Conference on
Learning Representations, 2017.

Jiahan Zhang, Qi Wei, Feng Liu, and Lei Feng. Candidate pseudolabel learning: Enhancing vision-
language models by prompt tuning with unlabeled data. In Forty-First International Conference
on Machine Learning, June 2024.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. Advances in neural information processing systems, 2022.

Qingyang Zhang, Yatao Bian, Xinke Kong, Peilin Zhao, and Changqing Zhang. COME: Test-
time adaption by conservatively minimizing entropy. In International Conference on Learning
Representations, 2025a.

Yitian Zhang, Xu Ma, Yue Bai, Huan Wang, and Yun Fu. Accessing vision foundation models via
imagenet-1k. In International Conference on Learning Representations, 2025b. URL https:
//openreview.net/forum?id=LC6ZtQV6u2.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. International Conference on Learning Representa-
tions, 2022.

13

https://openreview.net/forum?id=LC6ZtQV6u2
https://openreview.net/forum?id=LC6ZtQV6u2


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

The appendix provides supplementary analyses and experimental details. In Appendix A, we report
the hyperparameter settings used in our experiments. We then investigate how the number of samples
used to construct the few-shot classifier influences performance in Appendix B. We further extend
our evaluation to natural domain shift scenarios in Appendix C, and describe the parameter update
strategy of our framework in Appendix D. Appendix E includes prediction shifts after adaptation
and Appendix F provides a comparison of adaptation time. We provide the semantic segmentation
results in Appendix G. We offer the full results across all benchmarks with additional explanations in
Appendix H. Finally, a brief note on the use of large language models (LLMs) is given in Appendix I.

A HYPERPARAMETERS IN EXPERIMENTS

In this section, we describe the learning rate configuration used in our experiments on SSL models.
For fair comparison, we select the learning rate that yields the lowest mean error within the range
defined in [1e-3, 1e-4, 1e-5, 1e-6]× batch size

64 .

1. DINO
• Learning rate (ImageNetC) [1e-3 (Tent, SAR, CoTTA), 1e-4 (PETAL, AWS), 1e-5, 1e-6

(COME)] × batch size
64

• Learning rate (CIFAR10C) [1e-3 (CoTTA, PETAL), 1e-4 (Tent, SAR, COME), 1e-5
(AWS), 1e-6] × batch size

64
• Learning rate (CIFAR100C) [1e-3 (SAR, PETAL), 1e-4 (Tent, COME, CoTTA), 1e-5

(AWS), 1e-6] × batch size
64

2. MoCo
• Learning rate (ImageNetC) [1e-3 (CoTTA, PETAL), 1e-4 (SAR, COME, AWS), 1e-5, 1e-6

(Tent)] × batch size
64

• Learning rate (CIFAR10C) [1e-3 (SAR, COME, CoTTA), 1e-4, 1e-5(AWS), 1e-6 (Tent,
PETAL)] × batch size

64
• Learning rate (CIFAR100C) [1e-3 (CoTTA, COME, SAR), 1e-4, 1e-5(AWS), 1e-6 (Tent,

PETAL)] × batch size
64

3. iBOT
• Learning rate (ImageNetC) [1e-3, 1e-4 (Tent, SAR, CoTTA, PETAL, AWS), 1e-5, 1e-6

(COME)] × batch size
64

• Learning rate (CIFAR10C) [1e-3 (SAR, CoTTA), 1e-4 (Tent, COME), 1e-5, 1e-6 (PETAL,
AWS)] × batch size

64
• Learning rate (CIFAR100C) [1e-3 (Tent, SAR, CoTTA, PETAL), 1e-4 (COME), 1e-5,
1e-6 (AWS)] × batch size

64

B EFFECT OF THE NUMBER OF FEW-SHOT SAMPLES

Figure 6: Effect of # of samples.

We study the applicability of AWS when the classifier is con-
structed using a subset of the source data. To this end, we
evaluate the effect of varying the number of samples (N ) and
compare it with the full-shot setting, where the entire dataset
is used. Specifically, we compare the mean error rates on Ima-
geNetC using DINO backbone across three different seeds. As
shown in Figure 6, the performance is close to that achieved
using the entire dataset as N increases. Notably, N = 30 few-
shot setting requires only 3% of the source data compared to
the full-shot setting. Nevertheless, the performance gap to the
full-shot setting remains within 1%. We observe that a classi-
fier constructed with a subset of data can achieve performance
close to the full-shot classifier. This observation suggests that
our method has the potential to maintain its effectiveness even
in more challenging scenarios.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C NATURAL DOMAIN SHIFT SCENARIOS

In Table 8, we provide experiments on natural domain shift datasets to extend the validity of the
proposed method in real-world natural changes. We conduct on ImageNet-R (Hendrycks et al.,
2021), V2 (Recht et al., 2019), Sketch (Wang et al., 2019) as a target for ImageNet (Deng et al.,
2009) source. We compare the results of our method with Tent (Wang et al., 2021), CoTTA (Wang
et al., 2022), SAR (Niu et al., 2023) and FOA (Niu et al., 2024). Our method consistently achieves
improved performance, demonstrating the effectiveness of AWS.

Table 8: Classification accuracy (%) for ImageNet-to-ImageNet-R/V2/Sketch.

Method
Source Pretrained DINO MoCo iBOT

R V2 Sketch R V2 Sketch R V2 Sketch R V2 Sketch
No Adapt 59.5 75.4 44.9 39.3 56.9 24.3 26.6 52.8 18.3 40.6 59.1 25.0
TENT 63.9 75.2 49.1 39.6 57.0 24.4 26.6 53.2 18.3 41.3 59.1 25.1
CoTTA 63.5 75.4 50.0 39.5 57.0 25.5 21.7 52.1 11.2 41.1 59.2 26.8
SAR 63.3 75.1 48.7 39.8 57.0 24.5 38.0 54.2 19.0 41.4 59.0 25.1
FOA 63.8 75.4 54.4 42.1 57.1 31.5 20.6 52.6 8.1 44.4 59.0 35.6
AWS [Ours] 69.3 75.4 54.4 45.0 57.5 38.0 35.8 53.5 25.6 48.8 59.6 40.0

D PARAMETER UPDATE STRATEGY

We use both SSL model and target model in our framework. The SSL model, trained on large-scale
datasets, ensures generalization performance, whereas the target model initialized from it acquires
domain-specific knowledge through adaptation. While maintaining the generalized feature repre-
sentations of the SSL model, we intend to improve the classifier through pseudo labels of the target
model that has relatively high accuracy. In AWS, the encoder fssl is kept frozen during adaptation
and the classifier gssl is updated. Table 9 shows EMA updates for fssl and a fixed classifier gssl.

Table 9: Effect of parameter update strategy for SSL models.

Method Source Pretrained↓ DINO↓ MoCo↓ iBOT↓
gssl (Frozen) 39.9 53.0 73.0 48.1
fssl (Update) 40.0 54.5 70.5 49.7
AWS [Ours] 39.4 53.0 69.5 48.1

E PREDICTION SHIFTS AFTER ADAPTATION

Figure 7 illustrates the change in predictions during adaptation, based on the initial predictions of
the source model. The results demonstrate that our method significantly improves predictions on
samples initially misclassified by the source model. We interpret this as evidence that our represen-
tation learning-based approach is less affected by confirmation bias and more effective at improving
the initial model.

Figure 7: Prediction shifts after adaptation with respect to the source model’s initial predictions.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F ADAPTATION TIME COMPARISON

We compare the adaptation time for 15 domains from ImageNet-to-ImageNetC in Table 10. Our
concern about presenting the comparison of adaptation times in the paper is that the adaptation
scenarios may depend on the experimental setup, and we emphasize the efficiency of the pretraining
time.

Table 10: Comparison of adaptation cost.

Protocol Source Pretraining Time Target Adaptation Time (15 domains) Total Time↓
TTA 1h8m23s×300epochs 8m31s (Tent) – 54m17s (ViDA) ≤ 342h9m17s
SSTTA 1m56s (Few-shot) – 36m15s (Full) 15m30s (Ours) ≤ 51m45s

G EFFECTIVENESS ON SEMANTIC SEGMENTATION

In Table 11, we present semantic segmentation CTTA results on the Cityscapes-to-ACDC bench-
mark (Cordts et al., 2016; Sakaridis et al., 2021). The four weather conditions (fog, night, rain, and
snow) serve as targets over three sequential rounds and performance is summarized by the overall
mean mIoU. We compare our method with Tent (Wang et al., 2021), CoTTA (Wang et al., 2022),
SVDP (Yang et al., 2024), and Hybrid-TTA (Park et al., 2025). While our method is devised for
classification, we report the results without adding any segmentation-specific losses or modules,
leaving room for further improvements via task-tailored components.

Table 11: Comparison of performance on Cityscapes-to-ACDC under CTTA scenario.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 2 3 Mean↑ GainMethod Fog Night Rain Snow Fog Night Rain Snow Fog Night Rain Snow
Source 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 56.7 /
Tent 69.0 40.2 60.1 57.3 68.3 39.0 60.1 56.3 67.5 37.8 59.6 55.0 55.7 -1.0
CoTTA 70.9 41.2 62.4 59.7 70.9 41.1 62.6 59.7 70.9 41.0 62.7 59.7 58.6 +1.9
CoTTA + Ours 71.4 43.3 65.2 63.1 73.1 44.3 66.9 63.2 72.7 44.3 67.2 63.3 61.5 +4.8
SVDP 72.1 44.0 65.2 63.0 72.2 44.5 65.9 63.5 72.1 44.2 65.6 63.6 61.1 +4.4
SVDP + Ours 71.8 44.7 66.6 63.0 72.5 45.6 68.0 63.7 71.3 43.2 66.8 63 61.7 +5.0
Hybrid-TTA 70.3 44.5 65.1 63.2 71.8 48.2 67.1 63.7 71.2 49.3 67.1 63.3 62.1 +5.4
Hybrid-TTA + Ours 70.2 44.2 65.0 63.0 72.4 47.5 66.5 64.1 72.2 47.3 66.4 64.4 62.3 +5.6

H FULL-RESULTS ON IMAGENETC, CIFAR10C, AND CIFAR100C

We provide full-results for ImageNet-to-ImageNetC, CIFAR10-to-CIFAR10C, and CIFAR100-to-
CIFAR100C in Tables 12, 13 and 14, respectively. Each table includes 15 corruption types for each
source dataset. The error is measured in an online manner under sequential target domains. The
number in parentheses under “Pretrained Model” indicate the accuracy on source domain. For Ima-
geNetC, the source pretrained model attains 83.6% source accuracy, but the self-supervised models
fall notably, recording 63.1% (DINO), 60.6% (MoCo), and 65.9% (iBOT). The lack of source spe-
cific knowledge in a SSL model results in higher initial target error (No Adapt)—69.2% (DINO),
76.5% (MoCo), and 68.0% (iBOT)—compared with 55.8% for the source pretrained model. With
limited source specific knowledge and low initial performance, existing TTA methods struggle to
achieve significant gains on SSL models. For example, Tent improves over “No Adapt” by 4.8% on
the source pretrained model but only 1.9%, -0.1%, and 0.5% on DINO, MoCo, and iBOT, respec-
tively. Meanwhile, AWS achieves significant improvements over “No Adapt”, with 16.4% (source
pretrained), 16.2% (DINO), 10.4% (MoCo), and 19.9% (iBOT), showing consistent gains across
both source pretrained and self-supervised models.

I POLICY ON LARGE LANGUAGE MODELS

We only used ChatGPT for minor English editing and language polishing of the manuscript.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 12: Full-results for ImageNet-to-ImageNetC under CTTA scenario. Mean (%) denotes the
average error rate across 15 target domains.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Pretrained
Model

(Src Acc. %)
Method

G
au

ss
ia

n

sh
ot

im
pu

ls
e

de
fo

cu
s

gl
as

s

m
ot

io
n

zo
om

sn
ow

fr
os

t

fo
g

br
ig

ht
ne

ss

co
nt

ra
st

el
as

tic
tra

ns
pi

xe
la

te

jp
eg Mean↓ Gain↑

No Adapt [Baseline] 53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8 0.0
Tent [ICLR’21] 52.2 48.9 49.2 65.8 73.0 54.5 58.4 44.0 47.7 50.3 23.9 72.8 55.7 34.4 33.9 51.0 +4.8
CoTTA [CVPR’22] 52.9 51.6 51.4 68.3 78.1 57.1 62.0 48.2 52.7 55.3 25.9 90.0 56.4 36.4 35.2 54.8 +1.0

Source SAR [ICLR’23] 49.3 43.8 44.9 58.2 60.9 46.1 51.8 41.3 44.1 41.8 23.8 57.2 49.9 32.9 32.7 45.2 +10.6
pretrained PETAL [CVPR’23] 52.1 48.2 47.5 66.8 74.0 56.7 59.7 46.8 47.2 52.7 26.4 91.3 50.7 32.3 32.0 52.3 +3.5
(Acc. 83.6%) ViDA [ICLR’24] 47.7 42.5 42.9 52.2 56.9 45.5 48.9 38.9 42.7 40.7 24.3 52.8 49.1 33.5 33.1 43.4 +12.4

Continual-MAE [CVPR’24] 46.3 41.9 42.5 51.4 54.9 43.3 40.7 34.2 35.8 64.3 23.4 60.3 37.5 29.2 31.4 42.5 +13.3
COME [ICLR’25] 49.3 43.5 44.5 59.6 60.1 49.4 52.4 41.6 43.6 44.3 24.1 89.1 45.9 32.4 32.5 47.5 +8.3
AWS [Ours] 43.9 39.6 41.3 48.9 47.7 42.2 42.9 35.8 37.3 39.7 23.6 49.8 37.5 30.9 30.3 39.4 +16.4

No Adapt [Baseline] 85.7 83.6 85.7 68.7 86.5 73.3 73.4 64.3 64.3 61.8 38.1 79.8 65.7 55.8 50.8 69.2 0.0
Tent [ICLR’21] 81.8 75.9 75.6 67.3 94.0 73.6 73.4 62.1 62.7 61.4 38.2 75.4 67.9 51.9 48.6 67.3 +1.9
CoTTA [CVPR’22] 98.2 99.1 99.3 68.7 78.7 72.0 70.9 69.9 64.9 61.7 41.0 78.1 59.8 52.9 51.8 71.1 -1.9

DINO SAR [ICLR’23] 81.0 73.5 73.3 68.8 91.0 73.0 72.1 61.8 62.5 61.1 38.2 74.6 67.6 51.7 48.5 66.6 +2.6
(Acc. 63.1%) PETAL [CVPR’23] 97.8 98.1 98.5 68.0 86.6 74.7 72.8 64.6 64.6 60.7 38.3 80.2 66.5 55.6 51.2 71.9 -2.7

COME [ICLR’25] 85.7 83.5 85.7 68.6 86.5 73.3 73.4 64.2 64.2 61.6 38.1 80.3 65.7 56.5 51.2 69.2 +0.0
AWS [Ours] 65.9 59.6 60.7 57.8 59.3 57.0 52.7 50.8 50.9 50.3 37.0 52.6 49.6 45.0 45.6 53.0 +16.2
AWS-FS [Ours] 66.7 61.0 63.0 59.1 61.5 57.9 53.5 52.3 52.1 51.2 39.1 54.3 50.7 46.3 47.7 54.4 +14.8

No Adapt [Baseline] 91.2 89.5 92.1 79.9 90.2 79.8 82.6 74.3 76.4 80.3 43.1 85.4 71.2 52.6 59.6 76.5 0.0
Tent [ICLR’21] 91.2 89.5 92.1 79.9 90.2 79.8 82.7 74.3 76.4 80.4 43.1 85.4 71.2 52.7 59.7 76.6 -0.1
CoTTA [CVPR’22] 96.9 94.3 98.1 80.8 95.6 82.7 83.8 74.6 76.1 78.1 42.9 86.7 70.9 52.1 59.0 78.2 -1.7

MoCo SAR [ICLR’23] 91.1 89.1 91.2 79.9 90.7 78.7 82.0 72.6 73.7 78.0 41.6 85.4 68.8 51.0 57.2 75.4 +1.1
(Acc. 60.0%) PETAL [CVPR’23] 96.9 94.3 98.1 80.8 95.6 82.7 83.9 74.8 76.2 77.8 42.9 86.4 71.1 51.9 59.2 78.2 -1.7

COME [ICLR’25] 91.1 89.1 91.1 79.9 90.8 78.7 81.9 72.6 73.0 77.1 41.3 85.2 68.7 51.3 57.5 75.3 +1.2
AWS [Ours] 89.4 81.9 80.1 71.3 76.5 70.1 70.5 61.2 60.7 63.9 43.8 62.7 61.4 48.5 50.2 66.1 +10.4
AWS-FS [Ours] 90.1 82.9 81.1 73.1 77.2 71.8 71.2 62.7 62.6 64.9 46.0 63.6 62.2 51.0 51.7 67.4 +9.1

No Adapt [Baseline] 86.1 84.2 86.9 69.3 87.6 74.6 73.3 62.3 62.5 60.3 36.1 78.5 62.2 48.9 47.2 68.0 0.0
Tent [ICLR’21] 86.1 84.0 87.2 68.8 88.4 71.3 71.2 60.5 61.3 60.3 36.3 79.4 63.2 47.1 48.0 67.5 +0.5
CoTTA [CVPR’22] 86.1 84.3 87.0 69.3 87.6 77.3 73.3 61.8 61.9 60.0 36.1 78.0 61.9 48.4 46.7 68.0 +0.0

iBOT SAR [ICLR’23] 85.7 83.2 85.1 68.8 87.9 70.9 71.3 60.0 61.1 60.3 36.2 78.3 62.7 47.1 47.7 67.1 +0.9
(Acc. 65.9%) PETAL [CVPR’23] 86.1 84.3 87.0 69.3 87.6 77.3 73.3 61.6 61.8 59.9 36.0 77.9 61.9 48.3 46.7 67.9 +0.1

COME [ICLR’25] 86.2 84.2 87.0 69.2 87.6 74.5 73.3 62.4 62.5 60.3 36.2 78.4 66.2 48.9 47.1 68.0 +0.0
AWS [Ours] 56.4 51.5 53.4 53.3 55.0 52.5 48.5 46.3 48.1 46.6 34.8 47.4 44.6 40.5 42.8 48.1 +19.9
AWS-FS [Ours] 58.2 53.3 55.2 55.6 56.0 54.3 50.8 48.7 49.7 48.4 36.4 49.8 45.8 42.3 44.3 49.9 +18.1

Table 13: Full-results for CIFAR10-to-CIFAR10C under CTTA scenario. Mean (%) denotes the
average error rate across 15 target domains.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Pretrained
Model

(Src Acc. %)
Method

G
au

ss
ia

n

sh
ot

im
pu

ls
e

de
fo

cu
s

gl
as

s

m
ot

io
n

zo
om

sn
ow

fr
os

t

fo
g

br
ig

ht
ne

ss

co
nt

ra
st

el
as

tic
tra

ns
pi

xe
la

te

jp
eg Mean↓ Gain↑

No Adapt 60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1 28.2 0.0
Tent [ICLR’21] 57.7 56.3 29.4 16.2 35.3 16.2 12.4 11.0 11.6 14.9 4.7 22.5 15.9 29.1 19.5 23.5 +4.7
CoTTA [CVPR’22] 58.7 51.3 33.0 20.1 34.8 20.0 15.2 11.1 11.3 18.5 4.0 34.7 18.8 19.0 17.9 24.6 +3.6

Source SAR [ICLR’23] 54.1 47.6 38.0 19.9 34.8 22.6 18.6 12.1 12.7 22.8 5.3 39.9 23.6 24.7 23.1 26.6 +1.6
Pretrained PETAL [CVPR’23] 59.9 52.3 36.1 20.1 34.7 19.4 14.8 11.5 11.2 17.8 4.4 29.6 17.6 19.2 17.3 24.4 +3.8
(Acc. 97.1%) ViDA [ICLR’24] 52.9 47.9 19.4 11.4 31.3 13.3 7.6 7.6 9.9 12.5 3.8 26.3 14.4 33.9 18.2 20.7 +7.5

Continual-MAE [CVPR’24] 30.6 18.9 11.5 10.4 22.5 13.9 9.8 6.6 6.5 8.8 4.0 8.5 12.7 9.2 14.4 12.6 +15.6
COME [ICLR’25] 54.3 47.1 36.6 19.9 34.9 22.6 18.6 12.1 12.7 22.8 5.3 40.7 23.4 24.7 23.1 26.6 +1.6
AWS [Ours] 18.7 13.1 11.0 10.1 18.8 9.7 7.2 7.0 6.2 9.5 3.8 10.2 12.4 9.5 15.4 10.8 +17.4

No Adapt 74.8 74.5 67.2 37.0 53.7 34.7 28.8 27.7 32.5 48.6 15.3 44.2 37.8 48.9 39.8 44.3 0.0
Tent [ICLR’21] 76.2 77.7 68.0 36.3 54.2 34.0 27.2 26.9 30.0 45.7 13.9 38.7 35.3 51.1 36.8 43.5 +0.8
CoTTA [CVPR’22] 74.8 74.5 67.1 37.1 53.7 34.7 28.9 27.6 32.4 48.5 15.3 44.1 37.7 48.8 39.7 44.3 +0.0

DINO SAR [ICLR’23] 76.7 78.1 67.4 36.4 53.6 34.0 26.9 26.2 29.0 44.7 13.7 38.1 34.9 51.8 36.2 43.2 +1.1
(Acc. 83.1%) PETAL [CVPR’23] 74.6 72.1 64.2 34.4 49.1 33.2 24.5 24.1 24.0 27.7 11.2 29.3 19.4 36.6 21.8 36.4 +7.9

COME [ICLR’25] 76.4 76.7 66.7 38.2 51.7 34.2 26.5 25.6 28.0 43.7 13.3 35.9 33.9 53.3 35.2 42.6 +1.7
AWS [Ours] 51.3 33.9 35.8 23.3 32.5 26.0 18.3 20.4 19.6 26.8 12.6 19.1 25.1 27.4 29.5 26.8 +17.5
AWS-FS [Ours] 53.2 35.6 35.8 25.3 33.9 27.8 20.0 21.7 21.0 29.7 13.5 20.5 26.2 28.0 30.3 28.2 +16.1

No Adapt 66.7 66.2 64.7 36.3 50.8 39.9 31.5 25.8 32.7 55.9 14.0 29.9 42.3 45.4 31.0 42.2 0.0
Tent [ICLR’21] 67.0 67.3 65.0 36.4 51.4 40.0 31.5 26.5 34.6 56.3 14.2 30.3 42.8 44.7 32.4 42.7 -0.5
CoTTA [CVPR’22] 66.7 66.2 64.7 36.3 50.8 39.9 31.5 25.8 32.7 55.9 14.0 29.9 42.3 45.4 31.0 42.2 +0.0

MoCo SAR [ICLR’23] 66.7 66.2 64.7 36.3 50.8 39.9 31.5 25.8 32.9 55.6 13.8 29.8 42.0 45.2 31.2 42.2 +0.0
(Acc. 83.6%) PETAL [CVPR’23] 66.7 66.4 64.8 36.3 51.1 39.5 30.4 26.1 33.8 54.9 14.0 29.2 41.9 44.7 33.0 42.2 +0.0

COME [ICLR’25] 66.7 66.2 64.7 36.3 50.8 39.9 31.5 25.8 33.0 55.9 13.8 30.6 42.2 44.9 31.4 42.2 +0.0
AWS [Ours] 66.0 64.5 62.4 34.1 49.9 37.6 27.7 27.4 32.5 52.2 14.7 26.0 38.1 43.7 33.6 40.7 +1.5
AWS-FS [Ours] 70.1 68.6 68.2 37.2 53.9 39.2 30.6 29.8 35.1 54.8 17.6 30.1 41.7 45.7 36.0 43.9 -1.7

No Adapt 75.8 75.4 70.2 51.1 50.1 43.3 39.5 25.5 29.3 54.7 16.9 48.7 38.8 59.3 42.2 48.0 0.0
Tent [ICLR’21] 76.0 76.0 70.9 51.5 50.5 41.3 35.2 23.7 27.3 49.1 14.3 40.7 35.7 57.7 37.7 45.8 +2.2
CoTTA [CVPR’22] 72.1 68.4 68.1 55.9 47.3 48.4 46.9 27.8 24.9 42.6 19.1 50.4 36.0 52.8 37.9 46.6 +1.4

iBOT SAR [ICLR’23] 80.2 81.8 74.2 41.5 48.4 27.0 18.1 19.5 22.3 26.0 14.2 28.2 31.6 57.8 32.7 40.2 +7.8
(Acc. 83.4%) PETAL [CVPR’23] 76.7 77.0 71.7 49.8 52.1 42.0 35.9 25.2 29.5 48.3 14.8 39.4 35.6 54.1 37.6 46.0 +2.0

COME [ICLR’25] 76.4 76.7 71.5 52.1 50.8 38.8 32.3 23.4 27.6 45.0 13.4 37.1 32.9 60.9 35.5 45.0 +3.0
AWS [Ours] 70.1 57.6 54.4 26.7 36.4 23.7 15.1 17.4 18.5 25.9 10.4 16.5 21.5 29.3 28.6 30.1 +17.9
AWS-FS [Ours] 72.2 60.1 53.5 27.7 38.5 25.6 16.5 19.0 20.5 29.0 11.0 17.4 23.3 29.0 30.6 31.6 +16.4

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 14: Full-results for CIFAR100-to-CIFAR100C under CTTA scenario. Mean (%) denotes the
mean error rate across 15 target domains.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Pretrained
Model

(Src Acc. %)
Method

G
au

ss
ia

n

sh
ot

im
pu

ls
e

de
fo

cu
s

gl
as

s

m
ot

io
n

zo
om

sn
ow

fr
os

t

fo
g

br
ig

ht
ne

ss
co

nt
ra

st
el

as
tic

tra
ns

pi
xe

la
te

jp
eg Mean↓ Gain↑

No Adapt 55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9 35.4 0.0
Tent [ICLR’21] 53.0 47.0 24.6 22.3 58.5 26.5 19.0 21.0 23.0 30.1 11.8 25.2 39.0 47.1 33.3 32.1 +3.3
CoTTA [CVPR’22] 55.0 51.3 25.8 24.1 59.2 28.9 21.4 21.0 24.7 34.9 11.7 31.7 40.4 55.7 35.6 34.8 +0.6

Source SAR [ICLR’23] 39.4 31.0 19.8 20.9 43.9 22.6 19.1 20.3 20.2 24.3 11.8 22.3 35.2 32.1 30.1 26.2 +9.2
Pretrained PETAL [CVPR’23] 49.2 38.7 24.1 26.3 38.2 25.4 19.4 21.0 19.3 26.6 15.4 31.8 28.3 26.6 29.5 28.0 +7.4
(Acc. 92.6%) ViDA [ICLR’24] 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1 27.3 +8.1

Continual-MAE [CVPR’24] 48.6 30.7 18.5 21.3 38.4 22.2 17.5 19.3 18.0 24.8 13.1 27.8 31.4 35.5 29.5 26.4 +9.0
COME [ICLR’25] 39.5 30.5 19.7 20.7 41.8 22.5 17.2 20.2 17.3 23.7 12.8 22.3 34.7 32.2 29.6 25.6 +9.8
AWS [Ours] 29.0 24.0 17.2 17.8 30.5 19.3 15.7 16.7 15.7 19.2 11.8 15.9 25.9 20.6 27.0 20.4 +15.0

No Adapt 82.1 80.6 78.4 57.9 78.2 55.7 49.5 52.0 55.4 69.4 36.3 66.4 62.6 72.6 64.6 64.1 0.0
Tent [ICLR’21] 80.8 78.8 79.0 58.3 78.1 55.1 47.9 50.0 52.1 67.3 34.2 63.2 60.6 76.0 62.0 62.9 +1.2
CoTTA [CVPR’22] 82.1 80.6 79.0 57.9 78.3 55.6 49.5 51.9 55.2 69.3 36.4 66.4 62.6 72.7 64.5 64.1 +0.0

DINO SAR [ICLR’23] 75.3 66.3 71.0 56.1 71.2 51.6 41.2 41.7 42.7 49.9 32.1 48.0 49.5 75.0 51.4 54.9 +9.2
(Acc. 61.5%) PETAL [CVPR’23] 81.7 79.0 78.0 57.2 70.5 54.1 48.1 50.9 46.6 55.0 41.2 63.1 51.4 69.5 56.2 60.2 +3.9

COME [ICLR’25] 79.4 75.9 76.4 62.9 75.0 54.8 47.9 46.9 49.0 62.5 33.2 58.3 58.8 76.8 58.2 61.1 +3.0
AWS [Ours] 63.7 52.5 58.8 51.2 59.7 51.2 43.9 44.7 43.2 51.6 37.5 45.7 52.7 49.9 52.9 50.6 +13.5
AWS-FS [Ours] 66.2 54.8 60.2 52.6 62.0 52.9 45.6 47.0 45.3 53.6 39.0 47.9 53.9 52.0 54.6 52.5 +11.6

No Adapt 82.8 81.6 83.3 58.5 73.0 60.0 51.7 52.5 56.0 75.0 37.4 56.7 65.6 69.3 59.0 64.2 0.0
Tent [ICLR’21] 82.9 81.8 83.4 58.5 73.3 60 51.8 53.0 56.9 75.2 37.5 56.7 66.1 69.1 59.5 64.4 -0.2
CoTTA [CVPR’22] 82.8 81.6 91.6 57.6 72.8 58.9 50.8 52 55.5 74.5 37.1 55.9 65.0 69.0 59.9 64.3 -0.1

MoCo SAR [ICLR’23] 82.8 82.6 83.3 58.5 73.0 60.0 51.7 52.5 56.0 74.8 37.3 57.5 65.6 69.1 59.1 64.2 +0.0
(Acc. 59.5%) PETAL [CVPR’23] 82.9 81.7 91.1 58.5 73.2 59.7 51.6 52.6 56.2 74.6 37.2 56.2 65.5 68.7 59.5 64.6 -0.4

COME [ICLR’25] 82.8 81.6 83.3 58.5 73.0 60.0 51.7 52.5 55.9 74.8 37.3 57.5 65.6 69.1 59.0 64.2 +0.0
AWS [Ours] 82.2 79.6 80.4 56.8 71.5 57.9 49.6 51.2 52.7 70.1 38.1 53.9 62.5 65.9 58.7 62.1 +2.1
AWS-FS [Ours] 83.6 81.6 82.3 59.5 72.8 60.3 52.2 54.6 56.2 71.5 41.1 55.1 65.3 67.7 61.1 64.3 -0.1

No Adapt 81.3 80.3 81.4 69.2 70.7 62.1 57.1 47.4 48.9 70.5 37.3 71.5 61.4 79.6 66.2 65.6 0.0
Tent [ICLR’21] 78.8 74.3 76.8 57.7 64.4 45.5 38.2 38.0 38.5 45.9 29.7 42.9 49.5 71.3 47.6 53.3 +12.3
CoTTA [CVPR’22] 78.9 74.4 78.0 69.3 67.3 62.8 59.5 47.0 45.4 66.2 42.0 76.9 58.3 84.3 67.3 65.2 +0.4

iBOT SAR [ICLR’23] 74.6 65.2 73.2 55.7 62.1 44.8 38.3 36.9 36.8 44.9 29.5 42.5 48.1 69.4 45.6 51.2 +14.4
(Acc. 61.0%) PETAL [CVPR’23] 76.5 67.4 71.6 57.3 59.6 52.2 45.1 47.4 44.7 54.1 39.5 71.6 48.5 55.0 54.4 56.3 +9.3

COME [ICLR’25] 79.7 76.2 78.8 66.4 67.7 56.8 52.1 41.6 41.3 56.4 32.5 62.0 54.7 80.5 61.3 60.5 +5.1
AWS [Ours] 75.6 64.9 67.0 47.6 60.5 45.9 37.8 39.9 39.2 47.7 31.5 44.5 48.2 48.5 51.7 50.2 +15.4
AWS-FS [Ours] 76.3 67.4 69.3 49.6 62.5 47.2 39.4 42.3 41.2 49.6 33.7 45.6 50.1 50.3 53.4 51.9 +13.7

18


	Introduction
	Related Work
	Test-Time Adaptation
	Self-Supervised Learning

	Self-Supervised Test-Time Adaptation
	Preliminary
	Methodology

	Experiments
	Experimental setup
	Results on Self-Supervised Models
	Results on Source Pretrained Model

	Further Analysis
	Conclusion
	Hyperparameters in experiments
	Effect of the Number of Few-Shot Samples
	Natural Domain Shift Scenarios
	Parameter Update Strategy
	Prediction Shifts After Adaptation
	Adaptation Time Comparison
	Effectiveness on Semantic Segmentation
	Full-results on ImageNetC, CIFAR10C, and CIFAR100C
	Policy on Large Language Models

