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Abstract

Diffusion model-based low-light image enhancement methods rely heavily on paired train-
ing data, which limits its extensive application. Meanwhile, existing unsupervised methods
lack effective bridging capabilities for unknown degradation. To address these limitations,
we firstly propose a novel zero-reference lighting estimation diffusion model for low-light
image enhancement called Zero-LED. It utilizes the stable convergence ability of diffusion
models to bridge the gap between low-light domains and real normal-light domains and
successfully alleviates the dependence on pairwise training data via zero-reference learn-
ing. Specifically, we first design the initial optimization network to preprocess the input
image and implement bidirectional constraints between the diffusion model and the initial
optimization network through multiple objective functions. Subsequently, the degradation
factors of the real-world scene are optimized iteratively to achieve effective light enhance-
ment. In addition, we explore a frequency-domain based and semantically guided appear-
ance reconstruction module that encourages feature alignment of the recovered image at
a fine-grained level and satisfies subjective expectations. Finally, extensive experiments
demonstrate the superiority of our approach to other state-of-the-art methods and more
significant generalization capabilities.

Keywords: Low-light Image Enhancement, Zero Reference Learning, Diffusion Models,
Multi-modal

1. Introduction

Low light enhancement aims to enhance the quality and brightness of under-illuminated
images. Due to the complex lighting conditions in the real world, relevant information in
captured images is often lost through appropriate or significant masking. This poses a chal-
lenge to human visual perception and impedes the development and deployment of various
downstream tasks (e.g., Autonomous Driving Li et al. (2021b), Target Detection Liang et al.
(2021), Text Detection Xue et al. (2020)). Low-light image enhancement techniques have
been significantly developed to address these challenges recently, with many related algo-
rithms proposed. These techniques can be broadly categorized into traditional model-based
approaches and data-driven deep learning-based approaches. The former primarily involves
constructing physical models through methods such as histogram equalization Pisano et al.
(1998) and Retinex theory Land and McCann (1971), which are then processed through
manual a priori optimization of model parameters and the information inherent in the im-
age itself Park et al. (2022); Fu et al. (2016). The effectiveness of these traditional methods
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Figure 1: Comparison between state-of-the-art unsupervised methods and our method. It
can be seen that these comparison methods appear to suffer from excessive noise,
color distortion, and visual quality degradation.

relies heavily on the accuracy of the manual prior assumptions. However, lighting condi-
tions are inherently ill-defined in the real world, leading to difficulties elucidating various
low-light factors.

With the development of deep learning, the quest to extract a priori knowledge from
massive datasets has given rise to numerous data-driven network learning methods (Sun
et al. (2015); Jiang et al. (2023)). Supervised learning-based methods utilize paired low-
light/high-light image data to establish the corresponding association mappings between
low-light and clear images for learning directly, which is more robust and effective than
traditional methods. Despite these advances, there are still significant challenges in con-
structing paired training data, which has led to the exploration of low-light enhancement
methods based on unsupervised learning Guo et al. (2020); Jiang et al. (2021); Liang et al.
(2023). Essentially, they all work by bridging the mapping between the input and output
domains to obtain clear highlighted images. However, the existing unsupervised methods
make it challenging to generate a reconstruction of the content structure due to the lack
of effective supervision. They can also not effectively generate and optimize the unknown
degradation factors of realistic complex scenes, which often cause excessive noise and ar-
tifacts to the extent that it is difficult to obtain satisfactory visual restoration, as shown
in Fig. 1. In particular, numerous low-light image enhancement algorithms based on the
diffusion model (Jiang et al. (2023); Fei et al. (2023)) have been proposed recently and
achieved strong performance results. However, due to the stochastic nature of the diffusion
inference process and the dependence on supervisory constraints, most of these algorithms
are based on supervised training with paired datasets or optimizing the network using a
priori knowledge, which makes it challenging to achieve genuinely effective unsupervised
diffusion training and widely deployed in real-world.

Therefore, to alleviate the above problems, we explore a bidirectionally constrained
unsupervised diffusion training approach to address the lack of generative power during
unsupervised training and the unknown degradation of realistic low-light scenes. Specifi-
cally, we propose a light estimation-based diffusion model for zero-reference low-light image
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enhancement called Zero-LED. A pluggable initial optimization network is constructed via
a deep network Guo et al. (2020) for the preprocessing of diffusion, which is passed as a
structural constraint to the diffusion process to mitigate the stochastic nature of diffusion.
Subsequently, the light estimation of the inference process is optimized by an objective func-
tion, and this is passed in reverse to optimize the initial optimization network to achieve
iterative bidirectional supervisory optimization. In addition, to reduce the consumption of
computational resources, we transfer the diffusion process to be carried out on the wavelet
domain by wavelet transform. we design a text- and frequency-domain based Appearance
Reconstruction Module (ARM), which guides the inference output of diffusion through
different modalities and combines the efficient capture of detailed content in the frequency-
domain space to achieve metrics-favorable and perceptually oriented enhancement effects.
Benefiting from these, our approach has a more significant generalization capability to the
real world, and extensive experiments on publicly available datasets demonstrate the su-
periority of our approach over other state-of-the-art unsupervised methods. Overall, our
contributions are as follows:

• To our best knowledge, we firstly propose a zero-reference low-light image enhance-
ment diffusion model that effectively enhances low-light images through a bidirectional
optimization approach, thus reducing the dependence on paired training data. The
model has enhanced the generative ability to bridge the gap between normal and
low-light domains, introducing new perspectives for future research.

• We design a semantic and frequency domain-based appearance reconstruction module.
It utilizes different modalities and multiple frequency domain spaces to constrain the
stochastic nature of the diffusion inference process and efficiently reconstructs images
for better perceptual results.

• Extensive experiments on real-world based datasets have demonstrated the superi-
ority of our method over other state-of-the-art methods, as well as more significant
generalization capabilities.

2. Related Work

2.1. Low-light Image Enhancement

Early techniques for enhancing low-light images primarily focused on employing a model-
based approach to optimize the parametric information within the image itself for pro-
cessing. The Retinex theory Land and McCann (1971) achieves the desired reflectance
map (standard image) by eliminating the low-light input’s illumination. However, these
model-based approaches often depend on manual crafting of many a priori assumptions and
struggle to adapt to the complex environmental conditions of natural scenes.

Therefore, along with the proven benefits of deep learning in numerous low-level vision
tasks, researchers have also focused their attention on low-light image enhancement algo-
rithms (Wei et al. (2018); Wu et al. (2022); Xue et al. (2024)) that leverage a data-driven
approach for efficient generalization through deep learning. For example, Chen et al. Chen
et al. (2018) curated a dataset containing different exposure levels for nighttime imaging
challenges. Wei et al. Wei et al. (2018) designed an end-to-end trainable RetinexNet. How-
ever, due to the challenges of acquiring paired low-light image datasets, Jiang Jiang et al.
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(2021) utilized generative adversarial Networks (GANs) as the main framework, pioneer-
ing unpaired images for training. Similarly, Guo et al. Guo et al. (2020) elaborated a
pixel-level curve estimation convolutional neural network by iterative derivation to estab-
lish a reference-free training paradigm. Liang et al. Liang et al. (2021) designed a Retinex
architecture-based search unfolding technique. Yang et al. Yang et al. (2023) employed
neural representation to normalize the degradation to alleviate the enhancement difficulty.
Despite the achievements of these unsupervised methods, their generalization to real-world
scenarios is still limited. For this reason, we adapt to various complex environmental con-
ditions by diffusing the generative power of the model.

2.2. Diffusion Model for Image Restoration

Recently, diffusion models Song and Ermon (2019) have garnered significant acclaim within
image generation by leveraging parametric Markov chains to optimize the lower variational
bounds of the likelihood function. This enables them to yield more precise target distri-
butions than alternative generative models, such as GANs. Concurrently, to amplify the
generative prowess of algorithms in image restoration, many researchers have embarked
on developing various restoration endeavours grounded in diffusion models. Saharia et al.
Saharia et al. (2022) adopt a direct cascading approach, integrating low-resolution mea-
surements and latent codes as inputs to train conditional diffusion models for restoration.
Jiang et al. Jiang et al. (2023) advances a diffusion model rooted in wavelet transform
tailored for enhancing images captured in low-light environments, achieving content sta-
bilization through forward diffusion and denoising processes during training. WeatherDiff
Özdenizci and Legenstein (2023) introduces a block-based diffusion model aimed at recuper-
ating images taken in adverse weather conditions, employing guidance across overlapping
blocks during the inference stage. Additionally, Fei et al. Fei et al. (2023) utilize the a
priori knowledge embedded in a pre-trained diffusion model to effectively address any linear
inverse problem.

Although diffusion models have achieved satisfactory visual restoration, due to the un-
controllable nature of diffusion, these algorithms are almost always based on supervised
training on paired datasets or network optimization using the a priori knowledge of pre-
trained diffusion models. It is still a great challenge to realize unsupervised training. In this
paper, we propose a bi-directionally constrained unsupervised diffusion training approach
to achieve robust zero-reference trained diffusion models for the first time, as well as more
significant generalization ability and effective low-light image enhancement.

3. Methodology

The main goal of this paper is to explore a diffusion model based on zero-reference train-
ing, and the overall framework is shown in Fig. 2. Leveraging the generative capacity of
the diffusion model, the proposed method achieves notable enhancements in image qual-
ity. By developing a bidirectional optimization training method, we establish a diffusion
model based on zero-reference images, thereby reducing reliance on training data and en-
hancing generalizability to real-world contexts. Furthermore, to minimize computational
resource consumption and enhance efficiency Jiang et al. (2023), we transition the diffusion
inference process to the wavelet low-frequency domain via wavelet transformation. In this
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Figure 2: The overall framework of Zero-LED. It proposes a Bidirectional optimization
approach combining a deep neural network and a diffusion model for training
without reference images. The initial optimization network provides the struc-
tural image and preliminary optimization of unknown degradation factors for the
diffusion process. The inference process further bridges the gap between degraded
and normal light and is optimized by an objective function in both directions.

section, we provide a detailed exposition of the underlying principles of the traditional condi-
tional diffusion model and the crux of our proposed methodology, namely, the bidirectional
optimization-based zero-reference diffusion model. Lastly, we introduce the Appearance
Reconstruction Module (ARM), grounded in text and frequency domains, as a meticulously
crafted component adept at guiding the reconstruction of image content structure and the
overarching enhancement of quality.

3.1. Conditional Diffusion Models

Diffusion models Ho et al. (2020); Song et al. (2020) to train Markov chains by variational
inference. It converts complex data into completely random data by adding noise and
gradually predicts the noise to recover the expected clean image. Consequently, it usually
includes the forward diffusion process and reverse inference process.

Forward Diffusion Process. The forward diffusion process primarily relies on incre-
mentally introducing Gaussian noise with a fixed variance {βt ∈ (0, I)}Tt=1 into the input
distribution x0 until the T time steps approximate purely noisy data. This process can be
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expressed as:

q(x1, · · · , xT |x0) =
T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) = N(xt;
√
1− βtxt−1, βtI), (2)

where xt and βt are the corrupted noise data and the predefined variance at time step t.
Respectively, N denotes a Gaussian distribution. Furthermore, each time step xt of the
forward diffusion process can be obtained directly by calculating the following equation,
computed from x0:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N(0, I), (3)

where αt = 1− βt, αt=
∏t

i=1 αi.

Reverse Inference Process. The reverse inference process aims to restore the original
data from the generated Gaussian noise. In contrast to the forward diffusion process, where
the data distribution at each time step t can be directly computed using a formula, the
reverse process relies exclusively on iteration to eliminate the predicted noise and restore
the data until the randomly sampled noise xT ∼ N(0, I) into the clean data x̂0. Formulated
as:

pθ(x̂0, · · · , x̂T−1|xT ) =
T∏
t=1

pθ(x̂t−1|x̂t), (4)

pθ(x̂t−1|x̂t) = N(x̂t−1;µθ(x̂t, t), σ
2
t I), (5)

where µθ is the diffusion model noise predictor, which is mainly optimized by the editing
and data synthesis functions and used as a way to learn the conditional denoising process,
as follows:

µθ =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)), (6)

where ϵθ is a function approximator intended to predict ϵ from xt.

3.2. Diffusion Models for Zero-reference Learning

Existing conditional diffusion models have achieved significant performance, but the sub-
stantial demands on computational resources and paired datasets hinder their practical
deployment in image restoration tasks. To address these challenges, we propose a zero-
reference learning approach for diffusion models, which includes the following components:

Initial Optimization Network. To consider the generative diversity of the diffusion
model, we use an initial optimization network as the a priori network for diffusion training.
Specifically, we do this by preprocessing the input image and passing it into the diffusion
process. Compared with the input image, the preprocessed structural image IR has clearer
image content. The generation of chaotic content can be constrained more precisely in
the inference process. In addition, the initial optimization network provides an initial
degradation domain calibration for the diffusion model and combines the objective function
to form an iterative optimization with the diffusion model.
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Based on a kind of consensus Ma et al. (2022); Guo et al. (2020) that there is a link
between illumination and low-light images, as well as the consideration of model complexity.
Therefore, we plan to decompose the low light image IL using a lightweight deep neural
network to obtain its illumination component IM ∈ RH×W×C . Additionally, based on the
Retinex theory (i.e. IL = IR ⊗ IM ), we can preliminarily obtain the structural image IR.

Diffusion-based Degradation Model. Inspired by Jiang et al. Jiang et al. (2023),
we utilize the wavelet transform to process the input image. The use of the discrete wavelet
transforms (DWT (·)) enables the extraction of the low-frequency space of the low-light
image, thereby reducing the computational resources required by the diffusion model. The
input image is decomposed into its low-frequency information (L) and high-frequency in-
formation (H) through the DWT (·). Furthermore, the high-frequency space (H) produced
by the wavelet transform includes three subbands in the vertical, horizontal, and diago-
nal directions. As a result, the low-frequency information that has been decomposed (L)
can be considered a version of the image that has been reduced by a quarter dimension,
significantly reducing the demand for computer resources.

In the real world, images are often subject to unknown degradation factors in complex,
dimly lit environments, and thus, low-light image enhancement is often seen as a task to
construct unknown degradation models. We further simulate complex degradation based
on the structured images IR provided by the initial optimization network and combined
with the generative power of the diffusion model. The diffusion model is also used to
generate fine-tun illumination masks to achieve significant enhancement effects. This can
be described as:

ÎE = IL ⊘D(IR, IL), (7)

where D is a diffusion-based degenerate model. Specifically, the inference process Eq. 4
pθ(x̂0, · · · , x̂T−1|xT ) will be carried out under the structural image IR and low light image
IL. Our goal is to learn the degradation parameters of the image from the denoising process
pθ(x̂0:T |(IR, IL)) while guaranteeing high fidelity of the sampling results to its generated
content. Additionally, we will optimize the noise predictor to fit the illumination component
ÎM and minimize the L2 distance between ÎM and IM to refine its degeneracy parameters
and optimize the initial optimization network. Therefore, the objective function of the
optimized diffusion model can be expressed as follows:

Ldiff = Et∼[1,T ]Ex0∼p(x0)Eϵt∼N(0,I) ∥ ϵt − ϵθ(xt, t) ∥2 + ||ÎM − IM ||2. (8)

In addition, smoothing loss with a spatially varying number of paradigms Ma et al.
(2022); Fan et al. (2018) is used to optimize the predicted illumination component, denoted
as:

Lsmooth =

K∑
k=1

∑
n∈K(k)

γk,n(∥ ÎM(k) − ÎM(n) ∥1 + ∥ IM(k) − IM(n) ∥1), (9)

Where K is the total number of pixels, k is the kth pixel. γk,n denotes the weight.
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Figure 3: Framework diagram of our proposed appearance reconstruction module. multi-
modal semantics focuses on guiding illumination enhancement and supervising
the input of image and text features. Frequency-domain guidance focuses on
supervising high-frequency details and constraining the generation of artifacts.

3.3. Appearance Reconstruction Module

Existing unsupervised methods hardly obtain significant detail features from low-light im-
ages for satisfactory restoration, while diffusion models are complex to perform effective
content structure recovery in unsupervised training scenarios. Therefore, as shown in Fig.
3, to achieve good reconstruction of the generated content and perceptually oriented en-
hancement, we propose a semantic and multi-frequency domain guided appearance recon-
struction module based on semantic and multi-frequency domain guidance to obtain efficient
appearance reconstruction.

Multi-modal Semantic Guidance. Recent studies have shown Liang et al. (2023);
Yang et al. (2023) that multi-modal learning can lead to the effective enhancement of low-
light images compared to a single modality. Therefore, we use a pre-trained CLIP model to
acquire prior knowledge. Precisely, we extract the latent codes of the cue pairs by feeding
predefined cue pairs containing positive prompts Tp and negative prompts Tn (as shown
in Fig. 3) to the text encoder (Φtext). Correspondingly, the latent codes of the prediction
result ÎE and the structure image IR are extracted by the image encoder (Φimage). We then
measure the difference between image vectors and text vectors by computing the similarity
loss between them in the CLIP latent space:
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Lclip =
∑

I∈{IE ,ÎE}

ecos(Φimage(I),Φtext(Tn))∑
T∈{Tp,Tn} e

cos(Φimage(I),Φtext(T ))
. (10)

In addition, we present the hyper-parameters υ as the probability value of normal light
to incentivize the prediction results further to achieve good illumination. Semantically
consistent output is encouraged by minimizing the distance between the positive prompts
probability and the hyper-parameters υ:

Lprob =∥ cos(Φimage(ÎE),Φtext(Tn))− υ||1. (11)

Frequency Domain Guidance. In this study, we combine the advantages of spatial
information capture in multiple frequency domains. The spectrum is utilized to help dif-
fusion models perform appearance reconstruction during unsupervised training, leading to
metric-friendly and perception-oriented enhancements.

We first perform the Laplace transform F(·) on the structural image IR to supervise the
sampling results from the edge level. Simultaneously, we implemented constraints on the
content of the image generation using SSIM content loss Wang et al. (2004) with an initial
optimization network:

Lcontent = (1− SSIM(F(ÎE),F(IR))) + (1− SSIM(ÎE , IR)). (12)

In addition, we combine wavelet transform and Fourier transform to capture the deep
content features of the image and reconstruct the image using spectrum. Compared to
the wavelet low-frequency domain, the wavelet high-frequency domain contains only the
structural details of the image and is not prone to content loss. Therefore, we perform a
discrete Fourier transform DFT (·) in the wavelet high-frequency domain of the predicted
image ÎE and the structural image IR to obtain their corresponding amplitude and phase
(amp, pha):

ampE , phaE = DFT (DWT (ÎE)), (13)

ampR, phaR = DFT (DWT (IR)). (14)

To encourage the recovery results to be feature-aligned at a fine-grained level and cross-
validated with the optimization network. For this purpose, we use L1 loss to minimize the
information differences between spectrograms:

Lspectral = ϑ1 ∥ ampE − ampR ∥1 + ϑ2 ∥ phaE − phaR ∥1, (15)

where ϑ1 and ϑ2 are weighting parameters for amplitude and phase losses. Thus, for multi-
modal semantics and frequency domain-guided appearance reconstruction, the total loss
can be summarised as:

Lrec = Lcontent + Lspectral +ϖ(Lprob + Lclip), (16)

where ϖ is the weight of the semantic guidance loss.



He Xue� Ning Song

3.4. Network Training

Besides the objective functions used to optimise the diffusion model and appearance recon-
struction, we also utilise two quality-enhancing losses and the MSE to improve the quality
of the final output and extend the network learning capabilities.

Color Constancy Loss. Based on the grey world color constancy hypothesis Buchs-
baum (1980). We designed a color constancy loss to correct for potential color bias in the
enhanced image and also established a relationship between the three adjustment channels:

Lcol =
∑

∀(m,n)∈ϱ

(Cm − Cn)
2, ϱ = {(R,G), (R,B), (G,B)}, (17)

where Cm is the average intensity value of m channel in the recovered image, (m,n) repre-
sents a pair of channels.

Spatial Consistency Loss. The loss of spatial coherence constraints the differences
in neighbouring regions between the input image and the enhanced image:

Lspa =
1

N

N∑
i=1

∑
j∈Θ(i)

(∥ Ei − Ej ∥1 − ∥ Ii − Ij ∥1)2, (18)

where N is the number of local regions and Θ(i) is the four neighbouring regions (top,
bottom, left, and right) centred on region i. We denote E and I as the average intensity
values of the local regions in the enhanced version and the low-light image, respectively.

The total loss Ltotal is expressed by combing the diffusion objective function, the ap-
pearance reconstruction loss, and the Quality Enhancement Losses as:

Ltotal = Ldiff + ωLsmooth + Lrec + Lcol + Lspa, (19)

where ω is the weight of the illumination smoothing loss.

4. Experiments

4.1. Experimental Settings

Implementation Details. We implemented our method using Pytorch on two NVIDIA
RTX 3090 GPUs. We set the total number of training iterations to 5×104, using the Adam
optimizer with the initial learning rate set to 1× 10−4. The batch size and patch size were
set to 4 and 256× 256, respectively.

Benchmark Datasets. Our network is trained and evaluated to validate the effective-
ness of our method on the LSRW Hai et al. (2023) dataset, in which we randomly select
1000 low-light-normal-light image pairs for training and 50 image pairs for evaluation. Most
low-light images were collected realistically by varying the exposure time and ISO and fixing
other camera parameters. In addition, we extend several real-world benchmark datasets to
evaluate the performance of our proposed network to increase persuasiveness. Examples in-
clude LOLv1 Wei et al. (2018), LIME Guo et al. (2016) and Backlit300 Liang et al. (2023).
The dataset of LOLv1 contains 500 real-world low/normal light image pairs, of which 485
image pairs are used for training and 15 image pairs are used for evaluation. Also, to
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LOLv1 LSRW LIME Backlit300
Methods Reference

PSNR↑ SSIM↑ NIQE↓ LOE↓ PSNR↑ SSIM↑ NIQE↓ LOE↓ NIQE↓ LOE↓ NIQE↓ LOE↓

Zero-DCE CVPR’20 14.861 0.559 11.985 215.816 15.801 0.446 11.832 247.291 11.942 192.089 16.026 165.325

Zero-DCE++ TPAMI’21 14.682 0.472 10.646 277.736 15.791 0.457 11.341 241.348 11.376 296.654 14.693 285.720

Enlightengan TIP’21 17.606 0.653 9.996 365.561 17.136 0.460 11.937 385.135 14.585 421.018 15.058 385.796

RUAS CVPR’21 16.405 0.499 10.725 125.351 14.271 0.411 11.081 198.930 12.413 288.730 14.486 598.305

SCI CVPR’22 14.784 0.521 11.827 101.113 15.241 0.419 10.774 234.605 12.379 212.621 13.376 298.768

CLIP-Lit ICCV’23 12.394 0.493 12.187 355.441 13.483 0.405 9.144 289.583 12.239 192.001 16.633 195.875

GDP CVPR’23 15.896 0.542 10.273 120.278 12.887 0.362 9.178 75.884 13.138 78.929 13.693 148.929

Ours - 16.632 0.566 8.355 148.563 15.824 0.461 8.381 175.355 10.843 146.663 11.993 351.877

Table 1: Quantitative evaluation of different unsupervised learning methods on four bench-
mark datasets. The best and second performance are marked in red and blue,
respectively.

Input OursGDPSCI CLIP-Lit

EnlightenganZero-DCE RUASZero-DCE++

Figure 4: Visual comparison of low-light enhancement methods on the LSRW dataset.

demonstrate the generalization to real-world degraded scenes, we evaluate the generaliza-
tion ability of the proposed method in this paper by the benchmark dataset LIME and
by selecting 30 degraded images in the Backlit300 dataset. Note that during the training
process, we only use low-light images from the paired dataset and do not use normal-light
images to demonstrate the superiority of our zero-reference method.

Metrics. We propose to evaluate the performance of different algorithms using two full-
reference distortion metrics, PNSR and SSIM Wang et al. (2004), and two non-reference
metrics, NIQE Mittal et al. (2012) and LOE Wang et al. (2013). Higher PSNR or SSIM
implies more realistic restoration results, while lower NIQE or LOE indicates higher quality
details, luminance, and hue.

4.2. Comparison with the State-of-the-Art

Comparison Methods. To verify the effectiveness of the method proposed in this paper,
we compare it with the state-of-the-art unsupervised learning methods in recent years, i.e.,
Zero-DCE Guo et al. (2020), Zero-DCE++ Li et al. (2021a), RUAS Liu et al. (2021),
Enlightengan Jiang et al. (2021), SCI Ma et al. (2022), CLIP-Lit Liang et al. (2023) and
GDP Fei et al. (2023).
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GDP OursCLIP-LitSCI

EnlightenganZero-DCE Zero-DCE++Input

Figure 5: Visual comparison of low-light enhancement methods on the LOLv1 dataset.

Quantitative Comparison. We obtained quantitative results for the other methods
using official pre-trained models and running their respective public codes. As shown in
Table. 1, our method achieves quantitative performance close to the state-of-the-art on
several metrics compared to all compared methods. Among them, we obtain the second-best
results in the LOLv1 dataset regarding the full-reference distortion metric PSNR/SSIM. In
the LSRW dataset, we obtained the second-best results for the PSNR metric. In addition,
for the no-reference metrics NIQE/LOE, our method obtains the lowest NIQE scores on
all datasets and the second-best LOE metric evaluation results on both datasets. Our
method can better balance the quantitative results of images. This fully demonstrates the
superiority of our method and its better generalization ability in real-world scenarios.

Qualitative Comparison. For a more intuitive comparison, we report the visual
results of all methods in Fig. 4. By visual comparison, our methods achieve visually
pleasing results with improved color and brightness. In contrast, previous state-of-the-
art unsupervised learning methods produce artifacts and unnatural tones by producing
excessive smoothing or struggling to adapt effectively to degradation factors due to a lack of
practical constraints and guidance. For example, Enlightengan Jiang et al. (2021) produces
artifacts, and CLIP-Lit Liang et al. (2023) produces excessive color effects. In particular,
Diffusion prior-based GDP Fei et al. (2023) hardly enhances low-light images extensively.
Furthermore, we visually compare the LOLv1 test set in Fig. 5. In contrast, other methods
fail to recover enough brightness (SCI Ma et al. (2022)) or generate too much noise (GDP
Fei et al. (2023)). Our approach provides more substantial constraints, including visually
orientated guidance from prompts, thereby producing a more natural visual perception.

4.3. Ablation Studys

The effectiveness of bidirectional optimization training. To validate the importance
of the initial optimization network, we consider two training approaches for ablation studies.
We used the LOLv1 dataset for all ablation experiments. ”#1” indicates that the initial
optimization network was removed from the overall architecture and trained by directly
inputting low-light images for diffusion enhancement. Meanwhile, we used the full Zero-
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Figure 6: Qualitative results from ablation studies. Networks with complete structures
perform best.

index PSNR↑ SSIM↑ NIQE↓ LOE↓
#1 12.023 0.413 12.579 132.845

ARM 1 - - - -

ARM 2 13.290 0.498 11.395 141.526

ARM 3 14.559 0.512 10.613 137.836

Zero-LED 16.432 0.562 8.355 148.563

Table 2: Quantitative evaluation of the enhancement results obtained from different set-
tings. Results using the complete settings are underlined.

LED for two-way optimization training. Firstly, as shown in Table. 2, we evaluate the results
of #1, whose enhancement effect is very different from the final results, which illustrates
the importance of the initial supervised network. Moreover, as shown in Fig. 6, we can
intuitively conclude that Zero-LED produces clearer results and better perceptual effects
than ”#1”. This fully validates the iterative optimization effect of our two-way optimization
training method.

The effectiveness of appearance reconstruction based on multi-modal seman-
tics and frequency domain space. We divided the appearance reconstruction module
into three versions by incrementally adding module sections. In the ARM1 version, we
remove the appearance reconstruction module and use only image-level supervision. In
the ARM2 version, we reconstruct the image using a Fourier transform using the wavelet
high-frequency domain. In the ARM3 version, we reconstruct the image using the default
frequency domain space of the paper. Finally, we used the full Zero-LED, added multimodal
semantics, and combined it with the frequency domain space to restore the appearance of
the image. As shown in Figure 6, in the ARM1 version, we were unable to reconstruct the
image efficiently. With the addition of the frequency domain space, the ARM2 and ARM3

versions restore objects in dark areas to a large extent, but the enhanced brightness and
colors are still unrealistic. On the other hand, Zero-LED results in more realistic brightness
and the best-perceived effect. This demonstrates the importance of the frequency domain
space for image content reconstruction and the effectiveness of multimodal semantics in
guiding image appearance. In addition, as shown in Table 2, ARM2 shows a significant
decrease in metrics evaluation compared to ARM3, but the best performing quantitative
result is still Zero-LED.We attribute this to the fact that the wavelet high-frequency do-
main leads to more content loss when performing the Fourier Transform and the text-guided
appearance being visually friendly for Zero-LED.
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5. Conclusion

We firstly propose a bidirectional zero-reference training approach via an initial optimization
network and successfully implement a zero-reference trained diffusion model called Zero-
LED. First, for the input degraded images, we perform preliminary fitting of the degradation
parameters via an initial optimization network and acquire the structural images. We
obtain a better lighting estimation with the calibration based on the diffusion model. In
addition, we propose a text- and frequency-domain-based appearance reconstruction module
for the output restored image, which provides perceptually oriented restoration guidance
using a pre-trained visual language model and multiple frequency-domain spaces to guide
the restoration of structural content jointly. Experimental results on publicly available
benchmark tests show that our approach outperforms competitors in the comprehensive
evaluation while providing better stability and generalization.

Acknowledgments

This work was supported in part by the Chongqing Postgraduate Research and Innovation
Project Funding (Grant No. CYS240680), Science and Technology Research Program of
Chongqing Municipal Education Commission (Grant No. KJQN202401106).

References

Gershon Buchsbaum. A spatial processor model for object colour perception. Journal of
the Franklin institute, 310(1):1–26, 1980.

Yu-Sheng Chen, Yu-Ching Wang, Man-Hsin Kao, and Yung-Yu Chuang. Deep photo en-
hancer: Unpaired learning for image enhancement from photographs with gans. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 6306–
6314, 2018.

Qingnan Fan, Jiaolong Yang, David Wipf, Baoquan Chen, and Xin Tong. Image smoothing
via unsupervised learning. ACM Transactions on Graphics (TOG), 37(6):1–14, 2018.

Ben Fei, Zhaoyang Lyu, Liang Pan, Junzhe Zhang, Weidong Yang, Tianyue Luo, Bo Zhang,
and Bo Dai. Generative diffusion prior for unified image restoration and enhancement. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9935–9946, 2023.

Xueyang Fu, Delu Zeng, Yue Huang, Xiao-Ping Zhang, and Xinghao Ding. A weighted
variational model for simultaneous reflectance and illumination estimation. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2782–2790,
2016.

Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy, Junhui Hou, Sam Kwong, and
Runmin Cong. Zero-reference deep curve estimation for low-light image enhancement.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 1780–1789, 2020.



Short Title

Xiaojie Guo, Yu Li, and Haibin Ling. Lime: Low-light image enhancement via illumination
map estimation. IEEE Transactions on image processing, 26(2):982–993, 2016.

Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu Zou, Fang Lin, and Songchen Han.
R2rnet: Low-light image enhancement via real-low to real-normal network. Journal of
Visual Communication and Image Representation, 90:103712, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-
vances in neural information processing systems, 33:6840–6851, 2020.

Hai Jiang, Ao Luo, Haoqiang Fan, Songchen Han, and Shuaicheng Liu. Low-light image en-
hancement with wavelet-based diffusion models. ACM Transactions on Graphics (TOG),
42(6):1–14, 2023.

Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang,
Pan Zhou, and Zhangyang Wang. Enlightengan: Deep light enhancement without paired
supervision. IEEE transactions on image processing, 30:2340–2349, 2021.

Edwin H Land and John J McCann. Lightness and retinex theory. Josa, 61(1):1–11, 1971.

Chongyi Li, Chunle Guo, and Chen Change Loy. Learning to enhance low-light image
via zero-reference deep curve estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(8):4225–4238, 2021a.

Guofa Li, Yifan Yang, Xingda Qu, Dongpu Cao, and Keqiang Li. A deep learning based
image enhancement approach for autonomous driving at night. Knowledge-Based Systems,
213:106617, 2021b.

Jinxiu Liang, Jingwen Wang, Yuhui Quan, Tianyi Chen, Jiaying Liu, Haibin Ling, and
Yong Xu. Recurrent exposure generation for low-light face detection. IEEE Transactions
on Multimedia, 24:1609–1621, 2021.

Zhexin Liang, Chongyi Li, Shangchen Zhou, Ruicheng Feng, and Chen Change Loy. Itera-
tive prompt learning for unsupervised backlit image enhancement. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 8094–8103, 2023.

Risheng Liu, Long Ma, Jiaao Zhang, Xin Fan, and Zhongxuan Luo. Retinex-inspired un-
rolling with cooperative prior architecture search for low-light image enhancement. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10561–10570, 2021.

Long Ma, Tengyu Ma, Risheng Liu, Xin Fan, and Zhongxuan Luo. Toward fast, flexible,
and robust low-light image enhancement. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5637–5646, 2022.

Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image
quality analyzer. IEEE Signal processing letters, 20(3):209–212, 2012.
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