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Abstract

Imaging-based spatial transcriptomics (ST) provides
single-transcript-level spatial resolution for hundreds of
genes, unlike sequencing-based ST technologies whose res-
olution is limited to physical capture regions (spots) on
slides. Existing methods to identify patterns of interest in
imaging-based ST data are built as extensions of single cell
analysis methods, mostly ignoring valuable spatial infor-
mation encoded in the raw imaging data. Here we present
a discrete representation learning approach for modeling
spatial gene expression patterns in ST datasets. By employ-
ing raw coordinates of detected transcripts and positional
encoding of cell centroids as inputs, we learn discrete repre-
sentations using Vector Quantized-Variational Autoencoder
(VQ-VAE) to extract multi-scale structures from fluores-
cence in situ hybridization (FISH) based ST datasets. We
demonstrate the usefulness of discrete representations in
terms of the quality of embedding of ST data as well as im-
proved performance on downstream tasks for extracting bi-
ologically meaningful cellular neighborhoods and spatially
variable genes.

1. Introduction

Spatial transcriptomics (ST) technologies have rapidly

progressed in recent years, emerging as powerful next gen-

eration tools for biomedical research. ST enables the profil-

ing of gene expression patterns within complex tissues, al-

lowing the identification of cell types and expression states

within a spatial context. As cells encounter both direct

signals from neighboring cells and soluble signals within

their local microenvironment, this spatial context is criti-

Figure 1. Overview of the proposed discrete representation learn-

ing approach for analyzing imaging-based ST data.

cal for deeper insights into cell identity and function and

for unraveling intricate cell-cell interactions in the native

tissue context. In particular, FISH-based ST methods such

as Multiplexed Error-robust Fluorescence in situ Hybridiza-

tion (MERFISH) [1], sequential Fluorescence In Situ Hy-

bridization (seqFISH) [2] and 10x Xenium [3] allow simul-

taneous profiling of several hundred genes with high spatial

resolution. By contrast, sequencing-based ST methods pro-

vide a transcriptome-wide readout but much more limited

spatial resolution, as transcripts are resolved only to the co-

ordinates of fixed capture regions (“spots”) [4, 5, 6]. More-

over, compared to single cell RNA sequencing (scRNA-

seq), FISH-based ST techniques can provide a more com-

plete representation of cell types that are fragile and rare,

which may be lost in conventional tissue dissociation proto-

cols. The rapid increase in the collection of ST data has led

to novel computational challenges in exploiting this data for

biological discovery. As ST and scRNA-seq technologies

yield distinct data distributions and biases, existing methods

for analyzing scRNA-seq data are not suitable for process-

ing ST data.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Illustration of input representation for the model. We start with the detected transcripts from imaging-based ST sample across T
target channels and concatenate the cell centroid coordinates and positional embeddings of cell centroid coordinates detected from DAPI

fluorescence images. Here γ(p) represents positional encoding of cell centroid coordinate p, and L represents number of frequencies used

for positional encoding.

2. Related work

Several computational frameworks have been developed

to preprocess and derive summary statistics from ST sam-

ples. Many of these approaches either disregard spatial

information altogether or only consider the local spatial

context, without the ability to capture broader, long-range

spatial information. While dimensionality reduction meth-

ods like PCA, t-SNE, and UMAP can be used to visualize

and explore high-dimensional spatial gene expression data,

there is a need to develop methods that extract information

from the spatial distribution of gene expression to uncover

tissue- and cell-type-specific gene expression patterns. Sev-

eral methods have been proposed for this purpose, for tasks

such as integration of ST data with scRNA-seq data and

identification of spatially variable genes.

Clustering methods are commonly used to identify dis-

tinct cellular phenotypes within scRNA-seq and ST data,

but they cannot incorporate spatial information captured in

ST data. Statistical measures like spatial autocorrelation,

Moran’s I, and Ripley’s statistics have been extensively ex-

plored in the literature but found to fall short on ST data, as

they require unsuitable assumptions to make comparisons

feasible [7, 8, 9]. As the data distribution of scRNA-seq

data is overdispersed and contains many zero values due to

dropout, it is usually approximated with a zero-inflated neg-

ative binomial distribution. Variants on autoencoders [10]

such as zero-inflated negative binomial autoencoders [11]

have also been introduced to account for the heteroscedastic

nature of the transcriptomics data [12, 13]. These methods

have been extended to ST data, which is typically modeled

with a Poisson distribution [14, 15].

Graph neural networks (GNNs) [16] have also been used

to model and analyze the complex interactions and depen-

dencies between spatially proximal cells [17, 18]. First,

cell-cell neighbor graphs were built on spatial positions by

connecting adjacent cells at a given spatial location when

the Euclidean distance of neighboring cells is smaller than

10-30 μm, resulting in each cell connected to 4-8 neighbor-

ing cells depending on tissue type, generating the adjacency

matrix. GNNs were then applied on this cell-cell graph us-

ing a graph autoencoder together with a standard autoen-

coder to refine the spatial graph structures [18, 17, 19].

Non-negative Matrix Factorization (NMF) is another pop-

ular approach to uncover underlying gene modules associ-

ated within transcriptomics data and extended to spatial data

in non-negative spatial factorization [20] using a Matérn

kernel. SpatialDE uses Gaussian processes [21, 22] to iden-

tify spatially-variable genes.

In addition, several methods have been proposed to ex-

tract neighborhoods of interest in ST data. Similar to cell-

cell graphs described above, these methods define neighbor-

hood of a cell as the k nearest neighbors of that cell and gen-

erate a gene-gene similarity matrix against mean expression

of the reference data. These methods are limited to model a

localized spatial context, as they assume that cells are only
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Dataset (MERFISH) Cells FOVs Targets
Oncology [23] 8,696,580 207,091 500

Brain [24] 734,705 12,547 483

Hepatocellular [25] 1,671,375 6,700 400

Table 1. Dataset statistics.

affected by a fixed set of k neighbors, and have proven to

be ineffective even compared to simpler baselines without

these assumptions [18].

The core limitation of these approaches is their heavy

reliance on local connections and neighborhood informa-

tion, potentially missing broader spatial patterns and long-

range interactions. Due to the large computational work-

load required to process imaging-based ST data, often the

inputs are heavily downsampled, leading to oversmooth-

ing of gene expression profiles and blurring of finer-scale

spatial variations. Moreover, some methods require prede-

fined constraints – such as a fixed neighborhood size, prior

knowledge of histological structures, or the need for a refer-

ence annotated spatial dataset [17] – which may limit their

broader applicability. We focused on overcoming these lim-

itations and developing a robust and scalable approach for

capturing both local and global spatial structures while ac-

counting for the unique characteristics of FISH-based ST

data.

3. Method
The contributions of our proposed method can be sum-

marized as follows:

• Augmenting the input representation for imaging-

based ST data by utilizing the raw spatial coordinates

of detected transcripts and positional encoding of cell

centroids as model inputs, rather than operating on ag-

gregated cell-by-gene matrices.

• Designing a novel hierarchical encoder tailored for ST

data to capture multi-scale spatial structures.

• Leveraging discrete representation learning for ex-

tracting biologically meaningful, spatially-informed

neighborhoods.

As discrete representation learning has not been previ-

ously explored for modeling ST data (to the best of our

knowledge), we introduced novel adaptations to VQ-VAE

to better capture features of FISH-based ST data. The fol-

lowing sections elaborate these contributions in further de-

tail.

3.1. Input

The primary focus of our proposed method is for anal-

ysis of high-resolution, high-throughput cellular-level ST

Figure 3. Proposed hierarchical encoder for extracting multi-scale

spatial features in ST data. Here, D denotes dimension of code-

book embedding, C is number of input channels, I represents

height and width of FOV which is set to 256 for MERFISH

datasets.

datasets obtained through FISH-based techniques. In FISH-

based ST data, pixel values are binary (0 or 1) at the native

resolution, denoting the absence or presence of a detected

transcript, respectively. Given the high variance nature of

ST data, where number of detected gene targets can range

from 400 to 10, 000 with sparse single-pixel transcripts for

each gene target, many existing methods struggle to effec-

tively model this data. In particular, the level of sparsity

is notable compared to natural images: in any channel rep-

resenting expression for a given target gene, typically less

than one percent of pixels contain detected transcripts.

Current methods also struggle to handle the large amount

of raw imaging data (approximately 3 TB of gigapixel im-

ages per sample) with seven z-planes per field of view, thou-

sands of fields of view per image, and hundreds of thou-

sands of cells. So, they often use summary statistics like

cell-by-gene matrices as input to the models. In contrast,

we propose to directly use raw coordinates of detected tran-

scripts as input to the model.

We built our model on three diverse MERFISH-based

datasets spanning healthy and disease (cancer) tissues: a

healthy mouse brain dataset [24], a human oncology dataset

containing tissues from 8 distinct cancer types [23] and a

hepatocellular carcinoma dataset from patients treated with

PD-1 checkpoint blockade [25] (Table 1). These datasets

vary in terms of their scales and tissue origins. We first

preprocessed the data using the MERLIN image analysis

pipeline [29]. MERLIN aligns image stacks obtained from
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Method Params MSE SSIM Scalability
VAE [26] 32M 0.040 ± 0.01 0.36 ± 0.13 1e6

VQ-VAE [27] 3M 0.015 ± 0.003 0.48 ± 0.27 1e7

gimVI [28] 20M 0.160 ± 0.12 0.30 ± 0.02 1e5

NSF [20] - 0.310 ± 0.02 0.45 ± 0.11 1e4

Ours 19M 0.003 ± 0.001 0.824 ± 0.04 1e9

Table 2. Test set reconstruction metrics. MSE: lower is better. SSIM: higher is better. Scalability (defined as the maximum number of cells

in an input sample that a method can process without exceeding compute requirements of greater than 2 TB of memory or 168 hours of

GPU compute per sample): higher is better.

different MERFISH rounds by maximizing their cross-

correlation with fiducial bead images and removes back-

ground noise with a high-pass filter using blank barcodes

as control for non-specific binding. RNA spots are then de-

tected in MERFISH raw data with sub-pixel accuracy using

Radial Symmetry-FISH [30] and passed through MERLIN

for bit-calling, i.e. decoding a bit as binary 0 or 1 based on

fluorescence detection across multiple rounds. The pipeline

is run for each imaging field-of-view and then tiled over the

entire sample imaging area and z-slices to output the coor-

dinates of detected transcripts.

To approximately assign transcripts to cells, cell seg-

mentation is typically performed using cell segmentation

methods such as Cellpose or Baysor [31, 32]. However,

certain irregularly shaped cells, for example neurons and

macrophages in the brain, will be particularly challenging

to segment by using DAPI nuclear fluorescence alone due

to their varying soma size and branch architecture. While

some methods like MERFISH offer the possibility of pro-

tein costaining with cell boundary markers for improved

cell segmentation, others like 10x Xenium [3] do not sup-

port this feature. So, it remains a challenging problem to

accurately assign transcripts to cells.

Inspired by previous work [33] that has reported that in-

formation from RNA transcript positions can be leveraged

to improve transcript assignment to cells, we chose to use

raw detected transcript coordinates as input for our model.

Each field of view in the ST data has a native pixel reso-

lution of 100 nm, height and width of I pixels (256 pixels

in our dataset), with T channels, each channel represent-

ing gene expression for a target gene. We denote the input

ST sample as X ∈ R
W×H×T , where W and H represent

the width and height of tissue capture region respectively

(W and H can range from in order of 100, 000 − 150, 000
pixels in our dataset). We report the training and test per-

formance (in the Results section) on the MERFISH human

oncology dataset [23], which has 16 samples and 207,091

field of views, containing a total of 8,696,580 cells and

4,129,432,299 detected transcripts. We use S ∈ R
N×2

to denote the two-dimensional centroid coordinates of each

detected cell nuclei in each sample.

To encode spatial relationships between cells, two prop-

erties are desirable: (1) distance awareness, to encode pair-

wise distance between two neighboring cells; and (2) global

effectiveness, to encode the relationships between distant

spatial structures [34]. We leverage positional encoding

(PE) of cell centroid coordinates to encode these properties

and enable the model to effectively learn high frequency

variation in the ST data. As transformers do not implicity

model spatial relationships, positional encoding (PE) was

originally proposed [35] for language modeling and later

extended for computer vision tasks to embed coordinates

of absolute pixel or patch locations in various vision trans-

former models [36, 37]. Even though convolutional neu-

ral networks (CNNs) can efficiently capture spatial infor-

mation, each field of view in ST data only contains a few

hundred cell centroid coordinates corresponding to detected

cells. Inspired by NeRF [38], encoding these cell centroid

coordinates using positional encoding proved to be critical

in embedding the cell-level features into the model.

When using the absolute location coordinates, PE can

enable the model to learn the long-range relevance of global

relationships between cells, even if they are very far apart.

However, this can be a double-edged property as it can

weaken the inductive bias of locality, which is often used as

a prior to model local cell-cell interactions. Therefore, we

use relative positional encodings, reflecting the fact that em-

bedding pair-wise relationships are better suited for captur-

ing cell-cell relationships. Due to the absence of cell bound-

ary staining in modalities like 10x Xenium and the sub-

optimal cell segmentation performance of current methods,

we directly use centroid coordinates of detected cell nuclei

rather than the coordinates of cell segmentation boundaries.

Our input representation is presented in Fig. 2.

For every cell Si, we positionally encode the scalar cen-

troid coordinates (x, y) with a sequence of sinusoids with

exponentially increasing frequencies [38] as follows:

γ(p) = (sin(20πp), cos(20πp), . . . ,

sin(2L−1πp), cos(2L−1πp))
(1)
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γ(Si(x, y)) = (sin(20πx), sin(20πy), cos(20πx),

cos(20πy), . . . , sin(2L−1πx),

sin(2L−1πy), cos(2L−1πx), cos(2L−1πy))

(2)

Here L denotes number of frequencies, which we set to 6
for our setting. We then concatenate the relative position

coordinates to this embedding resulting in an input repre-

sentation of shape I × I × C, where I represents height

and width of FOV which is set to 256 for our data and

C = (T + 2L + 2) represents the total number of input

channels.

Given this input set-up, our objective is to identify neigh-

borhoods of interest and genes varying within these neigh-

borhoods.

3.2. Model architecture

The overview of our model is presented in Fig. 1.

Our model is based on the Vector Quantized Variational

Autoencoder (VQ-VAE) architecture [27] and its variants

[39, 40, 34], which have proven to be successful in captur-

ing complex spatial patterns in imaging data and compress-

ing this information effectively [41]. Like a standard VAE

[26], VQ-VAE is an encoder-decoder architecture. It con-

sists of an encoder that maps an input sample x to a contin-

uous latent space ze(x), producing continuous latent repre-

sentations. Unlike the VAE, these latent representations are

subsequently fed into a quantizer q(x) to produce a grid of

high-dimensional vectors. The quantizer discretizes these

continuous representations with a nearest neighbor search

by finding the closest embedding vector from a codebook

e ∈ R
K×D, where K is the size of codebook and D is

the dimensionality of each discrete latent embedding vec-

tor. The output of encoder ze(x) is mapped to a discrete

latent embedding in the codebook as follows:

zq(x) = ek, where k = argminj ||ze(x)− ej ||2 (3)

The size of codebook, i.e., the number of codebook encod-

ings is a hyperparameter and codebook embeddings are also

updated during training.

This quantization process allows for the efficient encod-

ing of data as discrete codes and reduces the model’s capac-

ity to memorize specific data points. As the gradients used

during the forward pass are continuous and the quantization

operation is non-differentiable during the backward pass, a

straight-through estimator is used to flow through the quan-

tization step during backpropagation. The discrete codes

produced by the quantizer are then passed to the decoder,

which converts the resultant grid of encodings back into an

image. The learned embeddings can be further used with a

subsequent model for downstream tasks.

To adapt this model to ST data, we made the following

architectural adaptations to the VQ-VAE framework. As

Figure 4. Attribution results. Highlighted genes indicate codebook

mappings of cancer-associated genes and macrophage-associated

genes respectively, in breast cancer sample from the MERFISH

oncology dataset.

individual pixels correspond to detected transcripts in ST

data, we observed that often discrete pixels in the input have

meaningful biological signal. However, the majority of em-

bedding methods that are currently used for processing ST

data are originally designed for photorealism and optimized

for reconstruction, which in itself is not the end goal in bi-

ology. This results in removal of many transcripts as noise

during the reconstruction process, leading to oversmoothing

and incorrectly blurred outputs.

We propose to use VQ-VAE, as it can provide a direct

correspondence between individual encodings and discrete

blocks of pixels in the input image. To address the over-

smoothing issue, we first modify the model by utilizing 1×1
convolutional layers. In conventional use of convolutional

layers, a common practice is to halve the input size and dou-

ble the number of filters at each convolutional step. In con-

trast, our method employs 1 × 1 convolutions with a stride

of 1, which are traditionally used to decrease model com-

plexity. This choice enables the model to initially process

the input with fine granularity, considering each detected

transcript individually.

Given that the quantization procedure for embedding

vectors necessitates a nearest neighbor lookup, an architec-

tural constraint exists such that the dimensionality of the

encoder output channels must equal the embedding size D
of the learned representations. Since the encoder is con-

strained to produce an output dimensionality of D, the final

convolutional layer must also contain D filters. Therefore,

we utilize a 1×1 convolutional layer with a stride of 1 to re-

duce the number of filters to D while preserving the vector’s

remaining shape. This also helps to stabilize the training, as

it has been also previously been reported that reducing the

receptive field size for the convolutions around the relax-

ation in the VQ-VAE led to it generalizing better to the true

evidence lower bound [41]. Thus, a single encoding block

consists of 1 × 1 convolutions as first and last layers and

3850



Figure 5. Spatial neighborhoods in the breast cancer sample from

MERFISH oncology dataset mapped to distinct codebook vectors

in the model (scale, 600 μm). By comparing frequency statistics

of mapped encodings, we obtain the ranking of highly expressed

genes within the neighborhoods. The neighborhoods in the top

panel are rich in genes related to macrophage infiltration, while

the neighborhoods in the bottom panel are rich in fibrogenic genes.

The morphological similarity of the neighborhoods is notable here,

highlighting that the model is able to learn spatial structures cor-

responding to these different neighborhoods in the tissue and that

these can be extracted by inspecting the codebook vectors.

M scaling convolutional blocks in between. Here, each of

M convolutional blocks consists of 2×2 convolutional lay-

ers with stride of 2, a batch normalization layer, and ReLU

activation. Here, hyperparameter M defines the correspon-

dence between pixels and codebook encodings as I/2M .

In ST data, biologically meaningful spatial patterns are

observed at multiple scales: at the lowest scale, we can

observe the intracellular distribution of gene expression,

while cellular level expression can be seen at a progres-

sively higher scale and neighborhood-level information is

captured at the highest scale [42, 43, 44]. To encode this

information into the model, we designed a hierarchical en-

coder with three different blocks with varying number of

scaling convolutional blocks M = 0, 1, 3 to model spatial

patterns at progressively higher resolutions as shown in Fig.

3. Using only 1 × 1 convolutions results in more detail,

which we observed is ideal for mapping spatially-variable

genes and subcellular structures.

Through empirical evaluation, we determined that the

model benefits from additional spatial information capac-

ity during encoding. The decoding process is relatively

straightforward, as the contextual information for each cell

is encoded within the latent space during the encoding

phase. This motivated an asymmetric encoder-decoder de-

sign for our model. The decoder starts with a 1 × 1 con-

volutional layer to increase the number of filters from dis-

cretized encoder output, followed by M transposed convo-

lutional blocks, 1 × 1 convolution with transposed convo-

lutional layer, and a sigmoid activation to reconstruct the

image back to I × I × C.

3.3. Training

To learn structure awareness, i.e. to encode the structure

of the input sample such as density and homogeneity within

microenvironment, we additionally use multi-scale spectral

similarity index (MSSIM) [45, 46] loss in our model, which

is defined as follows:

SSIM(x, x̂) =
(2μxμx̂ + c1)(2σxx̂ + c2)

(μ2
x + μ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
(4)

where μx, μx̂, σx, σx̂ and σxx̂ are the local means, standard

deviations, and cross covariance for input image x and re-

construction x̂. Here c1, c2 are regularization constants used

to avoid instability for image regions where the local mean

or standard deviation is close to zero, set to 0.01 and 0.03
respectively.

The multi-scale SSIM is then defined as:

MSSIM(x, x̂) = lR(x, x̂)
αR

R∏

j=1

csj(x, x̂)
βjssj(x, x̂)

γj

(5)

where lR(x, x̂) is the luminance comparison; csj(x, x̂) and

ssj(x, x̂) are the contrast and structure comparison at scale

j. Here, the exponents αR, βj and γj adjust the relative im-

portance of luminance, contrast and structural components

respectively in a scale-specific manner.

The luminance comparison is given by:

l(x, x̂) =
2μxx̂ + c1

μ2
x + μ2

x̂ + c1
(6)

The contrast comparison is given by:

cs(x, x̂) =
2σxx̂ + c2

σ2
x + σ2

x̂ + c2
(7)

The structure comparison is given by:

ss(x, x̂) =
σxx̂ + c3
σxσx̂ + c3

(8)

where c1, c2 and c3 are regularization constants for the lu-

minance, contrast, and structural terms, which are set to

0.01, 0.03 and 0.015 respectively.

Additionaly, we use mean squared error (MSE) loss,

which is defined as follows for an input image x and re-

construction x̂ containing a total of N pixels:

MSE(x, x̂) =
1

N

N∑

i=1

(xi − x̂i)
2 (9)

As VQ-VAE defines a uniform prior over z, KL divergence

will be constant and can be excluded from the loss.

The total loss for our model can thus be written as:

Loss =MSSIM(x, x̂) + ‖sg[ze(x)]− e‖22+
κ‖ze(x)− sg[e]‖22

(10)
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Figure 6. Top spatial neighborhoods (corresponding to most frequently expressed codebook vectors) extracted by the model from patient

samples in the hepatocellular carcinoma dataset. Here, all 400 detected transcripts are plotted onto the neighborhoods (colored with his-

togram equalization for visual clarity, individual transcripts not shown). Differential expression between neighborhoods (with 400 detected

targets in the original input sample) revealed enrichment of carcinoma-associated genes (RHOB, CCL21, PROX1) in neighborhood from

the untreated sample, immune-related genes (STAT3, FOS, IL6ST) in the nivolumab-treated sample and collagen genes (COL1A1, FN1,

COL3A1) in the cemiplimab-treated samples. With the exception of the rightmost sample (where the signal is dominated by high expres-

sion of collagen genes), the model is able to identify informative neighborhoods containing a mixture of carcinoma and infiltrating immune

cells.

Here sg refers to stop-gradient operator, which prevent gra-

dients from flowing through through encoder (in second

term of eq. 10) or quantization module e (in third term of

eq. 10) during backpropagation. The third term of eq. 10

corresponds to commitment loss, which acts as a regular-

izer for the encoder, forcing it to produce representations

that are close to the nearest embedding vectors in a code-

book of size K (set to 8192) and improve codebook usage;

hyperparameter κ is the commitment cost, which is set to

0.25 in our model. We employ an exponential moving av-

erage scheme to update codebook embeddings: instead of

updating the codebook directly with encoder outputs from

each batch, the codebook is updated using a moving average

of past embeddings: ei = α∗ei+(1−α)∗zi, where decay

parameter α is set to 0.99. This moving average smooths

out the fluctuations in the codebook updates and retains the

memory of past data when updating the codebook, thereby

stabilizing the training.

We use a straight-through estimator for propagating gra-

dients through the quantization operation, which approxi-

mates the true gradient of the non-differentiable quantiza-

tion function q(x) by simply backpropagating the gradient

through it. The key idea is to ignore the quantization in the

backwards pass, treating q(x) as the identity function dur-

ing backpropagation.

We performed a 5-fold cross validation on 12 training

samples with 4 samples set aside for the test set with the

human oncology MERFISH dataset. For augmenting input

data during training, we perform random horizontal/vertical

flips and random rotations. We update the parameters using

AdamW [47] optimizer with β1 = 0.9, β2 = 0.96, ε =
10−8, and weight decay multiplier 4.5 × 10−2 and a de-

cay coefficient of 0.99. We use batch size of 16 and and

train model to convergence for 30 epochs on four 80 GB

NVIDIA A100 GPUs for a total of 675, 262 updates. We

performed bayesian hyperparameter optimization to select

the hyperparameters described above [48]. Further, we are

training the model on 55 manually curated FISH-based ST

datasets from the literature, making it the largest reported

model to date for ST data.

4. Results
To evaluate the effectiveness of discrete representations,

we compare it to state-of-the-art spatial and non-spatial

methods. Our first baseline is a standard VAE consisting of

a mirrored encoder-decoder architecture, each with 3 con-

volutional blocks. The VAE is trained for convergence for

30 epochs using the AdamW optimizer with learning rate of

1e-4 and a batch size of 16 on the standard training objective

(mean squared error + KL-divergence [49]). Our second

baseline is gimVI, a VAE model based on scVI [50] origi-

nally designed for scRNA-seq data. It uses alternative con-

ditional distributions to tackle technology-specific covari-

ate shift, to map ST data to reference scRNA-seq datasets.

Our third baseline is the standard VQ-VAE without the pro-

posed enhancements. Visually, the reconstruction outputs

from the VQ-VAE surpass those of the VAE, which lacks

detail and appear blurry. As the number of detected tran-

scripts in ST images is very sparse, standard VAE variants

often generate only blank images. We suspect that this is

due to the much larger output space: for any given pixel

there are 2C possibilities, but the VQ-VAE model has only

K(8192) possibilities for any given pixel. We also com-

pared our model against other models developed for ST, but

we notably encountered scalability issues with methods that

employ GNNs and Gaussian processes [18, 19, 22] even on

the smallest mouse brain dataset, due to their large memory

requirements and long running time and in the case of NSF
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[20], the requirement to run on CPUs.

All deep learning models are evaluated with 5 random

seeds, and the average performance is reported, while sta-

tistical models are evaluated only once. Through ablation

studies, we verified the effectiveness of the enhancements

proposed in our model and found the model to be relatively

robust to changes in number of discrete latent embedding

vectors and size of the codebook (Fig. 3). We evaluate

the models using mean squared error (MSE) and structural

similarity index (SSIM). MSE provides a measure of the

pixel-wise error, measuring the average squared differences

between corresponding pixels in the original and recon-

structed images (eq. 9); while SSIM compares the struc-

tural similarity between original and reconstructed images

based on multi-scale statistical comparisons of luminance,

contrast, and structural features (eq. 4). We use these met-

rics as they are complementary: MSE focuses on individual

pixels while ignoring overall image structure while SSIM

focuses on the structure of the image, quantifying how well

models capture higher-order spatial relationships.

Table 2 compares the models in terms of number of

parameters and the quantitative metrics described above,

showing that our model outperforms other methods in learn-

ing spatial structures in the ST data. Furthermore, our

model has an average inference time of 124.2 seconds per

MERFISH sample (each sample across the three MERFISH

datasets contains an average of 444,106 cells per sample)

on a single A100 GPU, which enables it to scale to datasets

with billions of cells. Compared to the baselines, our model

has significantly lower computational overhead through the

use of 1× 1 convolutions, binary input pixels and avoiding

computing expensive metrics such as covariance.

To further inspect the spatial structures learned by our

model, we performed model attribution. First, by feeding

one gene expression channel at a time to the model and in-

specting the resulting mapping of codebook embeddings,

we obtained the mapping between the genes and code-

book embeddings. As shown in Fig. 4, cancer-associated

genes and macrophage-associated genes are mapped to dis-

tinct latent embeddings in the codebook. We then use the

encoding-pixel correspondence (defined by hyperparameter

M ) to map codebook embeddings to distinct spatial neigh-

borhoods (blocks of pixels in the input mapped to the M =

3 encoder network) in the input ST sample. The codebook

embeddings learned by our model correspond to different

spatially-informed neighborhoods in ST data as shown in

Fig. 5.

Furthermore, by inspecting the frequency statistics of

mapped codebook embeddings within these neighborhoods,

we identified a map of spatially variable genes, which are

genes that exhibit distinct expression patterns across differ-

ent spatial locations, as shown in Fig. 5. Importantly, we

demonstrate that the discretization only affects the spatial

Codebook
size Emb. dim Val loss Perplexity

512

64 1.14 4.226

256 0.0556 4.077

1024 0.9389 5.887

1024

64 1.226 7.848

256 0.1371 6.247

1024 1.229 8.918

8192

64 0.0271 11.841

256 1.24 11.330

1024 0.9389 8.982

Table 3. Ablation results on parameters, size of codebook (K =
512, 1024, 8192) and dimension of codebook embeddings (D =
64, 256, 1024) for our model trained for 30 epochs on MERFISH

oncology dataset. Validation loss (lower is better) and log perplex-

ity, a measure of codebook usage (higher is better).

coordinates and the continuous nature of expression data is

preserved and thus can be used with standard approaches

such as computing differentially expressed genes across

the extracted neighborhoods, as shown in Fig. 6. Sim-

ilarly, gene expression dynamics can be compared across

these neighborhoods with standard trajectory inference ap-

proaches [51, 52, 53] .

5. Conclusion

In summary, our proposed method tackles key challenges

in analyzing FISH-based ST datasets. We introduce a novel

discrete representation model to capture multi-scale spa-

tial structures in imaging-based ST data, enabling biolog-

ically relevant interpretations of ST data. Discrete rep-

resentations also offer notable advantages for large lan-

guage models, which expect tokenized inputs, and are nat-

urally suitable for reasoning tasks, for example, in pre-

dicting how a cellular neighborhood might change in re-

sponse to interventions [54]. The main limitation of our

model is that it is fully unsupervised, limiting its applica-

bility to tasks that use prior biological information, such

as cell type annotation. We believe that the discrete rep-

resentations learned by our model can be effectively used

with a downstream semi-supervised model for spatially-

informed cell type annotation in the future. All code

is provided as open source at https://github.com/
digvijayky/hier_vq_vae_st. Pretrained check-

points trained on large ST datasets are made freely avail-

able at https://huggingface.co/digvijayky/
hier_vq_vae_st. We hope the community can utilize

these pre-trained checkpoints to fine-tune models on custom

datasets for biological discovery.
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[17] Maria Brbić, Kaidi Cao, John W Hickey, Yuqi Tan,

Michael P Snyder, Garry P Nolan, and Jure Leskovec. Anno-

tation of spatially resolved single-cell data with STELLAR.

Nature Methods, 19(11):1411–1418, 2022.

[18] David Sebastian Fischer, Mayar Ali, Sabrina Richter, Ali

Ertürk, and Fabian J Theis. Graph neural networks learn

emergent tissue properties from spatial molecular profiles.

bioRxiv, pages 2022–12, 2022.

[19] David S Fischer, Anna C Schaar, and Fabian J Theis. Mod-

eling intercellular communication in tissues using spatial

graphs of cells. Nature Biotechnology, 41(3):332–336, 2023.

[20] F. William Townes and Barbara E. Engelhardt. Nonnegative

spatial factorization, 2021.

[21] Valentine Svensson, Sarah A Teichmann, and Oliver Stegle.

SpatialDE: identification of spatially variable genes. Nature
methods, 15(5):343–346, 2018.

[22] Ilia Kats, Roser Vento-Tormo, and Oliver Stegle. Spa-

tialDE2: Fast and localized variance component analysis of

spatial transcriptomics. bioRxiv, 2021.

[23] Vizgen MERFISH human immuno-oncology

data release. https://vizgen.com/
human-ffpe-immunooncology-release-roadmap/.

(Accessed on 07/20/2023).

[24] Vizgen MERFISH mouse receptor map. https://
vizgen.com/data-release-program/. (Accessed

on 01/04/2022).

[25] Assaf Magen, Pauline Hamon, Nathalie Fiaschi, Brian Y

Soong, Matthew D Park, Raphaël Mattiuz, Etienne Humblin,
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