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Abstract— Accurate and efficient communication is essential
for human-robot interaction. Spatiotemporal relationships are
commonly used in language to resolve ambiguity about referred
objects when they cannot be uniquely identified based on
visual features. Grounding of instructions that involve spa-
tiotemporal relationships remains a difficult problem in human-
robot interaction because of the lack of annotated data and
the difficulty of representing or encoding such information in
an environment model. This paper outlines an approach that
builds from previous methods that explored minimal but suf-
ficient environment models for symbol grounding that address
spatiotemporal relationships that project into the future. It
specifically explores the application of an adaptive timestep
that eliminates unnecessary cycles when we can predict that
the outcome of inference will not change due to a small step
forward in time. An evaluation based on a small corpus and a
detailed example are presented.

I. INTRODUCTION

For a human and robot to effectively collaborate on non-
trivial tasks in unstructured environments, they must be able
to efficiently and effectively communicate about their joint
task. Spatiotemporal relationships, such as those that refer
to the relative state of objects at different times, is one
type of concept that people use to resolve objects that are
not semantically unique or easily identifiable based on their
visual appearance. Consider the example illustrated in Figure
1 where the instruction “Grab the cup that is about to fall
off the table” is given to a robot. This instruction requires
knowledge about the future state of the objects in the scene
to accurately interpret the instruction. In order to ground the
meaning of the noun phrase “the cup that is about to fall off
the table”, we must resolve that the cup that is referred to
is a cup that is currently on the table but will not be on the
table at a future time. This paper explores an architecture for
grounding instructions that refer to the future state of objects
based on other models that selectively interpret previous
observations to resolve instructions that refer to the past state
of objects. We specifically explore how an adaptive timestep
for simulation of a world model can be used to improve
the efficiency of symbol grounding. The contributions of
this paper include a discussion of an architecture for natural
language understanding of robot instructions that refer to the
future state of the world, a corpus-based evaluation of a fixed
and an adaptive timestep for world model simulation that
enables faster symbol grounding, and a detailed analysis of
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Fig. 1. An illustration of an instruction where the robot needs to utilize
past and present states of the objects to predict the future dynamics of the
world to interpret and execute the instruction.

the performance of symbol grounding for an instruction that
refers to the future state of the world.

II. BACKGROUND

Natural language understanding of robot instructions for
human-robot interaction is a field that dates back several
decades. Earlier approaches, such as those based on prob-
abilistic graphical models [6], [12], [14] are now being
evaluated against more recent methods based on Large
Language Models [1], [7], [8] that resolve problems of
scale and the lack of annotated data. Such recent models
however have not demonstrated a similar proficiency for
spatial relationships and spatiotemporal relationships such
as those explored in this paper. This paper will explore
how spatiotemporal relationship, specifically those that refer
to the future state of the world, would be handled by
methods based on the Distributed Correspondence Graph
(DCG) [5], [6], [10]. DCGs are probabilistic models that
infer the most likely set of symbols Γ = {γ1, . . . , γn}
from language Λt = {λ1, . . . , λn} and world model Υt at
time t. Typically the world model is represented as a map
of objects with unique identifiers that contain information
about the metric state, semantic types, and/or relationships
to other objects [4]. This information is the product of a
perception pipeline that models these objects from informa-
tion contained in the history of sensor observations z1:t.
Although sensor observations used to construct a metric-
semantic representation of the world most commonly rely on



RGB-D and LIDAR data streams, [2] showed how language
can be used as a complementary sensing modality to inform
the robot about the state of objects that cannot be visually
observed. DCG search is performed by searching all factors
in a factor graph for the most likely associations between
language λi ∈ Λt, symbolic constituents γij ∈ Γt, corre-
spondence variables φij ∈ Φ, and the expressed symbolic
constitutes of the immediate children phrases Φci . DCG
inference involves searching over the graph for the most
likely correspondence variables φij associated with phrase
λi and the jth symbol for that phrase γij by maximizing
the factored distribution. Once the factor graph has found
the distribution of most likely correspondence variables in
the factor graph, those where the correspondence variable
is most likely “true” can be used to extract the symbolic
representation of the sentence. Conditional probabilities in
the DCG are modeled using a log-linear model [3] with
binary features. Engineered features that evaluate spatial
relationships, temporal relationships, semantic types, words,
metric values, etc. enable the log-linear model to learn
relationships between the symbolic constitutes of a phrase
and it’s immediate child phrases. Weights for these features
are learned by training on a corpus of labeled examples that
annotate the true groundings (symbols) associated with the
individual phrases in a constituency parse of an utterance.
false groundings are similarly learned by associating that
label with any unexpressed symbols in the annotation when
the example is associated with an environment model. The
next section illustrates an extension to that architecture that
enables the interpretation of instructions that refer to the
future state of the world.

III. TECHNICAL APPROACH

The approach in [9] outlined a method for natural lan-
guage understanding of robot instructions that refer to the
past and/or present state of objects. This architecture uses
language in three ways. Consider the interpretation of the
sentence “pick up the apple on the table that was to the left of
the red cup”. First, symbols are inferred that guide the inter-
pretation of the language instruction. The sentence contains
information that specifies several objects that need to be in
the environment model and the kinds of spatial relationships
that also may need to be considered. Second, symbols are
inferred to determine constraints over the kinds of symbols
that are required to be inferred for a correct interpretation
of the sentence. The same sentence also indicates that at
the root of the expression the robot should be performing
an action that picks up some object in the environment.
Third, an attempt at symbol grounding is performed by
a natural language understanding algorithm that produces
a distribution of likely symbols. If those symbols do not
satisfy the constraints inferred by the grounding constraint
inference module, then it is hypothesized that the root of
the problem lies in an insufficiently detailed environment
model. The architecture in [9] closes a loop around this
cycle of perception, modeling, inference, and constraint
checking to iterate through past observations until a minimal

but sufficient environment representation is extracted that
provides the necessary symbols and environment model to
satisfy the grounding constraints of the instruction. If there
are multiple apples on the table, then the meaning of “the
apple on the table that was to the left of the red cup”
cannot be resolved without revisiting past observations. If
however the instruction was “pick up the apple on the table
that is to the left of the red cup” then grounding could be
performed with the current observation as the model could
uniquely identify the object referred to by “the apple on
the table that is to the left of the red cup”. The ability
for DCGs to effectively reason about spatial relationships,
including ones that refer to the relative placing of objects
in a group, is described in [10]. The main contribution of
this paper outlines how such an approach would be used
to interpret instructions that refer not to the past or present
state of objects, but the future state of an object. Consider a
modification of the architecture from [9] illustrated in Figure
2. If we want to understand the instruction “pick up the apple
before it rolls off the table”, then we need to predict the
future state of the world and enable the features in the log-
linear models that represent the conditional probabilities in
the factor graph to utilize this information. A naive approach
to simulation would advance the world by a fixed timestep,
attempt natural language understanding on that world, check
the inferred symbols against the grounding constraints, and
then iterate if necessary. This workshop paper explored an
adaptive timestep for environment model simulation that
checks for differences in the ordering of spatial relationships,
specifically those involving contact between pairs of objects.
Knowing that the engineered features inside of the log-
linear models used by the DCGs trained on the corpus of
sentences described in the next section change their output
based on the relative ordering of contacts between objects in
the environment, we can exploit this information to know
that such features will not change their expression until
this relative ordering change is observed. Simulation of a
semantic-metric world model continues until some spatial
relationship, such as novel contact between a pair of objects,
is observed. We theorize that such an approach would reduce
the number of attempts at natural language understanding
and thus exhibit a generally faster result without a loss in
accuracy for instructions that refer to the future state of the
environment.

IV. EXPERIMENTAL DESIGN

For preliminary testing of the proposed model described in
Figure 2, an analysis of the performance of a small corpus is
presented where statistics about the overall runtime, average
number of model iterations, and runtimes for individual
aspects of the model are reported. A corpus of self-annotated
instructions using linguistic patterns similar to those found in
[11] were used for these experiments. This corpus consisted
of 8 unique instructions that refer to the past and/or future
states of the world across three unique environments for
a total of 24 instructions. Examples of such instructions
include “the ball that will hit the table second” and “the first
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Fig. 2. The proposed intelligence architecture to infer minimal but sufficient environment models for instructions that refer to the future state of objects
with simulation that tracks collision between objects to determine the gap between attempts at grounding the instruction. As in [9] this framework requires
the development of model for grounding constraint inference (GCI) and grounding constraint checking (GCC), but considers instructions that refer to the
future state of objects. The process of world modeling, language understanding, and symbol checking now exhibits two cycles, one cyclic behavior that
iteratively refines the environment model until the grounding constraints are satisfied and another that continue simulations until an event that would alter
the expression of log-linear model features is observed.

ball that will hit the table”. For the corpus-based experiments,
three distinct training and testing sets were constructed by
placing two random environment examples in the training
set and the other in the test set. This eliminated inference
errors that could have resulted from a lack of coverage of
the language but analyzed the generalization across different
environments. The NLU DCG was trained using a feature
set of 2 correspondence features, 16 linguistic features, and
54 symbol features, from the fully annotated examples. The
GCI and LGP DCGs were trained by extracting world-
independent symbols from each fully annotated example.
The feature sets of both the DCGs used 2 correspondence
features and 16 linguistic features, in addition to the GCI
DCG using 20 symbol features, and the LGP DCG using
50 symbol features. Probabilistic inference was performed
with a beamwidth of two and a simulation timestep of 0.05
seconds for all examples. The simulation of the world model
for actions that referred to the future used MuJoCo [13] to
estimate the motion of objects in each example. An illus-
tration of the progression of the environment model during
this process is shown in Figure 3. Since the contribution of
this paper is about the effect of a fixed timestep versus an
adaptive timestep for the re-inference process as mentioned
in Figure 2, we run the three corpus of examples using both
the fixed and adptive simulation step algorithms.

V. RESULTS

Table I illustrates the results of the corpus-based experi-
ments described in Section IV. Each time the framework was
trained on one of the three distinct training sets containing
16 examples and then tested on its corresponding test set of
8 examples. The number of iterations and runtimes of all the

(a) At time t+0.30sec

no contacts have taken
place

(b) At time t+0.45sec

o1 registers a contact
with the table

(c) At time t+0.50sec

o2 registers a contact
with the table

Fig. 3. A visualization depicting the internal state of the MuJoCo
simulation during the PRCP/SIM module’s extension of the environment
model horizon. In this example the environment at time t uses two spherical
objects to represent tennis balls o1 and o2 at positions (x, y, z) =
(0.0m, 0.1m, 1.0m) and (x, y, z) = (0.0m,−0.1m, 1.25m) respectively
above an planar objects to represent a table o3 at position (x, y, z) =
(0.0m, 0.0m, 0.0m) at time t with no initial velocity. The simulation ran
for a duration of 0.50sec at 0.05sec intervals. 3(a) shows the state of the
simulation at time t+0.30sec when both the spheres are still falling under
gravity and yet to make contact with the table. 3(b) shows the state of the
simulation between time t+0.45sec when the spheres on the left registers a
contact with the table. 3(c) shows the state of the simulation between times
t+0.50sec when the spheres on the right registers a contact with the table.

modules in the architecture were recorded for each of the test
examples. At the end of the three sets, all the test example
data were collected together and their results averaged. The
two columns of Table I show the mean number of iterations
and runtimes in milliseconds of the different modules during
the inference process with a 95% confidence interval with
the fixed and adaptive timesteps.

We observed that the average number of iterations of



mean± 2σ fixed timestep adaptive timestep

Iterations (#) 11.38 ± 1.66 3.75 ± 1.45
LGP (ms) 40.28 ± 13.81 36.21 ± 1.59
GCI (ms) 5.16 ± 0.71 5.23 ± 0.20
NLU (ms) 224.80 ± 31.20 96.97 ± 27.34
GCC (ms) 0.11 ± 0.03 0.05 ± 0.02
PRCP/SIM (ms) 3.46 ± 0.66 3.39 ± 0.68
Total (ms) 274.08 ± 38.50 141.98 ± 28.10

TABLE I
CORPUS-BASED EXPERIMENTAL RESULTS WITH AND WITHOUT

ADAPTIVE SIMULATION STEP

the inference loop decreased from 11.38 to 3.75 when the
adaptive simulation step was used. This is an expected result
because the adaptive timestep only runs the re-inference
process whenever a spatiotemporal relationship of the objects
in the world model change. This is further supported by
the result that the average time taken for the NLU module
has decreased by 57%, from 224.80 milliseconds to 96.97
milliseconds with the use of the adaptive simulation step.
Since the algorithm takes less number of iterations of the
inference process to ground instructions refering to the
future, the architecture spends less time in the NLU module.

Comparing the average times of the LGP, GCI, and
PRCP/SIM modules, it can be noticed that the adaptive
timestep does not significantly affect their running times.
This is true for the LGP and the GCI modules because
these modules execute the inference process only once per
instruction. As for the PRCP/SIM module, it is expected that
that the average runtime be unchanged because even though
there are less number of re-inference steps taking place in
the NLU, the simulator still simulates and updates the world
model the same number of times.

Taking the example of “the ball that will hit the table
second” as in Figure 3, simulating the state of the world at
0.05 seconds and running the inference process at every step
results in eleven iterations of the NLU. However, using the
adaptive simulation step still simulates the world every 0.05
seconds but only runs the re-inference process whenever a
change in the contacts between objects take place; this results
in only three iterations of the NLU module. Furthermore,
the NLU modules takes a total of 230.12 milliseconds using
a fixed timestep whereas using an adaptive timestep takes
87.02 milliseconds. For both versions, the times taken by the
other modules were almost the same, with the total runtime
of the fixed timestep version being 275.94 milliseconds and
the adaptive timestep version taking 132.26 milliseconds.

VI. CONCLUSION

This paper presents an architecture for grounding natural
language instructions that refer to the future state of objects.
This method iteratively simulates the world based on the
observations at the time of the instruction until a satisfactory
solution is found. Additionally, this paper outlines a method

for adaptive simulation between symbol grounding attempts
using information about what changes in the environment
will change the expression of weighted features that are used
to estimate the conditional probabilities inside factors of the
DCG. Experimental results analyzed the performance of the
model on a small corpus designed to explore the language
of interest and illustrated the benefits of adaptive timesteps.
Future work will investigate the performance of these models
on a larger corpus of instructions and further explore the
details of the architecture’s behavior for instructions that
refer to the past, present, and/or future state of the world.
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