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ABSTRACT

Reconstructing subsurface ocean dynamics, such as vertical velocity fields, from
incomplete surface observations poses a critical challenge in Earth science, a
field long hampered by the lack of standardized, analysis-ready benchmarks. To
systematically address this issue and catalyze research, we first build and re-
lease KD48, a high-resolution ocean dynamics benchmark derived from petascale
simulations and curated with expert-driven denoising. Building on this bench-
mark, we introduce VISION, a novel reconstruction paradigm based on Dynamic
Prompting designed to tackle the core problem of missing data in real-world
observations. The essence of VISION lies in its ability to generate a visual
prompt on-the-fly from any available subset of observations, which encodes
both data availability and the ocean’s physical state. More importantly, we de-
sign a State-conditioned Prompting module that efficiently injects this prompt
into a universal backbone, endowed with geometry- and scale-aware operators,
to guide its adaptive adjustment of computational strategies. This mechanism
enables VISION to precisely handle the challenges posed by varying input com-
binations. Extensive experiments on the KD48 benchmark demonstrate that
VISION not only substantially outperforms state-of-the-art models but also exhibits
strong generalization under extreme data missing scenarios. By providing a high-
quality benchmark and a robust model, our work establishes a solid infrastructure
for ocean science research under data uncertainty. Our codes are available at:
https://anonymous.4open.science/r/Anonymous_ICLR-8270.

1 INTRODUCTION

Ocean vertical velocity (w), a core driver of vertical mass and energy transport, plays a pivotal
role in the global climate system, marine biogeochemical cycles, and ecosystem productivity (Burd,
2024; Liang et al., 2017; Denman & Gargett, 1995). Despite its fundamental importance, the
direct observation of w remains a long-standing bottleneck in oceanography. Its magnitude is
typically several orders smaller than that of horizontal velocities, and it exhibits strong spatiotemporal
variability, rendering large-scale, continuous, and reliable measurements technologically infeasible
with current observational technologies (Muste et al., 2008). This fundamental paradox motivates
the reconstruction of w from more accessible sea surface observations, such as sea surface height
(SSH) and sea surface temperature (SST) (Martin et al., 2023; Archambault, 2024). This direction
is not only important for understanding internal ocean dynamics but also opens broad prospects for
data-driven research in Earth science (Uchida et al., 2019; Martin et al., 2023).

To address the observational challenge, researchers have developed various methods for w reconstruc-
tion. Traditional physics-based approaches, such as diagnostics based on quasi-geostrophic (QG)
theory (Calkins, 2018; Held et al., 1995; Bishop & Thorpe, 1994), provide a theoretical foundation
for understanding large-scale ocean circulation but rely on strong simplifying assumptions. These
assumptions often fail in dynamically complex oceanic regions characterized by strong unbalanced
flows and high Rossby numbers, limiting their applicability and accuracy (Warn et al., 1995; Fox-
Kemper et al., 2019). Recently, deep learning (DL) methods have shown immense potential for the
w reconstruction task, leveraging their powerful ability to learn complex nonlinear mappings from
large-scale numerical simulations (Zhu et al., 2023; He & Mahadevan, 2024). However, this emerging
field faces Dual Challenges. ❶ First, the rigidity in model design. Existing DL models universally
depend on a fixed and complete set of input variables. This requirement is at odds with the reality of
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real-world observations, which are often incomplete due to various factors, thereby severely limiting
the models’ robustness and operational utility. ❷ Second, the scarcity of high-quality benchmark
datasets. Current research often relies on disparate, small-scale datasets processed in-house, which
not only imposes a significant data engineering burden on researchers but also impedes fair compar-
isons between different methods and hinders reproducible research within the community. These
intertwined challenges have become a critical bottleneck constraining the advancement of the field.

To systematically address these dual challenges, we propose this work. First, to tackle the data
scarcity problem, we build and publicly release the Kuroshio-Dynamics-48 (KD48) dataset. De-
rived from petascale, high-resolution simulations and curated with expert-driven dynamical signal
filtering, KD48 is the first large-scale, analysis-ready benchmark specifically designed for ocean
dynamics reconstruction under data uncertainty. Second, to address the model rigidity problem, we
propose VISION, a novel reconstruction paradigm based on Dynamic Prompting (Wu et al., 2024a),
built upon the KD48 benchmark. The core idea of this paradigm is to train a universal, promptable
backbone network. We design a state-conditioned prompting module that generates a dynamic prompt
on-the-fly from any available subset of observations, encoding both data availability and the physical
state of the ocean. This prompt is then efficiently injected into a custom-designed backbone, featuring
geometry- and scale-aware operators, to guide the adaptive adjustment of its computational strategies,
thereby precisely handling the challenges posed by varying input combinations.

The main contributions of this paper are summarized as follows:

❶ We construct and release the Kuroshio-Dynamics-48 (KD48), the first high-resolution, analysis-
ready benchmark dataset specifically focused on w reconstruction under data uncertainty. It fills a
critical gap in the field and provides a standardized platform for fair model evaluation.

❷ We propose VISION, a novel prompt-driven framework that systematically addresses the perfor-
mance degradation caused by dynamic input unavailability in ocean reconstruction for the first time,
significantly enhancing model robustness and practical utility.

❸ Extensive experiments on the KD48 benchmark demonstrate that VISION substantially outper-
forms various state-of-the-art baselines under diverse data missing scenarios, showcasing its excellent
performance and generalization capabilities.

Above of all, by providing a high-quality benchmark and a robust model, our work establishes a solid
infrastructure for real-world ocean science applications and offers a new paradigm for other scientific
computing domains facing similar data uncertainty challenges.

2 RELATED WORK

Ocean Vertical Velocity Reconstruction. Reconstructing ocean vertical velocity (w) is a long-
standing challenge in physical oceanography (Mahadevan et al., 2020; Röhrs et al., 2023). Classical
methods, predominantly based on quasi-geostrophic (QG) theory, diagnose w by solving the Omega
equation under assumptions of dynamical balance (Isern-Fontanet et al., 2006; Lapeyre & Klein,
2006). While foundational, these physics-based approaches have inherent limitations in regions
dominated by strong, ageostrophic submesoscale dynamics. Recently, deep learning (DL) has
emerged as a powerful data-driven alternative, using neural networks to learn the complex, nonlinear
relationships between sea surface observables and subsurface w from high-resolution numerical
simulations (Zhu et al., 2023; He & Mahadevan, 2024). These models demonstrate significant
improvements in accuracy over traditional methods. However, a common thread among existing DL
approaches is their reliance on a fixed, complete set of input variables. This design assumes that
all prescribed inputs are consistently available, a condition rarely met in real-world observational
scenarios (Glenn et al., 2000; Zeng et al., 2020). In contrast, our work focuses on developing a model
that is robust to the dynamic availability of input variables.

Scientific Machine Learning with Incomplete Data. The challenge of incomplete or missing
data is pervasive across scientific machine learning domains, from weather forecasting (Bi et al.,
2023; Zhang et al., 2023; Wu et al., 2024a;b; Gao et al., 2025b;a; Wu et al., 2025b), spatiotemporal
data mining (Raonic et al., 2023; Wu et al., 2023b; 2024c; Wang et al.; Wu et al.; Li et al., 2025;
Wu et al., 2025c;a), to biomedical imaging (Webb, 2022; Tempany & McNeil, 2001; Acharya
et al., 1995). Traditional approaches often involve a pre-processing step of data imputation, using
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Figure 1: Overview of the KD48 benchmark. (Left) The scientific motivation: reconstructing
vertical velocity (w), a key driver of the global ocean’s thermohaline circulation. (Right) The
corresponding supervised learning task, which involves mapping five observable sea surface variables
to the subsurface vertical velocity at three different depths using deep learning models.

methods ranging from simple interpolation to more sophisticated generative models like GANs (Pan
et al., 2020; Hussein et al., 2020). While effective for certain tasks, these methods treat imputation
and the downstream scientific task as two separate problems, which can introduce artifacts and
propagate errors (Adhikari et al., 2022; Luo et al., 2018; Cao et al., 2018). More recent works,
particularly in the graph neural network (GNN) domain, are inherently more flexible to missing
nodes or features (Guskov et al., 2002; Huang & Yang, 2021; Fan et al., 2019). Our approach differs
fundamentally from these paradigms. Instead of explicitly filling in missing data, VISION adopts an
end-to-end strategy that learns to perform optimally with whatever data is present. It achieves this by
conditioning its computations directly on data availability, a more direct and potentially more robust
strategy than multi-stage imputation-then-prediction pipelines.

Prompt Learning in Deep Learning. Prompt learning has recently revolutionized the field of
artificial intelligence, emerging as a powerful paradigm for adapting large pre-trained models to a
wide array of downstream tasks (Zamfirescu-Pereira et al., 2023; Guo et al., 2024; Mizrahi et al.,
2024; Khattak et al., 2025). Initially popularized by Large Language Models (LLMs) (Zhao et al.,
2023; Kirchenbauer et al., 2023; Minaee et al., 2024), the core idea is to guide a model’s behavior
using task-specific instructions, or prompts (Wu et al., 2024a; Khattak et al., 2025; Pan et al., 2024;
Ma et al., 2025), rather than updating its weights. This concept has been successfully extended to
vision-language models (VLMs), where textual or visual prompts are used to steer tasks like image
segmentation and object detection (Zang et al., 2025; Du et al., 2022). While transformative, the
application of prompt-based learning to complex physical systems and scientific computing remains
a nascent area of research. To our knowledge, our work is the first to systematically apply the
prompting paradigm to the challenge of ocean dynamics reconstruction. We introduce a novel
form of conditioning: a state-and-availability prompt that encodes both the physical context and the
meta-information of the data, thereby opening a new avenue for applying prompt-based learning to
scientific problems characterized by data uncertainty.

3 THE KD48 BENCHMARK

Reconstructing ocean vertical velocity (w) is a critical challenge in Earth science, where progress
has long been hampered by the lack of standardized, analysis-ready benchmarks. As shown in the
physical schematic in Figure 1 (left), vertical velocity is the core engine driving the global climate
system’s "conveyor belt"—the thermohaline circulation. It governs the global vertical transport of
heat and mass through processes like deep water formation and upwelling. However, due to its faint
signal and the difficulty of direct observation, reconstructing w from more accessible surface data
(e.g., SSH, SST) has become a vital scientific task. To systematically address this issue and catalyze
research, we construct and release the Kuroshio-Dynamics-48 (KD48) benchmark.

The data engineering pipeline for KD48, shown in Figure 2(a), is designed to transform a complex
scientific problem into a well-posed machine learning task. We source our data from the petascale
LLC4320 ocean simulation, selecting the Kuroshio Extension region, an area known for its highly
complex dynamics. The benchmark explicitly frames the reconstruction task as a mapping from
a multi-channel 2D surface observation field to a target 3D subsurface physical field. The Inputs
consist of five sea surface fields observations: Sea Surface Height (SSH), Sea Surface Temperature
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(SST), Sea Surface Salinity (SSS), and zonal (U) and meridional (V) surface velocities. The Outputs
are the w at three distinct subsurface depths (Level 20, 40, and 60).

A core contribution of this benchmark lies in the meticulous curation of the ground truth. Using the
raw vertical velocity (wraw) from the simulation directly poses an ill-posed learning problem, as it
includes high-frequency noise (e.g., internal tides) that is only weakly coupled, physically, to the
surface inputs. To address this, we design and apply a dynamical signal filter. This filter isolates the
signal component (w∗) that is dynamically consistent with the evolution of surface eddies and fronts
from the raw signal. This refined signal, w∗, serves as the final learning target. This critical step
ensures a well-defined physical mapping between the inputs and outputs, thereby guiding models to
learn genuine physical dynamics rather than fitting spurious noise.

Ultimately, KD48 provides a full year of hourly, high-resolution (1/48°) data, constituting a large-
scale, physically consistent, and challenging platform.

4 METHOD

4.1 PROBLEM FORMULATION AND DESIGN PRINCIPLES

Let V = {vi}Ni=1 denote a universe of N potentially available sea surface variables. An observation
at any given time is defined by a subset of variables S ⊆ V , corresponding to a multi-channel input
tensor XS ∈ R|S|×H×W , where H and W are the spatial dimensions (height and width). Our core
task is to learn a single, parameterized mapping fθ : X → W that projects any tensor XS from the
input space X =

⋃
S⊆V R|S|×H×W to a vertical velocity field w in the target spaceW = RC×H×W ,

where C denotes the number of channels for multi-layer w. This mapping is governed by a universal
set of parameters θ that must remain effective across possible non-empty subsets S without retraining.
Formally, our objective is to find the optimal parameters θ∗ that minimize the expected loss over all
possible input subsets and data samples:

θ∗ = argmin
θ

E(S,XS ,w)∼D [L (fθ(XS),w)] , (1)

whereD is the true data-generating distribution and L is a suitable loss function. The central challenge
lies in designing a function fθ that can handle a variable-dimensional, combinatorially large input
space while extracting consistent predictive features for the target w.

➠ Design Principles. To address the challenge defined in Eq. equation 1, our model design is shaped
by two fundamental principles: universality and state-conditioned adaptivity. Universality mandates
that the model must function for any input subset S without requiring architectural surgery or
retraining, which implies the need for a front-end that can canonicalize arbitrary variable combinations
into a fixed-dimensional internal representation. However, universality alone is insufficient. An ideal
model must also adapt its computational strategy based on the current context. This adaptivity should
be two-fold: it must be availability-aware, dynamically altering its computational paths based on
which variables are present or absent, and it must be state-aware, conditioning its behavior on the
macroscopic dynamical state of the ocean reflected in the observations. To realize these principles,
we propose VISION, an end-to-end framework composed of an Adaptive Observation Embedder and
a Geometry-Scale Aware Operator, as shown in Figure 2.

4.2 ADAPTIVE EMBEDDING AND PROMPT-GUIDED ADAPTATION

➠ Universal Observation Adapter. The adaptive capability of VISION begins at its front-end,
the Adaptive Observation Embedder (AOE), which first canonicalizes any observation subset XS ∈
R|S|×H×W via a Universal Observation Adapter (UOA). The UOA employs a shared, availability-
aware linear operator ϕUOA to map the variable-dimensional input to a base feature tensor Z0 ∈
RCb×H×W with a fixed channel dimension:

Z0 = ϕUOA(XS) =
(
W (S) ⊗ I1×1

)
XS , W (S) ∈ RS×Cb , (2)

where the operator W (S) corresponds to a learnable projection matrix dynamically chosen according
to the input channel S, while ⊗I1×1 constrains the mapping to a 1×1 convolutional kernel. This
design harmonizes heterogeneous input modalities into a consistent Cb-dimensional feature space,
thereby enabling subsequent modules to operate on aligned representations.
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Figure 2: Overview of the KD48 benchmark construction pipeline and the VISION model
framework. (a) The KD48 benchmark is constructed by first subsetting the Kuroshio region from
petascale LLC4320 data, followed by an expert pre-processing module (a key contribution) that
filters raw vertical velocity (wraw) into a dynamically consistent target (w∗), and finally integrating it
with surface variables into an analysis-ready format. (b) The VISION model consists of two main
components: an Adaptive Observation Embedder that generates a dynamic prompt P from any
available input subset via a SCP mechanism, and a prompt-conditioned Geometry-Scale Aware
Operator that reconstructs the final vertical velocity field.

➠ Adaptation via State-Conditioned Prompting. After obtaining the canonicalized features Z0,
the model’s core adaptive capability is realized through the State-Conditioned Prompting (SCP)
module. This module generates a dynamic spatial prompt P, which serves as an adaptation signal
providing precise information about the current observational context to the downstream reconstruc-
tion operator. The process begins by compressing Z0 into a state vector e, which, concatenated with
the availability mask m, is mapped by an MLP ϕmixer to a set of mixing weights α ∈ ∆K−1:

α = Softmax(ϕmixer(e)). (3)

These weights are used to form a linear combination of a learnable codebook of prompt templates,
CP = {Pk}Kk=1, yielding the final dynamic prompt P:

P(e) = Conv3×3

(
U

(
K∑

k=1

αkPk

))
, (4)

where U is an upsampling operator to align the prompt with the latent feature. The resulting prompt
P is then deeply fused with the base features Z0 via a residual Prompt Interaction Module, Γint, to
produce the conditioned feature tensor Z1:

Z1 = Γint(Z0,P) = Conv3×3(Q([Z0;P])), (5)

whereQ denotes the resudial block. In this manner, the prompt P guides the GSAO operator to adapt
its behavior, enabling it to select optimal computational paths based on the input composition and the
ocean state.

Theoretical Justification. The effectiveness of this prompt-guided adaptation, particularly its ability
to leverage multi-variable inputs, is supported by information theory. The following lemma formalizes
why integrating a richer set of observational variables fundamentally improves the reconstruction
task. A detailed proof is provided in Appendix B.

Lemma 1 (Monotonicity of Observational Information) (Shannon, 1948; MacKay, 2003) Let w
be the target field to be reconstructed. Let S1 and S2 be two sets of observable variables such that
S1 ⊂ S2. Let XS1

and XS2
denote the corresponding noise-free observations. The conditional

entropy (i.e., the remaining uncertainty) of w given these observations satisfies:

H(w|XS2) ≤ H(w|XS1) (6)

5
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In a coupled physical system like the ocean, where different variables provide unique, complementary
constraints, this inequality is strict. This implies that incorporating more observational variables
strictly reduces the intrinsic uncertainty of the reconstruction task.

This lemma provides a theoretical guarantee that the solution space becomes more constrained as
more variables are observed. Our state-conditioned prompt P serves as the mechanism to effectively
communicate these tighter constraints to the model backbone, thereby steering the reconstruction
towards a more accurate and physically consistent solution.

4.3 GEOMETRY-SCALE AWARE OPERATOR

The Geometry-Scale Aware Operator (GSAO) serves as the backbone of VISION, functioning as
an Encoder-Decoder architecture that takes the conditioned features Z1 as input. The operator is
specifically designed to efficiently capture the multi-scale and geometric features inherent in ocean
dynamics, with its core composed of two specialized residual modules: the Geometry-Aware Residual
Operators (GARO) and the Scale-Selective Dynamics Core (SSDC).

➠ Geometry-Aware Residual Operators. To align the model’s computation with the geometry
of flow fields (e.g., eddies and fronts), we employ a residual operator, GARO, based on deformable
convolutions. Unlike standard convolutions, GARO learns an additional 2D spatial offset ∆p =
O(Fg) for each sampling point of the kernel, determined by the input features Fg. This allows the
sampling locations to dynamically focus on the most informative regions of the feature, such as areas
with high gradients along fronts. The process is formalized as:

GARO(Fg) = Conv
(
Sample(Fg,p0 +∆p)

)
+ Fg, (7)

where p0 denotes the original regular grid. This mechanism makes the model’s receptive fields with
geometry-awareness, significantly enhancing its ability to capture fine-grained physical structures.

➠ Scale-Selective Dynamics Core. To adaptively handle the multi-scale nature of ocean dynamics,
we design the SSDC module, located at the bottleneck of the encoder. This module employs a
selective kernel operator that dynamically fuses the outputs of a set of convolutional kernels with
varying sizes (kr ∈ R). A squeeze-and-excitation module, A, generates a set of mixing weights ωℓ

based on the input features Fℓ:

Fs
ℓ+1 = Ψℓ

(∑
r∈R

ωℓ
r · Convkr

(Fs
ℓ)

)
, ωℓ = softmax

(
A(Fs

ℓ)
)
, (8)

where Ψℓ is a residual block. This mechanism realizes dynamic scale-selection, enabling the model
to better capture complex dynamics ranging from large-scale eddies to small-scale filaments.

➠ Decoding, Prediction, and Optimization. The decoder of the GSAO fuses features from differ-
ent encoder levels via skip connections to generate a high-resolution feature map FHR. Subsequently,
a 1 × 1 convolutional layer projects this feature map to a single channel, yielding the final recon-
structed vertical velocity field ŵ ∈ R1×H×W . The entire VISION model is trainable end-to-end.
Given a training sample (XS ,w), we optimize the model parameters θ by minimizing the Smooth L1

Loss between the prediction ŵ and the ground-truth w. This loss function combines the robustness
of L1 loss to outliers with the stability of L2 loss near zero. The optimization objective is defined as:

L(θ) = Lsmooth L1(ŵ,w). (9)

By minimizing this objective over a large-scale dataset (such as KD48) that encompasses a diverse
range of available variable subsets S , VISION learns to robustly perform reconstruction via dynamic
prompting, rather than merely memorizing specific input-output patterns.

5 EXPERIMENT

To comprehensively evaluate the performance of VISION in ocean vertical velocity reconstruction
task and validate its effectiveness in real-world applications, where some surface variables may be
missing, we design a series of rigorous experiments. All experiments are conducted on 8 NVIDIA
40GB-A100 GPUs.

6
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Table 1: Reconstruction performance comparison on various subterranean layers. We benchmark our
method, VISION, against four categories of baselines: Operator Learning Models (OLM), Computer
VISION Backbones (CVB), Spatiotemporal Models (STM), and Domain-specific Models (DSM).
All models are evaluated on RMSE (↓), MAE (↓), and PCC (↑); lower RMSE/MAE and higher
PCC indicate better performance. Bold denotes the best result, and a single underline indicates the
second-best. Our model, VISION (IO), is trained with incomplete observations, while all baselines
use complete observations (CO).

MODEL
SUBTERRANEAN LAYERS

20 LAYERS 40 LAYERS 60 LAYERS

RMSE (↓) MAE (↓) PCC (↑) RMSE (↓) MAE (↓) PCC (↑) RMSE (↓) MAE (↓) PCC (↑)

OPERATOR LEARNING MODELS (OLM)
« FNO 7.216×10−5 5.265×10−5 0.240 1.269×10−4 9.624×10−5 0.344 1.561×10−4 1.219×10−4 0.234
« CNO 5.668×10−5 4.021×10−5 0.643 1.109×10−4 8.391×10−5 0.559 1.497×10−4 1.171×10−4 0.352
« LSM 5.651×10−5 4.034×10−5 0.645 1.049×10−4 7.938×10−5 0.620 1.355×10−4 1.055×10−4 0.529

COMPUTER VISION BACKBONES (CVB)
� U-NET 6.426×10−5 4.568×10−5 0.500 1.062×10−4 8.029×10−5 0.609 1.360×10−4 1.058×10−4 0.526
� RESNET 5.759×10−5 4.086×10−5 0.630 1.123×10−4 8.455×10−5 0.554 1.464×10−4 1.142×10−4 0.413

SPATIOTEMPORAL MODELS (STM)
Y SIMVP 5.765×10−5 4.107×10−5 0.627 1.044×10−4 7.903×10−5 0.625 1.346×10−4 1.048×10−4 0.539

DOMAIN-SPECIFIC MODELS (DSM)
Ô DNN 6.902×10−5 4.929×10−5 0.413 1.273×10−4 9.503×10−5 0.358 1.572×10−4 1.224×10−4 0.200

� VISION (IO) 5.519×10−5 3.935×10−5 0.667 1.034×10−4 7.833×10−5 0.634 1.335×10−4 1.039×10−4 0.549

Figure 3: Qualitative comparison of vertical velocity (w) reconstruction at three subterranean depths
(W20, W40, W60). The figure compares the outputs of our proposed model VISION (Ours) against
several state-of-the-art baselines, including CNO, FNO, UNet, ResNet, SimVP, and the domain-
specific DDN, with the Ground Truth shown on the far right. While most baselines either produce
overly smoothed results (e.g., FNO) or fail to capture coherent structures (e.g., DDN), our model
successfully reconstructs the complex, multi-scale turbulent features, demonstrating superior perfor-
mance in capturing the physical dynamics.

5.1 DATA AND BASELINES

We use the proposed KD48 benchmark to conduct analysis of ocean vertical velocity reconstruction.
Specifically, we use the hourly snapshots of Sea Surface Height (SSH), Buoyancy (B), which
is calculated by Sea Surface Temperature (SST) and Sea Surface Salinity (SSS), zonal (U) and
meridional (V) surface velocities, and depth level vertical velocity w at 20, 40, and 60. In summary,
we use 8000 samples for training, 500 samples for validating, and 1500 samples for testing. We
compare our proposed VISION with 4 types of baselines, which includes operator learning models
(FNO (Li et al., 2021), CNO (Raonic et al., 2023), and LSM (Wu et al., 2023a)), computer vision
backbones (UNet (Ronneberger et al., 2015) and ResNet (He et al., 2016)), spatiotemporal model
(SimVP (Tan et al., 2025)), and domain-specific model for w reconstruction (DDN (Zhu et al.,
2023)). The baseline models are trained using the complete observation, and our VISION is trained
using random observation, which randomly selects input from incomplete observation or complete
observation.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We use three metrics, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Pearson
Correlation Coefficient (PCC) to evaluate the reconstruction performance of different methods. More
details can be found in E.2. As shown in Table 1, we report the average results for 1500 samples.
Although VISION is trained in incomplete observation (IO) settings, it still achieves competitive
performance compared to state-of-the-art baselines. In contrast, baseline models rely on complete
observation (CO), which restricts their applicability in real-world scenarios where certain variables
are inevitably missing. Furthermore, as illustrated in Figure 3, the reconstruction performance of
VISION are in closer agreement with the ground truth.

Figure 4: Quantitative Validation of Dynamic Prompting. Reconstruction performance of VISION
at three depths (20, 40, 60) improves as more input variables (SSH, U, V, B) are provided. The
consistent reduction in RMSE/MAE and increase in PCC validate VISION’s ability to adaptively
leverage available observational data.

Figure 5: Qualitative Comparison of Dynamic
Prompting Reconstruction. This figure demon-
strates the progressive improvement of VISION’s
reconstruction of vertical velocity at three depths
(W20, W40, W60). As more input variables
are provided from only SSH, to including sur-
face velocities (U+V), and finally B the recon-
structed fields become increasingly detailed and
more closely resemble the Ground Truth.

From a quantitative perspective. Table 1
demonstrates the consistent and superior perfor-
mance of our proposed VISION model. Across
all three subterranean depths (20, 40, and 60
layers), VISION achieves the best results on all
evaluation metrics: the lowest RMSE and MAE,
and the highest PCC. This achievement is partic-
ularly noteworthy because VISION is trained un-
der the more challenging and realistic scenario
of IO, whereas all baseline models are trained
with the advantage of CO. This indicates that
our method not only reaches a higher level of
accuracy but also possesses superior robustness
and practical value for real-world applications.

From a qualitative standpoint. The visual re-
sults in Figure 3 provide a compelling confirma-
tion of VISION’s capabilities. The Ground Truth
images are characterized by complex, multi-
scale turbulent structures, including sharp fronts
and fine filaments. In comparison, baseline
models show significant deficiencies. For in-
stance, FNO produces overly smoothed fields
that lose almost all fine-scale details, while
DDN fails almost completely, capturing only
a few sparse, high-intensity spots. Although
DDN is a domain-specific method for w reconstruction, it will produce unsatisfactory performance
on more challenging KD48 benchmark when it deviates from the relatively simple ideal data used in
their paper. Other models like CNO, UNet, and ResNet capture large-scale patterns but still appear
blurry and fail to resolve the smaller intricate structures. In stark contrast, the output from VISION
(Ours) shows a remarkable visual fidelity to the ground truth. It accurately reconstructs not only the
large-scale upwelling (red) and downwelling (blue) zones but also successfully resolves many of
the fine, filamentary details, presenting a physically coherent and detailed velocity field that is far
superior to all baselines.
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Table 2: Ablation study of VISION’s key components on the KD48 benchmark. We evaluate the
impact of each component under different observation settings. Performance degradation in ablated
models highlights their necessity. Best results are in bold.

MODEL VARIANT
SUBTERRANEAN LAYERS

20 LAYER 40 LAYER 60 LAYER

RMSE↓ MAE↓ PCC↑ RMSE↓ MAE↓ PCC↑ RMSE↓ MAE↓ PCC↑

Incomplete Observation (SSH)
E w/o SCP 7.359×10−5 5.356×10−5 0.280 1.335×10−4 1.018×10−4 0.241 1.604×10−4 1.252×10−4 0.132
⋆ VISION 6.783×10−5 4.960×10−5 0.433 1.195×10−4 9.059×10−5 0.463 1.507×10−4 1.178×10−4 0.306

Incomplete Observation (SSH U V)
E w/o SCP 6.315×10−5 4.528×10−5 0.557 1.160×10−4 8.762×10−5 0.510 1.493×10−4 1.166×10−4 0.345
⋆ VISION 5.849×10−5 4.205×10−5 0.640 1.065×10−4 8.036×10−5 0.618 1.326×10−4 1.032×10−4 0.545

Complete Observation (SSH U V B)
E w/o SCP 6.076×10−5 4.330×10−5 0.593 1.157×10−4 8.739×10−5 0.513 1.500×10−4 1.171×10−4 0.336
E w/o GSAO 7.359×10−5 5.356×10−5 0.280 1.335×10−4 1.018×10−4 0.241 1.604×10−4 1.252×10−4 0.132
⋆ VISION 5.605×10−5 3.975×10−5 0.668 1.045×10−4 7.872×10−5 0.630 1.316×10−4 1.025×10−4 0.550

5.3 DYNAMIC PROMPTING RECONSTRUCTION EVALUATION

We evaluate VISION’s dynamic prompting mechanism through a series of experiments. The core
advantage of this mechanism is its ability to adaptively tailor its reconstruction strategy to any available
combination of inputs. This design philosophy aligns perfectly with our theoretical foundation,
Lemma 1, which posits from an information-theoretic standpoint that more observational information
effectively reduces the inherent uncertainty of the reconstruction task.

Our experimental results provide strong empirical support for this theory from both quantitative
and qualitative perspectives. Quantitatively, as shown in Figure 4, the model’s reconstruction error
consistently decreases and its correlation with the ground truth steadily improves as input variables are
augmented from only SSH to the full set including U, V and B. Qualitatively, this performance gain
is mirrored by a remarkable enhancement in visual fidelity (Figure 5). The model’s output evolves
from an initially blurry, large-scale approximation to a highly detailed field that accurately resolves
complex eddies and fronts, ultimately achieving a close match with the Ground Truth when all inputs
are used. This progression from blurry to realistic vividly demonstrates how VISION translates
theoretical information gain into more physically consistent and detailed reconstructions.

5.4 ABLATION STUDY

To verify the effectiveness of the proposed method, as shown in Table 2, we conduct detailed
ablation experiments. The model variants and VISION are trained using random observation, which
randomly selects input from incomplete observation or complete observation. During inference, we
report the average performance over 1,000 samples across three observation scenarios: Incomplete
Observation (SSH), Incomplete Observation (SSH, U, V), and Complete Observation (SSH, U,
V, B). VISION W/O SCP represents that we remove State-Conditioned Prompting (SCP). VISION
W/O GSAO means that we remove the Geometry-Scale Aware Operator (GSAO). Experimental
results show that the lack of any component will degrade the performance of, which proves the
effectiveness of the proposed method. More importantly, the introduced promoting strategy is vital to
the real-world w reconstruction, where the observations are often incomplete.

6 CONCLUSION

This work introduces VISION, a framework for reconstructing ocean vertical velocity from incomplete
observations. Using a novel Dynamic Prompting mechanism, VISION adaptively processes any subset
of available surface variables, overcoming the brittleness of traditional models to missing data. To
facilitate research, we also construct and release the KD48 benchmark, a large-scale, high-quality
dataset. Extensive experiments on KD48 demonstrate that VISION substantially outperforms state-of-
the-art models while exhibiting exceptional robustness and generalization across diverse data-missing
scenarios. Our work thus provides a robust adaptive model and a standardized benchmark, establishing
a new paradigm for handling data uncertainty in scientific computing.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were not involved in the research ideation or the writing of this paper.

B PROOF OF LEMMA 1

Lemma 1 Let w be the target random variable representing the field to be reconstructed. Let S1 and
S2 be two sets of observable variables such that S1 ⊂ S2. Let XS1

and XS2
denote the random

variables for the corresponding observations. The conditional entropy of w given these observations
satisfies:

H(w|XS2) ≤ H(w|XS1) (10)

Proof B.1 The proof is structured in five steps. We first define the necessary concepts, then derive the
main result by leveraging the non-negativity of conditional mutual information, and finally discuss
the condition for equality.

1. Definitions and Setup To establish the proof, we first define the key symbols and concepts
from information theory. These are summarized in Table 3. The arguments extend from discrete to
continuous variables by replacing summations with integrals.

Table 3: Summary of key symbols and definitions used in the proof.

Symbol Description Conceptual Definition

w Target Field The random variable for the field to be reconstructed.

XS Observations The random variable for observations from variable set S.

H(A) Entropy Measures the average uncertainty of a random variable A.

H(A|B) Conditional Entropy Remaining uncertainty of A given that B is known.

I(A;B|C) Conditional Mutual Info. Mutual information between A and B given C.

DKL(P ∥ Q)KL Divergence A measure of how one probability distribution P diverges from Q.

Let Sadd = S2\S1 be the set of additional variables, and let XSadd
be the corresponding random vari-

able. The total set of observations can thus be expressed as the joint variable XS2 = (XS1 ,XSadd
).

2. Core Derivation via Conditional Mutual Information Our objective is to prove that
H(w|XS1

,XSadd
) ≤ H(w|XS1

).

We begin by applying the chain rule for conditional entropy to H(w,XSadd
|XS1) in two different

ways:

H(w,XSadd
|XS1

) = H(w|XS1
) +H(XSadd

|w,XS1
) (11)

H(w,XSadd
|XS1) = H(XSadd

|XS1) +H(w|XS1 ,XSadd
) (12)

Equating the right-hand sides of equation 11 and equation 12, we get:

H(w|XS1) +H(XSadd
|w,XS1) = H(XSadd

|XS1) +H(w|XS1 ,XSadd
) (13)

Rearranging the terms to isolate the difference between the entropies of interest:

H(w|XS1)−H(w|XS1 ,XSadd
) = H(XSadd

|XS1)−H(XSadd
|w,XS1) (14)

The right-hand side of Equation equation 14 is, by definition, the conditional mutual information
between w and XSadd

given XS1
:

I(w;XSadd
|XS1) = H(XSadd

|XS1)−H(XSadd
|w,XS1) (15)

14
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3. Non-Negativity of Conditional Mutual Information A fundamental theorem in information
theory states that conditional mutual information is always non-negative. This can be rigorously
shown by expressing it as an expected Kullback-Leibler (KL) divergence:

I(w;XSadd
|XS1

) = Ep(xS1
) [DKL (p(w,xSadd

|xS1
) ∥ p(w|xS1

)p(xSadd
|xS1

))] (16)

Since the KL divergence DKL(P ∥ Q) ≥ 0 for any two probability distributions P and Q, the
expectation of this non-negative quantity must also be non-negative. Thus,

I(w;XSadd
|XS1) ≥ 0 (17)

4. Final Conclusion By substituting the mutual information definition from equation 15 back into
equation 14 and applying the non-negativity property from equation 17, we obtain:

H(w|XS1)−H(w|XS1 ,XSadd
) ≥ 0 (18)

This directly implies the desired inequality:

H(w|XS1
,XSadd

) ≤ H(w|XS1
) (19)

Given that XS2
= (XS1

,XSadd
), the lemma is proven.

5. Condition for Equality Equality holds if and only if the conditional mutual information is zero,
I(w;XSadd

|XS1) = 0. As shown in equation 16, this occurs if and only if the joint conditional
distribution factorizes into the product of the marginal conditional distributions:

p(w,xSadd
|xS1

) = p(w|xS1
)p(xSadd

|xS1
) (20)

This is the definition of conditional independence of w and XSadd
given XS1

. In a physically coupled
system like the ocean, where all variables are intricately linked through underlying dynamical
equations, this condition is generally not met. Therefore, the inequality is typically strict, meaning
additional distinct observations strictly reduce the uncertainty.

15
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C ALGORITHM

Algorithm 1 The VISION Framework for Reconstruction with Dynamic Prompting

Input:
Require: A subset of observations XS ∈ R|S|×H×W

Require: A learnable codebook of prompt templates CP = {Pk}Kk=1
Require: Model parameters θ (including UOA, SCP, and GSAO modules)

Output:
Ensure: Reconstructed vertical velocity field ŵ ∈ R3×H×W

1: function VISION_RECONSTRUCT(XS , CP , θ)
▷ — Stage 1: Adaptive Observation Embedding —

2: Z0 ← UOA(XS ,m) ▷ Canonicalize variable inputs into a fixed-dim feature map

▷ — Stage 2: State-Conditioned Prompt Generation —
3: e← GlobalAveragePooling(Z0) ▷ Compress Z0 to a state vector
4: vcontext ← Conv1(e) ▷ Combine state and availability information
5: α← Softmax(MLPmixer(vcontext)) ▷ Generate mixing weights from context
6: P ←

∑K
k=1 αkPk ▷ Create dynamic prompt from codebook

7: P ← Upsample(P ) ▷ Match spatial dimensions with Z0

▷ — Stage 3: Prompt-Guided Reconstruction —
8: Z1 ← PromptInteraction(Z0, P ) ▷ Fuse base features with the dynamic prompt, e.g.,

Z0 + Conv(Z0, P )
9: ŵ ← GSAO(Z1) ▷ Process conditioned features with the Geometry-Scale Aware Operator

backbone

10: return ŵ
11: end function

Note: The entire model, parameterized by θ, is trained end-to-end by minimizing a loss function
(e.g., Smooth L1 Loss) between the prediction ŵ and the ground-truth w. The training data
consists of samples with varying availability observations.

D BENCHMARK DETAILS

The KD48 benchmark used in this paper is derived from LLC4320, which is based on the global
ocean simulation of MITgcm (Marshall et al., 1997). LLC4320 has a spatial resolution of 1/48°
and a temporal resolution of 1h with 90 vertical levels. The LLC4320 simulation is initialized
from the output of the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2),
project (Menemenlis et al., 2008). The LLC4320 model is forced by the 6-hourly, 0.168 horizontal
resolution ECMWF atmospheric reanalysis, as well as by an equivalent surface pressure field
consisting of the full lunar and solar tidal potential (Weis et al. 2008). For our analysis, we select a
regional near Kuroshio and use the hourly snapshots of sea surface height (SSH), sea surface potential
temperature (SST), sea surface salinity (SSS), surface longitude velocity (U), surface latitude velocity
(V), and depth level vertical velocity w at 20, 40, and 60, from 1 November 2011 to 31 October 2012
(366 days). For this regional data, height and width are both 512. Further, we use SSS and SST to
calculate buoyancy (B) as a available observation, which can be expressed as:

b = g
[
α
(
SST− T0

)
− β

(
SSS− S0

)]
, (21)

where, b denotes the buoyancy, g = 9.81 m s−2 is the gravitational acceleration. The constants
α (K−1) and β (psu−1) are the thermal expansion and haline contraction coefficients, evaluated
from the seawater equation of state at a chosen reference state (T0, S0, p=0). Equation equation 21
is derived from the linearized equation of state, ρ′ ≈ −ρ0α(SST− T0) + ρ0β(SSS− S0), together

16
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with b = −gρ′/ρ0. Given that limination that the observation obtained by available sensor may not
reconstruct vertical velocity in the near- and superinertial bands. Rather than the full w signals shown
target, we will use the low-pass-filtered w field:

w̃(t, z, x, y) =

t∑
τ=t−L+1

1

L
exp

(
− t− τ

L

)
w(τ, z, x, y), (22)

where, w(t, z, x, y) denotes the vertical velocity at time t, depth z, and horizontal location (x, y).
The operator w̃(t, z, x, y) is the temporally low-pass–filtered vertical velocity obtained through a
causal exponential moving average with window length L. In our setup, L=1.2 day. The exponential
weight exp(−(t− τ)/L) emphasizes more recent states while progressively damping high-frequency
variability.

E EXPERIMENTS DETAILS

E.1 TRAINING DETAILS

Since the vertical velocity w has a much smaller magnitude compared to the input surface variables, it
is essential to apply normalization to ensure stable learning. And different ocean variables have large
variations in their magnitude. To allow the model focusing on reconstruction rather than learning the
differences between variables, we normalized the data before feeding them into the model, so that the
network can focus on reconstruction rather than being dominated by scale differences across variables.
Specifically, we compute the mean and standard deviation of each variable from the training dataset,
and use them to normalize the data. For a given variable, we subtract its corresponding mean and
divide by its standard deviation, thereby mapping all variables to a comparable scale. We train all
baselines and our VISION for 50 epochs with a learning rate 1e-4.

E.2 EVALUATION METRIC

To comprehensively evaluate the reconstruction performance, we adopt three commonly used metrics:
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Pearson Correlation Coefficient
(PCC).

Root Mean Square Error (RMSE). RMSE measures the square root of the average squared
differences between predictions and ground truth, averaged across all samples, where larger errors
contribute quadratically, making RMSE more sensitive to outliers:

RMSE =
1

B

B∑
i=1

√√√√ 1

M

M∑
j=1

(
pi,j − ti,j

)2
, (23)

where, B denotes the number of samples, H and W are the spatial dimensions (height and width).
M = H×W is the total number of spatial locations per sample. pi,j is the predicted value at location
j of the i-th sample and ti,j is the ground truth value at location j of the i-th sample.

Mean Absolute Error (MAE). MAE computes the mean of the absolute differences between
reconstruction results and ground truth, which reflects the average error magnitude and is less sensitive
to extreme values compared to RMSE:

MAE =
1

B

B∑
i=1

1

M

M∑
j=1

∣∣pi,j − ti,j
∣∣. (24)

Pearson Correlation Coefficient (PCC). PCC evaluates the linear correlation between predicted
and ground truth fields, which ranges from −1 (perfect negative correlation) to +1 (perfect positive
correlation). A higher PCC indicates stronger alignment of spatial patterns between prediction and

17
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ground truth:

PCC =
1

B

B∑
i=1

M∑
j=1

pi,jti,j −
1

M

( M∑
j=1

pi,j

)( M∑
j=1

ti,j

)
√√√√( M∑

j=1

p2i,j −
1

M

( M∑
j=1

pi,j

)2)( M∑
j=1

t2i,j −
1

M

( M∑
j=1

ti,j

)2) . (25)
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