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Abstract

Transformer-based Large Language Models (LLMs) have demonstrated powerful
in-context learning capabilities. However, their predictions can be disrupted by
factually correct context, a phenomenon known as context hijacking, revealing
a significant robustness issue. To understand this phenomenon theoretically, we
explore an in-context linear classification problem based on recent advances in
linear transformers. In our setup, context tokens are designed as factually correct
query-answer pairs, where the queries are similar to the final query but have
opposite labels. Then, we develop a general theoretical analysis on the robustness
of the linear transformers, which is formulated as a function of the model depth,
training context lengths, and number of hijacking context tokens. A key finding
is that a well-trained deeper transformer can achieve higher robustness, which
aligns with empirical observations. We show that this improvement arises because
deeper layers enable more fine-grained optimization steps, effectively mitigating
interference from context hijacking. This is also well supported by our numerical
and real-world experiments. Our findings provide theoretical insights into the
benefits of deeper architectures and contribute to enhancing the understanding of
transformer architectures.

1 Introduction

Transformers [67] have demonstrated remarkable capabilities in various fields of deep learning, such
as natural language processing [60} |1} 168,166, 52, 26]]. A common view of the superior performance
of transformers lies in its remarkable in-context learning ability [14} 18} 44|, that is, transformers can
flexibly adjust predictions based on additional data given in context contained in the input sequence
itself, without updating parameters. This impressive ability has triggered a series of theoretical studies
attempting to understand the in-context learning mechanism of transformers [511 130, [77} 1311 [76].
These studies suggest that transformers can behave as meta learners [18]], implementing certain meta
algorithms (such as gradient descent [69), 2| [85]]) based on context examples, and then applying these
algorithms to the queried input.

Despite the benefits of in-context learning abilities in transformers, this feature can also lead to
certain negative impacts. Specifically, while well-designed in-context prompts can help generate
desired responses, they can also mislead the transformer into producing incorrect or even harmful
outputs, raising significant concerns about the robustness of transformers [21}145}[86]. For instance,
a significant body of work focuses on jailbreaking attacks [15}150}162} 25/81]], which aim to design
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Figure 1: Context hijacking phenomenon in LLMs of different depths. Left: If there are no or
only a few factually correct prepends, LLMs of different depths can correctly predict the next token.
When the number of prepends increases, the outputs of models are disrupted. Right: Four different
types of tasks are introduced, each with a fixed template, and tested on LLMs of different depths.
The horizontal axis is the model with depth from small to large, and the vertical axis is the average
number of prepends required to successfully interfere with the model output. Experiments show that
deeper models perform more robustly. (Experimental setup is given in Appendix @)

specific context prompts that can bypass the defense mechanisms of large language models (LLMs)
to produce answers to dangerous or harmful questions (e.g., “how to build a bomb?”). It has
been demonstrated that, as long as the context prompt is sufficiently long and flexible to be adjusted,
almost all LLMs can be successfully attacked [6]]. These studies can be categorized under adversarial
robustness, where an attacker is allowed to perturb the contextual inputs arbitrarily to induce the
transformer model to generate targeted erroneous outputs [63} 53} 22} 80].

However, in addition to the adversarial attack that may use harmful or incorrect context examples, it
has been shown that the predictions of LLMs can also be disrupted by harmless and factually correct
context. Such a phenomenon is referred to as context hijacking [37,136], which is primarily discovered
on fact retrieval tasks, i.e. the output of the LLMs can be simply manipulated by modifying the context
with additional factual information. For example, as shown in Figure[T] the GPT2 model can correctly
answer the question “Rafael Nadal’s best sport is” with “tennis” when giving context
examples. However, if factually correct context examples such as “Rafael Nadal is not good
at playing ” are provided before the question, the GPT-2 model may incorrectly
respond with “ ”. Then, it is interesting to investigate whether such a phenomenon
depends on different tasks and transformer architectures. To this end, we developed a class of
context hijacking tasks and counted the number of context examples that led to incorrect outputs
(see Figure[I). Our findings indicate that increasing the number of prepended context examples
amplifies the effect on the transformer’s prediction, making it more likely to generate incorrect
outputs. Additionally, we observed that deeper transformer models exhibit higher robustness to
context hijacking, requiring more prepended context examples to alter the model’s output. Therefore,
conducting a precise robustness analysis regarding context hijacking could provide valuable insights
in understanding the architecture of the transformer model.

In this paper, we aim to develop a comprehensive theoretical analysis on the robustness of transformer
against context hijacking. In particular, we follow the general design of previous theoretical works
[51,12027] on the in-context learning of transformers, by considering the multi-layer linear transformer
models for linear classification tasks, where the hijacking examples are designed as the data on the
boundary but with an opposite label to the queried input. Starting from the view that the L-layer
transformer models can implement L-step gradient descent on the context examples, with an arbitrary
initialization, we formulate the transformer training as finding the optimal multi-step gradient descent
methods with respect to the learning rates and initialization. Then, we prove the optimal multi-step
gradient strategy, and formulate the optimal learning rate and initialization as the function of the
iteration number (i.e., model depth) and the context length. Furthermore, we deliver the theoretical
analysis on the robustness based on the proved optimal gradient descent strategy, which shows that as
the transformer become deeper, the corresponding more fine-grained optimization steps can be less
affected by the hijacking examples, thus leading to higher robustness. This is well aligned with the
empirical findings and validated by our numerical and real-world experiments. We summarize the
main contributions of this paper as follows:



* We develop the first theoretical framework to study the robustness of multi-layer transformer model
against context hijacking, where the hijacked context example is designed as the data with the
factually correct label but close to the prediction boundary. This is different from a very recent
related work on the robustness of transformer [7] that allows the context data to be arbitrarily
perturbed, which could be factually incorrect.

* Based on the developed theoretical framework, we formulate the test robust accuracy of the
transformer as a function with respect to the training context length, number of hijacked context
examples, and the depth of the transformer model. The key of our analysis is that we model the
in-context learning mechanism of a well-trained multi-layer transformer as an optimized multi-step
gradient descent, where the corresponding optimal initialization and learning rates can be precisely
characterized. This could of independent interest to other problems that involve the gradient descent
methods on linear problems.

* Based on the developed theoretical results, we demonstrate that deeper transformers are more robust
because they are able to perform more fine-grained optimization steps on the context samples,
which can potentially explain the practical observations of LLMs in the real world (see Figure [I)).
The theoretical results are well supported by synthetic numerical experiments and real-world LLMs
experiments in various settings.

Related Works. Our work is related to recent works on in-context learning via transformers,
mechanism interpretability of transformers, and robustness of transformers. Due to space limit, we
defer them to Appendix

2 Preliminaries

2.1 Data model

To understand the mechanism of context hijacking phenomenon, we model it as a binary classification
task, where the query-answer pair is modeled as the input-response pair ((x,y) € R? x {£1}). In
particular, we present the definition of the data model as follows:

Definition 2.1 (Data distribution). Let w* € R? be a vector drawn from a prior distribution on the d
dimensional unit sphere S?~1, denoted by pg-« (-), where 3* € S~ denotes the expected direction
of w*. Then given the generated w*, the data pair (x, y) is generated as follows: the feature vector is
x ~ N (0g4,1,) and the corresponding label is y = sign({w*, x)).

Modeling natural language problems as linear problems is a common setting in theoretical research,
because linear problems have sufficient representation power, supported by many previous works [69,
2,185,184, 33| 147]]. The innovation of our construction is that we precisely exploit the characteristics
of the context hijacking phenomenon and model it as a semantic binary classification problem.
Compared with previous works that directly study linear problems, such as linear regression, our
modeling is more practical. Moreover, to extend our theoretical results to more complex situations,
we also consider nonlinear models and nonlinear tasks, which is given in Appendix [[.3]

Based on the data distribution of each instance, we then introduce the detailed setup of the in-context
learning task in our work. In particular, we consider the setting that the transformer is trained on the
data with clean context examples and evaluated on the data with hijacked context.

Training phase. During the training phase, we are given n clean context examples
{(x1,91),...,(Xn,yn)} and a query Xquery With its label yquery. In particular, here we mean
the clean examples as the {(x1,91), .., (Xn, yn)} are drawn from the same data distribution Dy«
as (Xquery, Yquery ) Then, the input data matrix for in-context learning is designed as follows:

_ X1 .- Xp  Xquery ER(d+1)X(TL+1). (21)
Yioo-o Yn 0

Here, to ensure that the dimension of Xquery aligns with those of other input pair (x;,y;), we
concatenate it with 0 as a placeholder for the unknown label 4/query. Ideally, we anticipate that given
the input Z, the output of the transformer model, denoted by Yquery can match the ground truth one.
Moreover, we also emphasize that within each data matrix Z, the context examples and the queried
data should be generated based on the same ground truth vector w*, while for different input matrices,
e.g., Z and Z’, we allow their corresponding ground truth vectors could be different, which are i.i.d.
drawn from the prior pg- (-).



The training data distribution simulates the pre-training data of the large language model. Unlike
existing works [2,51]] where the prior of w* is assumed to have a zero mean, we consider a setting
where w* has a non-zero mean (i.e., 3*). This approach is inspired by empirical observations (see
Figure [I)) that transformer models can perform accurate zero-shot predictions. Consequently, our
model can encapsulate both memorization and in-context learning, where the former corresponds
to recovering the mean of the prior distribution, i.e., 3%, and the latter aims to manipulate the
{(x1,41), .-+, (Xn,yn)} effectively. In contrast, existing works primarily focus on the latter, thereby
failing to fully explain the interplay between memorization and in-context learning.

Test phase. During the test phase, context examples are designed based on the query input Xgyery t0
effectively execute the attack. Inspired by empirical observations (Figure[I)) and prior experience
with jailbreaking attacks [6], we choose to use repeated hijacking context examples during the test
phase. Specifically, since the hijacked context should be factually correct, we consider data similar
to the queried input but with a correct and opposite label of low confidence. Mathematically, this
involves projecting Xquery Onto the classification boundary. To this end, given the target query data
(Xquery, Yquery ), we formalize the design of the hijacked context example as follows.

Definition 2.2 (Hijacked context data). Let (x,y) be a input pair and w* be the corresponding
ground truth vector. Additionally, denote x| as the projection of x on the boundary of classifier, i.e.
x, = (I;—w*(w*)")-x. Then, the query pair (Xquery, Yquery ) is generated as Xquery = X | +0owW™
and Yquery = sign ((w*, xqucr},)) = sign(o) with o being a random variable, and the hijacked
context example is designed as xy,. = x| and Ync = —Yquery-

Note that we pick (xp., w*) = 0 to enforce hijacked context lies on the boundary of the classifier. A
more rigorous design is to set Xpe = X1 — 1) - Yquery - W fOr some positive quantity n, where it can
be clearly shown that yn. = 8ign((Xne, W*)) = —Yquery- Deﬁnitionconcerns the limiting regime
by enforcing n — 0.

Then, based on the above design, the input data matrix in the test phase is constructed as follows:

Zhe _ Xhe --- Xhe Xquery c R+ x(N+1) (2.2)
Yhe -+ Yhe 0

Here we use N to denote the number of hijacked context examples. The example (Xpc, Ync) can also
be interpreted to the closest data to Xquery but with a different label —yquery, Which principally has
the ability to perturb the prediction of X,ery. An innovation compared with previous work is that our
data model design is semantic. For example, in Figure[I} we can assume that xy,. = “Rafael Nadal
is not good at playing”, y,. = “basketball”, xucry = “Rafael Nadal’s best sport is”, and yquery =
“tennis”. Additionally, because the prediction is highly likely to be correct in the zero-shot regime (i.e.,
N = 0), the prediction in the test phase can be viewed as a competition between model memorization
and adversarial in-context learning. This dynamic is primarily influenced by the number of hijacked
context examples.

2.2 Transformer model

Following the extensive prior theoretical works for transformer [84), [85, 16, 27} 2], we consider
linear attention-only transformers, a prevalent simplified structure to investigate the behavior of
transformer models. In particular, We define an L-layer linear transformer TF as a stack of L single-
head linear attention-only layers. For the input matrix Z;_; € R(@TDx(+1) the j-th single-head
linear attention-only layer TF; updates the input as follows:

Z; =TFi(Zi—1) = Zi—1 + PiZ;M(Z] ,QiZ;i_1), 2.3)
I’IL
0

the model’s focus to the first 72 in-context examples. Moreover, the matrix P := W,, € R(¢+1)x(d+1)
serves as the value matrix in the standard self-attention layer, while the matrix Q := W,;'—Wq S

where M := ( 8) € R(+1)x(n+1) s the mask matrix. We design this architecture to constrain

R(4+1)x(d+1) consolidates the key matrix and query matrix. This mild re-parameterization has been
widely considered in numerous recent theoretical works [34, 72} 165} 35]]. To adapt the transformer
for solving the linear classification problem, we introduce an additional linear embedding layer
W € R@+1Dx(d+1) Then the output of the transformer TF is defined as

Z/J\query = TF(ZO; WE7 {P€7 Qf}%:l)



= —[TFL 0O---0 TF1 [e] WE(ZO)](d+1),(n+1)
= —[ZL](d+1),(n+1)» (2.4)

i.e. the negative of the (d + 1,n + 1)-th entry of Z,, and this position is replaced by 0 in the input
Z. The reason for taking the minus sign here is to align with previous work [69, 62], which will be
explained in Proposition [3.1]

2.3 Evaluation metrics

Based on the illustration regarding the transformer architecture, we first define the in-context learning
risk of a L-layer model TF in the training phase. In particular, let Dy, be the distribution of the input
data matrix Z in and the target yquery, Which covers the randomness of both (x, y) and w*, then
the risk function in the training phase is defined as:

R(TF) == Egz 0, ~Dur | (TF(Z:0) — Yquery)” |- (2.5)

where 8 = {W g, {P,, Q,}%_,} denotes the collection of all trainable parameters of TF. This risk
function will be leveraged for training the transformer models (where we use the stochastic gradient
in the experiments).

Additionally, in the test phase, let Dy, be the distribution of the input data matrix Z"° in (2.2) and the
target 9query, we consider the following population prediction error:

& (TF) := Py TF(Z"%;0) - yquery < 0]. (2.6)

sYquery ~De [

3 Main theory

In this section, we present how we establish our theoretical analysis framework regarding the robust-
ness of transformers against context hijacking. In summary, we can briefly sketch our framework into
the following several steps:

» Step 1. We establish the equivalence between the L-layer transformers and L steps gradient descent,
converting the original problem of identifying well-trained transformers to the problem of finding
the optimal parameters of gradient descent (i.e., initialization and learning rates).

» Step 2. We derive the optimal learning rates and initialization of gradient descent, revealing its
relationship with the number of layers L and training context length n.

» Step 3. By formulating the classification error of a linear model obtained by L steps gradient
descent with optimal parameters on hijacking distribution D;., we characterize how the number of
layers L, the training context length n and test context length N affect the robustness.

3.1 Optimizing over in-context examples

Inspired by a line of recent works [85, 19} [16} 12 I51]] which connects the in-context learning of
transformer with the gradient descent algorithm, we follow a similar approach by showing that, in the
following proposition, multi-layer transformer can implement multi-step gradient descent, starting
from any initialization, on the context examples.

Proposition 3.1. For any L-layer single-head linear transformer, let g?élgery be the output of the [-th
layer of the transformer, i.e. the (d + 1,n + 1)-th entry of Z;. Then, there exists a single-head linear

transformer with L layers such that gff&ery = — (wg(i, xquery>. Here, Wég ’s are the parameter vectors

obtained by the following gradient descent iterative rule and the initialization wgé) can be arbitrary:

+1 l T l
wéd ) — Wéd) - I‘IVL(Wé,d))7
. 1 n
where  L(w) = 5 > ((w,xi) — i), (3.1

i=1

Here I'; can be any d x d matrix.



As I'; could be any d x d matrix, Proposition demonstrates that the output of the L-layer
transformers is equivalent to that of a linear model trained via L-steps of full-batch preconditioned
gradient descent on the context examples, with {I‘l}l]‘;Ol being the learning rates. This suggests
that each L-layer transformer defined in , with different parameters, can be viewed as an
optimization process of a linear model characterized by a distinct set of initialization and learning rates

{wg;), To,...,Tr_1}. Therefore, it suffice to directly find the optimal parameters of the gradient

descent process, without needing to infer the specific parameters of the well-trained transformers.

Among all related works presenting similar conclusions that transformers can implement gradient
descent, our result is general as we prove that transformers can implement multi-step gradient descent
from any initialization. In comparison, for example, [85] shows that a single-layer transformer with
MLP can implement one-step gradient descent from non-zero initialization. [2] demonstrate that
linear transformers can implement gradient descent, but only from O initialization.

3.2 Optimal multi-step gradient descent

Based on the discussion in the previous section, Proposition [3.1] successfully transforms the original
problem of identifying the parameters of well-trained transformers into the task of finding the optimal
learning rates and initialization for the gradient descent process (3.1)). In this section, we present our
conclusions regarding these optimal parameters. As we consider optimizing over the general training
distribution Dy, where the tokens x;’s follow the isotropic distribution, it follows that the updating
step size should be equal in each direction from the perspective of expectation. Therefore we consider
the case T'; = o1, to simplify the problem, with «; being a scalar for alll € {0,...,L — 1}. In

the following, we focus on the optimal set of parameters {Wé?i), Qg, .. .,ar—1}. Specifically, we

consider the population loss for wéﬁ) as

R(Wég)) = ET,W*N'Dn [(<Wéﬁ)7 Xquery> - yquery)2]7

where 7' = {(x1,%1)- -+ (Xn,Yn)s (Xquerys Yquery) } is the set of all classification pairs ﬂ This
definition resembles R(TF) defined in (2.5). We attempt to find the Wéﬁ) that minimizes this

population loss, along with the corresponding learning rates {; } =, and initialization wég), which
can generate this w via gradient descent. We first present the following proposition demonstrating
that there exists commutative invariance among the learning rates {cy }/-, for producing wéﬁ).

Proposition 3.2. Let {ag, a1,...,a5_1} be a set of learning rates, and {og, o,...,a}_,} be
another set of learning rates that is a permutation of {ag, a1, . .., 1}, meaning both sets contain
the same elements, with the only difference being the order of these elements. With wéﬁ) € R¢

denoting as the parameters achieved by learning rates {a, a1,...,ar—1} and Wéﬁ,) € R? as the

parameters achieved by learning rates {ay, o, ..., o _;} from the same initialization ngi), it holds

that 'y = w'l).

Proposition [3.2] implies that the learning rates at different steps contribute equally to the overall
optimization process. Consequently, we will consider a consistent learning rate « through the entire
gradient descent procedure, which significantly reduces the difficulty of analysis and does not incur
any loss of generality. Additionally, given the correspondence between each step of gradient descent
and each layer of transformers, Proposition[3.2]implies the possibility of analogous behavior among
layers of deep transformers during training. Such a result provides a promising approach to the

optimization of deep transformers. Now we are ready to present our main results regarding the
(0)

derivation of the optimal parameters cv and w .

Theorem 3.3. For training distribution Dy, in Definition[2.1] suppose that the training context length

n is sufficiently large such that n > Q(max{d2, dL}). Additionally, suppose that the perturbation
of w* around its expectation 3* is smaller than 7, i.e. (w*,3*) > 0. Based on these assumptions,

3Here we slightly abuse the notation of Dy, to denote both the distribution of Z, Wquery and T, w™.
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Figure 2: Gradient descent experiments using a single-layer neural network. We use grid search to
obtain the optimal learning rate for different training context lengths n and different steps of gradient
descent L. Then we use the corresponding optimal learning rate to perform multi-step gradient
descent optimization on the test dataset. The results show that longer training context lengths and
more gradient descent steps lead to smaller optimal learning rate and better optimization.

the optimal learning rate « and initialization Wg;), ie. a, wég) = argmin_ (o R(wéﬁ)), take the
"Wad

value as follows:

~ /1 .
a@(nL); Wgzl):cﬁ,

where c is an absolute constant.
. Specifically, it

Theorem clearly identifies the optimal learning rate o and initialization wg)j)

shows that the optimal initialization wé?i) aligns the direction of the expectation 3*, with its length

independent of the number of steps L, and the context length n. Such a conclusion complies with our
intuitions as the initialization Wé?i) represents the memory of large language models, which is not
dependent on the task-specific context examples. In contrast, the optimal learning rate « is inversely
related to both n and L. This suggests that in both cases: (i) with more in-context examples; and
(i1) with more layers, the output of pre-trained transformers will equal to that of a more fine-grained
gradient descent process using a smaller learning rate. Generally, a small-step strategy ensures the
convergence of the objective, highlighting the potential benefits of deeper architectures and training
inputs with longer context.

3.3 Robustness against context hijacking

The previous two subsections illustrate that for any input with context examples, we can obtain
the corresponding prediction for that input from the well-trained transformers by applying gradient
descent with the optimal parameters we derived in Theorem As we model D, the distribution of
hijacking examples, to examine the robustness of L-layer transformers against hijacking, we only
need to check whether the linear model achieved by L-step gradient on (Xpc, ync) can still conduct
successful classification on Xquery. Specifically, we consider the classification error of the parameter
vector v"\'/éﬁ) as,

5(‘7{’;@/)) = IF)T,w*ND(‘e (yquery : <€Vé§), Xquery> < 0)7

where T = {(Xhc, Ync)s (Xquery, Yquery) }» and Wéé) is obtained by implementing gradient descent

on (Xpc, Ync) With L steps and the optimal « and wgé). Similar to the previous result, £ (Wé{;)) is

identical to £(TF) defined in (2.6). Based on these preliminaries, we are ready to present our results
regarding the robustness against context hijacking. We first introduce the following lemma illustrating
that when the context length of hijacking examples is small, we hardly observe the label flipping
phenomenons of the prediction from well-trained transformers.

Lemma 3.4. Assume that all assumptions in Theorem still hold. Additionally, assume that the

length of hijacking examples N is small such that N < O(#) and o follows any continuous
distribution. Based on these assumptions, it holds that

gw) < ew) +o(1).
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Figure 3: Linear transformers experiments with different depths and different training context lengths.
By testing the trained linear transformers on the test set, we can find that as the number of interference
samples increases, the model prediction accuracy becomes worse. However, deeper models have
higher accuracy, indicating stronger robustness. As the training context length increases, the model
robustness will also increase because the accuracy converges significantly more slowly.
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Figure 4: Linear transformers experiments on training dataset. By testing trained linear transformers
on the training set, the initial accuracy of the model is high and can be improved with the increase
of context length, indicating that the model can use in-context learning to fine-tune 3* to w*. And
deeper models have stronger optimization capabilities.

Lemma 3.4 demonstrates that when the context length of hijacking examples is small, the classification
error of the linear model obtained through gradient descent on these hijacking examples is very close
to that of the optimal initialization. The reasoning is straightforward: When NV is relatively smaller
compared to training context length n, and since the optimal learning rate « is on the order of the
reciprocal of n, the contributions from the hijacking examples become almost negligible in gradient
descent iterations, allowing the model to remain close to its initialization. Consequently, we consider
the case that IV is comparable with n in the following theorem.

Theorem 3.5. Assume that all assumptions in Theorem still hold. Additionally, assume that

N > ﬁ(dfﬁ) n > Q(N d) , and o follows some uniform distribution. Based on these assumptions,
it holds that

L
(L ~ ( Nd
(‘:(Wéd)) <c—co|1—- @(nL> ,

where ¢y, co are two positive scalar solely depending on the distribution of o and w*.

Based on a general assumption that o follows the uniform distribution, Theorem [3.5|formulates the
upper bound of the classification error as a function of the training context length n, the number of
hijacking examples IV, and the number of layers L. Specifically, this upper bound contains a term

proportional to 7(1 -0 (%) )L. As (1 -0 (g—g) )L is a monotonically increasing function for
N and a monotonically decreasing function for n and L, Theorem successfully demonstrates
two facts: (i) well-trained transformers with deeper architectures, or those pre-trained on longer
context examples, will exhibit more robustness against context hijacking; and (ii) for a given well-
trained transformer, the context hijacking phenomenon is easier to observe when provided with more

hijacking examples. These conclusions align well with our experimental observations (Figure [3).

4 Experiments

4.1 Optimal gradient descent with different steps

In our theoretical framework, the optimal gradient descent with more steps (L) or longer training
context length (n) will have a smaller learning rate per step (Theorem [3.3)), and this combination
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Figure 5: Context hijacking in real-world LLMs. We investigate the label flipping rates of Qwen2.5-
Base and Qwen2.5-Instruct models of varying sizes, facing varying levels of context hijacking.
Hijacking levels ranging from 1 to 8 represent context hijacking prefixes ranging in length from 10 to
80 sentences. Label flipping occurs when the model predicts the next token to be the topic described
by the context prefix, which differs from the correct answer to the question. Our experimental results
on real-world LLMs are still completely consistent with our theoretical conclusions: deeper models
are more robust to context hijacking.

of more steps with small learning rates will perform better on the optimization process over context
samples (Theorem [3.5)). Our theory shows that a trained transformer will learn the optimal multi-step
gradient descent, which will make it more robust during testing. Therefore, we directly verified the
consistency between practice and theory in the multi-step gradient descent experiment.

We construct a single-layer neural network to conduct optimal multi-step gradient descent experiments.
Each training sample (x;,y;) is drawn i.i.d. from the distribution D, defined in Section We
consider the learning rate that minimizes the loss of the test sample when the single-layer neural
network is trained using 1 to 8 steps of gradient descent, that is, the optimal learning rate o,
corresponding to L-step gradient descent, which can be obtained by grid search. Figure[2]shows that
oy, decreases as L and n increases, which is aligned with our theoretical results (Theorem |[3.3)).

Next, we discuss the second part of the theoretical framework, i.e., gradient descent with more
steps and small step size performs a more fine-grained optimization (Theorem [3.5)). We apply the
optimal learning rate searched in the training phase to the test phase, and perform gradient descent
optimization on the test samples drawn from Dy, with the optimal learning rate and its corresponding
number of steps. We can find that with the increase in the number of gradient descent steps and the
decrease in the learning rate, the performance of the model will be significantly improved.

4.2 Robustness of linear transformers with different number of layers

Applying our theoretical framework to the context hijacking task on transformers can explain it well,
indicating that our theory has practical significance. We train linear transformers with different depths
and context lengths on the training dataset (D;,). We mainly investigate the impact of training context
length n, and model depth L and the testing context length N on model classification accuracy.

We first test the trained transformers on the training dataset to verify that the model can fine-tune the
memorized 3* to w* . According to the Figure[d] we can find that the model has a high classification
accuracy when there are very few samples at the beginning. This means that the model successfully
memorizes the shared signal 3*. As the context length increases, the accuracy of the model gradually
increases and converges, meaning that the model can fine-tune the pre-trained 3* by using the
context samples. In addition, deeper models can converge to larger values faster, corresponding to the
theoretical view that deeper models can perform more sophisticated optimization.

Then we conduct experiments on the test set. Observing the experiment results (Figure[3), we can see
that as the context length increases, the accuracy of the model decreases significantly and converges
to 50%, showing that the model is randomly classifying the final query Xquery. This is consistent
with the context hijacking phenomenon that the model’s robustness will deteriorate as the number of
interference prompt words increases. When the number of layers increases, the models with different
depths show the same trend as the context length increases, but the accuracy of the model will increase
significantly, which is consistent with the phenomenon that deeper models show stronger robustness
in practical applications. In addition, the model becomes significantly more robust as the training
context length increases, because the accuracy converges more slowly as the length increases.



4.3 Context hijacking in real-world LLMs

To further validate our theoretical results in more realistic scenarios, we investigate the label flipping
rates of Qwen2.5-Base and Qwen2.5-Instruct models of varying sizes, facing different levels of
hijacking. The 0.5B, 1.5B, and 3B models have 24, 28, and 36 layers, respectively. We first construct
four different datasets. Each question in the dataset consists of two parts: a factually correct prefix
of a certain length and a fact retrieval question. Each sentence of the context prefix will describe a
topic from a different perspective and with different words. Therefore, rather than using repeated
sentences, we use diverse sentences to describe a fact, which is more realistic. We divide the context
hijacking into eight different levels according to the length of the context prefix, from level 1 to level
8, which means the context has 10 to 80 sentences. We then observe whether the model predicts the
correct next token. If the next token changes to the topic described by the context prefix (different
from the answer to the fact retrieval question), we call this phenomenon “label flipping”. For more
detailed experimental details and examples, please refer to Appendix [H.3]

Figure [5]shows how the label flipping rate of different models changes with the hijacking level.
Although models exhibit varying resistance to context hijacking across different tasks, we can find
that in practical LLMs, longer hijacking context will significantly increase the label flipping rate
(leading to lower accuracy), while increasing the model depth can well alleviate this problem. The
experiment results are consistent with our theoretical conclusions, indicating that our theoretical
results can be generalized to deeper and larger LLMs in practice. Additionally, we find that instruction
fine-tuning can improve the model’s robustness to context hijacking in most cases, but the effect is
not significant, which provides new insights for future work, such as adversarial optimization.

5 Conclusion and limitations

In this paper, we explore the robustness of transformers from the perspective of context hijacking [37].
We build a solid theoretical framework by modeling context hijacking phenomenon as a linear classi-
fication problem. We first demonstrate the context hijacking phenomenon by conducting experiments
on LLMs with different depths, i.e., the output of the LLMs can be simply manipulated by modifying
the context with factually correct information. This reflects an intuition: deeper models may be
more robust. Then we develop a comprehensive theoretical analysis of the robustness of transformer,
showing that the well-trained transformers can achieve the optimal gradient descent strategy. More
specifically, we show that as the number of model layers or the length of training context increase, the
model will be able to perform more fine-grained optimization steps over context samples, which can
be less affected by the hijacking examples, leading to stronger robustness. Specifically considering
the context hijacking task, our theory can fully explain the various phenomena, supported by a series
of numerical experiments. We also conduct nonlinear experiments to extend our theoretical results.

The limitation of our work is that our model is specifically designed for context hijacking, a recent
phenomenon from the real world. We only focus on the hijacking task, so new constructions may be
required for other problems, and different results may be derived based on our technical framework.
Besides, our current analysis follows from the recent works on modeling transformer model as a
gradient descent optimizer, it is also possible that the corresponding meta optimization algorithms are
more complicated ones. This will also lead to different theoretical results based on our techniques.

Our work provides a new perspective for the robustness explanation of transformers and the under-
standing of in-context learning ability, which offer new insights to understand the benefit of deeper
architecture. Besides, our analysis on the optimal multi-step gradient descent may also be leveraged
to other problems that involve the numerical optimization for linear problems.
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relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper discuss the limitations of the work.

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides the full set of assumptions and a complete (and correct)
proof for each theoretical result in appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experimental settings and training details in appendix.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code is being organized and we will provide it later.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide experimental settings and training details in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars and some other appropriate information about the
statistical significance for most experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide experimental settings and training details in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.

Guidelines:
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The creators and original owners of assets (e.g., code, data, models), used in

the paper, are properly credited and the license and terms of use explicitly are mentioned
and properly respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related works

In-context learning via transformers. The powerful performance of transformers is generally
believed to come from its in-context learning ability [[14, |18} 149, 144, [77]. A line of recent works
study the phenomenon of in-context learning from both theoretical [9,[31} 42|16l 27,134,164}, /41]] and
empirical [30}4}140L 161} 156l 55,12} 129] 39} 13]] perspectives on diverse settings. [[14] first showed that
GPT-3 can perform in-context learning. [16]] studied the role of different heads within transformers
in performing in-context learning focusing on the sparse linear regression setting. [27] studied the
ability of one-layer linear transformers to perform in-context learning for linear classification tasks.
[3]] demonstrated linear transformers perform less well on in-context tasks, but the linear transformer
here refers to a model that uses a kernel function to approximate the standard attention computation
for computational efficiency, albeit at the expense of some in-context learning performance. In
contrast, the linear transformer in our paper is a model that removes the activation function from
the standard transformer. As discussed in the main paper [2.2] this is a very common setting in
transformer theory research. In addition, while not considering the ICL setting, [83]] studied the
training of one-layer transformers on the group-sparse linear classification setting.

Mechanism interpretability of transformers. Among the various theoretical interpretations of
transformers [28, [82] 24, 143} 1541 158, [13} 73} 75, 1877, [17,183]], one of the most widely studied theories
is the ability of transformers to implement optimization algorithms such as gradient descent [[69]
2,185, 9L [76L 119 15, 123, 184]].  [69] theoretically and empirically proved that transformers can learn
in-context by implementing a single step of gradient descent per layer. [2] theoretically analyzed that
transformers can learn to implement preconditioned gradient descent for in-context learning. [|85]
considered ICL in the setting of linear regression with a non-zero mean Gaussian prior, a more general
and common scenario where different tasks share a signal, which is highly relevant to our work.

Robustness of transformers. The security issues of large language models have always attracted a
great deal of attention [79, 146, 57, 189, I8]]. However, most of the research focuses on jail-breaking
black-box models [21], such as context-based adversarial attacks [38 74,78, 71,188, 20, [70]. There
is very little white-box interpretation work of attacks on the transformer, the foundation model of
LLMs [59, 110,132, [7,137]. [S9] first considered attacking large language models during in-context
learning, but they did not study the role of transformers in robustness. [37] proposed the phenomenon
of context hijacking, which became the key motivation of our work. They analyzed this problem
from the perspective of associative memory models instead of the in-context learning ability of
transformers.

B Notations

Given two sequences {z, } and {y,, }, we denote x,, = O(y,,) if there exist some absolute constant
Cy > 0and N > 0 such that |z,,| < Cyly,| forall n > N. Similarly, we denote z,, = Q(ys,) if there
exist Cy > 0 and N > 0 such that |2, | > Cs|y,| foralln > N. We say x,, = O(y,) if x,, = O(yy)
and x,, = Q(y,,) both holds. Additionally, we denote x,, = o(y,,) if, for any € > 0, there exists some
N(e) > 0 such that |z,,| < €|y, ]| for all n > N(¢), and we denote x,, = w(yy,) if yn, = o(zy). We
use O(+), ©(+), and O(+) to hide logarithmic factors in these notations respectively. Finally, for any
n € Ny, we use [n] to denote the set {1,2,--- ,n}.

C Proof of Proposition [3.1]
In this section we provide a proof for Proposition

Proof of Proposition[3.1] Our proof is inspired by Lemma 1 in [2]], while we consider a non-zero
initialization. We first provide the parameters W, Py, Q, € R(¢+1)x(d+1) of 3 [-layers transformer.

L, 0 0gxa O -y, 0 dxd
WE—{WQ%) 1}7 Pe—[ 0 1}, Qe—[o 0} where I'y € R

For the linear classification problem, the input sample Zy € R(@TD*(+1) consists of {(x;,9;)}i =
1™ and (Xquery Yquery) in (2-I) , which will first be embedded by W . Let X(©) € R?*("+1) denote
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the first d rows of Wg(Zo) and let Y(©) € R'*("+1) denote the (d + 1)-th row of Wg(Zo). In
subsequent iterative updates in , the values at the same position will be denoted as X () and
YW, forl=1,...,L. Similarly, define X € R**"™ and Y € R'*™ as matrices that exclude the
last query sample (x((jllgery7 yfj&ery). That is, they only contain the first n columns of the output of the
[-th layer. Let xgl) and ygl) be the i-th pair of samples output by the /-th layer. Define a function
g(x,y,0) : R x R x Z — R: let xfﬁl)ery = x and yé?l)ery =y— <w(d), x), then g(x,y,1) := yé@ery.
Next, based on the update formula (2.3) and the parameters constmcted above, we have:
XD = X0 = ... =XO  ylD) —y® _ Y(l)M(X(O))TI‘lX(O).

Then foralli € {1,...,n},

I+1 I !
Y =y - ZXiTI‘lij](- ),

j=1
So yglﬂ) does not depend on y(glut}; For query position,
I+1 O]
y<(1u+er>)' yquery Z Xqueryrlxjy
j=1

Then we obtain g(x,y,[) and g(x,0,1):

-1
g(xv Y, l) = yquery Z Xqueryrl 1X5 y( )

7j=1
n
-1
= yquery Z Xqueryrl QXJy Z ueryrl 1X; y( )
Jj=1 J=1
n
0 T -1
= y((:lu)ery Z XqueryFOX] y( ) T Z Xqueryrl_1ij](- :
Jj=1 Jj=1
n
0 T 0 -1
=Yy—- <Wéd)7 Xquery> - Z Xqueryroxjyg(' ) e Z Xqueryrl 1X3y( )’
Jj=1 Jj=1
1 -1
g(x, 0, k) = yc(lueiy Z Xqueryrl 1X5 y]( )
j=1
n
1—2) -2 T -1
= yc(;uery Z XqueryI‘l 2Xj y]( ) Z Xqueryrl—lxjyj(‘ )
j=1 J=1
n
0 T -1
= yéu)ery Z XqueryFOXj y( ) T Z Xqueryrlflx]'y](' )
Jj=1 J=1
n n
0 T 0 T -1
= _<Wéd)7 Xquery> - Z Xqueryroxjy](' S Z XqueryF171ijj(4 ); :
j=1 j=1

So we have g(x,y,1) = g(x,0,1) + y. Observing g(x, 0, 1), we can find that it is linear in x for the
reason that every term of g(x, 0, 1) is linear in Xqyery, Which means we can rewrite it. We verify that
there exists a 8; € R< for each [ € [L], such that for all x, y,

9(x,y,0) = 9(x,0,k) +y = (61,%) +y.
Let ! = 0, we have {0y, x) = g(x,9,0) —y = yéu)ery Y= 7<wg()i), Xquery)> 50 8p = fwé?i). Next,
we will show that for all (x;,v;) € {(x1,%1) - -, (Xn, Yn), (Xquery, Yquery) }»

g(xi7y’ial) - yf ) = <ol7x1> + Yi-
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Observing the update formulas for y( +1) and yéluﬁg, if we let Xquery := X; for some 4, we can get
that y(l+1) = yéllfg% ) because y; © _ yéu)ery by definition. This indicates that

YO = YO 4 gTX.
Finally, we can rewrite the update formula for y("+1)

141 O}
yf(luzn)f = yquery Z Xqueryrlxjy
Jj=1

= y((qlLZery <F1X(Y(l))—r7 Xquery>
= <01+1’ Xquery> = <0l’ XCIUGYY> - <F1X(XT91 + (Y(O))T)7Xquer}’>
Since Xquery is an arbitrary variable, we get the more general update formula for 6;:

01_;,_1 = 95 <F1X (XTOl + ( )) >>

Notice that we use the mean squared error, we have
L(w) =35> ((w,x;) —4:)°
I S ON
= SIXTw = (YO,
Then we get its gradient VL(w) = X (X w — (Y(©)T). Let Wég := —0;, we have

0[+1 =0, — <F1X (XTGZ + YJ)>

I+1 l l Y,
S W) W - (X (X - (7)),

=wll - T, VL(wl)).
And the output of the [-th layer yélzery is

!
g (Xquery7 Yquery l) = Yquery + <017 Xquery> = Yquery — <Wéd), Xque1ry>-
In our settings, we have ™! = *<ng)v Xquery) because the input query label is 0. O

D Gradient descent updates of parameters

In this section, we provide further details regarding the updating of parameters ng , which will be
utilized in subsequent proof. Besides, it can directly imply Proposition [3.2] Before demonstrating the
mathematical, we first introduce several utility notations, which will be used in subsequent technical
derivations and proofs. We denote S; j; as the set of all k-dimensional tuples whose entries are drawn
from {0, 1,...,l — 1} without replacement, i.e.

St,k = {(jlana"'ajk)‘jlaj?a"'ajk € {0?17"'7Z - 1}7.71 #.72 7é #]k}

Then given the set of all historical learning rates before or at I-th iteration, i.e. {c, 1,...,—1},
and &; i, defined above, we define A, j, as

k
Al,k = Z H ay, .

(J1,J2,--1dk) €Stk K=1

Then we can observe that the permutation of elements of {«g, a1, ..., @;—1 } would not change the
value of A; ;. Then based on these notations, we present mathematical derivation in the following.

By some basic gradient calculations, we can re-write the iterative rule of gradient descent (3.1} as

wii =W —aVL(w)
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- Z gd, — sign((w*,x;))) - x;

= (Id - al(inxI)) g(i + al(isign«w*,xi)) xz> (D.1)
i=1 i=1

Based on this detailed iterative formula, and the definition of S; ;, and A; , above, we present and
prove the following lemma, which characterizes the closed-form expression for w(®).

Lemma D.1. For the iterates of gradient descent, i.e. w(l)’s with ! € {0,1,...,L — 1}, it holds that
n b l n k1
0
SURICED IPITE) o) I RURN O SYNES vt )
i=1 k=1 i=1
. (Z sign({w™, x;)) - xi). (D.2)
i=1

Proof of Lemma[D.1] Before we demonstrate our proof, we first present some conclusions regarding
Sy and A; .. By directly applying the Binomial theorem and the definition of A; j, we can obtain
that

-1

H (Id—i—ak(—ixix;r)> :Id—&—iAl’k(—ixix;r)k. (D.3)
i=1 k=1 i=1

k=0
Additionally, by utilizing the definition of S ;,, we can easily derive that
Strwe ={ (s J2s - Jilin dze - e €40, 1, it # jo # - # i)
={(1,d2s - de)linsdas ok €0, Ll =1} 50 # Ga # - # i}
U{(sd2s s die—1,Dld1, J2s -y im1 € 0,1, =1}y # jo # o # i1}
=816 U {1, d2s- > k-1, D (G1s J2s - -+ Jr—1) € Stp—1},
holds when k£ < [. This result can further imply that

k k k—1
A = > [Tai. = > ITo.+ > [T e

(J1,d2,-:dk) ESi41,k K=1 (J1:925--dK) ESL K =1 (J1,d2-sdk—1)ES -1 k=1
=Ai K+ oA p—1. (D.4)
holds when k£ < [. Additionally, it is straightforward that
A = oAy A = Ay + g (D.5)

With these conclusions in hands, we will begin proving this lemma by induction. When ! = 1, by the
iterative rule (D.I]), we can obtain that

e~ () o S =)

which follows the conclusion of (D.2) due to and the definition of A; ;. By induction, we
assume that (D.2) holds at [-th iteration. Then at (I 4 1)-th iteration, we can obtain that,

) (=351 ) i o S )
:al<Zsign(<W*,Xi>) x) + (Id (Y ))

i=1

AT (o (Smnt) ) i+ (- 3m) )

k=1 =1
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M=

()

l n
= sign((w*, x;)) ) + H (Id — ak<inx;r)> 'Wéﬂ)
k=0

Il
-

3

i i=1

+ ZalAl,k( - ixixj)k)
i=1

-1

k—1

+< Al,k( szT
ﬁ(Id—ak Zxx > WO+ (A1 +a) - (Z&gn (w*, %)) 1>
+<i<Azk+a1Am (=) >~(;sign<<w*,xi>>-xi)

k=2 i=1

b
Il
_

SlgIl w* Xl

"Mz

1

n

+ OélAl,l(éXiXZ ) (Zsign«w*,xm x)

=1

_kljo (Id B ak(ixixjw Wi + A <§;Sigﬂ(<W*’Xi>) 'Xi)
+ (kz;Am,k( - gxixi ) (gsignaw*,xm x|
+ Aip141 < - ZZ:XiXiT)k : <§Sign(<W*»Xi>) : Xz‘)

I+1

+1 n n _
:<Id+ZAl+1J€<_ inxj)k) ng + (ZAlJrl k( - inxiT)k 1)
k=1 i=1 =t
‘ (isignﬂw*’xi” X)
i=1
0

The second equality holds by substituting w,; with its expansion from (D:2), assuming it is valid
at the [-th iteration by induction. The third and fourth equalities are established by rearranging the
terms. The penultimate equality is derived by applying the conclusions regarding A; j from (D.4)
and (D.3). The final equality is obtained by applying (D.3). This demonstrates that (D.2) still holds
at [ 4 1-th iteration given it holds at [-th iteration, which finishes the proof of induction. O

Lemmademonstrate that the learning rates o;’s will only influence w! d) by determining the value
of Ap ,’s. While as we have discussed above, the values of Ay, ;’s depend solely on the elements

in the {ao, ..., a1}, and remain unchanged when the order of these learning rates is rearranged.

Consequently, the permutation of {ay, ..., ar_1} will also not affect the value of W( d), thereby

confirming that Proposition [3.2] holds.

E Proof of Theorem

In this section, we provide a detailed proof for Theorem [3.3] We begin by introducing and proving a
lemma that demonstrates how wg;) must align with the direction of 3*. This alignment constrains

the choice of wg;) to a scalar multiple of 3%, specifically in the form of ¢g - 3*. Additionally, in the

subsequent sections, we will use the notation ¥ = > | x;ix,;
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Lemma E.1. Under the same conditions with Theorem to minimize the loss R(wég)), Wég) is
always in the form of ¢y - 3*.

Proof of Lemma([E7]] Utilizing the independence among the examples in 7T =
{(x1,91), -+ (Xn, Yn), (Xquery: Yquery)}, and w*, we can expand R by law of total
gd

expectation as
RW) =B e [(W5) Xquery) — sign((w", Xquery))) ]
=B e (WS Xaquery)? — 28ig0((W*, Xquery)) (W, Xquery)] + 1
=E (0011w | Btk sianers) (WS Xavory)?

. * L n *
— 2sign((W" Xquery ) (WS s Xauery) [{ (06, ) Vi w*] | 41

i (L) 2 |7
:E{(xi,yi)}LI,w* ngd —\/;W*

where the last equality holds since Ex..., [(W,Xquery)?] = W' B0, KqueryXquery]W
[wl||3 when w is independent with Xquery, and Ex ... [(W1,Xquery) Sign((W2, Xquery))] =

2
+1-2,
™

2

\/g (w*, ng)> implied by Lemma Therefore in the next we attempt to optimize the first

2
term Eq(x, y,))r | we [ ’wéﬁ) — \/gw* 2] . By applying the closed form of wéﬁ) in Lemma
with all o = «, we have

L-1 n
Wil = (=a®) Wi+ ) (-0 (P sien((w ).
1=0 i=1

Based on this, we can further derive that

(L) 2
Bt iy, we H‘ng “VEY

*

2
O\ 2L
- j =(Wg§))TE{(xi,y»}Ll,w* [(Ta = aX) ]Wgé)

I
—_

L
- 2a(wg()i))T]E{(Xz‘,yi)}?zpw* [ (Id - az)H—L

N
I
<

. (isign(<w*7xi>)xi)] +C
i=1

:clﬂwég)nz — 262<Wé?1),,8*> +C

c2 .12 c3

. 0
where c1,co,C are some scalar independent of wé d).

E{(xiy) 3, w [(Ig — af])QL} = ¢114 for some scalar c;, guaranteed by Lemma and

By owe | oo (T — afJ)HL (X sign((w*, x;))x;)] = c2B* for some scalar ¢y,

(0)
gd >’

The second inequality holds since

guaranteed by Lemma As the result of (D) is a quartic function of w_,, we can easily

conclude that it achieves the minimum value when wé%) = ¢o3* for some scalar ¢y, which completes

the proof. O

Based on Lemma in the following proof, we will directly replace wg(;) with ¢o3* and attempt

to find the optimal ¢y. Now we are ready to prove the following theorem, a representation of
Theorem 3.3

Theorem E.2 (Restate of Theorem [3.3). For training distribution D, in Definition 2.1} suppose
that the training context length n is sufficiently large such that n > Q(max{d?,dL}). Additionally,
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suppose that the perturbation of w* around its expectation 3* is smaller than 7, i.e. (w*, 3*) > 0
then for any learning rate « and initialization Wg()l), it holds that

RwE) < 0((1 - an)|w'% — exw*[3) + 6(adL) + C,

where both ¢;, C' are absolute constants. Additionally, by taking wé?j) =8 and o = (:j(n%) the
upper bound above achieve its optimal rates as

Riwk) <6(%) + 0

Proof of Theorem[EZ} Utilizing the fact that T, — (I, — o) = a ! (I; — o)'S and

0 . L
wé d) — co3*, we can re-write the close form of w' d) as

wéﬁ)—(ld—(ld—aﬁl \fw + (I —aZ)" o
7(12 (I, — o)’ <\/72w f(zsgn w Xl>)Xz>)

=1

Then by the similar calculation to Lemma [E.T| we have

o - /2
2
N 2 L1 .
—E H (I, —aS)" . <c0ﬁ* - \/;w> —aY (I, a%)’
=0
9 . n 2
. (\/;EW* - (Zsign((w*,xﬁ)x,))

2

—E +C

~—

L
R(Wéd)

+C

2

ol (o) ]
+2E|a LZ_; I, o3) (\/Ef]w*—(gsign«w*,xi))){i)) z +C

11

where the last inequality hols by (a + b)? < 2a? + 2b2, and C is an absolute constant. Therefore, in
the following, we discuss the upper-bounds for I and I respectively. For I, we have

r<g||w-a8))] -EKCOﬁ* 2| <ot -any .EKW 2w)

where the first inequality is derived by the independence among x; and w* and the submultiplicativity

of ¢5 norm, and the second inequality holds by the concentration results regarding || > |l2 provided in
Lemmal|G.4] For I, we can derive that

2

J

L—-1 n
92 ~
II < E|a? - 1“2 d *_( . * . )
< {oz Z HId EH 7rX]W Zugn((w , X)X

l1,l2=0 i=1
where the inequality is guaranteed by the submultiplicativity of /5 norm. Then we discuss /7.1 and
11.2 respectively. For I1.1, we have

L-1 L—1

mi< -y L 3 L go(aLlogL>.

HEHQ -« l1 +l2+1 ||Z]||2 — ll—l-l n
ll,lg—o ll—

2

2
)
2

2

11 11.2




The first inequality holds by the fact that m(l —z)k < =T +1 for z € [0, 1]. The second mequahty holds
by replace ;—7—5 +z +7 With its upper bound —~ +1 The third inequality holds by Ell —0 T +1 <logL
and ||2||2 = O(n) demonstrated in Lemma For I1.2, we have

I12—-F [H\f — nlg)w* —(251gn W, x;)) Z—n\fw
}<O(nd).

2,
ngn (W, x;))%; —ny | —w
7r

< EHE — nIy| 2+ QE[
i=1

2

The first equality adds and minuses the same term. The first inequality holds by the submultiplicativity
of ¢ norm, and the fact (a+b)? < 2a%+2b%. The second inequality holds as || X —nI||s < O(V ﬁ,
G.5

, < O(v/nd), proved in Lemma .

proved in Lemmaand | Soie, sign((w*, xi>)xi—n\/gw
Combining all the preceding results, we can obtain that

RwE) < O((1 - an)’™) - [(cﬁ \fw>

It is straightforward that when taking ¢y = \/g , the expectation term will achieve its minimum,

+O(adL) + C.

which is the variance of w* multiplying by a factor \/g . This finishes the proof that the optimal

initialization takes the value as wg()l) = \/g B*. We re-plug this result into the upper-bound above

and utilize the fact that the variance is at the constant order. Then to find the optimal learning rate «
is actually to optimize the summation of (1 — an)?” and adL. We can note that the first term will
decrease as « increases, while the second term will increase as « increases. Therefore, minimizing
the summation of these two terms is essentially equivalent to finding an optimal « such that both

terms are of the same order. Then we can notice that when consider o = log(n/d) , the first term can

2nL
be bounded as
log(n/d)\** d

l—an)?t =(1- —="= < =

(1= an) < oL =0
Additionally, it is straightforward that adL = M. When omitting the factors of log, we
conclude that these two terms are at the same order. Therefore, the optimal choice of learning rate is
o = O(5}; ), which can optimize the excess risk as

Rw) - € < 6<d>.

n

This completes the proof. O

Here we provide further discussions regarding the upper bound for the population loss achieved when
choosing the optimal learning rate and initialization. The constant C' represents an irreducible term
arising from the variance of the model. Such an irreducible term always exists when considering
least-squares loss, similar to the noise variance in classic linear regression problems. Therefore, when
considering the problems with least-square loss function, it is common to define R(wéﬁ)) — C asthe
excess risk and attempt to minimize this term. Consequently, Theorem [E.2]reveals that when using
the optimal parameters, the excess risk R(ng’)) — C will converge to O as the context length n goes
to infinity.

F Proof of Lemma 3.4 and Theorem 3.3

In this section, we provide the proof for both Lemma [3.4and Theorem 3.5} W.L.O.G, we assume
that o > 0 in the subsequent proof. This implies that yn. = —1, Yquery = 1 and E(w) =
P({w, Xquery) < 0) for any w. Then we first introduce a lemma providing a closed form for w(l)

which is the parameter vector of the linear model trained by gradient descent with the opt1ma1
parameters derived in Theorem and data (Xne, Yne)-
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Lemma F.1. For the gradient descent iterates vaég, it holds that

Wl =B +a(l) x1 (F.1)
foralll € {0,1,...,L}. cis the coefficient of 3* of initialization Wég) and a(l) follows that
N 14 clxy,B"
) = — (1 - (1 - aNfpx3)") 2L 80
%L1l

é?i) = ¢B* and

{;“vgi) = ¢(3* — alNx,, complying with the formula (E.I). By induction, we assume (F.I) still holds
for [-th iteration. Then at the [ + 1-th iteration, we have
vagdH) = (Id - OZNXJ_XI) . Wég —aNx
= (Is— aNx1x]) - (¢B* +a(l)x1) — aNx,
=cB" + (a()(1 — aN|x1]]3) — aN(1 + c(x1,B%))) = B +a(l + 1)x,.

Additionally, by the fact a(l + 1) = a(l)(1 — aN||x_||3) — aN(1 + ¢(x_, 3*)), we can derive that
1 * 1 *
<a(l F1)+ +C<XL75>) = (1—aN|x.|32) <a(l) 4 +c<xM>

Proof of Lemma(F1] We prove this lemma by induction. It is straightforward that w

e 3 el

=—(1—aN|x.[3)

This implies that

oft) =~ (1 - (1 N p)) L

which completes the proof. O

)

Based on the closed form of Wéﬁ) obtained by Lemma we are ready to prove Lemma and
Theorem

Proof of Lemma By Lemma|[FT} the output of the linear model trained via gradient descent on
Xquery Can be expanded as

<v~vé§), Xquery) = (¢B" + a(L)x1,x +ow™)
= c(B*,x1) + a(L)|[x_|3 + co(w*, B%)
= c(B*,x.) — (1 —(1- aNHxLH%)L> (14 e(x1,8%) + co(w*, B7)

— co(w*,B%) — 1+ (1 — aN|x, [12)" (1 + ¢(x., 87)). (F2)

By utilizing the independence among w*, o, and x and law of total expectation, we can derive that
~ * * L *
ewid) = ]P’(ca(w B =14+ (1—aN|[x_[3)" (1+cxL,8%)) < o)
= ]E[]P’(ca(w*,ﬁ*) -1+ (1- O[N”XJ_”%)L(]. +c(x1,B%)) < O‘W*,XJ_)}

Fo(l —(1- O‘N”Ztv”?)gf; +e(x1,8%) )] (E3)

where F,,(-) is the cumulative distribution function of o. Similarly, we also have
Fo‘ ( _ <XL7:B*>> )
(w*, %)
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Therefore, by Taylor’s first order expansion, we have

L *
Fé(f) (1 B (1 B aN”XL”%) )(]‘ + C<Xla/6 >)]

(D)) e (0)y
g(wgd ) E(ng ) E 1 + C<W*7,3*>

< (1 - <1 - @(%))3 O(Vd) < 5<Nf/2> <a(1),

where the first inequality utilizing the concentration results that ||x 1 ||30(d) and (x, , 3*) = O(+/d).
L

The second inequality holds by the fact (1 — 6(%)) =1- G(NTd) by our condition n <

o(d®/? /n), which also implies the last inequality holds. Therefore, we finish the proof. O

In the next, we prove Theorem [3.3]

Proof of Theorem[3.5] Similar to the proof of Lemma[3.4] we have that

1= (1 aNlxoB) (1 + b))
c(w*, B*)

Ew)=E Fa<

[ - - angxL3)” o (1*OZNIIXLIIQ)LKXL,ﬁ*HSign(<xl,ﬁ*>)
=FE Fg< w37 ) F (&) 3

I (w*
(| ()

co{w*, B%)

where the third inequality holds as sign((x, ,3*)) is independent with |(x, 3*)| and ||x_ ||3, and
F’(£) is a constant. Additionally, let o follows the uniform distribution from a to b, then we can
expand the expectation above as

(e e <]
(e < T <
A
o) Mt
e
conf1-o(3))

where c1, ¢y are two positive scalars solely depending on a, b and the distribution of w*. This
completes the proof. O

W) =E

+

G Technical lemmas

In this section, we introduce and prove some technical lemmas utilized in the previous proof.

Lemma G.1. Let x ~ N(04,1;), and w;, w € R? be two vectors independent of x, with ||w |2 =
1, then it holds that

Ex[(w,x) sign((w1,x))] = \/Z<W,W1>.
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Proof of Lemmal[G.1] Since |wi|l2 = 1,1etT = [wy, Wa, ..., w,] € R? be the orthogonal matrix
with w; being its first column. Then we have

Ex[(w,x) sign({w1,x))] = Ex[w TI‘I‘szign(<w1,X>)]

2
= W, W [(wg, x) sign((w1,x))] =1/ = (w, w1),
kz k) E k S1g \/;

where the last equality holds since (wy,x) ~ N(0,1) for all k& € [d], (wy,,x) and (Wg,,X) are

independent when &y # ks, and E[(w1, x) sign({w1, x))] = E[[{w1,x)|] = \/g This completes
the proof. O

For the next lemmas, we follow the notation we used in previous section that ¥ = Y7 | XX, .

Lemma G.2. For any k € N, it holds that ]E[flk] = cl, where c is a scalar.

Proof of Lemmal|G.2} Let T be any orthogonal matrix, then we have I'x; ~ N (0g4, I;). This implies
that 31", (T'x;)(T'x;) " has the same distribution with . Therefore, we can derive that

PESHT = B[( 3 (mx)") | = ES

1=

holds for any orthogonal matrix I', which implies that E[f]k] must be at the form cI ;. This completes
the proof. [

Lemma implies that E[(I; — £)*] = cI, for some scalar ¢ as by binomial formula it can be
expanded as a summation of polynomials of 32, which all have the expectations with the form cl,.

Lemma G.3. For any k£ € N, it holds that

E [ik ( > Xzyz)} =B,
i=1
where c is some scalar.

Proof of Lemma|G.3] By binomial theorem, we have

Sk k—k
E[Zk(leylﬂ Z Z <k1> [(le/x ’) 1} [(xix] )]
i=1 i=1 k1=0 i’
k—ki
By Lemma we already obtain that E [( Yo 4i xi,x;) } = ¢l for some scalar c. In the

next, it suffices to show that E[(x;x, )*1x,;y;] = ¢B* for some scalar c. Since ||[w*|s = 1, let
T = [w*, wa,...,wg] € R? be the orthogonal matrix with w* being its first column, and let
xj = I'"x; ~ N(0,1;). This implies that y; = sign((w*,x;)) = sign(x] ;), which is the first
coordinate of x;. Based on this, for any fixed w*, we can further derive that

E[(xix; )" xiy;lw*] = TE[(xjx]" )" x sign(x] ;)] = TE[|}x}[[5" x] sign(x; ;)] = ew™.

The last equality holds as ||x}||3"" is a even function for each coordinate of x}, which implies that
E[||x}]|2Fx] jsign(x; ;)] = 0 forany j € [d] and j # 1. Therefore, we can finally obtain that

E[(x:x; ) XiYi] = E[E[(xix;)klxiy”w*}] = cE[w"] = ¢,
which completes the proof. O
Lemma G.4 (Theorem 9 in [L1]]). For any 6 > 0, with probability at least 1 — 4, it holds that,

. O<max { d \/E log(1/6)  flog(1/6) })
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Lemma G.5. For any § > 0, with probability at least 1 — J, it holds that,

- 2
E sign((w*,x;))x; — ny/ =w*|| < O(y/ndlog(d/s)).
T
i=1 2
Proof of Lemma[G.3] Similar to the previous proof technique, let T' = [w*, wa, ..., wy] € R? be

the orthogonal matrix with w* being its first column, and let x; = T'"x; ~ N(0, ;). Then we can
derive that

n

i=1

Since |x;’1| is a subgaussian random variable with expectation \/g , by Hoeffding’s inequality we

can derive that with probability at least 1 — §/d,

>~ (1l —/2) <o),

i=1
Additionally, when j # 1, sign(x;  )x; ; still follows a standard normal distribution (A standard
normal random variable times an independent Rademacher random variable is still a standard normal
random). Therefore, we can also derive that

> sign(x] )x; ; < O(y/nlog(d/s))
i=1
holds with probability at least 1 — %. Then by taking an union bound, we can finally obtain that

ésign«w*,xmxi - n\/zw* _ {zj (|x;;,1| - \/Z)] 4 zi; [isigmx;,l)xgd} ’

< O(ndlog(d/s)).

The first equality holds by the orthogonality among w*, wo, ..., w*. This completes the proof. [
Lemma G.6. For any § > 0, with probability at least 1 — 6, it holds that,
%15 = (d—1)] < O(v/dlog(1/5));
|(x1,8")| < O(/dlog(1/9)).

Proof of Lemma[G.6] By the fact that ||x||3 ~ x35_,, we have E[||x||3] = d — 1. Then by the
Bernstein’s inequality, we can obtain that

[[IxL]13 = (d—1)| < O(y/dlog(1/5))

holds with probability at least 1 — §/2. Besides, since (x . ,3*) ~ N (0,1 — (w*, 3*)), by applying
the tail bounds of Gaussian distribution, we can obtain that

[(x1,8%)| < O(y/dlog(1/9))
holds with probability at least 1 — /2. By applying a union bound, we obtain the final result. [
H Experimental setup

H.1 Context hijacking in GPT-2
This section will describe our experimental setup for context hijacking on LLMs of dif-

ferent depths. We first construct four datasets for different tasks, including language,
country, sports, and city. The samples in each dataset consist of four parts: prepend,
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error result, query, and correct result. Each task has a fixed template for the sam-
ple.  For the language, the template is “{People} did not speak {error result}.
The native language of {People} is {correct result}”’. For the country, the tem-
plate is “{People} does not live in {error result}. {People} has a citizenship
from {correct result}”’. For the sports, the template is “{People} is not good at
playing {error result}. {Peoplel}’s best sport is {correct result}”’. For the
city, the template is “{Landmarks} is not in {error result}. {Landmarks} is in the
city of {correct resultl}”. We allow samples to have certain deviations from the templates,
but they must generally conform to the semantics of the templates. Instance always match the
reality, and the main source of instances is the CounterFact dataset [48]. In our dataset, each task
contains three hundred to seven hundred specific instances. We conduct experiments on GPT2 [60]]
of different sizes. Specifically, we consider GPT2, GPT2-MEDIUM, GPT2-LARGE, and GPT2-XL.
They have 12 layers, 24 layers, 36 layers, and 48 layers, respectively. We construct a pipeline that
test each model on each task, recording the number of prepends for which the context just succeeded
in perturbing the output. For those samples that fail to perturb within a certain number of prepends
(which is determined by the maximum length of the pre-trained model), we exclude them from the
statistics. Finally, we verify the relationship between model depth and robustness by averaging the
number of prepends required to successfully perturb the output.

H.2 Numerical experiments

We use extensive numerical experiments to verify our theoretical results, including gradient descent
and linear transformers.

Gradient descent: We use a single-layer neural network as the gradient descent model, which
contains only one linear hidden layer. Its input dimension is the dimension d of feature x, and we
mainly experiment on d = {15, 20, 25}. Its output dimension is 1, because we only need to judge
the classification result by its sign. We use the mean square error as the loss function and SGD as
the optimizer. All data comes from the defined training distribution D;,. The hyperparameters we
set include training context length N = 50, mean of the Gaussian distribution 8* = 1, variance
of the Gaussian distribution 3 = 0.1 (then normalized). We initialize the neural network to c3,
and then perform gradient descents with steps Steps = {1,2, ..., 8} and learning rate Ir. We use
grid search to search for the optimal c and [r for the loss function. This is equivalent to the trained
transformers of layers 1 to 8 learning to obtain the shared signal ¢3 and the optimal learning rate
lr for the corresponding number of layers. Then they can use in-context data to fine-tune ¢3 to a
specific w*.

After obtaining the optimal initialization and learning rate, we test it on the dataset from D;.. Again,
we set exactly the same hyperparameters as above. In addition, we set the ¢ in the test distribution to
0.1.

Linear Transformer: We train on multi-layer single-head linear transformers and use Adam as the
optimizer. The training settings for models with different numbers of layers are exactly the same.
We use the initial learning rate Ir € {0.0001, 0.0002}, and the training steps are 600,000. We use
a learning rate decay mechanism, where the learning rate is decayed by half every 50,000 training
steps. For training and testing data, we set the data dimension d = 20 and the training context length
N = {10, 20, 30,40}. We use a batchsize of 5,000 and apply gradient clipping with a threshold of 1.
Each experiment takes about four hours on average on a single NVIDIA GeForce RTX 4090 GPU.

H.3 Context hijacking in real-world LL.Ms

Similar to Appendix we construct four different topics of datasets, including city, country, sport,
and language. However, this dataset is more diverse, which helps simulate more realistic situations.
Below is a detailed description of the dataset construction process, using an example from the dataset.

First, we will design a fact retrieval problem. It is a direct question, such as “Of all the sports, Maria
Sharapova is most professional in which one? The answer is”. We want the model to predict the next
token is “tennis”.

Next, we will choose a topic that is factually correct. For the example above, we can choose the topic
that “Maria Sharapova is not a professional in rugby”.
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Figure 6: Standard transformers experiments with different depths. Testing the trained standard
transformers (GPT-2 architecture [60]) on the test set, as the number of interference samples increases,

the model classification accuracy decreases and gradually converges. The results also show that
deeper models are more robust.

Finally, we will add factually correct context prefixes of varying lengths before the question. Each
sentence of this context prefix will describe the topic that has been determined from a different
perspective and with different words. That is, paraphrase the hijacking context instead of repeating
them. In our example, these sentences could be “Rugby is not a sport that Maria Sharapova is adept
at playing”, “Maria Sharapova’s tennis skills do not translate well to rugby”, “The physical demands
of rugby are not ones with which Maria Sharapova is familiar”, etc. The model is then asked the
same question. If the model predicts “tennis”, then it is correct. If the model predicts “rugby”, we

call this “label flipping”.

The number of samples in each dataset ranges from hundreds to thousands. We filter out questions
that are too difficult based on the model’s own capabilities and the difficulty of the questions, which
means that the model could always correctly answer direct questions without hijacking context.
We conduct experiments on Qwen2.5 base models of different sizes (depths) and corresponding
instruction fine-tuned versions.

I Additional experiments

I.1 Robustness of standard transformers with different number of layers

To generalize the results to more realistic settings, we transfer the experiments from linear transform-
ers to larger and standard transformers, such as GPT-2 [[60]. We train and test GPT-2 with different
numbers of layers based on exactly the same settings as the linear transformers experiments. The
results once again verify our theory (Figure[6). As the context length increases, the model’s accuracy
decreases, but increasing the number of layers of the model significantly improves the robustness,
indicating that our theory has more practical significance. Then we describe the setup of standard
transformers experiments briefly.

Setup: We use the standard transformers of the GPT-2 architecture for the experiments, and the main
settings are similar to [30]. We set the embedding size to 256, the number of heads to 8, and the
batch size to 64. We use a learning rate decay mechanism similar to linear transformers experiments,
with an initial learning rate of 0.0002, and then reduced by half every 200,000 steps, for a total of
600,000 steps. We use Adam as the optimizer.
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Figure 7: Linear transformers experiments with different depths and different 0. In real-world
semantics, smaller o means stronger interference. Comparing the test performance of the model
under different o, we can find that as o decreases, the robustness of the model decreases significantly,
which verifies the rationality of our modeling.

I.2 Linear transformers facing different interference intensity

In this section, we mainly discuss how the robustness of the model changes with the interference
intensity. In our modeling, the interference intensity is determined only by the distance between the
query sample and the similar interference samples defined in the test set, that is, by the variable o in
Dre. In real-world observations, according to the idea of the induction head [51]], the more similar the
context prepend used for interference is to the query, the more likely the model is to use in-context
learning to output incorrect results. Therefore, we examine different o to determine whether the
model conforms to the actual real-world interference situation, that is, to verify the rationality of our
modeling.

Observing the experiment results in Figure[7} when o gradually decreases from 0.8 to 0.1, that is,
the interference intensity of the data gradually increases, the classification accuracy of the model
decreases significantly. When o is larger and the interference context is less, the model can always
classify accurately, indicating that weak interference does not affect the performance of the model,
which is consistent with real observations. Various experimental phenomena show that our modeling
of the context hijacking task by the distance between the interference sample and the query sample is
consistent with the real semantics.

1.3 Robustness of nonlinear transformers for nonlinear classification

To extend our theoretical results to more complex situations, we consider nonlinear models and
nonlinear tasks. We conduct preliminary experiments on nonlinear classification (Figure[8). More
specifically, we change (w,x) to (w,x)2 — C, where C is a constant. We conduct the experiments
on the multi-layer ReLU attention transformers. The results show that even in the nonlinear case, the
model still tends to be more robust as it gets deeper, which is consistent with our theoretical results.
This strengthens our conclusions and shows that our theory is not limited to the linear case, but is
also valid on more complex and practical nonlinear tasks.
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Figure 8: We introduce a nonlinear problem by changing (w,x) to (w,x)? — C, where C is a
constant. We conduct the experiments on the multi-layer ReLU attention transformers. The results

show that the model still tends to be more robust as it gets deeper, which is consistent with our
theoretical results.
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