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Abstract
Humans and animals explore their environment
and acquire useful skills even in the absence of
clear goals, exhibiting intrinsic motivation. The
study of intrinsic motivation in artificial agents is
concerned with the following question: what is a
good general-purpose objective for an agent? We
study this question in dynamic partially-observed
environments, and argue that a compact and gen-
eral learning objective is to minimize the entropy
of the agent’s state visitation estimated using a
latent state-space model. This objective induces
an agent to both gather information about its envi-
ronment, corresponding to reducing uncertainty,
and to gain control over its environment, corre-
sponding to reducing the unpredictability of fu-
ture world states. We instantiate this approach
as a deep reinforcement learning agent equipped
with a deep variational Bayes filter. We find that
our agent learns to discover, represent, and ex-
ercise control of dynamic objects in a variety of
partially-observed environments sensed with vi-
sual observations without extrinsic reward.

1. Introduction
Reinforcement learning offers a framework for learning
control policies that maximize a given measure of reward
– ideally, rewards that incentivize simple high-level goals,
such as survival, accumulating a particular resource, or ac-
complishing some long-term objective. However, extrinsic
rewards may be insufficiently informative to encourage an
agent to explore and understand its environment, particu-
larly when the environment is partially-observed: when the
agent has a limited view of its environment. A generalist
agent should instead acquire an understanding of its envi-
ronment before a specific objective or reward is provided.
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This goal motivates the study of self-supervised / unsuper-
vised reinforcement learning: algorithms that provide the
agent with an intrinsically-grounded drive to acquire under-
standing and control of its environment in the absence of an
extrinsic reward signal. Agents trained with intrinsic reward
signals might accomplish tasks specified via simple and
sparse rewards more quickly, or may acquire broadly useful
skills that could be adapted to specific task objectives. Our
aim is to design an embodied agent and a general-purpose
intrinsic reward signal that leads to the agent controlling
partially-observed environments when equipped only with a
high-dimensional sensor (camera) and no prior knowledge.

A large body of prior methods for self-supervised reinforce-
ment learning focus on attaining coverage, typically through
novelty-seeking or skill-discovery objectives; see Hafner
et al. (2020b) for a survey. As argued in prior work (Friston
et al., 2010; Friston, 2013; Fountas et al., 2020; Berseth
et al., 2021), a compelling alternative to coverage suited to
complex and dynamic environments is to minimize surprise,
which incentivizes an agent to control aspects of its envi-
ronment to achieve homeostasis within it – i.e. constructing
and maintaining a niche where it can reliably remain de-
spite external perturbations. We generally expect agents that
succeed at minimizing surprise in complex environments to
develop similarly complex behaviors; such acquired com-
plex behaviors may be repurposed for other tasks (Berseth
et al., 2021). However, these frameworks do not explic-
itly address the difficulty of controlling partially-observed
environments: if an otherwise complex and chaotic environ-
ment contains a “dark room” (small reliable niche), an agent
could minimize surprise simply by hiding in this room and
refusing to make meaningful observations, thereby failing
to explore and control the wider surrounding environment.

Consider Fig. 1, which depicts a partially-observed outdoor
environment with various flora (trees, vegetables, and grass),
fauna (a goat), weather, and an agent. We will discuss three
different intrinsic incentives an agent might adopt in this
environment. If the agent’s incentive is to (i) minimize
the entropy of its next observation, it will seek the regions
with minimal unpredictable variations in flora, fauna, and
weather. This is unsatisfying because it merely requires
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Figure 1: Top row: The environment consists of a large number of objects, some of which (e.g., the goat) move and act in unpredictable
ways, and are not observed unless the agent is nearby. Bottom row: If the agent maintains a latent state space model of the world, it has
uncertain beliefs about unobserved objects, particularly those that are dynamic (like the goat). If the agent reduces the long-horizon
average entropy of its beliefs, it will first seek out information (e.g., finding the goat), and then modify the environment to limit the range
of states the goat can occupy even when it is no longer observed, for example by building a fence around it.

avoidance, rather than interaction. Let us assume the agent
will maintain a model of its belief about a learned latent
state – the agent cannot observe the true state, instead it
learns a state representation. Further, let us assume the agent
maintains a separate model of the visitation of its latent state
– we will refer to this distribution as its latent visitation.
If the agent’s incentive is to (ii) minimize the entropy of
belief (either at every step or at some final step), the agent
will gather information and take actions to make the envi-
ronment predictable: find and observe the changes in flora,
fauna, and weather that are predictable and avoid those that
aren’t. However, once it has taken actions to make the world
predictable, this agent is agnostic to future change – it will
not resist predictable changes in the environment. Finally,
if the agent’s incentive is to (iii) minimize the entropy of
its latent visitation, this will result in categorically differ-
ent behavior: the agent will seek both to make the world
predictable by gathering information about it and prevent it
from changing. While both the belief and latent visitation
entropy minimization objectives are worthwhile intrinsic
motivation objectives to study, we speculate that an agent
that is adept at preventing its environment from changing
will generally learn more complex behaviors.

We present a concise and effective objective for self-
supervised reinforcement learning in dynamic partially-
observed environments: minimize the entropy of the agent’s
latent visitation under a latent state-space model learned
from exploration. Our method, which we call Believer, re-
sults in an agent that learns to seek out and control factors of
variation outside of its immediate observations. We instanti-
ate this framework by simultaneously learning a state-space
model as a Deep Variational Bayes Filter along with a policy
that employs the model’s beliefs. Our experiments show that
our method learns to represent and control dynamic entities
in partially-observed visual environments with no extrinsic
reward signal, including in several 3D environments.

Figure 2: A “demon” gathering information to sort particles,
reducing the entropy of the particle configuration.

2. Maxwell’s Demon and Belief Entropy
The main concept behind our approach to self-supervised
reinforcement learning is that incentivizing an agent to min-
imize the entropy of its beliefs about the world is sufficient
to lead it to both gather information about the world and
learn to control aspects of its world. Our approach is partly
inspired by a well-known connection between information
theory and thermodynamics, which can be illustrated infor-
mally by a version of the Maxwell’s Demon thought experi-
ment (Maxwell & Pesic, 2001; Leff & Rex, 2014). Imagine
a container separated into compartments, as shown in Fig. 2.
Both compartments contain gas molecules that bounce off of
the walls and each other in a somewhat unpredictable fash-
ion, though short-term motion of these molecules (between
collisions) is predictable. The compartments are separated
by a massless door, and the agent (the eponymous “demon”)
can open or close the door at will to sort the particles.1

By sorting the particles onto one side, the demon appears
to reduce the disorder of the system, as measured by the
thermodynamic entropy, S, which increases the energy, F

1In Maxwell’s original example, the demon sorts the particles
into the two chambers based on velocity. Our example is closely
related to Szilard’s engine (Szilard, 1929; Magnasco, 1996).
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available to do work, as per Helmholtz’s free energy relation-
ship, F = U −TS. The ability to do work affords the agent
control over the environment. This apparent violation of the
second law of thermodynamics is resolved by accounting
for the agent’s information processing needed to make deci-
sions (Bennett, 1982). By concentrating the particles into a
smaller region, the number of states each particle visits is
reduced. Therefore, this illustrates an example environment
in which reducing the entropy of the visitation distribution
results in an agent gaining the ability to do work. In the
same way that Maxwell’s demon accumulates free energy
via information-gathering and manipulating of its environ-
ment, we would expect self-supervised agents guided by
belief entropy minimization to accumulate the equivalent of
potential energy in their corresponding sequential decision
processes, which would lead them to gain control.

3. Control and Information Gathering via
Belief Entropy Minimization

Preliminaries. Our goal in this work will be to design
self-supervised reinforcement learning methods in partially
observed settings, which can acquire complex behaviors that
both gather information and gain control over their environ-
ment. To this end, we will formulate the learning problem in
the context of a discrete-time partially-observed controlled
Markov process, also known as a controlled hidden Markov
process (CHMP), which corresponds to a POMDP without
a reward function. The CHMP is defined by a state space S
with states s ∈ S, action space A with actions a ∈ A, tran-
sition dynamics P (st+1|st,at), observation space Ω with
observations o ∈ Ω, and emission distribution O(ot|st).
The agent is a policy π(at|o≤t); it does not observe s.

We denote the undiscounted finite-horizon state visitation
as dπ(s)

.
= 1/T

∑T−1
t=0 Prπ(st = s), where Prπ(st = s)

is the probability that st = s after executing π for t
steps. Using dπ(s), we can quantify the average disorder
of the environment with the Shannon entropy, H(dπ(s)).
Prior work proposes observational surprise minimization
(minπ − log p̂(o)) as an intrinsic control objective (Friston,
2009; Ueltzhöffer, 2018; Berseth et al., 2021); in Berseth
et al. (2021) (SMiRL), the agent models the state visita-
tion distribution, dπ(s) with p̂(s), which it computes by
assuming access to s. In environments in which there are
natural sources of variation outside of the agent, this incen-
tivizes the SMiRL agent, fully aware of these variations
observed through s, to take action to control them. In a
partially-observed setting, SMIRL’s model becomes p̂(o),
which generally will enable the agent to ignore variations
that it can prevent from appearing in its observations. We
observe this phenomenon in our experiments.

The main question that we tackle in the design of our al-
gorithm is: how can we formulate a general and concise

objective function that can enable an RL agent to gain con-
trol over its partially-observed environment, in the absence
of any user-provided task reward? Consider the following
partially-observed “TwoRoom” environment, depicted in
Fig. 3. The environment has two rooms: an empty (“dark”)
room on the left, and a “busy” room on the right, the latter
containing two moving particles that move around until the
agent “tags” them, which stops their motion. Intuitively, an
agent that aims to gather information and gain control of its
environment should search for the moving particles to find
out where they are. However, it is difficult to observe both
particles at the same time. A more effective strategy is to
“tag” the particles – then, their position remains fixed, and
the agent will know where they are at all times, even when
they are not observed. This task can be seen as a simple
analogy for more complex settings that can occur in natural
environments, where we might want agents to arrange an
environment in an orderly fashion. We can view this task as
a rough analogy for a version of the previously-discussed
Maxwell’s Demon thought experiment.

Representing variability with latent state-space models.
In order for the agent to represent the dynamic components
of the environment observed from images, our method in-
volves learning a latent state-space model (LSSM) (Wat-
ter et al., 2015; Krishnan et al., 2015; Karl et al., 2016;
Maddison et al., 2017; Hafner et al., 2018; Mirchev et al.,
2018; Wayne et al., 2018; Vezzani et al., 2019; Lee et al.,
2019; Das et al., 2019; Hafner et al., 2019; Mirchev et al.,
2020; Rafailov et al., 2021). We intermittently refer to
these dynamic components as “factors of variation” to dis-
tinguish the model’s representation of variability in the en-
vironment (latent state) from the true variability (true state).
At timestep t, the LSSM represents the agent’s current belief
as qφ(zt|o≤t,a≤t−1), where zt is the model’s latent state.
We defer the description of the LSSM learning and archi-
tecture to Section 4, and now motivate how we will use the
LSSM for constructing an intrinsic control objective.

Belief entropy and latent visitation entropy. Consider a
policy that takes actions to minimize the entropy of the belief
H(qφ(zt|o≤t,a≤t−1)). This corresponds to the agent per-
forming active state estimation (Feder et al., 1999; Williams,
2007; Kreucher et al., 2005), and is equivalent to taking ac-
tions to maximize expected latent-state information gain
I(ot, zt|o<t,at) (Aoki et al., 2011). However, active state
estimation is satisfied by a policy that simply collects infor-
mative observations, as it does not further incentivize ac-
tions to “stabilize” the environment by preventing the latent
state from changing. Analogous to the standard definition
of undiscounted state visitation, consider the undiscounted
latent visitation: dπ(z)

.
= 1/T

∑T−1
t=0 Prπ(zt = z), where

Prπ(zt = z) = Eπqφ(zt|o≤t,a≤t−1) (the expected belief
after executing π for t timesteps). Our goal is to minimize
H(dπ(z)), as this corresponds to stabilizing the agent’s be-
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Figure 3: Comparison of several approaches on the TwoRoom environment. The agent, in white, can view a limited area around it, in grey,
and can stop particles within its view and darken their color. The vertical wall, in brown, separates particles (blue and green) in the “busy
room” (on right) from the “dark room” (on left). Top: Our approach seeks out the particles and stops them. Middle: The observational
surprise minimization method in Berseth et al. (2021) leads the agent to frequently hide in the dark room, leaving the particles unstopped.
Bottom: Latent-state infogain leads the agent to find and observe the particles, but not stop them.

liefs, which incentivizes both reducing uncertainty in each
qφ(zt|o≤t,a≤t−1), as well as constructing a niche such
that each qφ(zt|o≤t,a≤t−1) concentrates probability on the
same latent states.

Discovering factors of variation. In order for belief
entropy minimization to incentivize the agent to control en-
tities in the environment, the LSSM’s belief must represent
the underlying state variables in some way and model their
uncertain evolution until either observed or controlled. For
example, the demon in the thought experiment in Section 2
would have no incentive to gather the particles if it did not
know that they existed. While sufficient random exploration
may result in a good-enough LSSM, making this approach
generally practical requires a suitable exploration strategy
to collect the experience necessary to train an LSSM that
represents all of the underlying factors of variation. To this
end, we learn a separate exploratory policy to maximize
expected model information gain, similar to Schmidhu-
ber (2010); Houthooft et al. (2016); Gheshlaghi Azar
et al. (2019); Sekar et al. (2020). Expected information
gain about model parameters θ is relative to a set of
prior experience D and a partial trajectory ht−1, given as
I(ot;θ|ht−1,D) = EotKL(p(θ|ot,ht−1,D) || p(θ|ht−1,D)).
Note that model information gain is distinct from the
information an agent may gather to reduce its belief
entropy H(qφ(zt|o≤t,a≤t−1)) within the current episode.
Computing the full model parameter prior p(θ|ht−1,D)
and posterior p(θ|ot,ht−1,D) is generally computationally
expensive, and also requires evaluating an expectation
over observations – instead, we approximate this expected
information gain following a method similar to Sekar et al.
(2020): we use an ensemble of latent dynamics models,
E = {pθi(zt|zt−1,at−1)}Ki=1 to compute the variance of
latent states estimated by qφ(zt|o≤t,a≤t−1). We build the
ensemble throughout training using the method of Izmailov
et al. (2018). Thus, the exploration reward is given as:
re = Var{θi}[log pθ(zt|zt−1,at−1)|zt ∼ qφ].

4. The Believer Algorithm
Now we describe how we implement and combine the vari-
ous components of our method into a learning algorithm for
minimizing belief visitation entropy in CHMPs (reward-less
POMDPs). The main components are the latent-state space
model, the latent visitation model, and the exploration and
control policies.

Latent state-space model. In our CHMP setting, the
agent only has access to partial observations o of
the true state s. In order to estimate a represen-
tation of states and beliefs, we employ a sequence-
based Variational Autoencoder to learn latent variable
belief, dynamics, and emission models. We formu-
late the variational posterior to be qφ(z1:T |o1:T ,a1:T ) =∏T
t=1 qφ(zt|o≤t,a≤t−1) and the generative model as

p(z1:T ,o1:T |a1:T ) =
∏T
t=1 pθ(ot|zt)pθ(zt|zt−1,at−1).

Denoting ht
.
= (o≤t,a≤t−1), the log-evidence of the model

and its lower-bound are:

log p(o1:T |a1:T−1) = logEz1:T∼p(z1:T |a1:T )

[
T∏
t=1

log p(ot|zt)

]

≥L(φ, θ) =

T∑
t=1

E
qφ(zt|ht)

[
pθ(ot|zt)

]
−

E
qφ(zt−1|ht−1)

[
KL(qφ(zt|ht) || pθ(zt|zt−1,at−1)

]
(1)

Given a dataset D = {(o1:T ,a1:T )i}Ni=1, Eq. 1 is used to
train the model via maxφ,θ EU(D)L(φ, θ). The focus of our
work is not to further develop the performance of LSSMs;
our method could be further improved with advances in the
particular LSSM employed. In practice, we implemented an
LSSM in PyTorch (Paszke et al., 2019) similar to the categor-
ical LSSM architecture described in (Hafner et al., 2020a).
In this case, both the belief prior and belief posterior are dis-
tributions formed from products of K1 categorical distribu-
tions over K2 categories: g(z;v) =

∏K1

κ1=1

∏K2

κ2=1 v
zκ1,κ2
κ1,κ2 ,

where the vector of K1 ·K2 parameters, v, is predicted by
neural networks: vposterior = fφ(o≤t,at) for the posterior,
and vprior = fθ(o<t,at) for the prior. We found it effective



Intrinsic Control of Variational Beliefs in Dynamic Partially-Observed Visual Environments

(a) Latent state-space and visitation models. (b) Intrinsic rewards.

Figure 4: Figure of latent-state space model and rewards. Left: The model observes images, ot to inform beliefs about latent states,
qφ(zt|o≤t,a≤t−1), and observes actions to make one-step predictions p(zt+1|zt,at). Each belief is used to update the latent visitation,
q̄t′(z). Right: The beliefs and latent visitations can be combined into various reward functions. The solid arrows denote directions of
belief expansion and contraction incentivized by rewards; the dotted arrows denote directions of belief translation incentivized by rewards.

to construct fφ and fθ following the distribution-sharing de-
composition described in (Karl et al., 2016; 2017; Das et al.,
2019), in which the posterior is produced by transforming
the parameters of the prior with a measurement update. We
implemented the prior as an RNN, and the posterior as an
MLP, and defer further details to the supplementary website.

Latent visitation model. Our agent cannot, in general,
evaluate dπ(z) or H(dπ(z)); at best, it can approximate
them. We do so by maintaining a within-episode estimate
of dπ(z) by constructing a mixture across the belief history
samples q̄t′(z) = 1/t′

∑t′

t=0 qφ(zt|o≤t,a≤t−1). This corre-
sponds to a mixture (across time) of single-sample estimates
of each Eπqφ(zt|o≤t,a≤t−1). Given q̄t′(z), we have an
estimate of the visitation of the policy, and we can use this
as part or all of the reward signal of the agent. To implement
q̄t′(z), we experimented both approximating it by averag-
ing each v and with recording every belief, and found that
simply recording each belief sufficed.

4.1. Belief-based objectives

We now describe several rewards that can be constructed
with the LSSM, and how they connect to our main objective.
In what follows, we denote qφ(zt|o≤t,a≤t−1) = qt(zt) for
brevity. While our primary objective is “niche creation” by
minimizing the expected surprise of the latent visitation
model, we also explore other intrinsic objectives that can
be computed in terms of the LSSM and the latent visitation
model. These rewards are visualized in Fig. 4.

Certainty. The entropy of the current belief measures the
agent’s certainty of the latent state, and by extension, about
the aspects of the environment captured by the latent. Min-
imizing the belief entropy increases the agent’s certainty.
It is agnostic to predictable changes, and penalizes unpre-

dictable changes. We define the certainty reward as the
negative belief entropy:

rct
.
= −H(qt(zt)) = Eqt(zt)[log qt(zt)] (2)

Niche Creation: Our primary objective is the expected
surprise of the latent visitation distribution, which measures
how many states the agent believes it could have been in dur-
ing the episode so far. Minimizing this reduces the number
of visited environment states and increases the agent’s cer-
tainty. We define the niche creation reward as the negative
cross entropy of the visitation under the belief:

rnct
.
= −H(qt(zt), q̄t′(z)) = Eqt(zt)[log q̄t′(z)]. (3)

Niche Expansion. Instead of minimizing the latent vis-
itation entropy altogether, we can add an entropy bonus
for the current belief to encourage exploration and thus po-
tentially find a broader niche. The results in bringing the
current belief towards the current latent visitation distribu-
tion. We define the niche expansion reward as the negative
KL divergence:

rnet
.
= −KL(qt(zt)||q̄t′(z)) = Eqt(zt)[log q̄t′(z)− log qt(zt)].

(4)

State Infogain. The latent state information gain (not to
be confused with the model information gain described in
Section 3) measures how much more certain the belief is
compared to its temporal prior. Gaining information does
not always coincide with being certain, because an infogain
agent may cause chaotic events in the environment with
outcomes that it only understands partially. As a result, it
has gained more information than standing still but has also
become less certain. We define the infogain reward as the
KL divergence:

rit
.
= KL(qt(zt)||p(zt|zt−1,at−1))

= Eqt(zt)qt−1(zt−1)[log qt(zt)− log p(zt|zt−1,at−1)]. (5)

https://sites.google.com/view/believer-anonymous/home
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4.2. Algorithm summary

Conceptual pseudocode for our method is presented in
Alg. 1. The algorithm begins by initializing the LSSM,
qφ and pθ, as well as two separate policies: one trained
to collect difficult-to-predict data with the exploration ob-
jective with rewards defined by re, πe, and one trained to
maximize one of the intrinsic control objectives as defined
by Eqs. (2) to (5).

We represent each policy π(at|vposterior,t) as a two-layer
fully-connected MLP with 128 units. Recall that vposterior
is the vector of posterior parameters, which enables the
policy to use the memory represented by the LSSM. We
do not back-propagate the policies’ losses to the LSSM for
simplicity of implementation, although prior work does so
in the case of a single policy (Lee et al., 2019). Our method
is agnostic to the subroutine used to improve the policies.
In our implementation, we employ PPO (Schulman et al.,
2017).

Algorithm 1 Believer

0: procedure BELIEVER(Env;K,M,N,L)
0: Initialize πc, πe, qφ, p{θi}Ki=1

,D ← ∅.
0: for episode = 0, . . . ,M do
0: De ← Collect(N,Env, πe)
0: Dc ← Collect(N,Env, πc)
0: D ← D ∪De ∪ Dc
0: // LSSM fitting step.
0: Update qφ, pθ w. Eq. 1, D for L rounds.
0: Update πe w. PPO on De with rewards re
0: // Intrinsic control opt. step.
0: Update πc w. PPO on Dc with rewards defined by

one of Eqs. (2) to (5)
=0

5. Experiments
Our experiments are designed to answer the following
questions: Q1: Intrinsic control capability: Does our la-
tent visitation-based self-supervised reward signal cause
the agent to stabilize partially-observed visual environ-
ments with dynamic entities more effectively than prior
self-supervised stabilization objectives? Q2: Properties
of Believer objectives: What types of emergent behaviors
does each belief-based objective described in Section 4.1
evoke?

In order to answer these questions, we identified environ-
ments with the following properties (i): partial observabil-
ity, (ii): dynamic entities that the agent can affect, and
(iii): high-dimensional observations. Because many stan-
dard RL benchmarks do not contain the significant partial-
observability that is prevalent in the real world, it is chal-
lenging to answer these questions with them. Instead, we
create several environments, and employ several existing

environments we identified to have these properties. In what
follows, we give an overview of the experimental settings
and conclusions. We defer comprehensive details to the
supplementary website.

5.1. Environments

(a) TwoRoom Large
Environment.

(b) Vizdoom De-
fend The Center.

(c) One Room Cap-
ture 3D.

TwoRoom. As previously described, this environment has
two rooms: an empty (“dark”) room on the left, and a “busy”
room on the right, the latter containing moving particles
that move around unless the agent “tags” them, which per-
manently stops their motion, as shown in Fig. 5a. The
agent can observe a small area around it, which it receives
as an image. In this environment, control corresponds to
finding and stopping the particles. The action space is
A = {left, right, up, down, tag, no-op}, and the observa-
tion space is normalized RGB-images: Ω = [0, 1]3×30×30.
An agent that has significant control over this environment
should tag particles to reduce the uncertainty over future
states. To evaluate policies, we use the average fraction
of total particles locked, the average fraction of particles
visible, and the discrete true-state visitation entropy of the
positions of the particles, H(dπ(sd)). We employed two
versions of this environment, with details provided in the
supplementary website. In the large environment, the agent
observes a 5x5 area around it as an image, and the busy
room contains 5 particles.

VizDoom DefendTheCenter. The VizDoom DefendThe-
Center environment shown in Fig. 5b is a circular arena
in which a stationary agent, equipped with a partial field-
of-view of the arena and a weapon, can rotate and shoot
encroaching monsters (Kempka et al., 2016). The action
space is A = {turn left, turn right, shoot}, and the observa-
tion space is normalized RGB-images: Ω = [0, 1]3×64×64.
In this environment, control corresponds to reducing the
number of monsters by finding and shooting them. We use
the average original environment return, (for which no pol-
icy has access to during training), the average number of
killed monsters at the end of an episode, and the average
number of visible monsters to measure the agent’s control.

OneRoomCapture3D The MiniWorld framework is a cus-
tomizable 3D environment simulator in which an agent per-
ceives the world through a perspective camera (Chevalier-

https://sites.google.com/view/believer-anonymous/home
https://sites.google.com/view/believer-anonymous/home
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Boisvert, 2018). We used this framework to build the en-
vironment in Fig. 5c which an agent and a bouncing box
both inhabit a large room; the agent can lock the box to
stop it from moving if it is nearby, as well as constrain
the motion of the box by standing nearby it. In this envi-
ronment, control corresponds to finding the box and either
trapping it near a wall, or tagging it. The action space isA =
{left 20◦, right 20◦, forward, backward, tag}, and observa-
tion space is normalized RGB-images: Ω = [0, 1]3×64×64.
We use the average fraction of time the box is captured, the
average time the box is visible, and continuous (Gaussian-
estimated) true-state visitation entropy of the box’s position
H(dπ(sd)) to measure the agent’s ability to reduce entropy
of the environment.

5.2. Comparisons

In order to answer Q1, we compare to SMiRL (Berseth
et al., 2021) and a recent empowerment method (Zhao et al.,
2021) that estimates the current empowerment of the agent
from an image. We use the empowerment estimate as a
reward signal for training a policy. In order to answer Q2,
we ensured each environment was instrumented with the
aforementioned metrics of visibility and control, and de-
ployed Algorithm 1 separately with each of Eqs. (2) to (5),
as well a with simple sum of Eq. (3) and Eq. (5). Finally,
we compare to a “random policy” that chooses actions by
sampling from a uniform distribution over the action space,
as well as an “oracle policy” that has access to privileged in-
formation about the environment state in each environment.
We perform evaluation at 5e6 environment steps with 50
policy rollouts per random seed, with 3 random seeds for
each method (150 rollouts total).

Our primary results are presented in Tables 1 and 2. We
observe the Niche Creation+Infogain and Niche Expansion
rewards to yield policies that exhibit a high degree of control
over each environment – finding and stopping the moving
objects, and finding and shooting the monsters, in the com-
plete absence of any extrinsic reward signal. The Infogain-
based agent generally seeks out and observes, but does not
interfere with, the dynamic objects; the high Visibility met-
ric and low control metrics (Lock, Capture, Kill) in each
environment illustrates this. Qualitative results of this phe-
nomenon are illustrated in Fig. 6, in which the infogain
signal is high when stochastically-moving monsters are vis-
ible, and low when they are not. We observe that in these
partially observed environments the method of Berseth et al.
(2021) tends to learn policies that hide from the dynamic ob-
jects in the environment, as indicated by the low control and
visibility values of the final policy. Furthermore, we observe
the method of Zhao et al. (2021) not to exhibit controlling
behavior in these partially-observed environments, instead it
views the dynamic objects in the TwoRoom and OneRoom-
Capture3D Environments somewhat more frequently than

Method TwoRoom Environment

Obj. Lock↑ Obj. Visible↑ H(dπ(sd)) ↓
Niche Creation+Infogain 0.92±0.01 0.94±0.01 0.33±0.03
Niche Expansion, Eq. (4) 0.95±0.00 0.66±0.03 0.22±0.02
Niche Creation, Eq. (3) 0.50±0.05 0.46±0.05 1.06±0.09
Certainty, Eq. (2) 0.06±0.02 0.01±0.00 1.86±0.04
Infogain, Eq. (5) 0.00±0.00 0.55±0.00 1.95±0.02
SMiRL 0.25±0.04 0.27±0.03 1.52±0.06
Empowerment 0.00±0.00 0.46±0.03 1.95±0.03
Random 0.61±0.03 0.28±0.01 1.19±0.06

Oracle 0.98±0.00 0.91±0.01 0.13±0.01

OneRoomCapture3D Environment

Obj. Captured↑ Obj. Visible↑ H(dπ(sd)) ↓
Niche Creation+Infogain 0.84±0.08 0.88±0.02 −0.06±0.16
Niche Expansion, Eq. (4) 0.73±0.03 0.67±0.04 −0.96±0.21
Niche Creation, Eq. (3) 0.39±0.04 0.01±0.00 1.15±0.16
Certainty, Eq. (2) 0.29±0.04 0.16±0.03 0.66±0.24
Infogain, Eq. (5) 0.57±0.03 0.54±0.04 0.97±0.14
SMiRL 0.46±0.04 0.20±0.02 −0.02±0.28
Empowerment 0.49±0.04 0.22±0.02 0.21±0.25
Random 0.54±0.03 0.16±0.01 0.12±0.22

Oracle 0.95±0.00 0.96±0.00 −2.58±0.23

Table 1: Policy evaluation in TwoRoom and OneRoomCapture3D.
Means and their standard errors are reported; grey shading denotes
a variant of our method, bolding denotes where a method achieves
the best mean performance under a metric. We observe that the
Niche Expansion and Niche Creation+Infogain objectives lead the
agent to seek out and stabilize the dynamic objects substantially
more effectively than other methods.

the random policy. We present videos of all policies in the
supplementary website.

6. Related Work
Much of the previous work on learning without extrinsic
rewards has been based either on (i) exploration (Chen-
tanez et al., 2005; Oudeyer et al., 2007; Oudeyer & Ka-
plan, 2009), or (ii) some notion of intrinsic control, such
as empowerment (Klyubin et al., 2005a; Mohamed &
Jimenez Rezende, 2015; Karl et al., 2017). Exploration
approaches include those that maximize model prediction er-
ror or improvement (Schmidhuber, 1991; Lopes et al., 2012;
Stadie et al., 2015; Pathak et al., 2017), maximize model
uncertainty (Houthooft et al., 2016; Still & Precup, 2012;
Shyam et al., 2018; Pathak et al., 2019; Gheshlaghi Azar
et al., 2019), maximize state visitation (Bellemare et al.,
2016; Fu et al., 2017; Tang et al., 2017; Hazan et al., 2019),
maximize surprise (Schmidhuber, 1991; Achiam & Sastry,
2017; Sun et al., 2011), and employ other novelty-based
exploration bonuses (Lehman & Stanley, 2011; Burda et al.,
2018; Kim et al., 2018; 2019). Our method can be combined
with prior exploration techniques to aid in optimizing our
proposed objective, and in that sense our work is largely
orthogonal to prior exploration methods.

Prior works on intrinsic control include empowerment max-
imization (Klyubin et al., 2005a;b; Mohamed & Rezende,
2015), observational surprise minimization (Friston, 2009;

https://sites.google.com/view/believer-anonymous/home
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Figure 6: Visualization of a sequence in the VizDoom DefendTheLine environment. Row 1: The image provided to the agent. Row 2: The
agent’s reconstruction of a sample from q. Row 3: The agent’s one-step image forecast. Right: The state infogain signal, Eq[log q− log p].
Each colored rectangle identifies a keyframe that corresponds to a colored circle on the infogain plot. The infogain signal measures how
much more certain the belief is compared to its temporal prior; when stochastic events happen (monster appears nearby), the signal is
high; when the next image is predictable (monster disappears when shot), the signal is low.

Method DefendTheCenter Environment

Env. Return↑ Monster Kills↑ Visible↑
Niche Creation+Infogain 1964.4±05.42 0.00±0.00 1.16±0.005
Niche Expansion, Eq. (4) 2506.4±36.26 28.2±1.50 0.94±0.015
Niche Creation, Eq. (3) 2182.2±14.12 10.0±0.55 0.76±0.017
Certainty, Eq. (2) 1958.0±35.63 07.2±0.73 0.92±0.028
Infogain, Eq. (5) 1928.6±35.51 00.2±00.2 1.15±0.008
SMiRL (Berseth et al., 2021) 1918.7±53.80 7.58±0.15 0.89±0.009
Empowerment (Zhao et al., 2021) 2161.8±29.06 16.2±2.35 0.86±0.064
Random policy 2113.8±37.60 14.2±0.73 0.90±0.026

Oracle policy 2550.8±55.90 28.0±1.52 0.80±0.035

TwoRoom-Large Environment

Obj. Lock↑ Obj. Visible↑ H(dπ(sd)) ↓
Niche Creation+Infogain 0.665±0.013 0.501±0.013 2.831±0.083
SMiRL (Berseth et al., 2021) 0.110±0.020 0.087±0.016 3.417±0.022
Random policy 0.271±0.024 0.138±0.011 3.404±0.063

Oracle policy 0.885±0.005 0.464±0.017 1.016±0.043

Table 2: Policy evaluation in VizDoom and TwoRoom-Large.
Means and their standard errors are reported; grey shading de-
notes a variant of our method, bolding denotes where a method
achieves the best mean performance under a metric. We observe
that the Niche Expansion objective in VizDoom and Niche Cre-
ation+Infogain objective in TwoRoom-Large lead the agent to seek
out and stabilize the dynamic objects substantially more effectively
than other methods.

Friston et al., 2009; Ueltzhöffer, 2018; Berseth et al., 2021;
Parr & Friston, 2019), and skill discovery (Barto et al., 2004;
Konidaris & Barto, 2009; Gregor et al., 2016; Eysenbach
et al., 2018; Sharma et al., 2019; Xu et al., 2020). Ob-
servational surprise minimization seeks policies that make
observations predictable and controllable, and is closely con-
nected to entropy minimization, as entropy is defined to be
the expected surprise. In Friston et al. (2010), the notion of
Free Energy Minimization corresponds to minimizing obser-
vational entropy, and states that the entropy of hidden states
in the environment is bounded by the entropy of sensory ob-
servations. However, the proof assumes a diffeomorphism
to hold between states and observations, which is explicitly
violated in CHMPs and any real-world setting, as agents
cannot perceive the state of anything outside their egocentric
sensory observations. Similarly, empowerment (Klyubin
et al., 2005b; Karl et al., 2015; 2017; Zhao et al., 2021) is
a measure of the degree of control an agent has over future
observations, whereas state visitation entropy is a measure
of the degree of the control over the underlying environment
state. Our approach seeks to infer and gain control over a
representation of the environment’s state, as opposed to the
agent’s observations. We demonstrate environments where
minimizing observational surprise and maximizing empow-
erment leads to degenerate solutions that ignore important
factors of variation, whereas our approach identifies and
controls them.

Representation learning methods have been explored in a
variety of prior work, including, but not limited to, (Lange &
Riedmiller, 2010; Watter et al., 2015; Karl et al., 2016; Nair
et al., 2018; Zhang et al., 2018; Hafner et al., 2018; Lee et al.,
2019). Our approach employs a representation learning
method to build a latent state-space model (Watter et al.,
2015; Krishnan et al., 2015; Karl et al., 2016; Hafner et al.,
2018; Mirchev et al., 2018; Wayne et al., 2018; Vezzani
et al., 2019; Lee et al., 2019; Das et al., 2019; Hafner et al.,
2019; Mirchev et al., 2020; Rafailov et al., 2021).
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7. Discussion
We presented a method, Believer, for intrinsically motivat-
ing an agent to discover, represent, and exercise control
of dynamic objects in a partially-observed environments
sensed with visual observations. We found that our method
approached expert-level performance on several environ-
ments and substantially surpassed prior work in its unsuper-
vised control capability. While our experiments represent a
proof-of-concept that illustrates how latent state belief en-
tropy minimization can incentivize an agent to both gather
information and gain control over its environment, there are
a number of exciting future directions. First, our method
is inspired by a connection between thermodynamics and
information theory, but the treatment of this connection is
informal. Formalizing this connection could lead to an im-
proved theoretical understanding of how Believer and other
intrinsic motivation methods can lead to desirable behavior,
and perhaps allow deriving conditions on environments un-
der which such desirable behaviors would emerge. Second,
Believer and other surprise-minimizing intrinsic motivation
objectives are designed to work well in complex environ-
ments with unpredictable phenomena: a particularly inter-
esting direction for future work is to scale up such methods
in order to study the behavior that emerges.
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8. Experimental Details
Please visit this anonymous website on which we
host videos: https://sites.google.com/view/believer-
anonymous/home.

Computational resources. Most experimental results
were computed on a Linux Destkop with 32 GiB of RAM,
equipped with an AMD Ryzen 7 3800X 8-core CPU and an
RTX 2080 Ti GPU.

True-state entropy metric. We approximatedH(dπ(sd))
by computing an estimated dπ(sd) during the episode. We
report the entropy at the final step of the episode, which
is when the estimate of dπ(sd) is most precise. Recall
that sd represents the positions of the dynamic objects in
the environment. In the TwoRoom environment, dπ(sd) is
computed by recording counts. In the OneRoomCapture3D
environment, sd is continuous, and dπ(sd) is computed by
fitting a diagonal Gaussian.

8.1. Environment details.

In this section, we elaborate on the details of the environ-
ments described in the main text.

(a) TwoRoom Large
Environment

(b) TwoRoom Environ-
ment

Figure 7: TwoRoom Environments. In the large environment, the
agent observes a 5x5 area around it as an image, and the busy
room contains 5 particles. In the normal environment, the agent
observes a 3x3 around it as an image, and the busy room contains
2 particles. In both settings, the particles are initialized to random
positions in the busy room at the beginning of each episode.

TwoRoom environment details. As previously de-
scribed, this environment has two rooms: an empty (“dark”)
room on the left, and a “busy” room on the right, the latter
containing moving particles that move around unless the
agent “tags” them, which permanently stops their motion, as

shown in Fig. 7. The agent can observe a small area around
it, which it receives as an image. In this environment, con-
trol corresponds to finding and stopping the particles. The
action space is A = {left, right, up, down, tag, no-op}, and
the observation space is normalized RGB-images: Ω =
[0, 1]3×30×30. An agent that has significant control over this
environment should tag particles to reduce the uncertainty
over future states. To evaluate policies, we use the average
fraction of total particles locked, the average fraction of par-
ticles visible, and the discrete true-state visitation entropy
of the positions of the particles, H(dπ(sd)). We employed
two versions of this environment. In the large environment,
the agent observes a 5x5 area around it as an image, and the
busy room contains 5 particles. In the normal environment,
the agent observes a 3x3 around it as an image, and the busy
room contains 2 particles. The large environment consists
of an area of 15x15 cells, and the normal environment con-
sists of an area of 5x5 cells. In both settings, the particles
are initialized to random positions in the busy room at the
beginning of each episode, and episodes last for T = 100
timesteps. The particles bounce off the walls, but not each
other.

(a) Vizdoom De-
fendTheCenter.

(b) OneRoomCap-
ture3D

Figure 8: Vizdoom Defend The Center and OneRoomCapture3D

VizDoom DefendTheCenter. The VizDoom DefendThe-
Center environment shown in Fig. 8 is a circular arena in
which an agent, equipped with a partial field-of-view of
the arena and a weapon, can rotate and shoot encroach-
ing monsters (Kempka et al., 2016). The action space
is A = {turn left, turn right, shoot}, and the observation
space is normalized RGB-images: Ω = [0, 1]3×64×64. In
this environment, significant control corresponds to reduc-
ing the number of monsters by finding and shooting them.
We use the average original environment return (for which
no method has access to during training) the average number
of killed monsters at the end of an episode, and the average
number of visible monsters to measure the agent’s control.
Episodes last for T = 500 timesteps.

OneRoomCapture3D The MiniWorld framework is
a customizable 3D environment simulator in which an
agent perceives the world through a perspective camera
(Chevalier-Boisvert, 2018). We used this framework
to build the environment in Fig. 8 which an agent and
a bouncing box both inhabit a large room; the agent

https://openreview.net/forum?id=u2YNJPcQlwq
https://openreview.net/forum?id=u2YNJPcQlwq
https://sites.google.com/view/believer-anonymous/home
https://sites.google.com/view/believer-anonymous/home
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can lock the box to stop it from moving if it is nearby,
as well as constrain the motion of the box by standing
nearby it. In this environment, significant control cor-
responds to finding the box and either trapping it near
a wall, or tagging it. When the box is tagged, its color
changes from yellow to purple. The action space is A =
{turn left 20◦, turn right 20◦,move forward, move backward, tag},
and observation space is normalized RGB-images:
Ω = [0, 1]3×64×64. We use the average fraction of time
the box is captured, the average time the box is visible,
and continuous (Gaussian-estimated) true-state visitation
entropy of the box’s position H(dπ(sd)) to measure the
agent’s ability to reduce entropy of the environment.
Episodes last for T = 150 timesteps.

9. Implementation Details
Hyperparameters. In Table 3, we provide values of the
hyperparameters used in Algorithm 1 and the LSSM archi-
tecture described in Table 4.

Architectural details. We provide detailed information
on the architectural implementation of the learners in Ta-
ble 4. The value function used for generalized advantage
estimation in PPO uses the same architecture as the policy
with decoupled weights, except with a final output size of 1
(scalar).

Optimization. We use RAdam to optimize the policies
and LSSM (Liu et al., 2019). Following Hafner et al.
(2020a), we use straight-through gradient estimation of sam-
ples of the Categorical distributions. This is straightfor-
wardly implemented in PyTorch as shown in Listing 1.

10. OneRoomCapture3d visualization.
In Fig. 9, we analyze the behavior of our intrinsic reward
signals over several different sub-episodes in the OneRoom-
Capture3D environment.
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Figure 9: Niche Expansion, Infogain, Niche Creation, Certainty, and Niche Creation+Infogain rewards are plotted for the first 20 steps of
select episodes. Rewards are normalized to [0, 1] for each reward across the figures. Top: When the agent turns to look at the box without
taking actions to capture it, all rewards other than Certainty are relatively low throughout the episode. Middle: When the agent moves
towards the box to trap it against a wall, Niche Creation and Niche Expansion decrease until the box is trapped, and then they increase;
the resulting stable configuration eventually outweighs the preparations needed to trap the box if the episode length is sufficiently long.
Infogain and Certainty increase as the box is in view and able to move. Bottom: Freezing the box results in low Infogain throughout the
episode, however it is highly rewarded by the other rewards.
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Hyperparameter Value Meaning

Algorithm 1 hyperparameters

K 7 Ensemble size
B 32 Minibatch size of LSSM
L 0.05|D|/B Number of minibatches to step the model
M 1e7/2NT Maximum number of total rounds
N 20 Number of episodes to collect per policy per round
T {100,150,500} (varies) Episode length in the environment

LSSM hyperparameters

H 50 LSSM model training horizon
P 5 Number of latent particles
K1 16 Number of component categoricals in latent distributions
K2 16 Number of categories in each component categorical

Optimization hyperparameters

α0 0.5 · 10−4 LSSM learning rate with Adam optimizer
α1 1.0 · 10−4 PPO learning rate with Adam optimizer
εPPO 0.2 PPO advantage clipping
γ0 0.99 PPO discount factor
γ1 0.90 PPO GAE discount factor
β 1.0 KL loss scaling factor (implicit in Eq. (1))
b0 True Whether truncated BPTT (Sutskever, 2013) is used to train the model
j1, j2 50 Truncated BPTT horizons

Table 3: Hyperparameters of Algorithm 1, models, and optimization.
.

Listing 1 Straight-through One Hot Categorical implementation.
1 class StraightThroughOneHotCategorical(torch.distributions.OneHotCategorical):
2 def rsample(self, *args, **kws):
3 return self.sample(*args, **kws) + self.probs - self.probs.detach()

Listing 2 MultiCat implementation.
1 def MultiCat(state_logits):
2 assert(state_logits.shape[-2:] == (K_1, K_2))
3 return torch.distributions.Independent(
4 StraightThroughOneHotCategorical(logits=state_logits),
5 reinterpreted_batch_ndims=1)
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Layer Input [Dimensionality] Output [Dimensionality]

Prior pθ(zt+1|zt,at, gt) =
∏K1
κ1=1

∏K2
κ2=1 v

zt+1,κ1,κ2
prior,κ1,κ2

= MultiCat(·;vprior) (see Listing 2)

//Embed action with affine layer
1 at [A] La=Linear(at), [K1 ·K2]

//Combine action embedding and latent state
2 zt [K1,K2]; La [K1 ·K2] Laz=Concat(Flatten(zt), La), [2K1 ·K2]

//RNN transformation of action embedding and latent state
3 Laz , [2K1 ·K2]; gt, [K1 ·K2] gt+1=GRU(Laz, gt), [K1 ·K2]

//Logits of independent Categorical prior (“MultiCat”)
4 gt+1, [K1 ·K2] lprior=Linear(gt+1), [K1 ·K2]

//Transform logits of all K1 component dists.
5 lprior,[K1 ·K2] vprior=softmax(lprior, axis = K2)

Posterior qφ(zt+1 | o≤t+1,a≤t, zt, gt) = MultiCat(·;vposterior)

//Apply CNN to observation.
1 ot, [3, 64, 64] Lo0=ELU(BN(Conv2d(3, 32, 4, 2)))(ot)
2 Lo0, [32, 31, 31] Lo1=ELU(BN(Conv2d(32, 64, 4, 2)))(Lo0)
3 Lo1, [64, 14, 14] Lo2=ELU(BN(Conv2d(64, 128, 4, 2)))(Lo1)
4 Lo2, [128, 6, 6] Lo3=ELU(BN(Conv2d(128, 256, 4, 2)))(Lo2)
5 Lo3, [256, 2, 2] Eo=Flatten(Lo2), [1024]

//Produce observation-specific posterior parameters.
6 Eo, [1024]; at, [A] l′posterior=Linear(Concat(Eo, at)), [K1 ·K2]

//Produce final posterior parameters as log-space addition to prior parameters.
7 l′posterior, [K1 ·K2]; lprior, [K1 ·K2] lposterior = l′posterior + lprior, [K1 ·K2]

//Transform logits of all K1 component dists.
8 lposterior,[K1 ·K2] vposterior=softmax(lposterior, axis = K2), [K1 ·K2]

Observation Likelihood pθ(ot|zt) = N (·;µo, I)

//Embed latent state with affine layer to consistently-sized vector.
1 zt, [K1 ·K2] Ez=Linear(zt), [1024]

//Apply transposed-CNN to decode to observation dimensionality.
2 Ez , [1024] Lz0=ELU(BN(ConvTranspose2d(1024, 128, 5, 2)))(Ez)
3 Lz0, [128, 5, 5] Lz1=ELU(BN(ConvTranspose2d(128, 64, 5, 2)))(Lz0)
4 Lz1, [64, 13, 13] Lz2=ELU(BN(ConvTranspose2d(64, 32, 6, 2)))(Lz1)
5 Lz2, [32, 30, 30] Lz3=ELU(BN(ConvTranspose2d(32, 3, 6, 2)))(Lz2)
6 Lz3, [3, 64, 64] Lz4=ELU(BN(ConvTranspose2d(32, 3, 6, 2)))(Lz3)

//Output of final layer is the mean of the observation likelihood.
7 Lz4, [3, 64, 64] µo=ELU(BN(ConvTranspose2d(3, 3, 1, 1)))(Lz4)

Belief qφ(zt+1 | o≤t+1,a≤t) = q(zt+1|ht+1) = 1/P
∑P
p=0 wpqφ(zt+1,p | o≤t+1,a≤t, ztp, gt)

//Compute unnormalized log-space particle weights of P latent particles

1 {(zt,p, zt−1,p)}Pp=1 log ŵ = log
pθ(zt+1,p|zt,p,at)pθ(ot|zt,p)
qφ(zt+1,p|o≤t+1,a≤t,zt,p)

, [P ]

//Form belief from weighted mixture over particles.
2 w, [P ] MixtureSameFamily({qφ(zt+1,p | o≤t+1,a≤t, zt,p)}Pp=1, w)

Latent Visitation Model q̄t′(z) = 1/t′
∑t′

t=0 qφ(zt|o≤t,a≤t−1)

//Define uniform mixture weights.
1 ∅ c0 = 1/t′torch.ones((1,t’)), [1, t′]

//Form uniform mixture over previous beliefs.

2 {qφ(zt|o≤t,a≤t−1)}t
′
t=0; c0, [1, t

′] q̄t′(z) =MixtureSameFamily({qφ(zt|o≤t,a≤t−1)}t
′
t=0, c0)

Policy π(at|vposterior) = Categorical(·; pa)

1 vposterior, [K1 ·K2] h0=tanh(Linear(vposterior)), [128]
2 h1, [128] h1=tanh(Linear(h0)), [128]

//Compute categorical action distribution parameters.
3 h2, [128] p̂a=Linear(h2), [|A|]
4 p̂a, [|A|] pa=sum(p̂a, -1), [|A|]

Table 4: Latent state-space model, visitation model, and policy architectural details: The inputs to the latent state-space model are
RGB images ot ∈ [0, 1]3×64×64 and actions at ∈ {0, 1}A (one-hot). Pytorch layer notation is used as shorthand. gt represents the GRU
state at t.
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