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Abstract—Generative Adversarial Network (GAN) has shown
tremendous success in synthesizing realistic photos and videos
in recent years. However, training GAN to convergence is still a
challenging task that requires significant computing power and
is subject to training instability. To address these challenges,
we propose ParaGAN, a cloud training framework for GAN
optimized from both system and numerical perspectives. To
achieve this, ParaGAN implements a congestion-aware pipeline
for latency hiding, hardware-aware layout transformation for
improved accelerator utilization, and an asynchronous update
scheme to optimize system performance. Additionally, from a
numerical perspective, we introduce an asymmetric optimization
policy to stabilize training. Our preliminary experiments show
that ParaGAN reduces the training time of BigGAN from 15
days to just 14 hours on 1024 TPUs, achieving 91% scaling
efficiency. Moreover, we demonstrate that ParaGAN enables the
generation of unprecedented high-resolution (1024×1024) images
on BigGAN.

I. INTRODUCTION

Last decade has witnessed the success of Generative Ad-
versarial Networks [7], which has a wide range of applica-
tions including image super resolution [13], image translation
[8], [26], photo inpainting [6], [24]. However, training GAN
at scale remains challenging because of the computational
demands and optimization difficulties. Unlike Convolutional
Neural Networks (CNN) or Transformer-based architectures
where optimization is straightforward by taking gradient de-
scents on a single model, there are two sub-networks to
optimize in GAN, namely generator and discriminator. The
generator samples from the noise and produces a fake sample
as close to the real sample as possible, and the discriminator
evaluates the generated sample. The generator aims to fool
the discriminator, and the discriminator will try to identify
the fake images from the real ones. Since the two components
are optimized for two contradicting goals, it has been observed
that GANs are difficult to converge. Therefore, to speed-up the
GAN training at large-scale, we need a framework optimized
on both system and numerical perspective.

Due to the difficulty of optimizing GAN, many state-of-the-
art GAN models take days or even weeks to train. For instance,
BigGAN [2] took 15 days for 8x V100 GPUs to train 150k
steps. Table I summarizes the reported training time of some
of the state-of-the-art GAN models. This has made it difficult
to quickly reproduce, evaluate, and iterate GAN experiments.
Also, current GAN frameworks usually support training with
very few nodes.
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Fig. 1: ParaGAN scales to 1024 TPU accelerators at 91%
scaling efficiency.

TABLE I: Training Time and Parameters Number for GANs
trained on ImageNet 2012 dataset.

Model Accelerator Training Time # Params
SNGAN [17] 8× V100 3d 13.6h 81.44M
SAGAN [25] 8× V100 10d 18.7h 81.47M
BigGAN [2] 8× V100 15 d 158.42M

ContraGAN [10] 8× V100 5d 3.5h 160.78M
ProgressiveGAN1 [12] 8× V100 4d 43.2M

We argue that training speed is an important yet often
ignored factor in the current GAN training landscape, and
we propose to accelerate it with distributed training. But
distributed GAN training has several challenges. First of all,
most data centers have storage nodes and compute nodes
separated for elasticity, but network congestion can happen
from time to time, which prolongs the latency between nodes
and affects training throughput. Secondly, there are usually
different types of accelerators in the data center, but each of
them has unique optimal hardware characteristics. If ignored,
it can lead to the under-utilization of accelerators. Last but
not least, training GAN at scale may cause a convergence
problem, in which the GAN loss does not converge to a stable
equilibrium. Therefore, this framework has to consider both
system and numerical perspectives.

In this work, we present ParaGAN, a distributed training
framework that supports large-scale distributed training for
high-resolution GAN. We identify the performance bottlenecks
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Fig. 2: Typical GAN architecture.

when training at scale and optimize them for efficiency. To
stabilize the training process, ParaGAN comes up with an
asynchronous update scheme and asymmetric optimization
policy. ParaGAN has a simple interface for building new GAN
architecture, and it supports CPU, GPU, and TPU.

The main contributions of ParaGAN include:
• We design and implement a scalable distributed training

framework for GAN with optimizations on both system
and numerical perspectives. With ParaGAN, the training
time of BigGAN can be shortened from 15 days to
14 hours with 1024 TPU accelerators at 91% scaling
efficiency, as shown in Fig. 1. ParaGAN also enables
direct photo-realistic image generation at unprecedented
1024 × 1024 resolution, which is 4× higher than the
original BigGAN model.

• From the system perspective, we use a congestion-aware
data pipeline and hardware-aware layout transformation
to improve the accelerator utilization.

• From the numerical perspective, to improve the conver-
gence for distributed GAN training, we present an asyn-
chronous update scheme and asymmetric optimization
policy.

II. BACKGROUND

As shown in Fig. 2, a GAN consists of a generator and
a discriminator. The generator generates fake data samples,
while the discriminator distinguishes between the generated
samples and real samples as accurately as possible. The
learning problem of GANs is a minimax optimization problem.
The goal of the optimization is to reach an equilibrium for a
two players problem:

min
G

max
D

Ex∼qdata(x) [logD(x)]+Ez∼p(z) [log (1−D(G(z)))]

where z ∈ Rdz is a latent variable drawn from distribution
p(z). The discriminator seeks to maximize the sum of the log
probability of correctly predicting the real and fake samples,
while the generator tries to minimize it instead. Formally, the
convergence of GAN is defined as a type of Nash Equilibrium:
one network does not change its loss regardless of what the
other network does.

Since the two networks have contradicting goals, the train-
ing process of GAN is a zero-sum game and can be very un-
stable. Recent works show that i) GAN may converge to points
that are not local minimax using gradient descent, in particular
for a non-convex game which is common [5], [9], and ii)
gradient descent on GAN exhibits strong rotation around fixed
points, which requires using very small learning rates [1], [16].
Also, GANs training is sensitive to the hyperparameters and
initialization [15]. Therefore, it is observed that GANs are
difficult to optimize, and this is also the reason why it takes
a long time to train them.

There are some existing GAN libraries [4], [11], [14],
[15] to train state-of-the-art GANs. They provide standardized
building blocks like network backbone and evaluation metrics,
making it easy to build new models. However, they focus
less on the system performance, and training GAN still takes
days if not weeks. [18] benchmarks the performance of the
various GANs within different network-related applications,
[3], [22], [23] propose GAN-optimized hardware architectures.
Different from the prior works, we aim to build a system that
can be run on the public cloud using commodity accelerators.
If the training process can be massively paralleled, the GAN
community will benefit from it.

In ParaGAN, we adopt a co-designed approach: on the
system level, we identify that the performance bottlenecks are
rooted in network congestion and low accelerator utilization
when training on the cloud, and ParaGAN implements a
congestion-aware data pipeline and hardware-aware layout
transformation to mitigate the issues; on the optimization
level, we observe that it is beneficial to decouple the training
of generator and discriminator, and ParaGAN proposes an
asynchronous update scheme and an asymmetric optimization
policy.

III. DESIGN AND PROTOTYPICAL IMPLEMENTATIONS

In this section, we will give an overview and discuss
the design decisions of ParaGAN. We recognize that, the
scalability is usually limited by the latency between nodes.
Furthermore, when scaling up the GAN training, the numerical
instability problem happens more often. We divide the fol-
lowing discussions into two folds and present our co-designed
approach for system throughput and training stability.

A. Programming Model

The design of ParaGAN is presented in Fig. 3. ParaGAN
(blue region) is implemented on top of TensorFlow (green
region) because TensorFlow provides the low-level APIs for
model checkpointing, evaluation, and visualization. Different
from TensorFlow, we provide high-level APIs for GAN which
includes scaling manager, evaluation metrics, and common
network backbones. Users of ParaGAN can import from Para-
GAN or define their own components. ParaGAN then performs
layout transformation and invokes TensorFlow, which converts
the model definition into a computational graph. An optional
XLA [20] pass can be performed followed by that. After that,
the training starts on the CPU host and accelerators.
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Fig. 3: Overview of ParaGAN architecture.

Listing 1: Inferface of ParaGAN
import paragan as pg

class Generator:
def model_fn(latent_var, y):

# generator model
return output

class Discriminator:
def model_fn(x, y):

# discriminator model
return output, out_logit

scale_mgr = pg.ScalingManager(config=cfg,
bs=2048, num_workers=128)

g = Generator()
d = Discriminator()
gan = pg.Estimator(g,d)

# train
for step in cfg.max_steps:

scale_mgr.train(gan)

# evaluate
scale_mgr.eval(metric=’fid’)

We introduce a few concepts in ParaGAN:
1) Scaling Manager: The scaling manager is responsible

for tuning the hyper-parameters that need adjustment during
scaling. Users can start with the best hyper-parameters from
a single worker and ParaGAN will properly scale them based
on the number of workers based on the heuristics (eg. linear
scaling, cosine scaling).

2) Network Backbones: It is common that one starts by
building upon existing GAN architectures. We also provide
some popular GAN architectures as backbone, including but
not limited to:

• BigGAN [2];
• Deep Convolutional GAN (DCGAN) [19];
• Spectral Norm GAN (SNGAN) [17]
3) Evaluation Metrics: Evaluation metrics can be imple-

mented differently across papers, and this can cause incon-
sistency. We provide commonly used evaluation metrics in-
cluding Frechet Inception Distance (FID) and Inception Score
(IS).

B. System Optimizations

To satisfy the scalability requirement, we design ParaGAN
with optimizations on I/O and computation.

We optimize the I/O performance by building a congestion-
aware data pipeline. For data centers, the compute and storage
nodes are usually interconnected via Ethernet instead of high-
speed InfiniBand. The network traffic between them is not
always stable since the infrastructure is shared with other
tenants. This could cause problems when the training scales
since latency fluctuates when the number of workers increases.
Therefore, we implement a congestion-aware data pipeline to
reduce the impact of network jittering.

To achieve a higher accelerator utilization, we perform
hardware-aware layout transformation. A data center usually
has multiple types of accelerators, and different accelerators
have different architectures and preferred data layouts. For
example, Nvidia A100 GPUs prefer half-precision data in mul-
tiples of 64 and single-precision data in multiples of 32, while
previous generations prefer 8×. For TPU v3, the preferred data
dimension should be a multiple of 128. Using the preferred
data layout can increase the accelerator utilization, but it is
usually up to the user to determine it. We come up with a
hardware-aware layout transformation to transform the data
into an accelerator-friendly format to maximize accelerator
utilization.

C. Numerical Optimizations

One of the main contributions of ParaGAN is its use of
asymmetric training to improve the stability of GAN. As
the number of workers increases, a larger batch size can be
used to speed up the training process. However, we have
noticed that the performance of large batch training for GAN
is often unstable, and mode collapse occurs frequently. This
issue arises because mode collapse is a type of GAN failure
that occurs due to a highly coupled optimization process.
To address this problem, ParaGAN introduces an asymmetric
optimization policy and asynchronous update scheme, which
help to decouple the optimization process and prevent mode
collapse.

IV. IMPLEMENTATION

To start, we conducted a profiling of BigGAN training using
native TensorFlow [15] and the results are shown in Figure
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Fig. 4: Operator usage profile when training at scale.

4. As we scaled up the cluster size from 8 to 1024 TPU
workers, we observed a significant increase in idle time due to
the higher communication overhead. Nevertheless, convolution
operations continued to take up the majority of the execution
time, which suggests that training GAN is a compute-bound
task. Therefore, our focus for achieving scalability in Para-
GAN is on maximizing the utilization of accelerators.

To achieve this goal, we use congestion-aware data pipelin-
ing to reduce data pipeline latency, hardware-aware layout
transformation to increase accelerator utilization, and mixed-
precision training with bfloat16 for reduced memory.

A. Congestion-Aware Data Pipelining

Network jittering can have a significant impact on training
throughput due to the gradient synchronization stage, where all
workers synchronize the gradient at the end of each step, and
the time taken to complete this step depends on the slowest
worker.

Although both TensorFlow and PyTorch implements data
pipelines to hide the data loading latency, when severe network
jittering happens, data loading and pre-processing takes much
longer than usual, and it can be a bottleneck in large-scale
distributed training. As shown in Fig. 4, when the number of
workers scales from 8 to 1024, it spends 13.6% more time on
idling, while data outfeeding time stays close. This indicates
that the accelerators are busy waiting for data infeed and
gradient synchronization, which leads to reduced utilization.

ParaGAN dynamically adjusts the number of processes and
pre-processing buffer size based on the high variance network.
It achieves this by using a sliding window to monitor network
latency during runtime. If the current latency exceeds the
threshold λ over the window, the system increases the number
of threads and buffer for pre-fetching and pre-processing. Once
the latency falls below λ, the system releases the resources
for pre-processing. This may result in an increase in shared
memory usage, but shared memory is not typically a bottleneck
and is often underutilized.

B. Hardware-Aware Layout Transformation

Zero-padding is used in GAN when the input cannot fit into
the specified convolution dimension. For example, a matrix of
100×100 will need 14 zeros padded around it to run on a 128×
128 matrix unit. However, zero-padding hinders the accelerator
performance because memory is wasted by padding, leading
to a lower accelerator and memory utilization rate.

We implement ParaGAN by making sure both the batch
size and feature dimensions are multiples of 128 whenever
suitable. In NCHW (batch size x number of channels x height
x width) format, we implemented ParaGAN such that N/H/W
are multiple of 128 on the host side so that the accelerator
memory can be efficiently utilized.

On top of the feature dimensions, ParaGAN also seeks
opportunities to batch data, in order to combine the inter-
mediate result to be a multiple of optimal layout dimension
without affecting the results. Such opportunities can be found
at reshape and matmul operators. For instance, if two input
matrices are to multiply the same weight, we can concatenate
the two input matrices first before the matrix multiplication.
In some senses, this is similar to operator fusion, but the key
difference here is that ParaGAN’s layout transformation is
dependent on the hardware, so that the fused result can confine
to the optimal layout.

V. PRELIMINARY EVALUATION

In this section, we aim to answer the following questions:
1) how is the performance of ParaGAN compared to other
frameworks? 2) how much does each part of the system
contribute to the overall performance? And 3) what are the
effects of the numerical optimizations on convergence?

In this section, we first evaluate the end-to-end performance
of ParaGAN using three metrics:

• steps per second measures the number of steps ParaGAN
can train per second;

• images per second measures the throughput of ParaGAN
trained with ImageNet 2012 dataset;

• time to solution measures the time it takes to reach 150k
steps on ImageNet at 128× 128 resolution.

We first compare ParaGAN with other popular frameworks
for end-to-end performance (Sec. V-B), and evaluate the
scaling efficiency for ParaGAN (Sec. V-C).

A. Experiment Setup

We choose BigGAN on ImageNet ILSVRC 2012 dataset as
benchmark, because BigGAN has a profound impact on the
high-resolution image generation, and it has a high compu-
tational requirement (Table I). On the other hand, ImageNet
contains a good variety of classes (1000 classes), and it is
usually challenging to train on. For the hardware backend, we
first compare the performance of different backends, then we
choose TPU due to accelerator availability reason.

While we use BigGAN to benchmark ParaGAN, our frame-
work is generally applicable to other GAN architectures and
dataset, and it is not tightly coupled with any specific accel-
erator backends.
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Fig. 5: Throughput of different systems and hardware combi-
nations.

B. Framework-level Experiments

In Figure 5, we present a comparison of ParaGAN with
StudioGAN [11] and native TensorFlow [15] in terms of
GPU performance. In each experiment, we train BigGAN on
ImageNet at a resolution of 128x128. We utilize eight Tesla
V100 GPUs for all settings, except for ParaGAN-8TPU.

We observe that ParaGAN outperforms both the native
TensorFlow and StudioGAN with 8 GPUs. We conjecture that
the performance gain on the GPU setting mainly attributes to
the use of congestion-aware data pipeline and hardware-aware
layout transformations. We also observe that the performance
gap is further pronounced when switching to the TPU as the
accelerator. Due to availability reasons, the following sections
mainly focus on the TPU as the accelerator.

C. Scaling Experiments

We will discuss the strong and weak scaling results in this
section. In the strong scaling experiments, we keep the total
workload constant and vary the number of workers to examine
the speedup on time-to-solution. Whereas in the weak scaling
experiments, we keep the per worker workload (batch size per
worker) constant and increase the number of workers.

1) Strong Scaling: For strong scaling experiments, we fix
the total batch size to be 512 and train for 150k steps as
target workload. Note that in order to be consistent with other
experiments, we train on BigGAN at 128×128 resolution, with
is smaller than the model trained in Fig. 1. We aim to study
the effect of decreased per-worker workload when scaling.

As can be seen from Fig 6, with an increasing number of
workers, the time to solution decreases from over 30 hours to
3 hours. We note that the scaling efficiency drops from 128 to
512 workers (64 to 256 TPU chips). This is because as we fix
the global batch size to be 512, the per worker workload drops
from 4 samples to 1 sample per batch, which under-utilizes
the TPU. Thus, the time spent on communication overweights
the computation when the batch size is too small. This is also
verified by Fig 6, where the image per second barely improves
with an increasing number of accelerator workers. However,
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Fig. 6: Strong scaling with ParaGAN. Each TPU chip has two
accelerators.

8 32 64 128 256 512 1024
Number of accelerators

0.0

0.5

1.0

1.5

S
te

ps
 p

er
 s

ec
on

d

(a) Step per second.

8 32 64 128 256 512 1024
Number of accelerators

0

20000

40000

60000

Im
ag

e 
pe

r s
ec

on
d

(b) Image per second.

Fig. 7: Weak scaling with ParaGAN.

when the workload can saturate the accelerator, the scaling
efficiency can be near optimal as shown in Fig. 1.

2) Weak Scaling: In the weak scaling experiments, we fixed
the batch size per worker and evaluate the performance of
our framework by increasing the number of workers. Firstly,
we find the largest batch size for a single accelerator that
does not lead to out-of-memory error. Then, we use the batch
size for each worker, therefore, the amount of workload is
kept identical across workers. The weak scaling experiments
examine how well ParaGAN can handle communication with
an increasing number of workers. As can be seen in Fig. 7,
the trend in step-per-second is relatively steady even when
using 1024 workers. It shows that ParaGAN can scale out
well to a large number of workers while keeping a high scaling
efficiency. It is worth noting that, as the number of workers
scales, the system will be more likely to suffer from network
jittering and congestion. A relatively flat curve (Fig. 7a)
indicates that the data pipeline optimization in ParaGAN is
effective in case of congestion.

D. Accelerator Utilization

The basic computing unit of TPU is MXU (matrix-multiply
unit), and a higher utilization is more desirable. We compare
the accelerator utilization of BigGAN 128x128 on baseline
[15] and ParaGAN. Fig. 8 shows that ParaGAN clearly out-
performs native implementation with higher MXU utilization
across different TPU configurations. We wish to highlight that
even 2% improvements can be important when scaling to
thousands of workers.

It is also worth noting that, with an increasing number
of accelerators, the amount of communication increases, but
ParaGAN is able to maintain a relatively higher utilization than
native implementation, and the gap is increasing. It indicates
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TensorFlow and ParaGAN.
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Fig. 9: Data pipeline latency.

that computation still dominates the training time as compared
to native TensorFlow, and ParaGAN is able to keep up with
scaling out.

Data pipeline provides 8-15% performance improvement
over the baseline. When the number of accelerators increases,
network jitter caused by congestion is more likely to happen,
making data loading the slowest link in the training process. In
ParaGAN, we try to saturate the accelerators by dynamically
adjusting the buffer/CPU budget for the data pipeline. This
is generally applicable, and ParaGAN enables this feature by
default.

We compare the performance of our congestion-aware
pipeline with TensorFlow’s implementation. To ensure the
results are comparable, they are run at the same time on the
same type of machine with the same dataset directory, and
latency is measured at the time taken to extract and transform
a batch of data. As shown in Fig. 9, our pipeline tuner has a
lower variance on latency.

Layout transformation and operator fusion combined
provides 8% additional improvement by increasing the accel-
erator utilization. Considering that they both optimize on the
kernel level, it is possible that we combine them into one pass
by integrating layout-awareness into XLA. We also believe it
may improve by using more aggressive layout transformations
on intermediate result, but it might affect the convergence. We
leave it as future work.

Fig. 10: Output of BigGAN at 1024 × 1024 resolution. Best
viewed in colour.

E. Generating High-Resolution Images

To our knowledge, we are the first to successfully train
BigGAN at 1024×1024 resolution, which is 4× larger than the
original BigGAN. Training at high resolution is particularly
hard, because generator will need to use more channels and
deconvolutional layers to generate more details. It is therefore
more sensitive to hyperparameters and initialization. Different
from ProgressGAN [12] where they use progressive growing
to train low resolution images first before increasing the
resolution, we directly train it on 1024×1024 resolution, which
is more challenging, and it requires the numerical optimization
techniques we discussed.

The generated results achieves Inception Score (IS) [21] of
239.3 and Fréchet Inception Distance (FID) of 10.6. They are
presented in Fig. 10 for visual evaluation.

VI. DISCUSSION AND FUTURE WORK

ParaGAN is a large-scale distributed GAN training frame-
work that supports high-resolution image generation with near-
linear scalability. ParaGAN is optimized with an adaptive
data pipeline, hardware-aware layout transformation, and an
asynchronous update scheme for high throughput. To stabilize
the training process of high-resolution GAN, ParaGAN also
implements an asymmetric optimizer policy.

We hope ParaGAN will advance GAN research by acceler-
ating the training process. ParaGAN scales almost optimally to
1024 accelerators, and it can greatly reduce the time to train a
GAN model from weeks to hours. We leave it as future work
to evaluate the performance of different GAN and diffusion
model architectures on ParaGAN.
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