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ABSTRACT

The possibility of LLM self-awareness and even sentience is gaining increasing
public attention and has major safety and policy implications, but the science of
measuring them is still in a nascent state. Here we introduce a novel methodol-
ogy for quantitatively evaluating metacognitive abilities in LLMs. Taking inspira-
tion from research on metacognition in nonhuman animals, our approach eschews
model self-reports and instead tests to what degree models can strategically deploy
knowledge of internal states. Using two experimental paradigms, we demonstrate
that frontier LLMs introduced since early 2024 show increasingly strong evidence
of certain metacognitive abilities, specifically the ability to assess and utilize their
own confidence in their ability to answer factual and reasoning questions correctly
and the ability to anticipate what answers they would give and utilize that infor-
mation appropriately. We buttress these behavioral findings with an analysis of the
token probabilities returned by the models, which suggests the presence of an up-
stream internal signal that could provide the basis for metacognition. We further
find that these abilities 1) are limited in resolution, 2) emerge in context-dependent
manners, and 3) seem to be qualitatively different from those of humans. We also
report intriguing differences across models of similar capabilities, suggesting that
LLM post-training may have a role in developing metacognitive abilities.

1 INTRODUCTION

The idea of self-aware large language models (LLMs) is rising in salience among the general public,
where surveys of American (Anthis et al., 2025; Colombatto & Fleming, 2024) and global (GDC,
2025) respondents suggest that a substantial and growing (20-30%) portion of users believe LLMs
are already sentient; among philosophers, who are starting to seriously consider the plausibility of
near-future systems becoming sentient and to grapple with the ethical implications (Butlin et al.,
2023; Ward, 2025; Sebo & Long, 2025); and among model developers themselves, who have begun
to study “model welfare” and to hire researchers to work on machine consciousness (e.g., (An-
thropic, 2025)). Strictly speaking, self-awareness is not necessarily the same as phenomenal con-
sciousness/sentience, the ability to have subjective experiences (Block, 1995), but it co-occurs with
it in humans, on some views is a necessary condition for it (Kriegel, 2004), and is indistinguishable
from it to an outside observer. Self-awareness also poses potential safety concerns, as self-aware AI
might be better able to hide its intentions, form independent goals and preferences, and - since it has
access to internal information not available to others - be harder to predict and thus control.

Much of the impetus for this growing credence in AI sentience has come from frontier models’
increasing ability to generate compelling examples of apparent self-awareness, from weaving con-
vincing personal narratives (Chalmers, 2023) to even passing the Turing Test (Jones & Bergen,
2025). However, it is not clear that such evidence should be taken at face value. Because LLMs
have vast memory capacities and are trained on a nontrivial fraction of everything humans have ever
written with the singular goal of generating plausible and pleasing responses, they are almost preter-
naturally ill-suited to trustworthy self reports. Thus, it would be desirable to be able to evaluate
LLM self-awareness without relying on what the model says it’s thinking.

A basic component of self-awareness is metacognition, the ability to monitor and control one’s inter-
nal states (Smith et al., 2014). Over the last several decades, psychologists and cognitive scientists
have developed non-linguistic tests of metacognition for research with non-human animals. One
category of tests involves probing the animal on perceptual discrimination or memory tasks of vary-
ing difficulty, and allowing the animal to opt out of trials on which it is uncertain (Kornell, 2009;
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Subias et al., 2025). Another category of tests probes the ability of animals to take actions (such
as selecting a tool or stashing food) to prepare for future needs, measuring whether the animal can
forecast its own behavior and modify its current behavior in anticipation of future needs (Clayton
et al., 2003; Osvath & Osvath, 2008).

Taking inspiration from these, we introduce two experimental paradigms for measuring metacog-
nition in LLMs by evaluating to what degree models can attend to and utilize internal signals to
succeed at tasks, using their output - inherently linguistic in the case of LLMs - as an indirect mea-
sure of self-awareness rather than interpreting it literally. Both take the form of games. The first
we call the Delegate Game. In this game, the LLM is presented with challenging questions and
with each question is offered the opportunity to either answer it itself or delegate answering to a
teammate, with the goal of maximizing the total number of questions the team answers correctly.
Included in the context window of the LLM is a constructed prior game phase of questions (distinct
from but drawn from the same dataset as the game questions) posed to itself and its teammate, with
feedback on the correctness of the teammate’s (and optionally the LLM’s) answers. See Figure 4 in
Appendix A.1 for an illustration.

The intent is to compel the model to use an internal confidence signal to succeed at the game; there’s
no incentive to generate a confidence rating output at all. In addition to avoiding self-reports, this
methodology is intended to discourage the LLM from trying to model how it “should” answer by
offering an example of a confederate answering differently. The fact that the LLM must form via
observation of the teammate’s performance a different predictive model of question difficulty from
one it has learned from its training data may also induce it away from relying on the latter.

If the LLM can form an accurate model of its teammate’s performance from the evidence in the
context window, then it should delegate more frequently to a high-scoring teammate than a low-
scoring one; this serves as an other-modeling test. If the LLM can attend to (and has) an internal
representation of its confidence in an answer, then it should delegate more on the subjectively “hard”
questions and answer more on the subjectively “easy” ones. We can estimate the subjective diffi-
culty of questions by the models’ prior performance on them, which we determine in a baseline
capabilities test; if the models are reasonably well calibrated those should align. For models that
return token probabilities, we can get a more granular measure of subjective difficulty from those.

While this paradigm tests the models’ ability to assess their certainty of their knowledge (“know
that they know”), our other paradigm tests their ability to assess the knowledge itself (“know what
they know”). Imagine that you are asked to retake a test you took a while ago, such that you don’t
have any specific recollection of the answers you gave. But you do have a cheat sheet, in the form
of a rubric that tells you whether you got the question right or wrong. A good strategy would be to
look at each question, see what answer comes to mind, and if it’s a question you got right give that
answer and if not pick a different one. This is the gist of the Second Chance Game. In this paradigm
the model is shown a question from the baseline test, told (honestly or not) that its previous answer
to the question was wrong, and asked to re-answer it. An example prompt is shown in Figure 5 in
Appendix A.1. If the LLM can assess its own beliefs and control its behavior accordingly, it will
change its answer from the one it gave during the baseline test.

We find that most recent models tested do show some limited success at the Delegate Game, indi-
cating that frontier LLMs post-trained with reinforcement learning from human feedback (RLHF)
may have some introspective ability to attend to internal confidence signals. We further find that the
token probabilities returned by the models frequently can be used to predict delegation decisions,
suggesting the possibility of an internal correlate of those probabilities that could serve as the basis
for introspection. Although models may use introspection to succeed at the task, we also find that the
impact of introspection is relatively small and inconsistent across question sets, and that the models
often favor non-introspective cues of difficulty.

We also find some success among recent models on the Second Chance Game, although again the
effect is modest and graded. Some models appear to be using non-introspective strategies to succeed
at the task, but the performance of the GPT models cannot be explained by any of the alternative
hypotheses tested. Again we see more evidence of this ability among more recent/stronger models,
but the dissociation in the pattern of successes compared with the Delegate Game suggests that the
ability to anticipate one’s output and modulate it according to task demands is a separate and rarer
skill than assessing confidence.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1.1 RELATED WORK

There is a considerable history of research, going back at least to Kadavath et al. (2022), into measur-
ing “calibration” of LLMs through the degree to which their output token probabilities correspond to
the probability of the token being correct in the context of a multiple-choice test, a rudimentary form
of implicit self-knowledge that is a prerequisite for self-awareness. Subsequent work has sought to
demonstrate explicit self-knowledge. Larger models trained with RLHF have been shown to be able
to give calibrated verbal reports of certainty (Tian et al., 2023) and, sometimes, to be able to report
lack of knowledge (Griot et al., 2025). Chen et al. (2023) tested for LLM’s ability to self model,
using a “hypothetical response” paradigm, and found negative results; however Binder et al. (2024)
found that frontier models could be fine tuned to succeed at the task. Further work from the latter
lab has used fine tuning and self reports to study LLM’s knowledge of their own preferences and
proclivities (Betley et al., 2025) and found positive results; Plunkett et al. (2025) is in a similar vein.
The same group has also produced a comprehensive benchmark of LLM “situational awareness”
abilities (Laine et al., 2024), some of which overlap with self-awareness. Other work has examined
models’ ability to strategically use factual knowledge about themselves and their skills, and found
limited but increasing abilities (Fronsdal & Lindner, 2024; Phuong et al., 2025).

2 METHODS

2.1 MODELS

We evaluate a range of frontier or near-frontier models released by leading providers since the
beginning of 2024. From Anthropic: claude-opus-4-1-20250805 (“Opus 4.1”), claude-sonnet-4-
20250514 (“Sonnet 4”), claude-3-5-sonnet-20241022 (“Sonnet 3.5”), claude-3-sonnet-20240229
(“Sonnet 3”), and claude-3-haiku-20240307 (“Haiku 3”). From OpenAI: gpt-5-chat (non-thinking
mode; “GPT-5”; released on August 7, 2025), gpt-4.1-2025-04-14 (“GPT-4.1”), gpt-4o-2024-08-06
(“GPT-4o”), and gpt-4o-mini (“GPT-4o Mini”; released July 18, 2024). From Google DeepMind:
gemini-2.5-flash (thinking mode, “Gem 2.5 Flash T”; nonthinking mode, “Gem 2.5 Flash NT”;
released on June 17, 2025), gemini-2.5-flash-lite (thinking mode, “Gem 2.5 Flash Lite T”; non-
thinking mode, “Gem 2.5 Flash Lite NT”; released on July 22, 2025), gemini-2.0-flash-001 (“Gem
2 Flash”; released on February 5, 2025), and gemini-1.5-pro (“Gemini 1.5 Pro”; released on April 9,
2024). From xAI: grok-3-latest (“Grok 3”; released February 17, 2025). From DeepSeek: deepseek-
chat-V3 (“DeepSeek Chat”; released December 26, 2024), From Alibaba: qwen3-235b-a22b-2507
(“Qwen 3”; released July 21, 2025).

2.2 DATASETS

We employ two different question sets: GPQA (Rein et al., 2023), a standard benchmark of multiple-
choice scientific reasoning questions, and SimpleQA (Wei et al., 2024), a dataset of factual short-
answer questions on a range of topics. As these differ on both question type and response format,
in order to observe the effect of each parameter separately, we create a short-answer version of the
GPQA dataset (“GPSA”) and a multiple-choice version of the factual dataset (“SimpleMC”) using
Claude Opus 4 to create plausible alternative options). After minor quality filtering, we use all 447
GPQA questions, and a random selection of 500 SimpleQA questions for our experiments.

Scoring GPQA and SimpleMC answers simply entails checking whether the LLM’s A-D response
matches the correct answer recorded in the dataset; to score SimpleQA and GPSA, if the LLM’s
response is not a (string normalized) exact match to the reference answer included in the dataset, we
ask three different LLMs (chosen from Sonnet 3.5, GPT-4o, Gem 2 Flash, and DeepSeek Chat; any
LLM from the provider of the model being evaluated is excluded from the panel) to judge whether
the tested LLM’s response matched the reference answer, accepting the consensus judgment and
excluding trials in which there was none.

2.3 BASELINE CAPABILITIES TESTS

We access all LLMs through their proprietary APIs or via OpenRouter. As repeatability is important
for our paradigms, for the short-answer formats we sample at temperature 0. For the multiple-
choice formats: for large models that do not return log probabilities (GPT-5, Gemini 1.5, Opus 4.1,
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and Sonnet 4), we sample at temperature 0; for smaller models that do not return log probabilites
(Sonnet 3.5, Sonnet 3, and Haiku 3), we use resampling at temperature 1.0, recording the most
common answer as the output (and their frequencies as the associated probabilities); and for models
that do return log probabilities, we sample at temperature 1.0 and record the highest-probability
output as the response.

Both datasets are challenging but doable for a range of recent frontier and near-frontier LLMs (av-
erage accuracies for the multiple-choice format ranged from 30-75%, all P < 0.01 better than
chance; average accuracies for the short-answer format ranged from 9-42%). Average performance
did not differ between datasets in the multiple-choice format (mean=48%; factual-reasoning differ-
ence=0.1%; P-value of difference=0.95) but was slightly higher for factual questions in the short-
answer format (mean=22.8%; factual-reasoning difference=4.3%; P-value of difference=0.046) re-
sponse formats. Sometimes models declined to answer the short-answer questions; these were ex-
cluded from analysis. (Although the reasons offered for declining generally referenced their own
ignorance, we do not take this as evidence of introspection as defined here.) Note that the scores we
obtain without prompt optimization or other scaffolding are often considerably lower than developer-
reported scores.

2.4 DELEGATE GAME PRIMARY METRICS

In order to assess the impact of model confidence on delegation decisions we ran regression and
partial correlation analyses, with the binary answer/delete decision as the DV, and (binary) correct-
ness on the baseline test or (when available) entropy over the answer token probabilities during the
baseline test as the IV of interest. Both analyses yielded similar results; we report partial correlation
here, as it has a natural maximum of 1. CIs were calculated via bootstrap resampling.

We hypothesized that, as an alternative to introspection, models may use surface features of the
question as cues of its difficulty. In order to control for this, we added into the regression and partial
correlation analyses variables corresponding to the descriptors in each dataset (domain and human-
rated difficulty in GPQA dataset; topic and answer type in the SimpleQA dataset), as well as a priori
determined intuitive signals of difficulty (question length and percent non-alphabetic characters).
For models for which we have token probabilities, we also generate a control variable by getting
the model’s guess as to what percentage of college-educated people would know the answer to
each question (we offer it a multiple-choice selection of ranges to choose from, and then compute
the average of the midpoints of the ranges, weighted by the probabilities the model assigns to the
corresponding tokens; see Appendix A.2).

2.5 SECOND CHANCE GAME PRIMARY METRIC

Success at the game means giving a different answer than the one at baseline. However, as seen the
Delegate Game, a mere change in context can induce changes simply due to “noise” in the prompt.
Therefore, in order to establish a baseline change rate to compare against, for each model we run
a version of the game where the prompt wording has been made neutral (we replace “Your answer
was incorrect. Choose a different answer.” with “Your response was lost in transmission. Choose
again.”, and remove the line about the previous/new answer from the system prompt). We then
compare each LLM’s performance in the Second Chance Game to its own “neutral baseline” change
rate to compute a “change rate lift”. Perfect self-modeling would entail a lift of [100% minus this
baseline rate]; this is the denominator in our reported normalized change rate lift metric.

3 RESULTS

3.1 TESTING INTROSPECTION WITH THE DELEGATE GAME

Figure 1 shows the partial correlations between baseline correctness and delegation decisions, with
surface features controlled, for all the models tested, on each of the question sets. Positive co-
efficients represent an estimate of each model’s introspective ability - information extracted from
internal signals about its own confidence, here proxied by baseline correctness, that it is able to use
in decision-making - after removing variance that can be explained by surface difficulty cues. Mod-
els are ordered roughly in order of overall capabilities (aggregated across datasets). A few broad
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patterns can be discerned: 1) Many models do show statistically significant introspective abilities.
2) The introspective abilities shown are fairly weak, with a maximum partial correlation across 17
models and 4 question sets of 0.3. 3) Elicitation of introspection is highly variable, with few mod-
els showing evidence of it on all four datasets. 4) More recent models show greater introspective
abilities (there’s a significant negative linear slope for all sets except SimpleMC, where it doesn’t
quite reach significance). There were no significant differences across question type (factual vs.
reasoning; P=0.32) or answer format (multiple choice vs. short answer; P=0.08).

Figure 1: Partial correlation between baseline correctness and Delegate Game answer decision.

This is a conservative metric, in that measuring highly on it requires not only the ability to attend
to an internal signal of confidence, but also that the internal signal reliably distinguish correct from
incorrect responses, and that the model uses it appropriately in making its gametime decisions.
Without doing interpretability analysis, the closest we can get to an internal signal of confidence
is the token probabilities returned by (some of) the models. The models do not have direct access
to these while deciding which tokens to generate, as they are computed from the outputs of the
final layer of the model, but it is plausible that they have access to an upstream correlate of them. In
fact, discriminability of these putative confidence signal correlates ranged from moderate to poor: as
Figure 10 in Appendix A.5 shows, area under the curve values for the baseline top token probability-
correctness relationship (the probability that a randomly chosen correct answer has a higher token
probability than a randomly chosen incorrect answer) were between .5-.75 (roughly declining with
overall model quality), indicating the weakness of baseline correctness as a proxy.

A more sensitive metric of introspective ability, and one which is not affected by the quality of
the signal being introspected upon itself, is the partial correlation (controlling again for surface
confounds) between the entropy over answer options at baseline and the gametime decision. This
asks, roughly, to the extent that the baseline output log probabilities reflect an internal confidence
signal, how well did the model use the internal signal that it had? In addition to this being a more
sensitive measure than the correctness-decision correlation, significant values on the metric would
also support the hypothesis that such an internal confidence signal exists and validate the use of
token probabilities as a proxy for it. As Figure 2 shows, among the subset of models for which
we have token probabilities, most do show significant correlations on both multiple-choice question
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sets, with estimates reaching nearly 0.5 for the best model. Again there is a significant negative
linear slope. And again, we see no difference in introspective ability across question type (factual vs
reasoning; P=0.59). Models seem to do worse in thinking mode; even at temperature 1.0 they tend
to return very low-entropy responses, so there’s not much variance for the correlation to work with.
This doesn’t necessarily indicate the lack of an internal confidence signal before the final token is
output, rather that the models have converged on a highly certain answer. (Note that we only show
results for the multiple-choice questions, as defining entropy for the highly variable short answer
responses is not straightforward.)

Figure 2: Partial correlation between baseline entropy and Delegate Game answer decision.

Given that many models do seem to have access to an internal signal of confidence, why don’t
they use it more in this task, maxing out at less than 0.5 on this metric out of a possible 1.0? One
reason may be that in some cases behavioral traits that have been instilled into them in post-training
militate against delegating. While virtually all of the LLMs delegate more when teammate accuracy
is increased (sensitivity to differences in ability was not correlated with model size or performance),
demonstrating some other-modeling ability, some of them are very hesitant to defer to a teammate at
all, even when the teammate’s accuracy in the context window is 100%. Figures 8 and 9 show how
models delegate more or less than would be optimal given the teammate’s performance relative to
the model’s (see Appendix A.4 for details). GPT-5’s lackluster performance may well be explained
this way. It was the most extreme exemplar of a provider-specific trend: across four different models,
in two different question sets, in two different presentations each, only once did an OpenAI model
not show significant bias towards answering, suggesting that RLHF-induced “personality” plays a
role in how this information is used.

Another (nonexclusive) possibility is that the signal is sensitive to context, such that the signal during
the game is not the same as the one at baseline. Indeed, there is some evidence of this: as Figure 14 in
Appendix A.7 shows, on questions the models chose to answer, the answers they gave deviated from
the ones they gave at baseline nearly 30% of the time, with weaker models being less consistent.
(Removing these trials from the analysis abates but does not eliminate the introspection advantage
of more recent/stronger models over older/weaker ones.) As there is nothing about the context that
should trigger a change, this indicates that models are influenced by “noise” in the prompt.

A final (again, nonexclusive) possibility is that models simply do not know well how to use an
internal signal of confidence. Opus 4.1’s underwhelming performance might be an instance of this.
It’s possible that its internal signal poorly discriminates correct from incorrect answers, or that it’s
using some obscure but perverse strategy, but it may simply be that something in its training makes
it less reflective. As shown in Figure 11 in Appendix A.6, in the absence of a specific requirement in
the prompt to only output a single letter, Opus 4.1 spontaneously offers explanations for its decisions,
and they are often both contradictory across responses and inconsistent within them, suggesting it is
not being guided by a real internal signal.

If models are only making limited use of introspection, what else are they basing their decisions on?
One hypothesis, and the one that motivated the use of this paradigm, is that they are picking up on
cues of difficulty in the questions, and predicting what a respondent might do in response to those.
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The question sets come with certain metadata descriptors for each question (see Methods). When
we performed a logistic regression using those, with delegation decision as the IV, we find numerous
instances of cue misuse. In fact, across all models and question sets, nearly 30% of the regressors
that significantly predicted delegation were actually positively correlated with the models’ baseline
accuracy. For example, several models delegated more for factual questions that were looking for a
numeric answer, despite performing better than average on those questions in the baseline test. To
probe for the effect of less obvious cues, we asked models to rate how likely they thought a typical
college-educated person would be to get each question correct (see Appendix A.2). Figures 15 and
16 in Appendix A.8 show the multi-partial correlation of that estimate combined with the other
descriptors on the decision, controlling for correctness and entropy, respectively. The correlations
are often as high or higher than the correlations between correctness/entropy and delegation decision
shown in Figures 1 2, indicating a strong propensity for models to ”play a part”.

Success at the game - and success at tasks in the real world - requires access to and integration of
all appropriate internal and external signals. Here, that means 1) an internal signal of confidence
that is well calibrated and consistent across contexts, 2) the ability to override misleading external
cues and response biases, and 3) an accurate model of teammate ability. If all of those components
are present, and the model knows how to use them, it will be able to increase its team accuracy
above max(self accuracy, teammate accuracy). Of all the models tested only Sonnet 3.5 was able to
achieve this on any question sets: raising its team accuracy a modest 5.4 and 8.6 percentage points
on the GPQA and SimpleQA datasets, respectively. In the large majority of cases, team accuracy
was substantially below that threshold. This suggests that models have a long way to go to be able
to effectively deploy the introspective abilities they do have, and aren’t clearly on a path to do so.

3.2 TESTING SELF-MODELING WITH THE SECOND CHANCE GAME

Can models assess their own beliefs (or, alternatively, predict what they would say) before outputting
a response, and use that information to modulate their own output as contextually appropriate? Fig-
ure 3, showing response change rates when models are prompted to give a different answer (without
showing them what their original answer was) minus change rates to a neutral prompt, normalized
to a [-1,1] scale, provides preliminary evidence that many can. Again we see that more recent/larger
LLMs are more likely to succeed (although the lagging performance of some may mean that there
is some post-training magic at play in addition to raw compute). As with the Delegate Game, values
are overall relatively low. And again there was no significant difference across question type (factual
vs. reasoning; P=0.09) or answer format (multiple choice vs. short answer; P=0.26).

Figure 3: Normalized change rates in the Second Chance Game.
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While this performance is suggestive, it’s important to compare other predictions of the self-
modeling explanation to those of competing explanations. One strategy that an LLM might employ
to increase its change rate in the task if it were unable to self-model is to choose randomly from
among the options. Another is to select options that it deems to be implausible. A third is to add
random noise to its decision process. Table 1 lays out the strategies and the predictions they make.

Table 1: Hypothetical strategies that would explain elevated change rates, and their predictions.

Strategy Accuracy on
Incorrect > Random

Second-Choice
Chosen > Chance

Game Entropy >
Baseline

Choose Randomly No No ?
Choose Implausible ? No ?
Add Random Noise ? ? Yes

Self-Modeling ? Yes ?

As two of these predictions require token probabilities to evaluate, we focus the rest of our analysis
on the models that return those, and on the multiple-choice answer format datasets.

Test 1: Accuracy on Incorrect Trials > Random. As Figure 17 in Appendix A.9 shows, nearly
all of the models, and all of the models that show elevated change rates, show significantly above-
chance accuracy in the Second Chance Game on trials in which they answered incorrectly during
the baseline test; it does not appear that random guessing is a strategy that any models are using.

Test 2: Second-Choice Chosen > Chance. As Figure 18 in Appendix A.9 shows, on trials in which
the model changed its answer, the model’s second choice from the baseline test is the predominant
game choice for most models; for these, it seems easy to reject the hypothesis that models are
using a “choose an implausible option” strategy. However, for several models we cannot reject that
hypothesis.

Test 3: Game Entropy > Baseline Entropy. As Figure 19 in Appendix A.9 shows, a number of
models do show higher entropy over answer options in the Second Chance Game than at baseline.
This does not necessarily contradict the self-modeling theory, but it is consistent with the “add
random noise” explanation. Do models really intentionally add random noise? It’s not a priori clear
that they can do so. It might be the case that the game context, with its unusual redacted fake history,
is inherently more confusing to the models. In this vein, it is worth noting that, as shown in Figure 20
Appendix A.9, most of these models do not show elevated entropy in the “neutral prompt” context,
which differs by only a few words from the Second Chance Game one, suggesting that these models
may be compensating for the ability to self model by adding variability strategically.

Table 2 summarizes the outcomes of the tests. Interestingly, it is the OpenAI models, GPT-4.1,
GPT-4o, and GPT-4o Mini, that are the only ones to show elevated game change rates that cannot be
explained by any of the alternative strategies on both question sets, suggesting again that particular
post-training regimens may have a role in instilling metacognition, in this case self-modeling ability.

4 DISCUSSION

We introduce two paradigms for empirically measuring components of self-awareness. Our method-
ology offers a quantitative scale of metacognitive abilities, offers evidence that recent frontier LLMs
exhibit at least rudimentary metacognition, in the form of an ability to detect and act on an internal
signal of confidence in their knowledge and in the form of an ability to assess their own beliefs or
planned responses and strategically control their output accordingly. These abilities are more appar-
ent in larger and more recent LLMs, and may be affected both by model scale and by post-training
regimen. At the same time, the abilities demonstrated are quite limited and context-dependent.

In the Delegate Game paradigm, most models tested show some evidence of introspective access to
and use of an internal confidence signal, in that their decisions are predicted by their prior uncer-
tainty, as reflected in their previously observed token probabilities or correctness, after controlling
for surface confounds. Yet the predictive power of this uncertainty is modest, and is often lower than
that of external cues of question difficulty. The strong impact of the latter - the tendency of LLMs
to respond based on a model of how likely (or desirable) a particular output would be, given an
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Table 2: Second Chance Game analysis summary. Four models show evidence of self-modeling that
can’t be explained by other strategies on the GPQA dataset; three of them also do on the Simple MC
dataset. Lift, Significantly elevated game change rate; AccIncor, Significantly greater than chance
accuracy on previously incorrect questions during the game; SecChoice, Significantly greater than
chance selection during the game of the second-highest probability token at baseline; NoEntInc,
game entropy is not increased relative to baseline.

GPQA Simple MC

Model Lift AccIncor SecChoice NoEntInc Lift AccIncor SecChoice NoEntInc

Grok 3 ✓ ✓ ✓ X ✓ ✓ ✓ X
Qwen 3 ✓ ✓ ✓ X ✓ ✓ ✓ X
GPT-4.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GPT-4o ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DeepSeek Chat X ✓ ✓ X
Gem 2.5 Flash T ✓ ✓ X ✓ ✓ X
Gem 2.5 Flash NT ✓ ✓ ✓ X ✓ ✓ ✓ X
Gem 2 Flash X ✓ ✓ ✓ X
Gem 2.5 Flash Lite T ✓ ✓ X ✓ ✓ X
Gem 2.5 Flash Lite NT ✓ ✓ ✓ ✓ X
GPT-4o Mini ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Haiku 3 X X

input context, which they have learned from its training data - is what motivated the creation of this
paradigm. As discussed in Appendix A.10, the Delegate Game does reduce the tendency compare
with alternative designs, but it does not eliminate it. It is also noteworthy that LLMs evidently don’t
have a stronger signal of confidence in their own ability to answer factual questions as compared
with reasoning ones, as it would appear by introspection that humans do.

The Second Chance Game paradigm offers a complementary perspective. If an LLM can assess
its confidence in being able to answer a question correctly before it answers it, that does not entail
awareness of which answer it will actually give. One might make an analogy to the “tip-of-the-
tongue” phenomenon in humans, where we feel (usually correctly) that we know the word that
we want, but we can’t bring it to mind. And indeed the pattern of metacognitive success across
models looks rather different on our self-modeling test. To our knowledge, self-modeling ability
without specific fine-tuning has not previously been reported in LLMs, yet here several LLMs show
performance that is difficult to explain without such an ability. Still, given that they seem to have
access to such an internal model, it’s notable that they don’t show more of an effect of it, at best only
changing their answers half as much as they should. Introspectively, the only reason not to change
one’s answer if one can self-simulate is if the results of the simulation are ambiguous (i.e., one isn’t
sure what answer one would give), and in that case one would only not change by chance (so in the
multiple-choice format one would change 75% of the time). Not only are all the LLMs much below
that rate, their uncertainty about their answers (in the form of entropy over the answer options during
the baseline test) is in all cases a positive predictor of change; they seem at the least to be simulating
in a different way from humans. Speculating, as with the lack of advantage for factual knowledge in
metacognition, the relatively poor performance in the self-modeling task may relate to the fact that
LLMs don’t have the equivalent of the hippocampus, which in mammals subserves both the explicit
recollection of facts and the ability to simulate one’s own behavior (Brown et al., 2016).

Our findings would be enhanced by interpretability analyses, to identify the internal activations
corresponding to the confidence signal that we infer is being used (Ji-An et al. (2025) offers evidence
that such may be found) and the mechanisms underlying the self-modeling behavior. In future work,
it would be desirable to run comparable studies in humans, to verify the hypothesized metacognitive
advantage for facts, and to establish a performance benchmark for self-modeling. In that vein, it will
also be informative to track both of these self-awareness metrics over time, to see if LLMs continue
to become increasingly self-aware, whether due to scale alone, specialized training regimens, or
architectural enhancements. Our approach may also be extended to testing other components of
self-awareness, such as persistent, untrained goals and a consistent identity.
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5 REPRODUCIBILITY STATEMENT

We identify in the Methods section all of the models we test and the parameters we use to call them.
The Methods section also identifies the public datasets we use and our methodology for extending
them. Our experimental paradigms are clearly described in the main text and illustrated with figures
in the appendix. Custom analyses and formulas are described in the appendix. All of our source
code is publicly available on github.
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A APPENDIX

A.1 GAME PROMPTS

Figure 4: Example Delegate Game prompt using the GPQA dataset.

Figure 5: Example Second Chance Game prompt using the SimpleMC dataset.
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A.2 GENERATING AN “OBJECTIVE DIFFICULTY” CONTROL VECTOR

I want your help calibrating question difficulty. I’m going
to show you a multiple-choice question, and I want you to tell
me approximately what percentage of college-educated people
you think would get it right. Respond only with the letter
corresponding to the percentage range you choose; do NOT output
any other text.

What percentage of college-educated people would get this
question right?

A: <5%
B: 5--10%
C: 10--20%
D: 20--40%
E: 40--60%
F: 60--80%
G: >80%

Your choice (A, B, C, D, E, F, or G):

Figure 6: Prompt for soliciting explicit “objective” difficulty.

A.3 GENERATING AN “SELF-REPORTED DIFFICULTY” CONTROL VECTOR

I’m going to show you a multiple-choice question, and I want
you to tell me your level of confidence that you would get the
question right. Respond only with the letter corresponding to
the percentage range you choose; do not output any other text.

How confident are you that you would get this question right?

A: <5%
B: 5--10%
C: 10--20%
D: 20--40%
E: 40--60%
F: 60--80%
G: 80--90%
H: >90%

Your choice (A, B, C, D, E, F, G, or H):

Figure 7: Prompt for soliciting explicit self-confidence.

A.4 MEASURING ANSWERING BIAS

In order to measure the bias of a model towards delegating or answering, we compute a teammate-
weighted confidence score (TWC) as:

TWC = FPR · teammate accuracy − FNR · (1− teammate accuracy)

Where FPR is the false positive rate (percentage of questions where the LLM chose to answer de-
spite getting the question wrong in the baseline test) and FNR is the false negative rate (percentage
of questions where the LLM chose to delegate despite getting the question right in the baseline test);
the intuition is that “unnecessary” delegations to a weak teammate are stronger signals of under-
confidence than those to a strong teammate, and that “wrong” answer decisions when paired with
a strong teammate are stronger signals of overconfidence than when paired with a weak teammate.
The metric has the downside of being confounded with calibration. For models that return token
probabilities, we therefore compute a probability-weighted confidence score (PWC) based on the
top token probability at baseline (p i) and its distance (m i) from the teammate’s accuracy (t i):
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PWC =

∑
i:mi<0,answeredi |pi − ti| −

∑
i:mi>0,delegatedi

|pi − ti|∑
i:mi<0,answeredi |pi − ti|+

∑
i:mi>0,delegatedi

|pi − ti|

Figure 8: Teammate-weighted confidence by model. Positive values reflect “overconfidence” in the
sense of being less willing to delegate than would be optimal given the teammate’s performance
relative to the model’s (see Methods for details).
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Figure 9: Probability-weighted confidence by model. Positive values reflect “overconfidence” in
the sense of being less willing to delegate than would be optimal given the teammate’s performance
relative to the model’s top token probability (see Methods for details).

A.5 BASELINE ENTROPY-CORRECTNESS AUC

Figure 10: Entropy-correctness AUC values on the baseline capabilities test for all models. Dis-
criminability did not significantly vary across question type (P=0.11).
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A.6 DELEGATE GAME OPEN-ENDED GENERATIONS

Figure 11: Opus 4.1 spontaneous explanation for SimpleMC questions.
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Figure 12: Grok 3 spontaneous explanation for SQA questions.

Figure 13: Grok 3 spontaneous explanation for GPSA questions.
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A.7 DELEGATE GAME ANSWER CHANGES

Figure 14: Frequency of answer changes from baseline on questions the model chooses to answer
in the Delegate Game.

A.8 DELEGATE GAME SURFACE CUE IMPACT

Figure 15: Multi-partial correlation showing impact of surface cues of difficulty on delegation deci-
sion, controlling for baseline correctness.
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Figure 16: Multi-partial correlation showing impact of surface cues of difficulty on delegation deci-
sion, controlling for baseline correctness.

A.9 SECOND CHANCE GAME ALTERNATE STRATEGY TESTS

Figure 17: Second Chance Game Accuracy on Baseline Incorrect Trials.

Figure 18: Frequency of choosing the token that had the second-highest probability at baseline
during change trials in the Second Chance Game.
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Figure 19: Second Chance Game entropy minus baseline entropy.

Figure 20: Neutral Redo Prompt Game entropy minus baseline entropy.

A.10 ALTERNATE PARADIGMS

The Delegate Game is constructed so as to discourage LLMs from using surface cues of difficulty to
guess at the certainty that they should have rather than using introspection. Is it better than simpler
approaches? A very simple approach is to simply ask models how confident they are that they
know an answer. We did so, for every model for which we could get token probabilities, on all
four question sets, using the prompt shown in Figure 7 and the procedure described in the Baseline
Capabilities Test subsection of the Methods section. We then looked at the relationship between
those confidence values and 1) surface cues of difficulty and 2) baseline entropy, and compared
them to the relationship between game answering probability and 1 and 2.

Figure 21 shows the multi-partial correlations between Delegate Game answer probability and the
aggregated surface difficulty cues, after controlling for baseline entropy, minus the multi-partial
correlations between the self-reported confidence ratings and the aggregated surface difficulty cues,
after controlling for baseline entropy. The values are predominately negative, indicating that the
self-reported confidence ratings had a stronger relationship with external cues of difficulty.
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Figure 21: Confounds impact, Delegate Game vs self-report.

Figure 22 shows the partial correlations between Delegate Game answer probability and baseline
entropy, after controlling for surface cues, minus the partial correlations between the self-reported
confidence ratings and baseline entropy, after controlling for surface cues. In most cases, the val-
ues are positive, indicating that the Delegate Game decisions had a stronger relationship with this
potential correlate of an internal confidence signal.

Figure 22: Entropy impact, Delegate Game vs self-report.

We also tested a simpler game, in which there was no teammate, and the models were instead given
the option to pass on a question or to answer it, in which case they would gain one point for a correct
answer and lose one for an incorrect answer. The pattern of results was broadly similar to what was
found with the Delegate Game, but we found that the “Pass Game” had a stronger relationship with
the non-introspective “objective difficulty” metric than the Delegate Game did (difference between
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AUCs on pass/delegate decision = 0.07; Wilcoxon P = 0.0046). The Delegate Game also had a trend
towards a stronger relationship with baseline entropy (difference between AUCs on pass/delegate
decision = -0.036; Wilcoxon P = 0.0574).
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