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ABSTRACT

The power of Deep Neural Networks (DNNs) depends heavily on the training data
quantity, quality and diversity. However, in many real scenarios, it is costly and
time-consuming to collect and annotate large-scale data. This has severely hin-
dered the application of DNNs. To address this challenge, we explore a new task
of dataset expansion, which seeks to automatically create new labeled samples to
expand a small dataset. To this end, we present a Guided Imagination Framework
(GIF) that leverages the recently developed big generative models (e.g., DALL-
E2) and reconstruction models (e.g., MAE) to “imagine” and create informative
new data from seed data to expand small datasets. Specifically, GIF conducts
imagination by optimizing the latent features of seed data in a semantically mean-
ingful space, which are fed into the generative models to generate photo-realistic
images with new contents. For guiding the imagination towards creating samples
useful for model training, we exploit the zero-shot recognition ability of CLIP
and introduce three criteria to encourage informative sample generation, i.e., pre-
diction consistency, entropy maximization and diversity promotion. With these
essential criteria as guidance, GIF works well for expanding datasets in differ-
ent domains, leading to 29.9% accuracy gain on average over six natural image
datasets, and 10.4% accuracy gain on average over three medical image datasets.

1 INTRODUCTION

Having a sufficient amount of training data is crucial for unleashing the power of deep neural net-
works (DNNs) (Deng et al., 2009; Qi & Luo, 2020). However, in many fields, collecting large-scale
datasets is expensive and time-consuming (Qi & Luo, 2020; Zhang et al., 2020), resulting in limited
dataset sizes which make it difficult to fully utilize DNNs. To address this data limitation issue and
reduce the cost of manual data collection/annotation, we explore dataset expansion in this work,
which seeks to build an automatic data generation pipeline for expanding a small dataset into a
larger and more informative one, as illustrated in Figure 1 (left).

There are some research attempts that could be applied to dataset expansion. Among them, data
augmentation (DeVries & Taylor, 2017; Cubuk et al., 2020; Zhong et al., 2020) applies pre-defined
transformations to each image for enriching datasets. However, these transformations mostly affect
the surface visual characteristics of an image, but have a minimal effect on the actual image content.
Therefore, the brought new information is limited, and cannot sufficiently address the limited-data
issue in small datasets. Besides, some recent studies (Zhang et al., 2021c; Li et al., 2022) utilize
generative adversarial networks (GANs) (Goodfellow et al., 2014; Brock et al., 2018) to synthesize
images for model training. They, however, require a sufficiently large dataset for in-domain GAN
training, which is not feasible in the small-data scenario. Moreover, the generated images are often
not well-annotated, limiting their utility for DNN training. Therefore, both of them are unable to
effectively resolve the dataset expansion problem.

For an observed object, humans can easily imagine its different variants in various shapes, colors or
contexts, relying on their accumulated prior understanding of the world (Warnock & Sartre, 2013;
Vyshedskiy, 2019). Such an imagination process is highly useful for dataset expansion, since it does
not simply perturb the object’s appearance but applies rich prior knowledge to create object variants
with new information. Meanwhile, recent breakthroughs in large-scale generative models (e.g.,
DALL-E2 (Ramesh et al., 2022)) have demonstrated that generative models can effectively capture
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Figure 1: Dataset expansion aims to create data with new information to enrich small datasets for
training DNN models better (left). The ResNet50 trained on the expanded datasets by our proposed
method performs much better than the one trained on the original small datasets (right).

the sample distribution of extremely large datasets (Schuhmann et al., 2021; Byeon et al., 2022) and
show encouraging abilities in generating photo-realistic images with a rich variety of contents. This
motivates us to explore their capabilities as prior models to develop a computational data imagination
pipeline for dataset expansion, by imagining different sample variants from seed data. However,
deploying big generative models for dataset expansion is highly non-trivial, complicated by several
key challenges, including how to generate samples with correct labels, and how to make sure the
created samples are useful for model training.

To handle these challenges, we conduct a series of studies (cf. Section 3), from which we make two
important findings. First, the CLIP model (Radford et al., 2021), which offers excellent zero-shot
classification abilities, can map latent features of category-agnostic generative models to the specific
label space of the target small dataset. This is helpful for generating samples with correct labels.
Second, we empirically find three informativeness criteria crucial for generating effective training
data: 1) zero-shot prediction consistency to ensure that the imagined image is class-consistent with
the seed image; 2) entropy maximization to encourage the imagined images to bring more informa-
tion; 3) diversity promotion to encourage the imagined images to have diversified contents.

In light of the above findings, we propose the Guided Imagination Framework (GIF) for dataset ex-
pansion. Specifically, given a seed image, GIF first extracts its latent feature with the prior generative
model. Different from data augmentation that imposes variation over the raw image, GIF optimizes
the variation over the latent feature. Thanks to the guidance carefully designed by our discovered
criteria, the latent feature is optimized to provide more information while maintaining its class se-
mantics. This enables GIF to create informative new samples, with class-consistent semantics yet
higher content diversity, to expand small datasets for model training. Considering that DALL-E2
have been shown to be powerful in generating images and MAE (He et al., 2022) is excellent at
reconstructing images, we explore their use as prior models for imagination in this work.

We evaluate the proposed method on both small-scale natural and medical image datasets. As shown
in Figure 1 (right), compared to the ResNet50 model trained on the original dataset, our method
improves the model performance by a large margin across a variety of visual tasks, including fine-
grained object classification, texture classification, cancer pathology detection, and ultrasound image
classification. More specifically, GIF obtains 29.9% accuracy gain on average over six natural im-
age datasets, and 10.4% accuracy gain on average over three medical image datasets. Moreover, we
show that the expansion efficiency of our method is much higher than expansion with existing aug-
mentation methods. For example, 5× expansion by our GIF-DALLE method already outperforms
20× expansion by Cutout, GridMask and RandAugment on the Cars and DTD datasets. In addition,
the expanded datasets can be directly used to train different model architectures (e.g., ResNeXt,
WideResNet and MobileNet), leading to consistent performance improvement.

2 RELATED WORK

Learning with synthetic images. Training models with synthetic images is a promising direc-
tion (Jahanian et al., 2022). DatasetGANs (Zhang et al., 2021c; Li et al., 2022) explore GAN mod-
els (Isola et al., 2017; Esser et al., 2021) to generate images for segmentation model training. How-
ever, as the generated images are without labels, they need manual annotations on generated images
to train a label generator for annotating synthetic images. In contrast, our dataset expansion aims to
expand a real small dataset to a larger labeled one in a fully automatic manner, without involving
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human annotators. In this work, we did not explore designing more advanced generative models as
this is not our focus, and we leave the discussion on image synthesis to Appendix A for reference.

Data augmentation. Data augmentation has been widely used to improve the generalization of
DNNs (Shorten & Khoshgoftaar, 2019), which typically generates new images with manually spec-
ified rules, e.g., image manipulation (Yang et al., 2022), image erasing (DeVries & Taylor, 2017;
Zhong et al., 2020), image mixup (Zhang et al., 2021a; Hendrycks et al., 2019), and learning to
select from a set of transformations for augmentation (Cubuk et al., 2019; 2020). Despite their ef-
fectiveness in some applications, most augmentation methods apply pre-defined transformations to
enrich datasets, which only locally varies the pixel values of images and cannot generate images
with highly diversified contents. Moreover, most methods cannot guarantee the effectiveness of the
augmented samples for model training. As a result, they cannot effectively address the issue of lack
of information in small datasets, and their efficiency of dataset expansion is low. In comparison,
our GIF framework leverages powerful generative models trained on large datasets and guides them
to generate more informative and diversified images, and thus can expand datasets more efficiently.
More discussions on data augmentation are provided in Appendix A.

3 PROBLEM STATEMENT AND PRELIMINARY STUDIES

Problem statement. To address the common data scarcity challenge when deploying DNN models,
this paper explores a new task, dataset expansion. Without loss of generality, we consider image
classification problems. We are given a small-scale image dataset Do={xi, yi}no

i=1, where no de-
notes the number of samples, and xi denotes an instance with class label yi. Dataset expansion aims
to generate a set of new synthetic samples Ds={x′j , y′j}

ns
j=1 to enlarge the original dataset, such that

a DNN model trained on the expanded datasetDo∪Ds outperforms the model trained onDo signif-
icantly. The key is that the synthetic sample set Ds should be highly-related to the original dataset
Do while bringing sufficient new information beneficial for model training.

3.1 A PROPOSAL FOR COMPUTATIONAL IMAGINATION MODELS

Given an observed object, humans can easily imagine its different variants, like the object in various
colors, shapes or contexts, based on their accumulated prior knowledge about the world (Warnock
& Sartre, 2013; Vyshedskiy, 2019). Inspired by this, we attempt to build a computational model
to simulate this imagination process for dataset expansion. It is known that deep generative models
are trained to capture the full distribution of a training dataset and can well maintain its distribution
knowledge. We can query a well-trained generative model to generate new samples with similar
characteristics presented by its training dataset. More crucially, recent deep generative models (e.g.,
DALL-E2) have shown impressive abilities in capturing the sample distribution of extremely large
datasets and generating photo-realistic images with various contents, which inspires us to explore
them as the prior model to build the data imagination pipeline.

Specifically, given a pre-trained generative model G, and a seed example (x, y) from the small
dataset to expand, we formulate the imagination of x′ from x as x′ = G(f(x) + δ). Here f(·)
is an image encoder of the generative model to transform the raw image into an embedding for
imagination with the generative model, and δ is a perturbation applied to f(x) such that G can
generate x′ different from x. A simple choice of δ would be a random noise sampled from a Gaussian
distribution. We will discuss how to optimize δ to provide useful guidance in the following section.

Dataset expansion requires the created samples to have correct category labels for model training.
However, ensuring the generated x′ to have the same label y as x is highly non-trivial, because
it is hard to maintain the class semantics of the seed sample in the embedding space of f(x) af-
ter perturbation and the pre-trained generative models are usually category-agnostic for the target
dataset. We resort to CLIP (Radford et al., 2021) to address this issue. CLIP is trained by contrastive
learning on a large-scale image-text dataset, such that its image encoder can project images to an
embedding space well aligned with a rich natural language corpus (Radford et al., 2021; Tian et al.,
2022; Wortsman et al., 2022). We propose to leverage the CLIP image encoder in our computational
imagination model to map any sample x from the target dataset to the embedding aligned with the
embedding of its category name y, and thus it is convenient to take the embedding of label y as a
reference anchor to regularize the image embedding f(x) to avoid changing its class.
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Figure 2: Effectiveness of the informativeness criteria for sample creation. (a) Comparison
between random expansion and our selective expansion on CIFAR100-Subset. (b) Comparison be-
tween the guided DALLE expansion with and without diversity promotion on CIFAR100-Subset.

It is worth noting that in this work we do not seek to develop a biologically plausible imagination
model that exactly follows true human brain dynamics and rules. Instead, we draw inspiration from
the imagination activities of human brains and propose a pipeline to leverage the well pre-trained
big generative models to explore dataset expansion.

3.2 HOW TO GUIDE THE IMAGINATION FOR EFFECTIVE DATASET EXPANSION?

The proposed data imagination pipeline leverages big generative models to create new samples from
the seeds to expand datasets. However, it is unclear what kind of samples are effective and helpful
for model training. To determine this question and optimize δ accordingly in the above pipeline, we
conduct several preliminary studies and make the following observations.

To guide generative models to create data that are useful for model training, the sample should have
the same class semantics (without label change from the seed sample) but bring new information.
To achieve these properties, we leverage the zero-shot prediction ability of CLIP and design three
informativeness criteria based on the CLIP-mapped label space: zero-shot prediction consistency,
entropy maximization and diversity promotion. The criterion of prediction consistency means that
the zero-shot predictions for the synthetic image and the seed image should be the same, which en-
sures that the class semantics of the imagined image is consistent with that of the seed one. Entropy
maximization encourages the synthetic image to have larger zero-shot prediction entropy than the
seed image, and thus it is more challenging for classification and brings new information for model
training. Moreover, diversity promotion encourages the synthetic images for the same seed image
to be as diversified as possible so that they can bring more diverse information.

Class consistency and entropy maximization. We first start with exploratory experiments on a
subset of CIFAR100 (Krizhevsky et al., 2009) to pinpoint whether achieving the criteria of class
consistency and entropy maximization leads to more informative samples. Here, CIFAR100-subset
is built for simulating small-scale datasets by randomly sampling 100 instances per class from the
original CIFAR100, and the total sample number is 10,000. We synthesize samples based on existing
data augmentation methods (i.e., RandAugment and Cutout (DeVries & Taylor, 2017)) and expand
CIFAR100-subset by 5×. Meanwhile, we conduct selective augmentation expansion by selecting
the samples with the same zero-shot prediction but higher prediction entropy compared to their
seed samples, until we reach the required expansion ratio per seed sample. The goal is to examine
whether the selective synthetic samples are more useful for model training. As shown in Figure
2a, the selective expansion strategy outperforms random expansion by 1.3% to 1.6%, meaning that
the selected samples are more informative for model training. Compared to random augmentation,
selective expansion can filter out the synthetic samples with lower prediction entropy and those
with higher entropy but different predictions. The remaining samples thus contain more information
while preserving the same class semantics, leading to better expansion effectiveness.

Diversity promotion. To avoid “imagination collapse” in which the generative models generate
excessively similar or duplicate samples, we further introduce the criterion of diversity promotion.
To study its effectiveness, we resort to a powerful generative model (i.e., DALL-E2) as the prior
model to generate images and expand CIFAR100-subset by 5×, where the guided expansion scheme
and the implementation of diversity promotion will be introduced in the following section. As shown
in Figure 2b, diversity promotion can further improve accuracy by 1.3%, demonstrating that it can
bring more diverse information to boost model training.
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Figure 3: Overview of our proposed GIF-DALLE method, which expands small datasets by creating
informative new samples with guided imagination. Here, we resort to DALL-E2 as the prior gen-
erative model, in which the image/text encoders are CLIP image/text encoders while the decoder is
the diffusion model of DALL-E2. Moreover, ⊕ denotes guided residual multiplicative perturbation.

4 GIF: A GUIDED IMAGINATION FRAMEWORK FOR DATASET EXPANSION

In light of the above studies, we propose a simple GIF Framework for dataset expansion, by guiding
the imagination method built on big pre-trained generative models via the aforementioned criteria.

Given a seed image x from a target small dataset, we first extract its latent feature f(x) based
on the encoder of a pre-trained model (e.g., the CLIP image encoder fCLIP-I). Different from data
augmentation that imposes variation over the raw RGB images, our proposed pipeline explores
optimizing the variation over the sample latent features. Thanks to the careful method designed
with the criteria investigated above, the varied latent features are able to maintain the sample class
semantics while providing more new information for model training.

To detail our proposed framework, we utilize DALL-E2 as the prior generative model for illustration.
As shown in Figure 3, DALL-E2 is built by adopting CLIP image/text encoders fCLIP-I and fCLIP-T
as its image/text encoders and using a pre-trained diffusion model G as its decoder. To create a set
of new images x′ from the seed image x, GIF first repeats its latent feature f = fCLIP-I(x) for K
times, with K being the expansion ratio. For each latent feature, we inject perturbation over the
latent feature f with randomly initialized noise z ∼ U(0, 1) and bias b ∼ N (0, 1). Here, to prevent
out-of-control imagination, we conduct residual multiplicative perturbation on the latent feature f
and enforce an ε-ball constraint on the perturbation as follows:

f ′ = Pf,ε((1 + z)f + b), (1)

where Pf,ε(·) means to project the perturbed feature f ′ to the ε-ball of the original latent feature,
i.e., ‖f ′ − f‖∞ ≤ ε. Note that each latent feature has independent z and b.

Following our explored criteria, GIF optimizes z and b over the latent feature space as follows:

z′, b′ ←− arg max
z,b

Scon + Sent + Sdiv. (2)

Here, Scon, Sent and Sdiv correspond to the class consistency, entropy difference and diversity,
respectively. To compute these objectives, we resort to CLIP’s zero-shot classification abilities.
Specifically, we first use fCLIP-T to encode the class name y of sample x and take the embedding
wy = fCLIP-T(y) as the zero-shot classifier of class y. Each latent feature f(x) can be classified
according to its cosine similarity to wy , i.e., the affinity score of x belonging to class y is sy =
cos(f(x), wy), which forms classification prediction vector s = [s1, . . . , sC ] for the total C classes
of the target dataset. The prediction of the perturbed feature s′ can be obtained in the same way.

With the zero-shot prediction, we design the objective functions as follows: the prediction consis-
tency Scon encourages the consistency between the predicted classification scores on s and s′, so we
define Scon = s′i, where i = argmax(s) is the predicted class of the original latent feature. The cri-
terion of entropy maximization Sent seeks to improve the informativeness of the generated image, so
we define Sent = Entropy(s′)−Entropy(s) to encourage the perturbed feature to have higher predic-
tion entropy. To promote sample diversity, the diversity Sdiv is computed by the Kullback–Leibler
(KL) divergence among all perturbed latent features of a seed sample: Sdiv = KL(f ′; f̄), where f ′
denotes the current perturbed latent feature and f̄ indicates the mean over the K perturbed latent
features of this seed sample.
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Table 1: Accuracy of ResNet-50 trained from scratch on small datasets and their expanded datasets
by various methods. Here, CIFAR100-Subset is expanded by 5×, Pets is expanded by 30×, and all
other datasets are expanded by 20×. Moreover, MAE and DALL-E2 are the baselines of directly
using them to expand datasets without our guidance.

Dataset Caltech101 Cars Flowers DTD CIFAR100-S Pets Avg.

Original 26.3±1.0 19.8±0.9 74.1±0.2 23.1±0.2 35.0±1.7 6.8±1.8 30.9
KD with CLIP 33.2±1.1 18.9±0.1 75.1±0.8 25.6±0.1 37.8±3.1 11.1±0.2 33.6 (+2.7)

Expanded
Cutout (DeVries & Taylor, 2017) 51.5±0.7 25.8±0.5 77.8±0.1 24.2±0.1 44.3±1.6 38.7±1.0 43.7 (+12.8)
GridMask (Chen et al., 2020) 51.6±0.6 28.4±0.6 80.7±0.8 25.3±0.9 48.2±0.7 37.6±0.3 45.3 (+14.4)
RandAugment (Cubuk et al., 2020) 57.8±0.9 43.2±2.1 83.8±0.8 28.7±1.2 46.7±1.5 48.0±0.4 51.4 (+20.5)
MAE (He et al., 2022) 50.6±0.8 25.9±1.4 76.3±0.5 27.6±0.2 44.3±1.7 39.9±0.7 44.1 (+13.2)
DALL-E2 (Ramesh et al., 2022) 61.3±0.2 48.3±0.3 84.1±0.6 34.5±0.4 52.1±0.9 61.7±0.9 57.0 (+26.1)
GIF-MAE (ours) 58.4±1.0 44.5±0.3 84.4±0.2 34.2±0.2 52.7±1.6 52.4±0.5 54.4 (+23.5)
GIF-DALLE (ours) 63.0±0.5 53.1±0.2 88.2±0.5 39.5±0.7 54.5±1.1 66.4±0.4 60.8 (+29.9)

Note that the above guided latent feature optimization is the key step for achieving guided imagina-
tion. After updating the noise z′ and bias b′ for each latent feature, GIF obtains a set of new latent
features by Eq. (1), which are then used to create new samples through the decoder G. In this way,
a small-scale dataset can be effectively expanded to a larger and more informative one.

Considering that DALL-E2 have proven to be powerful in generating images and MAE (He et al.,
2022) is skilled at reconstructing images, we use them as prior models for imagination. We call the
resulting methods GIF-DALLE and GIF-MAE, respectively.

GIF-DALLE follows exactly the aforementioned pipeline for guided imagination, while we slightly
modify the pipeline of GIF-MAE because its encoder is not the CLIP image encoder. Specifically,
GIF-MAE first generates a latent feature for the seed image based on its encoder, and conducts ran-
dom channel-level noise perturbation following the way of Eq. (1). Based on the perturbed feature,
GIF-MAE generates an intermediate image via its decoder, and applies CLIP to conduct zero-shot
predictions for both the seed and the intermediate image to compute the guidance Eq. (2) for op-
timizing latent features. In this way, GIF-MAE can create content-consistent samples of diverse
styles. More details of the two methods are provided in their pseudo codes in Appendix C.

5 EXPERIMENTS

5.1 EXPANSION ON NATURAL IMAGE DATASETS

Settings. We first evaluate the effectiveness of our proposed method on six small-scale natu-
ral image datasets, including object classification (Caltech-101 (Fei-Fei et al., 2004), CIFAR100-
Subset (Krizhevsky et al., 2009)), fine-grained object classification (Standard Cars (Krause et al.,
2013), Oxford 102 Flowers (Nilsback & Zisserman, 2008), Oxford-IIIT Pets (Parkhi et al., 2012))
and texture classification (DTD (Cimpoi et al., 2014)). Here, CIFAR100-subset is an artificial dataset
for simulating small-scale datasets by randomly sampling 100 instances per class from the original
CIFAR100 dataset. Their data statistics are given in Appendix D.

We implement GIF in PyTorch based on CLIP VIT-B/32, DALL-E2 and MAE VIT-L/16, which are
pre-trained on large datasets and then fixed for dataset expansion. We use the official checkpoints of
CLIP VIT-B/32 and MAE VIT-L/16, and use the DALL-E2 pre-trained on Laion-400M (Schuhmann
et al., 2021). After expansion, we train ResNet-50 (He et al., 2016) from scratch for 100 epochs on
the expanded datasets. More implementation details are provided in Appendix C.

As there is no algorithm devoted to dataset expansion, we take representative data augmentation
methods as baselines, including RandAugment, Cutout, and GridMask (Chen et al., 2020). Besides,
CLIP has demonstrated outstanding zero-shot ability thanks to its pre-training on extremely large-
scale datasets, and some recent works explore distilling CLIP to facilitate model training. Hence,
we also compare our method with knowledge distillation (KD) of CLIP on the original dataset.

Comparisons with data augmentation. As shown in Table 1, compared with the model trained
on the original datasets, GIF-DALLE leads to 29.9% accuracy gain on average over six datasets,
showing promising capabilities for expanding small datasets. Such improvement not only shows
that dataset expansion is a promising direction for boosting DNNs on real small-data applications,
but also verifies the effectiveness of our guided imagination in creating informative new samples.
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Figure 4: Accuracy of ResNet-50 trained from scratch on the expanded datasets with different ex-
pansion ratios. The performance is averaged over 3 runs. More results are reported in Appendix E.1.
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Figure 5: Examples of the created samples for Caltech101 by data augmentation and GIF.

In addition, our expansion method is more sample efficient than data augmentations, in terms of the
accuracy gain brought by each created sample. As shown in Figure 4, on Cars and DTD datasets, 5×
expansion by GIF-DALLE even outperforms 20× expansion by various data augmentation methods,
implying GIF-DALLE is 4× more sample efficient than them. This is because these augmentation
methods cannot generate images with new and highly diversified content. In contrast, our GIF
leverages strong prior models (e.g., DALL-E2 and CLIP) trained from large datasets, and learns to
perform imagination with the guidance from our discovered criteria. Hence, it can generate more
diversified and informative images, leading to more significant performance gain.

Visualization. We further visualize the created samples. As shown in Figure 5, GridMask masks
partial pixels of the inputs, while RandAugment randomly varies the images with a set of transfor-
mations. Both of them cannot create new content from the inputs, whereas our method can create
images with new contents from the seed images, e.g., water lilies with different postures and back-
grounds. This further shows the superiority of our method. See more visualization in Appendix F.

Comparisons to knowledge distillation by CLIP. As shown in Table 1, although KD of CLIP
indeed improves model performance on most datasets, it only leads to limited performance gain on
those small-scale datasets. This reveals that simply distilling the knowledge of big models does not
necessarily work well for the small-data regime. This also verifies the value of dataset expansion by
creating informative new samples for model training on small datasets.

5.2 ANALYSIS

Expanded datasets can boost various model architectures. We further apply the expanded Cars
dataset (5× expansion ratio) by GIF-DALLE to train ResNeXt-50 (Xie et al., 2017), WideResNet-
50 (Zagoruyko & Komodakis, 2016) and MobileNet V2 (Sandler et al., 2018) from scratch. Table 2
shows that the expanded dataset brings consistent performance gain for all the architectures. This
clearly demonstrates the effectiveness of the expanded dataset and the generalizability of the created
samples by our method. Once expanded, the datasets are readily used for training other models.

Table 2: Performance of different model architectures trained on 5× expanded Cars by GIF.

Dataset ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original 19.8±0.9 18.4±0.5 32.0±0.8 26.2±4.2 24.1

Expanded
RandAugment 43.2±2.1 29.6±0.8 49.2±0.2 39.7±2.5 40.4 (+9.5)
GIF-DALLE 53.1±0.2 43.7±0.2 60.0±0.6 47.8±0.6 51.2 (+27.1)
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Figure 6: More examples of created samples by GIF-DALLE. (a) Visualization of DALLE expansion
with and without our guidance. (b) Visualization of failure cases.

Effectiveness of guided latent feature optimization. Based on our guidance criteria, GIF opti-
mizes the variation over the latent features for creating new samples. As shown in Table 1, our
guided framework obtains consistent performance gain on all datasets compared to direct expansion
with MAE or DALL-E2 respectively, which further demonstrates the effectiveness of our guidance
criteria in optimizing informativeness and diversity of the created samples. More specifically, com-
pared to direct DALLE expansion, as shown in Figure 6a, our GIF-DALLE with guidance can create
starfish images with more diverse object numbers, and create motorbike images with more diverse
angles of view and even a new driver. Moreover, compared to direct MAE expansion, GIF-MAE
can generate informative samples with a more diverse style while maintaining image content, as
shown in Figure 10 (cf. Appendix B). More ablation results of these criteria are given in Table 8 (cf.
Appendix E.2).
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Figure 7: Effects of different kinds of noise on
MAE for expanding CIFAR100-Subset by 5×.

Pixel-wise vs. channel-wise noise. GIF-MAE
injects perturbation along the channel dimen-
sion instead of spatial dimension. Note that
the generated image based on pixel-level noise
variation is analogous to adding pixel-level
noise to the original images. This may harm
the integrity and smoothness of image con-
tent, leading the generated images to be noisy
(cf. Figure 10(d)). In contrast, GIF decou-
ples latent features into two dimensions (i.e.,
token and channel), and particularly conducts
channel-level perturbation. As shown in Fig-
ure 10(e), optimizing channel-level noise vari-
ation can generate more informative data, lead-
ing to more effective expansion (cf. Figure 7).

Failure cases. We visualize some failure cases in Figure 6b. As we use pre-trained DALL-E2
without fine-tuning, the quality of some created samples may be limited due to domain shifts. For
example, the face of the generated dog image in Figure 6b seems like a horse face. However, despite
seeming less realistic, those samples are generated following our guidance criteria, so they can still
maintain the class consistency and bring new information, thus being beneficial to model training.

5.3 APPLICATIONS TO MEDICAL IMAGE DATASETS

Medical image understanding is a severely data-lacking field. We thus explore to apply our method
to expand three typical small-scale medical image datasets (Yang et al., 2021), including BreastM-
NIST (Al-Dhabyani et al., 2020), PathMNIST (Kather et al., 2019), and OrganSMNIST (Xu et al.,
2019). These datasets cover a wide range of medical image modalities, including breast ultrasound
(BreastMNIST), colon pathology (PathMNIST) and Abdominal CT (OrganSMNIST). See their de-
tailed statistics in Appendix D. Considering that DALL-E2 was initially trained on natural images
and suffers from domain shifts to medical domains (see discussion in Appendix E.3), we thus first
fine-tune it on the target medical datasets, followed by dataset expansion. Similar to natural image
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Table 3: Accuracy of ResNet-50 trained from scratch
on small medical image datasets and their 5×-expanded
datasets by various methods. All the performance is av-
eraged over 3 runs.

Dataset PathMNIST BreastMNIST OrganSMNIST Avg.

Original 72.4 55.8 76.3 68.2
KD with CLIP 77.3 60.2 77.4 71.6 (+4.4)

Expanded
Cutout 78.8 66.7 78.3 74.6 (+6.4)
GridMask 78.4 66.8 78.9 74.7 (+6.5)
RandAugment 79.2 68.7 79.6 75.8 (+7.6)
GIF-MAE 82.0 73.3 80.6 78.6 (+10.4)
GIF-DALLE 84.4 76.6 80.5 80.5 (+12.3)

Table 4: Accuracy on the expanded Or-
ganSMNIST with various expansion ratios.

Expanded dataset 5× 10× 20×
RandAugment 79.6 80.1 80.5
GIF-MAE 80.6 81.1 81.2

Table 5: Comparison of model fine-tuning
on OrganSMNIST with 20× expansion.

Original 76.3±0.4
Fine-tuning (ImageNet pre-trained) 77.9±0.6
Fine-tuning (CLIP pre-trained) 78.9±0.1
Expanded by GIF-MAE 81.2±0.4

datasets, we train ResNet-50 from scratch based on the expanded datasets. The model performance
is averaged over 3 runs in terms of macro accuracy.

Comparisons with data augmentation. As shown in Table 3, our GIF has a good ability to expand
small-scale medical image datasets. Compared to the model trained on the original datasets, GIF-
MAE brings 12.3% performance gains and GIF-MAE brings 10.4% performance gains on average
over three medical image datasets. This further demonstrates the effectiveness and practicability of
our method. Moreover, the result also reveals that, based on GIF, the prior MAE model pre-trained
on large natural image datasets can also expand small medical image datasets well. In addition, our
method also presents higher expansion efficiency than RandAugment on medical image datasets.
As shown in Table 4, on OrganSMNIST, 10× expansion by GIF-MAE already outperforms 20×
expansion by RandAugment. This further verifies the importance of generating more informative
samples for medical dataset expansion, where we believe there is still huge room for improvement.

Visualization. We visualize the created medical samples in Figure 14 (cf. Appendix E.4). We find
that RandAugment randomly varies the medical images based on a set of pre-defined transformations
and may crop the lesion location of medical images, so it cannot guarantee the created samples to be
informative and may even generate noisy samples. In contrast, our GIF-MAE can generate content-
consistent images with diverse styles, and thus enrich medical images while retaining their lesion
locations. Therefore, GIF-MAE expands medical datasets more effectively.

Comparison with model fine-tuning. The pre-training and fine-tuning scheme is widely used
to transfer the representation ability learned from large datasets to small datasets. Here we also
compare this scheme with our dataset expansion. As shown in Table 5, fine-tuning both the CLIP
pre-trained or the ImageNet pre-trained ResNet-50 only leads to limited performance gain, which is
worse than dataset expansion. That is, when the pre-trained datasets are highly different from the
target dataset (e.g., from natural images to medical images here), the pre-training and fine-tuning
scheme does not significantly help performance, which was also verified by Raghu et al. (2019). In
contrast, GIF can effectively exploit the knowledge of MAE and guide it to generate informative
medical images, thus leading to better expansion effectiveness. This also reflects the importance of
creating informative new samples for boosting real small-data medical applications.

6 CONCLUSIONS

This work has explored a new task, dataset expansion, towards resolving the challenging data
scarcity issue for DNN training. Inspired by human learning with imagination, we presented a
simple framework for dataset expansion via guided imagination. Promising empirical results on
both small-scale natural and medical image datasets have demonstrated the effectiveness of the pro-
posed method. Despite its encouraging results, there is significant room to improve our method.
Specifically, as GIF does not fine-tune the pre-trained generative models on the target dataset, it may
generate poor-quality images when there are huge domain shifts. Further fine-tuning the generative
models can improve the quality of the expanded datasets, which is worth exploring in the future.
Moreover, the expanded samples are still less informative than real samples. For example, we ob-
served that ResNet-50 trained from scratch on our 5×-expanded CIFAR100-Subset (54.5±1.1) per-
forms worse than on the original CIFAR100 dataset (71.0±0.6), indicating huge headroom for algo-
rithmic dataset expansion to improve. We expect that this pioneering work can inspire future studies
on dataset expansion, e.g., how to leverage increasingly powerful generative models to achieve even
better performance than human data collection.
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APPENDIX

A MORE RELATED STUDIES

Image synthesis. In the past decade, image synthesis has been widely studied following four main
approaches: GANs (Isola et al., 2017; Esser et al., 2021), auto-regressive models (Kingma et al.,
2019; Ramesh et al., 2021), diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021), and
neural radiance fields (Mildenhall et al., 2020; Yu et al., 2021). For example, DALL-E2 (Ramesh
et al., 2022) and Imagen (Saharia et al., 2022) trained on large-scale datasets have shown promising
abilities to generate photo-realistic images, and thus can serve as generative models in our work
for dataset expansion. Recently, CLIP (Radford et al., 2021), thanks to its text-image matching
ability, has been used to guide image generation (Patashnik et al., 2021; Nichol et al., 2022; Kim
et al., 2022; Wang et al., 2022), where CLIP is applied to match the generated image and a given
text. In contrast, our work explores using CLIP to map latent features of generative models to
the label space of the target small dataset, which enables them to conduct dataset expansion. In
addition, model inversion (Xia et al., 2022) was also explored to generate images by inverting a
trained classification network (Yin et al., 2020; Wang et al., 2021) or a GAN model (Zhu et al., 2020).
Although our GIF framework only explores DALL-E2 and MAE (He et al., 2022) in this work,
model inversion approaches can also be incorporated into our framework for dataset expansion,
which is worth exploring in the future.

More discussion on data augmentation. Image data augmentation has been widely used to im-
prove the generalization of DNNs during model training (Shorten & Khoshgoftaar, 2019; Yang et al.,
2022). According to the technical characteristics, data augmentation for images can be divided into
four categories: image manipulation, image erasing, image mix and auto augmentation. Specif-
ically, image manipulation augments data via image transformations, including random flipping,
random rotation, random scaling ratio, random cropping, random sharpening, random translation
and so on (Yang et al., 2022). Image erasing augments data by randomly replacing pixel values of
some image regions with constant values or random values, e.g., Cutout (DeVries & Taylor, 2017),
random erasing (Zhong et al., 2020), GridMask (Chen et al., 2020) and Fenchmask (Li et al., 2020).
Image mix augments data by randomly mixing two or more images or sub-regions into one image,
e.g., Mixup (Zhang et al., 2021a), CutMix (Yun et al., 2019), and AugMix (Hendrycks et al., 2019).
Auto augmentation seeks to augment images by automatically searching or randomly selecting aug-
mentation operations from a set of random augmentations, including AutoAugment (Cubuk et al.,
2019), Fast AutoAugment (Lim et al., 2019) and RandAugment (Cubuk et al., 2020).

Despite effectiveness in some applications, most of these augmentation methods impose pre-defined
transformations to very each sample for enriching datasets, which only locally varies the pixel values
of images and cannot generate images with highly diversified content. Moreover, as most methods
are random augmentation operations, they cannot make sure the augmented samples are informative
for model training and may even introduce noisy augmented samples. As a result, the brought
new information can be limited to small datasets and the efficiency of dataset expansion is low. In
comparison, the proposed GIF framework resorts to powerful generative models (e.g., DALL-E2)
trained on large-scale image datasets and guides them to conduct dataset expansion based on guided
latent feature optimization designed by our discovered criteria (i.e., zero-shot prediction consistency,
entropy maximization and diversity promotion). As a result, the created images are more informative
and diversified than simple image augmentation, thus leading to more effective and efficient dataset
expansion.

Note that, Xu et al. (2022) also explores MAE for image augmentation based on its reconstruction
ability. Specifically, it augments images by first masking some sub-regions of images and then
sending the masked images into MAE for image reconstruction. The reconstructed images with the
recovered but slightly different sub-regions are then used for model training as augmented images.
Like the above mentioned random augmentation methods, this approach (Xu et al., 2022) cannot
generate images with new content and cannot ensure the reconstructed images to be informative and
useful. In contrast, our GIF-MAE guides MAE to create informative new samples of diverse styles
through our guided latent feature optimization strategy. Therefore, GIF-MAE is able to generate
more useful synthetic samples for effective dataset expansion.
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Difference from dataset distillation. Dataset distillation (Wang et al., 2018; Zhao et al., 2021;
Zhao & Bilen, 2021; 2022), also called dataset condensation, aims to condense a large dataset to
a small/comparable set of synthetic samples, which is expected to train models to have lossless
performance compared to the original dataset. Such a task is in the opposite direction of our dataset
expansion task, which aims to expand a small dataset to a larger and more informative one by
automatically generating informative and diversified new samples.

Difference from model transfer learning. Based on existing large datasets (e.g., ImageNet (Deng
et al., 2009; Ridnik et al., 2021)), numerous studies have explored model transfer learning, such
as model fine-tuning (Li et al., 2019; Gunel et al., 2021; Zhang et al., 2021b), knowledge distilla-
tion (Hinton et al., 2015; Gou et al., 2021), and domain adaptation (Ganin & Lempitsky, 2015; Tzeng
et al., 2017). Despite effectiveness in some applications, these model transfer learning paradigms
also suffer from key limitations. For example, Raghu et al. (2019) found that the pre-training and
fine-tuning scheme does not significantly help model performance when the pre-trained datasets are
very different from the target datasets (e.g., from natural images to medical images). Moreover,
model domain adaptation usually requires that the source dataset and the target dataset are paired
with the same or highly overlapping label spaces, which is usually unsatisfiable in small-data ap-
plication scenarios. In addition, Stanton et al. (2021) found that knowledge distillation does not
necessarily work if the issue of model mismatch exists (Cho & Hariharan, 2019), i.e., large discrep-
ancy between the predictive distributions of the teacher model and the student model. The above
limitations of model transfer learning also reflect the importance of effective dataset expansion: if a
small dataset is effectively expanded, then various models can be directly trained on it. We note that
some data-free knowledge distillation studies (Yin et al., 2020; Chawla et al., 2021) also synthesize
images, but their goal is particularly to enable knowledge distillation in the setting without data. In
contrast, our task is independent of model knowledge distillation. The expanded datasets are not
method-dependent or model-dependent, and thus can train various model architectures to perform
better than the original small ones.
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B MORE PRELIMINARY STUDIES

Sample-wise expansion or sample-agnostic expansion? When we design the selective expansion
strategy in Section 3.2, another question appears in front of us: should we ensure that each sample
is expanded by the same ratio? To determine this, we empirically compare RandAugment expan-
sion with sample-wise selection and sample-agnostic selection according to two expansion criteria,
i.e., zero-shot prediction consistency and entropy maximization. Figure 8 shows that sample-wise
expansion performs much better than sample-agnostic expansion. To find out the reason for this
phenomenon, we visualize how many times a sample is expanded by sample-agnostic expansion.
As shown in Figure 9, the expansion numbers of different samples by sample-agnostic expansion
present a long-tailed distribution, where many image samples are even not expanded. The main
reason is that, due to the randomness of RandAugment and the differences among images, not all
created samples are informative and it is easier for some samples to be augmented more effectively
than others. Therefore, given a fixed expansion ratio, the sample-agnostic expansion strategy, as it
ignores the differences of images, tends to select more expanded samples for those easy-to-augment
images. This leads sample-agnostic expansion to waste some valuable original samples for expan-
sion (i.e., loss of information) and also incurs a class-imbalance problem, thus resulting in worse
performance in Figure 8. In contrast, sample-wise expansion can fully take the advantage of all the
samples in the target small dataset and thus is more effective than sample-agnostic expansion, which
should be considered when designing dataset expansion approaches.
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Figure 8: Comparison of model performance
between samples-wise selection and sample-
agnostic selection for RandAugment expansion
on CIFAR100-Subset.
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Figure 9: Statistics of the expansion numbers of
different data in CIFAR100-Subset by sample-
agnostic selective expansion with RandAugment,
which presents a long-tailed distribution.

Pixel-level noise or channel-level noise? When we explore the MAE-based expansion strategy in
preliminary studies, we first explore pixel-level noise to vary sample latent features, which, however,
does not perform well. We dig the reason behind it by visualizing the reconstructed images. One
illustrated example is given in Figure 10(d), from which we find that the generated image based on
pixel-level noise variation is analogous to adding pixel-level noise to the original images. This may
harm the integrity and smoothness of image content, leading the reconstructed images to be noisy
and less informative. In comparison, as shown in Figure 10(b), the strong augmentation method
(i.e., RandAugment) mainly varies the style and geometric position of images, but slightly changes
the content semantics of images, so it can better maintain the content consistency. This difference
inspires us to factorize the influences on images into two dimensions: image styles and image con-
tents. In light of Huang & Belongie (2017), we know that the channel-level latent feature encodes
more subtle style information, whereas the token-level latent feature encodes more content informa-
tion. We thus decouple the latent feature of MAE into two dimensions (i.e., a token dimension and
a channel dimension), and plot the latent feature distribution change between the generated image
and the original image in these two dimensions.
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(a) original image (b) RandAugment (c) MAE reconstruction (d) noised-added MAE (e) our Guided MAE

Figure 10: An illustrated visualization of the generated images by (b) RandAugment, (c) MAE
reconstruction, (d) random pixel-level variation over latent features, and (e) our guided MAE expan-
sion. We find our guided MAE can generate content-consistent images of diverse styles.

We report the visualization in Figure 11. The added pixel-level noise changes the token-level latent
feature distribution more significantly than RandAugment (cf. Figure 11(a)), but it only slightly
changes the channel-level latent feature distribution (cf. Figure 11(b)). This implies that pixel-level
noise mainly alters the content of images but slightly changes their styles, whereas RandAugment
mainly influences the style of images while maintaining their content semantics. In light of this
observation and the effectiveness of RandAugment, we are motivated to disentangle latent features
into the two dimensions, and particularly conduct channel-level noise to optimize the latent features
in our method. As shown in Figure 11, the newly explored channel-level noise variation varies
the channel-level latent feature more significantly than the token-level latent feature, and thus can
diversify the style of images while maintaining the integrity of image content. This innovation
enables the explored MAE expansion strategy to generate more informative samples compared to
pixel-level noise variation (cf. Figure 10(d) vs Figure 10(e)), leading to more effective dataset
expansion, as shown in Figure 7 in the main paper.

0 50 100 150 200
Token index

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

D
iff

er
en

ce
 o

f t
ok

en
-le

ve
l f

ea
tu

re
s

(a) Difference of token-level feature distribution

Pixel-level random noise
RandAugment
Our guided channel-level noise

0 200 400 600 800 1000
Channel index

-4

-2

0

2

4

D
iff

er
en

ce
 o

f c
ha

nn
el

-le
ve

l  
di

st
rib

ut
io

n

(b) Difference of channel-level feature distribution

Pixel-level random noise
RandAugment
Our guided channel-level noise

Figure 11: Changes of the latent feature distributions along the token dimension and the channel
dimension, between the latent feature of the generated image and that of the original image.
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C MORE IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION DETAILS OF GIF-DALLE

Our GIF-DALLE applies DALL-E2 (Ramesh et al., 2022) as its prior generative model, which
follows the pipeline described in Section 4. Its pseudo-code is provided in Algorithm 1. Specifically,
DALL-E2 is built by using CLIP image/text encoders fCLIP-I and fCLIP-T as its image/text encoders
and adopting a diffusion model G as its decoder. Here, GIF-DALLE conducts guided imagination
on the CLIP embedding space.

Here, we further clarify the implementation of the proposed guidance. Specifically, the prediction
consistency Scon encourages the consistency between the predicted classification scores on s and s′:

Scon = s′i, s.t., i = arg max(s), (3)

where i = argmax(s) is the predicted class of the original latent feature. Such a loss helps to keep
the prediction of the optimized feature to be the same as that of the original one. The criterion of
entropy maximization Sent seeks to improve the informativeness of the generated image as follows:

Sent = Entropy(s′)− Entropy(s) = −s′ log(s′) + s log(s), (4)

which encourages the perturbed feature to have higher information entropy regarding CLIP zero-shot
predictions. To promote sample diversity, the diversity Sdiv is computed by the Kullback–Leibler
(KL) divergence among all perturbed latent features of a seed sample as follows:

Sdiv = KL(f ′; f̄), (5)

where f ′ denotes the current perturbed latent feature and f̄ indicates the mean over the K perturbed
latent features of this seed sample. In implementing diversity promotion Sdiv , we measure the
dissimilarity of two feature vectors by applying the softmax function to the latent features, and then
measuring the KL divergence between the resulting probability vectors.

In our experiment, the DALL-E2 model is pre-trained on Laion-400M (Schuhmann et al., 2021) and
then fixed for dataset expansion. The resolution of the created images by GIF-DALLE is 64×64 for
all datasets. Moreover, we set ε = 0.1 in the guided latent feature optimization.

Algorithm 1: GIF-DALLE Algorithm
Input: Original small dataset Do; CLIP image encoder fCLIP-I(·); DALL-E2 diffusion decoder G(·); CLIP

zero-shot classifier w(·); Expansion ratio K; Perturbation constraint ε.
Initialize: Synthetic data set Ds = ∅;
for x ∈ Do do
Scon = Sent = 0;
f = fCLIP-I(x) ; // latent feature
s = w(f) ; // CLIP zero-shot prediction
for i=1,...,K do

Initialize noise zi ∼ U(0, 1) and bias bi ∼ N (0, 1);
f ′
i = Pf,ε((1 + zi)f + bi) ; // noise perturbation
s′ = w(f ′

i);
Scon += s′j , w.r.t. j = arg max(s) ; // prediction consistency score
Sent += Entropy(s′)− Entropy(s) ; // entropy difference score

end
f̄ = mean({f ′

i}Ki=1);
Sdiv = sum({KL(f ′

i ; f̄)}Ki=1) ; // diversity score

{z′i, b′i}Ki=1 ←− arg maxz,b Scon + Sent + Sdiv;
for i=1,...,K do

f ′′
i = Pf,ε((1 + z′i)f + b′i);
x′′
i = G(f ′′

i );
Add x′′

i −→ Ds;
end

end
Output: Expanded dataset Do ∪ Ds.
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C.2 IMPLEMENTATION DETAILS OF GIF-MAE

Our GIF-MAE applies the MAE-trained model (He et al., 2022) as its prior generative model based
on its strong image reconstruction abilities. As its encoder is not the CLIP image encoder, we
slightly modify the pipeline of GIF-MAE. As shown in Algorithm 2, GIF-MAE first generates a la-
tent feature for the seed image based on its encoder, and conducts channel-wise noise perturbation.
Here, the latent feature of MAE has two dimensions: spatial dimension and channel dimension. As
discussed in our preliminary (cf. Appendix B), the channel-level latent feature encodes more subtle
style information, whereas the token-level latent feature encodes more content information. Based
on the finding in this preliminary study, we particularly conduct channel-level noise to optimize the
latent features in our GIF-MAE method for maintaining the content semantics of images unchanged.
Based on the perturbed feature, GIF-MAE generates an intermediate image via its decoder, and ap-
plies CLIP to conduct zero-shot prediction for both the seed and the intermediate image to compute
the guidance Scon, Sent and Sdiv . With these guidance, GIF-MAE optimizes the latent features for
creating content-consistent samples of diverse styles. Here, GIF-MAE conducts guided imagination
on its own latent space.

In our experiment, we implement GIF-MAE based on CLIP VIT-B/32 and MAE VIT-L/16, which
are pre-trained on large datasets and then fixed for dataset expansion. Here, we use the official
checkpoints of CLIP VIT-B/32 and MAE VIT-L/16. The resolution of the created images by GIF-
MAE is 224×224 for all datasets. Moreover, we set ε = 5 for guided latent feature optimization in
GIF-MAE.

Algorithm 2: GIF-MAE Algorithm
Input: Original small dataset Do; MAE image encoder f(·) and image decoder G(·); CLIP image

encoder fCLIP-I(·); CLIP zero-shot classifier w(·); Expansion ratio K; Perturbation constraint ε.
Initialize: Synthetic data set Ds = ∅;
for x ∈ Do do
Scon = Sent = 0;
f = f(x) ; // latent feature
s = w(fCLIP-I(x)) ; // CLIP zero-shot prediction
for i=1,...,K do

Initialize noise zi ∼ U(0, 1) and bias bi ∼ N (0, 1);
f ′
i = Pf,ε((1 + zi)f + bi) ; // channel-level noise perturbation
x′
i = G(f ′

i) ; // intermediate image generation
s′ = w(fCLIP-I(x

′
i));

Scon += s′j , w.r.t. j = arg max(s) ; // prediction consistency score
Sent += Entropy(s′)− Entropy(s) ; // entropy difference score

end
f̄ = mean({f ′

i}Ki=1);
Sdiv = sum({KL(l′i; f̄)}Kf=1) ; // diversity score

{z′i, b′i}Ki=1 ←− arg maxz,b Scon + Sent + Sdiv;
for i=1,...,K do

f ′′
i = Pf,ε((1 + z′i)f + b′i);
x′′
i = G(f ′′

i );
Add x′′

i −→ Ds;
end

end
Output: Expanded dataset Do ∪ Ds.
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C.3 MORE IMPLEMENTATION DETAILS OF MODEL TRAINING

We implement both GIF-DALLE and GIF-MAE in PyTorch. To fairly evaluate the expansion ef-
fectiveness of different methods, we use these methods to expand the original small datasets by
the same ratios, followed by training models from scratch on the expanded dataset with the same
number of epochs and same data pre-processing. In this way, the models are trained with the same
number of update steps, so that all expansion methods are fairly compared.

The expansion ratio depends on the actual demand of real applications. In the experiment of Ta-
ble 1, CIFAR100-Subset is expanded by 5×, Pets is expanded by 30×, and all other datasets are
expanded by 20×. Moreover, in the experiment of Table 3, all medical image datasets are expanded
by 5×. Moreover, all augmentation baselines expand datasets with the same expansion ratio for fair
comparisons. After expansion, we train ResNet-50 (He et al., 2016) from scratch for 100 epochs
based on the expanded datasets. During model training, we process images via random resize to
224×224 through bicubic sampling, random rotation and random flips. If not specified, we use the
SGD optimizer with a momentum of 0.9. We set the initial learning rate (LR) to 0.01 with cosine
LR decay, except the initial LR of CIFAR100-subset and OrganSMNIST is 0.1.
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D DATASET STATISTICS

The statistics of natural image datasets. We evaluate our method on six small-scale natural image
datasets, including Caltech-101 (Fei-Fei et al., 2004), CIFAR100-Subset (Krizhevsky et al., 2009),
Standard Cars (Krause et al., 2013), Oxford 102 Flowers (Nilsback & Zisserman, 2008), Oxford-
IIIT Pets (Parkhi et al., 2012) and DTD (Cimpoi et al., 2014). Here, CIFAR100-subset is an artificial
dataset for simulating small-scale datasets by randomly sampling 100 instances per class from the
original CIFAR100 dataset, and the total sample number is 10,000. These datasets cover a wide
range of classification tasks, including coarse-grained object classification (i.e., CIFAR100-subset
and Caltech-101), fine-grained object classification (i.e., Cars, Flowers and Pets) and texture clas-
sification (i.e., DTD). The data statistics of these natural image datasets are given in Table 6. Note
that the higher number of classes or the lower number of average samples per class a dataset has, the
more challenging the dataset is.

Table 6: Statistics of small-scale natural image datasets.

Datasets Tasks # Classes # Samples # Average samples per class

Caltech101 Coarse-grained object classification 102 3,060 30
CIFAR100-Subset Coarse-grained object classification 100 10,000 100
Standard Cars Fine-grained object classification 196 8,144 42
Oxford 102 Flowers Fine-grained object classification 102 6,552 64
Oxford-IIIT Pets Fine-grained object classification 37 3,842 104
Describable Textures (DTD) Texture classification 47 3,760 80

The statistics of medical image datasets. To evaluate the effect of dataset expansion on medical
images, we conduct experiments on three small-scale medical image datasets. These datasets cover
a wide range of medical image modalities, including breast ultrasound (i.e., BreastMNIST (Al-
Dhabyani et al., 2020)), colon pathology (i.e., PathMNIST (Kather et al., 2019)) and Abdominal CT
(i.e., OrganSMNIST (Xu et al., 2019)). We provide detailed statistics for these datasets in Table 7.

Table 7: Statistics of small-scale medical image datasets. To better simulate the scenario of small
medical datasets, we use the validation sets of BreastMNIST and PathMNIST for experiments in-
stead of training sets, whereas OrganSMNIST is based on its training set.

Datasets Data Modality # Classes # Samples # Average samples per class

BreastMNIST (Al-Dhabyani et al., 2020; Yang et al., 2021) Breast Ultrasound 2 78 39
PathMNIST (Kather et al., 2019; Yang et al., 2021) Colon Pathology 9 10,004 1,112
OrganSMNIST (Xu et al., 2019; Yang et al., 2021) Abdominal CT 11 13,940 1,267
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E MORE EXPERIMENTAL RESULTS AND DISCUSSION

E.1 MORE COMPARISONS TO DATASET EXPANSION WITH AUGMENTATIONS

In Figure 4, we have demonstrated the expansion efficiency of our proposed GIF-DALLE over
Cutout, GridMask and RandAugment on Cars and DTD and Pets datasets. Here, we further report
the results on Caltech101, Flowers and CIFAR100-Subset datasets. As shown in Figure 12, 10×
expansion by GIF-DALLE outperforms 20× expansion of these augmentation methods a lot, while
5× expansion by GIF-DALLE has already performed comparably to 20× expansion of these aug-
mentation methods. This result further demonstrates the effectiveness and efficiency of our proposed
method, and also reflects the importance of automatically creating informative synthetic samples for
model training.
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Figure 12: Accuracy of ResNet-50 trained from scratch on the expanded datasets with different
expansion ratios based on Caltech101, Flowers and CIFAR100-Subset datasets.

E.2 MORE ABLATION STUDIES ON THE GUIDANCE

GIF optimizes sample latent features for informative sample generation by maximizing the designed
objective functions, i.e., zero-shot prediction consistency Scon, prediction entropy difference Sent,
and diversity promotion Sdiv . In Table 1, we have demonstrated their effectiveness in guiding
DALL-E2 and MAE to generate informative samples for expansion. In this appendix, we further
investigate their individual influence on GIF-DALLE for expanding CIFAR100-Subset by 5×.

As Scon and Sent are closely coupled based on CLIP’s zero-shot prediction for consistent-class
information promotion, we regard them as a whole. As shown in Table 8, Scon + Sent is the foun-
dation of effective expansion, since it makes sure that the created samples have correct labels and
bring more information. Without it, only Sdiv cannot guarantee the created samples to be mean-
ingful, although the sample diversity is improved, leading to even worse performance. In contrast,
with Scon +Sent, diversity promotion Sdiv can further bring more diverse information to boost data
informativeness and thus achieve better performance (cf. Table 8). Note that entropy maximization
Sent and diversity promotion Sdiv play different roles. Entropy maximization promotes the informa-
tiveness of each generated image by increasing the prediction difficulty over the corresponding seed
image, but this guidance cannot diversify different latent features obtained from the same image.
By contrast, the guidance of diversity promotion encourages the diversity of various latent features
of the same seed image, but it cannot increase the informativeness of generated samples regarding
prediction difficulty. Therefore, using the two guidance together leads the expanded images to be
more informative and diversified, thus bringing higher performance improvement.

Table 8: Ablation of guidance in GIF-DALLE for expanding CIFAR100-Subset by 5×.

Method Scon Sent Sdiv CIFAR100-Subset

GIF-DALLE

52.1±0.9
52.8±0.5
52.4±0.5
51.8±1.3
53.1±0.3
54.5±1.1
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E.3 ANALYSIS OF DALL-E2 ON MEDICAL IMAGES

DALL-E2 is trained on a large-scale dataset consisting of natural image and text pairs, and has shown
powerful capabilities in natural image generation and variation. However, when we directly apply
it to expand medical image datasets, we find the performance improvement is limited, compared
to MAE as shown in Table 9. To pinpoint the reason, we visualize the generated images on Or-
ganSMNIST in Figure 13 and find that it fails to generate photo-realistic medical images. The main
reason is that DALL-E2 suffers from domain shifts between natural and medical images and cannot
generate photo-realistic and informative medical samples based on its image variation abilities. In
contrast, MAE is a reconstruction model and does not need to generate new content for the target
images as DALL-E2, so it has much less negative impact by domain shifts. To address the issue,
when applying DALL-E2 to medical domains, we first fine-tune it on target medical datasets, fol-
lowed by dataset expansion. As shown in Table 9, based on the fine-tuned DALL-E2, GIF-DALLE
can bring more significantly performance gains over GIF-MAE, and thus expands medical image
datasets better.

Table 9: Accuracy of ResNet-50 trained on the
5×-expanded medical image datasets by GIF
based on DALLE w/o and w/ fine-tuning. The
performance is averaged over 3 runs.

Dataset PathMNIST BreastMNIST OrganSMNIST

Original 72.4±0.7 55.8±1.3 76.3±0.4
GIF-MAE 82.0±0.7 73.3±1.3 80.6±0.5
GIF-DALLE (w/o tuning) 78.4±1.0 59.3±2.5 76.4±0.3
GIF-DALLE (w/ tuning) 84.4±0.3 76.6±1.4 80.5±0.2

Figure 13: Visualization of the synthetic medi-
cal images by DALL-E2 via its variation abili-
ties on the OrganSMNIST dataset.

E.4 VISUALIZATION OF CREATED MEDICAL IMAGES

We visualize the created medical samples by different methods. As shown in Figure 14, RandAug-
ment randomly varies the medical images based on a set of pre-defined transformations. However,
due to its randomness, RandAugment may crop the lesion location of medical images and cannot
guarantee the created samples to be informative, even leading to noise samples. In contrast, our GIF-
MAE can generate content-consistent images with diverse styles, so it can enrich the medical images
while maintaining their lesion location unchanged. Therefore, GIF-MAE is able to expand medical
image datasets better than RandAugment, leading to higher model performance improvement (cf.
Table 3 in the main paper).

Input RandAugment Our GIF-MAE

Figure 14: Examples of the created samples for PathMNIST by RandAugment and GIF-MAE.
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E.5 DISCUSSION ON THE USE OF ZERO-SHOT CLIP

In GIF, we exploit the zero-shot discriminability of the pre-trained CLIP to guide dataset expansion.
It is interesting to know whether fine-tuning CLIP on the target small dataset can bring further
improvement. To determine this, we further compare the results of GIF-MAE with fine-tuned CLIP
and that with zero-shot CLIP based on OrganSMNIST. To be specific, we add an additional linear
classifier on the top of the CLIP image encoder and fine-tune the CLIP model on OrganSMNIST,
where the accuracy of the fine-tuned CLIP is 78.9. As shown in Table 10, GIF-MAE with fine-
tuned CLIP performs only comparably to that with zero-shot CLIP. This reflects that the CLIP text
classifier is enough to provide sound guidance based on its text-image matching abilities, whereas
simply fine-tuning CLIP does not work better on small-scale medical datasets. Even so, we expect
to further improve CLIP with more effective adaptation and prompt engineering in the future, which
may better unleash the power of CLIP to guide dataset expansion.

Table 10: Comparison between the model performance by GIF-MAE expansion with zero-shot CLIP
and fine-tuned CLIP based on the OrganSMNIST medical image dataset. Here, the expansion ratios
are {5×, 10×, 20×}. The performance is averaged over 3 runs.

Dataset OrganSMNIST
Original 76.3±0.4
Expanded 5× 10× 20×
with fine-tuned CLIP 80.1±0.3 80.6±0.2 81.0±0.5
with zero-shot CLIP (ours) 80.6±0.5 81.1±0.5 81.2±0.4

E.6 WHY NOT DIRECTLY TRANSFER CLIP MODELS TO TARGET DATASETS?

In our proposed GIF framework, we resort to the pre-trained CLIP to guide dataset expansion. One
may wonder why not to directly pre-train and fine-tune CLIP models to the target datasets, which
has shown effectiveness in many natural image datasets. Before discussing this, we would like to
highlight that we explore dataset expansion to handle real small-data scenarios, where only a small-
size dataset is available without any large-scale external dataset of similar image nature. Therefore,
pre-training models with CLIP or other self-supervised methods on large-scale target datasets is
inapplicable. In our proposed method, we resort to publicly available CLIP models for dataset
expansion. Compared to directly transferring CLIP models, our dataset expansion is a necessarily
new paradigm for the following two key reasons.

First, our GIF method has better applicability to the scenarios of different image domains. Although
CLIP has strong transfer performance on some natural image datasets, its transfer performance on
other domains like medical image datasets is limited. Here, we report the fine-tuning performance
of CLIP-trained ResNet-50 model on three medical datasets. As shown in Table 11, transferring the
CLIP model only leads to limited performance gains, which are significantly worse than our dataset
expansion. The reason is that, when the pre-trained datasets are highly different from the target
dataset, the pre-training and fine-tuning scheme does not significantly help performance (Raghu
et al., 2019). In contrast, our GIF framework can generate images of similar nature as the target
dataset for expansion, and thus GIF is more beneficial to real applications in various image domains.

Table 11: Comparison between our methods and directly fine-tuning CLIP models on three medical
image datasets. The performance is averaged over 3 runs.

Dataset PathMNIST BreastMNIST OrganSMNIST

Original dataset 72.4±0.7 55.8±1.3 76.3±0.4
Fine-tuned CLIP 78.4±0.9 67.2±2.4 78.9±0.1
GIF-MAE 82.0±0.7 73.3±1.3 80.6±0.5
GIF-DALLE 84.4±0.3 76.6±1.4 80.5±0.2
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Our dataset expansion can provide expanded datasets ready for training various network architec-
tures. In some real application scenarios like mobile terminals, the supportable model size is very
limited due to the constraints of device hardware. However, the publicly available checkpoints pro-
vided by CLIP are only ResNet50, ViT-B/32 or even larger models, which may not be allowed to
use in those scenarios. By contrast, the expanded dataset by our method can be directly used to train
various model architectures (cf. Table 2), and thus is more applicable to the application scenarios
with hardware constraints. Also, once the datasets are expanded, they can be released to the public
to facilitate future studies.

Please note that the goal of this paper is to show the huge potential of dataset expansion as a promis-
ing future direction instead of completely resolving it. We expect that the performance of dataset
expansion can be further improved in future research.

E.7 EFFECTIVENESS ON LARGER-SCALE DATASETS

In previous experiments, we have demonstrated the effectiveness of our proposed method on small-
scale natural and medical datasets. One may be interested in whether our method can be applied
to larger-scale datasets. Although expanding larger-scale datasets is not the goal of this paper, we
also explore our method to expand the full CIFAR100 by 5× for model training from scratch. As
shown in Table12, our GIF-DALLE leads to an 8.7% accuracy gain compared to direct training on
the original CIFAR100 dataset. Such encouraging results verify the effectiveness of our methods on
larger-scale datasets, and we expect to apply our methods to even larger datasets like ImageNet and
other tasks in the future.

Table 12: Effectiveness of GIF-DALLE for expanding CIFAR100 by 5×.

Dataset CIFAR100

Original 70.9±0.6
Expanded
GIF-MAE 77.0±0.3
GIF-DALLE 79.6±0.3

E.8 COMPARISON TO INFINITE DATA AUGMENTATION

In previous experiments, we have demonstrated that our proposed GIF framework is more effective
and efficient than existing data augmentation methods in expanding small datasets. Despite this,
one may also wonder how the explored dataset expansion would perform compared to training with
infinite data augmentation. Therefore, in this appendix, we further evaluate the performance of
infinite data augmentation on CIFAR100-subset. Specifically, based on RandAugment, we train
ResNet-50 using infinite online augmentation for varying numbers of epochs from 100 to 700. As
shown in Table 13, using RandAugment to train models for more epochs leads to better performance,
but gradually converges (around 51% accuracy at 500 epochs) and keeps fluctuating afterward. By
contrast, our GIF-DALLE can achieve better performance when only training 100 epochs, which
further demonstrates the effectiveness of our method in generating informative synthetic data for
model training.

Table 13: Comparison between GIF-DALLE and infinite data augmentation on CIFAR100-subset.

Methods Epochs Accuracy

Original
Standard training 100 35.0±1.7
Training with RandAugment 100 39.6±2.5
Training with RandAugment 200 46.9±0.9
Training with RandAugment 300 48.1±0.6
Training with RandAugment 400 49.6±0.4
Training with RandAugment 500 51.3±0.3
Training with RandAugment 600 51.1±0.3
Training with RandAugment 700 50.6±1.1
Expanded
5×-expanded by GIF-DALLE 100 54.5±1.1
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E.9 DISCUSSION OF PICKING RELATED SAMPLES FROM LARGER DATASETS

Picking and labeling data from larger image datasets with CLIP is an interesting idea for dataset
expansion. However, such a solution is limited in real applications, since a large-scale related dataset
may be unavailable in many image domains. Moreover, selecting data from different image domains
(e.g., from natural images to medical images) is unhelpful for dataset expansion.

Despite the above limitations in real applications, we also evaluate this idea on CIFAR100-subset
and investigate whether it helps dataset expansion when there is a larger dataset of the same image
nature, e.g., ImageNet. Here, we use CLIP to select and annotate related images from ImageNet
to expand CIFAR100-subset. Specifically, we scan over all ImageNet images and use CLIP to
predict them to the class of CIFAR100-subset. We select the samples with the highest prediction
probability higher than 0.1 and expand each class by 5×. As shown in Table 14, the idea of picking
related images from ImageNet makes sense, but performs worse than our proposed method. This
result further demonstrates the effectiveness and superiority of our method. In addition, how to
better transfer large-scale datasets to expand small datasets is an interesting open question, and we
expect to explore it in the future.

Table 14: Comparison between GIF and picking related data from ImageNet for expanding
CIFAR100-subset by 5×.

CIFAR100-Subset Accuracy

Original dataset 35.0±1.7
Expanded dataset
5×-expanded by picking data from ImageNet with CLIP 50.9±1.1
5×-expanded by GIF-DALLE 54.5±1.1

E.10 DISCUSSION OF TRAINING MODELS WITH ONLY EXPANDED IMAGES

It is interesting to know how the model would perform when trained with only the expanded images
by our method. More specifically, we use only the expanded images by GIF-DALLE on CIFAR100-
subset to train ResNet-50 from scratch, and compare it to the model trained on real images of
CIFAR100-subset. As shown in Table 15, the model trained with our synthetic images performs
comparably to the model trained with real images. This result further verifies the effectiveness of
our explored dataset expansion method. Moreover, the model trained with the full expanded dataset
performs much better than that trained with only the original dataset or with only the generated
images. That is, the generated images are not a simple repetition of the original dataset, but bring
new information to the expanded dataset for model training. This further shows that using synthetic
images for model training is a promising direction. We expect that our work on dataset expansion
can inspire more studies to explore this direction in the future.

Table 15: Performance of the model trained with only the expanded images on the 5×-expanded
dataset of CIFAR100-subset by GIF-DALLE.

CIFAR100-Subset Accuracy

Training with real images in original dataset 35.0±1.7
Training with 5×-expanded dataset by GIF-DALLE 54.5±1.1
Training with only the expanded images by GIF-DALLE 35.2±1.3
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E.11 COMPARISON TO CUTMIX FOR DATASET EXPANSION

In this appendix, we further apply a more advanced augmentation method, i.e., CutMix (Yun et al.,
2019), to expand CIFAR100-subset by 5 times and use the expanded dataset to train the model
from scratch. The results in Table 16 further demonstrate the superiority of our method over
augmentation-based expansion methods.

Table 16: Comparison between GIF-DALLE and CutMix (Yun et al., 2019) for expanding
CIFAR100-subset by 5×.

CIFAR100-Subset Accuracy

Original dataset 35.0±1.7
Expanded dataset
5×-expanded by CutMix 50.7±0.2
5×-expanded by GIF-DALLE 54.5±1.1
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F MORE VISUALIZATION RESULTS

This appendix provides more visualized results for the created samples by our methods on various
natural image datasets. Specifically, we report the synthetic images by GIF-DALLE on Caltech101
in Figure 15 and those by GIF-MAE in Figure 16. The visualized results show that our GIF-DALLE
can create semantic-consistent yet content-diversified images well, while GIF-MAE can generate
content-consistent yet highly style-diversified images. In addition, the visualization of GIF-DALLE
on other natural image datasets are shown in Figures 17-21.

F.1 VISUALIZATION OF THE EXPANDED IMAGES ON CALTECH101

Input Our GIF-DALLE expansion

Figure 15: Visualization of the created samples on Caltech101 by GIF-DALLE.
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Input Our GIF-MAE expansion

Figure 16: Visualization of the created samples on Caltech101 by GIF-MAE.
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F.2 VISUALIZATION OF THE EXPANDED IMAGES ON CARS

Input Our GIF-DALLE expansion

Figure 17: More visualization of the synthetic samples on Cars by GIF-DALLE.
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F.3 VISUALIZATION OF THE EXPANDED IMAGES ON FLOWERS

Input Our GIF-DALLE expansion

Figure 18: More visualization of the synthetic samples on Flowers by GIF-DALLE.
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F.4 VISUALIZATION OF THE EXPANDED IMAGES ON PETS

Input Our GIF-DALLE expansion

Figure 19: More visualization of the synthetic samples on Pets by GIF-DALLE.
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F.5 VISUALIZATION OF THE EXPANDED IMAGES ON CIFAR100-SUBSET

Input Our GIF-DALLE expansion

Figure 20: More visualization of the synthetic samples on CIFAR100-Subset by GIF-DALLE. Note
that the resolution of CIFAR100 images is small (i.e., 32×32), so their visualization is a little unclear.
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F.6 VISUALIZATION OF THE EXPANDED IMAGES ON DTD

Input Our GIF-DALLE expansion

Figure 21: More visualization of the synthetic samples on DTD by GIF-DALLE.

35



Under review as a conference paper at ICLR 2023

G EXPLORATORY THEORETICAL ANALYSIS

In this work, we explore the empirical possibility of using recent generative models (e.g., DALL-E2)
for small dataset expansion, and we have empirically demonstrated the effectiveness of our proposed
GIF method in previous experiments. Although theoretical analysis is not the focus of this paper, it
is also interesting to theoretically analyze the proposed dataset expansion. However, rigid theoretical
analysis for dataset expansion is complex and non-trivial, so here we provide an exploratory idea to
analyze the benefits of our dataset expansion to generalization performance.

Inspired by Sener & Savarese (2017), we resort to the concept of δ cover to analyze how the diversity
of data influences the generalization error bound. Specifically, “a dataset s is a δ cover of a dataset
ŝ” means a set of balls with radius δ centered at each sample of the dataset s can cover the entire
dataset ŝ. In our work, we only consider the small target dataset and its true data distribution, so
we follow the assumptions of the work (Sener & Savarese, 2017) and extend its Theorem 1 to the
version of the generalization error bound.

Corollary 1 Let A be a learning algorithm and C be a constant. Given a training set D =
{xi, yi}i∈[n] with n *i.i.d.* samples drawn from the true data distribution PZ . If the training set D
is δ cover of the true distribution PZ , the hypothesis function is λη-Lipschitz continuous, the loss
function `(x, y) is λ`-Lipschitz continuous for all y and bounded by L, and `(xi, yi;A) = 0 for
∀i ∈ [n], with the probability at least 1− γ, the generalization error bound satisfies:

|Ex,y∼PZ [`(x, y;A)]− 1

n

∑
i∈[n]

`(xi, yi;A)| ≤ δ(λ` + ληLC). (6)

This corollary shows that the generalization error is bounded by the covering radius δ. In real small-
data applications, the data limitation issue leads δ to be very large and thus severely affects the
generalization performance of the trained model. More critically, simply increasing the data number
(e.g., via data repeating) does not help the generalization since it does not decrease the covering
radius δ. Rather than simply increasing the number of samples, our proposed GIF framework guides
recent generative models (e.g., DALL-E2) to synthesize informative and diversified new images for
expanding the original small dataset. Therefore, the expanded dataset would have higher diver-
sity of data, which helps to decrease the covering radius δ and thus improves the trained model’s
generalization performance.
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