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Abstract

With the advancement of large language mod-
els (LLMs), significant progress has been
achieved in various Natural Language Process-
ing (NLP) tasks. However, existing LLMs
still face two major challenges that hinder their
broader adoption: (1) their responses tend to
be generic and lack personalization tailored
to individual users, and (2) they rely heav-
ily on cloud infrastructure due to intensive
computational requirements, leading to sta-
ble network dependency and response delay.
Recent research has predominantly focused
on either developing cloud-based personalized
LLMs or exploring the on-device deployment
of general-purpose LLMs. However, few stud-
ies have addressed both limitations simultane-
ously by investigating personalized on-device
language models. To bridge this gap, we pro-
pose CDCDA-PLM, a framework for deploy-
ing personalized on-device language models
on user devices with support from a powerful
cloud-based LLM. Specifically, CDCDA-PLM
leverages the server-side LLM’s strong gen-
eralization capabilities to augment users’ lim-
ited personal data, mitigating the issue of data
scarcity. Using both real and synthetic data, A
personalized on-device language models (LMs)
is fine-tuned via parameter-efficient fine-tuning
(PEFT) modules and deployed on users’ lo-
cal devices, enabling them to process queries
without depending on cloud-based LLMs. This
approach eliminates reliance on network sta-
bility and ensures high response speeds. Ex-
perimental results across six tasks in a widely
used personalization benchmark demonstrate
the effectiveness of CDCDA-PLM.

1 Introduction

Recently, Large Language Models (LLMs) have
become a cornerstone of contemporary Natural
Language Processing (NLP) research and indus-
try applications due to their exceptional abilities
in text understanding and generation (Radford and

Narasimhan, 2018; Ray, 2023; Naveed et al., 2024).
These models have achieved remarkable success
and transformed numerous areas of NLP, such
as translation, summarization, and conversational
Al (Thirunavukarasu et al., 2023; Hu et al., 2024;
Wang et al., 2024).

Despite their advancements, existing LLMs face
two significant limitations that hinder their broader
adoption: (1) Lack of Personalization. LLMs
are designed as universal models, which limits
their ability to generate responses tailored to users’
personalized preferences and interests; (2) Depen-
dence on Cloud Infrastructure. The powerful
LLMs are typically trained and deployed on cloud
servers due to their high computational demands.
This architecture not only relies on stable and high-
speed network connections to transmit user queries
and deliver responses, but also requires a long time
for LLM inference. However, these conditions are
often unmet in real-world scenarios, particularly on
mobile platforms such as smartphones and smart
vehicles. For instance, LLM-based assistants are
increasingly integrated into smart vehicle systems,
but these vehicles frequently experience inconsis-
tent network connectivity due to their mobility. In
remote regions with weak or no network coverage,
such cloud-based LLM services could become en-
tirely inaccessible as the system goes offline. In ad-
dition, considering the time-sensitive applications,
an LLM-powered service will lead to a significant
inference latency overhead in reality, limiting the
feasibility of the service. Consequently, there is a
growing need for personalized LLMs that can run
directly on user devices. Such models must address
user-specific needs while operating efficiently on
edge devices, free from the constraints of cloud
connectivity.

Some recent efforts have explored techniques for
enabling personalization in LLMs, which can be
generally categorized into prompt-based methods
and fine-tuning-based methods. The prompt-based



approaches format personalized prompts to lever-
age the in-context learning capabilities of LLMs.
That is to say, all users share the same model, but
personalized prompts are used to guide the gen-
eration process. For example, Christakopoulou
et al. (2023) incorporates users’ historical data into
prompts to enhance generation performance. And
to conquer the input length limitation when users’
historical data are too long, some research employs
retrieval-augmentation generation (RAG) to aug-
ment user’s query by adding the most relevant his-
tory information into prompt (Richardson et al.,
2023; Salemi et al., 2023; Li et al., 2024a,b). On
the other hand, fine-tuning methods directly opti-
mize the parameters of LLMs to adapt to users’
personalized data distributions (Tan et al., 2024b,a;
Park et al., 2024; Li et al., 2024b; Zhuang et al.,
2024). However, these approaches face significant
scalability issues, as the cloud server must fine-
tune a separate model for each user. As the number
of users grows, centralized computation becomes
a major bottleneck, making the fine-tuning-based
personalization method impractical.

While these methods show promise for person-
alization, they are primarily designed for cloud-
based LLMs and face significant challenges in
on-device settings. On-device language models
(LMs) are constrained by the computational and
storage limitations of edge devices, resulting in
small model sizes. As demonstrated in many previ-
ous works (Richardson et al., 2023; Salemi et al.,
2024), prompt-based personalization methods, in-
cluding RAGs, cannot achieve satisfactory perfor-
mance with these small-sized on-device LMs since
these models have limited generalization and con-
textual understanding ability. Similarly, fine-tuning
on-device LMs to adapt to users’ local data dis-
tributions presents additional difficulties. For ex-
ample, individual users typically possess limited
data, which is insufficient for effective model fine-
tuning.

In this paper, we take a first step toward
developing a learning framework for personal-
ized on-device language models (LMs). Our ap-
proach leverages cloud-based large language mod-
els (LLMs) to address the challenge of personal
data scarcity and introduces a cloud-device collabo-
rative framework to ensure scalability. Specifically,
the cloud-based LLM generates synthetic data tai-
lored to each user’s limited local data, thereby aug-
menting the user’s dataset and transferring relevant
knowledge from the cloud LLM to the on-device

LM. Once users receive the synthetic data, we ap-
ply parameter-efficient fine-tuning (PEFT) tech-
niques to optimize their on-device LMs using both
the synthetic and local personal data entirely on
the user’s device. This decentralized training strat-
egy avoids the scalability bottleneck of requiring
the cloud server to fine-tune models for all users.
After training, the personalized on-device LM is de-
ployed locally, allowing inference to be performed
without network connectivity, which reduces both
network dependency and inference latency. To eval-
uate the framework’s effectiveness, we conduct
extensive experiments on public datasets, and ex-
perimental results demonstrate that the proposed
method can achieve promising performance in per-
sonalized classification and generation tasks.

Overall, the main contributions of this paper are
summarized as follows:

* We take the first step in exploring the problem
of LLM personalization in the context of small
on-device LM deployment, where storage size
and computational resources are constrained.

* We propose a personalized on-device LM
framework, CDCDA-PLM. In this framework,
we design a novel cloud-device collaboration
mechanism in which the server model lever-
ages data augmentation to transfer knowledge
to the small on-device LM. Additionally, we
develop a dedicated filtering method to en-
hance the robustness of the knowledge trans-
fer process.

* We conduct extensive experiments across mul-
tiple tasks to demonstrate the effectiveness
of CDCDA-PLM. Furthermore, we perform
detailed ablation studies and hyperparameter
analyses, followed by a case study, to fur-
ther highlight the superiority of our proposed
method.

2 Related Work

In this section, we review the literatures on
LLM personalization and on-device deployment
of LLMs.

2.1 Personalization of LLMs

Personalized LLM aims to better understand and
generate text specific to match the user’s interests
and preferences. The existing research on LLM
personalization could generally be divided into two
categories: prompt design based personalization



and parameter-efficient fine-tuning (PEFT) based
personalization (Salemi and Zamani, 2024).

Prompt-based Personalization. In the early de-
velopment of personalized prompts, query prompts
were formatted with user history as context to lever-
age the in-context and few-shot learning capabil-
ities of large language models (LLMs). For in-
stance, Christakopoulou et al. (2023) and Zhiyuli
et al. (2023) demonstrate that incorporating long
user history in prompts can enhance LLM gener-
ation performance. However, incorporating user
history in prompts will increase the inference com-
putational cost due to the lengthy input. To mitigate
this issue, Salemi et al. (2023) proposed a strategy
to shorten the user history length by using retrieval
model to select relevant documents from user his-
tory based on the user query. Moreover, Salemi
et al. (2024) optimizes and selects retrieval models
based on LLM feedback from personalized tasks.

Fine-tuning based Personalization. Parameter-
efficient fine-tuning (PEFT) offers an effective way
to optimize LLMs for users’ personal distributions
by modifying only a small subset of parameters
(Hu et al., 2021; Dettmers et al., 2023). For exam-
ple, OPPU proposed a PEFT-based personalized
LLM, which fine-tunes the LoRA adapter on user
profiles for each user, to store user knowledge on
PEFT parameters (Tan et al., 2024b). Building on
this work, PER-PCS aggregates fine-tuned LoRA
adapters from multiple users into a shared adapter
pool, which can be leveraged to generate a person-
alized LLM for a target user by merging multiple
LoRA adapters (Tan et al., 2024a). Reinforcement
learning is also applied with PEFT to achieve better
performance(Cheng et al., 2023; Li et al., 2024b;
Park et al., 2024).

However, all the aforementioned personalization
approaches have been developed for cloud-based
LLMs, which possess formidable generalization
and language understanding capabilities, lacking
the exploration of weak on-device models.

2.2 On-device Deployment of LLMs

Due to their large size, deploying LL.Ms on edge
devices presents critical challenges, including high
computational overhead and significant memory de-
mands. Current deployment methods can generally
be categorized into two strategies.

The first strategy involves directly compressing
the original large-scale model into a smaller one
through quantization (Liu et al., 2023; Lin et al.,
2025) and pruning (Ma et al., 2023; Frantar and

Alistarh, 2023). Quantization maps high-precision
values to lower precision, while pruning removes
certain unimportant neurons. However, since the
compressed model remains architecturally coupled
with the original model, aggressive compression
may lead to significant performance degradation.

The second strategy focuses on transferring
knowledge from a large cloud-based model to a
smaller on-device model. A widely used approach
within this strategy is knowledge distillation (KD)
(Hinton et al., 2015; Gou et al., 2021). Based on the
accessibility of the teacher model, the KD process
can be classified into white-box KD and black-box
KD. In white-box KD, the student model learns
from the teacher model’s activations, hidden fea-
tures, and output distribution (Xu et al., 2024; Ko
et al., 2024; Wu et al., 2024; Agarwal et al., 2024;
Gu et al., 2024). However, this approach requires
the student model to share certain architectural sim-
ilarities with the teacher model. In contrast, black-
box KD allows the student model to access only the
teacher model’s responses to enhance training data
(Dai et al., 2023; Ho et al., 2023; Tian et al., 2024;
Jung et al., 2024). For instance, Qin et al. (2024)
introduces an on-device LLLM training framework
by selecting the most representative user data to
mitigate the data storage demands in the device.
However, in their method, the on-device model is
as large as the cloud-based model which is imprac-
tical. Our proposed method aligns closely with
black-box KD, leveraging a cloud-based model to
generate a synthetic dataset that transfers knowl-
edge to the smaller on-device LM model.

3 Research Problem Formulation

This paper explores to fine-tune personalized on-
device language models (LMs), incorporating two
key concepts: personalized LMs and on-device
LMs. Unlike general LMs, which produce out-
put sequences solely based on the input sequence,
a personalized LM generates responses by con-
sidering both the user’s query z and their pro-
file D,. We define the user profile as a collec-
tion of the user’s historical input-output pairs: i.e.,
D, = {(xuly yu1>7 ($u27 yu2); ) (mutuyyutu)}’
where t,, indicates the history before query time ¢.

Compared to a cloud-based LLM M_;y,q, an
on-device LM M jey;ce has a significantly smaller
model size, as it must be deployed on a user’s local
device where computational resources are limited.
Additionally, unlike server-based LLMs, which are
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Figure 1: Overview of the proposed method.

trained on extensive datasets collected from various
sources, on-device LMs are only trained on a single
user’s data, which is often insufficient. As a result,
on-device LM has fast response ability, however,
its does not have powerful language understanding
ability compared to server-based LLMs. In this
paper, we aim to exploit both the on-device LM’s
fast response merits and the strong inference ability
of the server LLMs to build a high-performance
on-device personalized LM.

4 Proposed Method

Different from previous work (Salemi et al., 2023),
which implements personalization in a cloud server
setting, this paper proposes a cloud-device collab-
orative data augmentation for on-device person-
alized LM deployment framework that enhances
inference efficiency without relying on the server
LLM. The basic idea of CDCDA-PLM is to use
the powerful server LLM model to assist the on-
device personalized model’s fine-tuning. As shown
in Figure 1, the proposed framework consists of the
following five steps: (1) user data uploading, (2)
data augmentation with server LLM, (3) synthetic
data selection, (4) synthetic data downloading, and
(5) on-device LM personalization fine-tuning. In
the following parts, we provide a detailed descrip-
tion of each step.

User data uploading. A user’s historical profile
provides a unique data distribution. However, due
to the limited data size, directly fine-tuning the
on-device model on this local data cannot achieve
satisfactory performance. Therefore, in CDCDA-
PLM, user upload their personal data to a central
server, where a powerful cloud-based LLM per-

forms data augmentation.

Data augmentation with server LLM. On the
server side, we use the following prompt to aug-
ment the uploaded data: “Generate an Input and
Response pairs semantically similar to the follow-
ing example, no need to explain. Input: [], Re-
sponse: [].” Then, for each pair of data in the
uploaded user dataset D,,, the server LLM M ;0,4
generates k augmented samples:

= {(=] ) bier, (D

Synthetic data selection. Although M, ;,,q gener-
ates a large amount of data for the target user, the
generated data can be noisy, and not all samples
contribute useful information for personalization
fine-tuning. Intuitively, high-quality augmented
data should be similar to the original samples while
still providing some diversity. Therefore, we apply
three carefully designed filters to select useful data
for personalized LM.

Filter 1: Semantic consistency filter. Reliable
synthetic data should preserve the semantics of the
original statement without introducing hallucinated
content. Natural Language Inference (NLI) models
are trained to determine whether a given “hypothe-
sis” and “premise” entail, contradict, or are neutral
to each other. Therefore, we employ a small NLI
model My, (Liu et al., 2022) as the semantic eval-
uator, which provides a semantic consistent score
between the synthetic and original samples:

D" = {Dui

SCF = (MNLI(:I: = xsyn) > 6scf)/\
(Mnri(zsyn = @) = €scf)  (2)

where €. is the threshold to filter out dissimilar



synthetic pairs, and Myr(a = b) indicates the
possibility of inferring b given a.

Filter 2: Token diversity filter. While the SCF
filter ensures the consistency of semantics for syn-
thetic data, it is also important to maintain diversity
in the augmented data. Ideally, synthetic samples
should convey the original meaning but with dif-
ferent wording. To measure this, we apply the
ROUGE-L (Lin, 2004) metric to assess token over-
lap between original and generated sequences:

TDF = ROUGE-L(z,zsyn) < €aqr (3)
where €4y is the threshold for the ROUGE-L score.

Filter 3: Length size filter. Finally, we ensure
that synthetic samples have a reasonable length to
avoid abnormal or redundant data. We discard data
that are either too short or too long, using prede-
fined minimum and maximum length thresholds

€min_len and €mazx_len:

LSF = (len(azsyn) > €min_len * len($)/\
(len(xsyn) < €maz_ien - len(z))  (4)

Specifically, we filter all generated samples whose
length ratio (i.e., the length ratio of x4, to x) is
out of the pre-defined range [€,in_ien, €maz_len) 1O
ensure the generated sample has a length similar to
the input. By applying these three filters, we obtain
a high-quality dataset D f;jereq from the synthetic
data pool Dy, which is then used for LM fine-
tuning.

Synthetic data downloading. After selecting the
high-quality augmented data D f;jsereq, the server
sends these data back to the corresponding users.
Users then download the data and combine it with
their local datasets for on-device fine-tuning.
On-device LM personalization fine-tuning. We
employ a pretraining and efficient fine-tuning ap-
proach for on-device personalization. Specifically,
for a target task, we fine-tune a general LM on a
public, standard dataset to enhance its general task
understanding. Since this step does not involve
personal data, it is executed on the cloud server to
avoid using the constrained on-device resources.
After optimization, we obtain a task-specific pre-
trained model My, .. as the initialization point for
personalized LMs fine-tuning.

On the device, we fine-tune an on-device LM
Mpqse on the combined synthetic and user local
datasets to learn both personalized information
from the user and the insightful knowledge from the

server LLM. The on-device LM is much smaller
than the server LLM, ensuring low inference la-
tency.

To reduce training costs, we implement
parameter-efficient fine-tuning using LoRA
(Dettmers et al., 2023). LoRA introduces trainable
adapters AW,, into the original weights of Mp, e,
forming the personalized LM M jeqice:

Mdevice = Mbase + AVVu (5)

We then only optimize AW, using the user’s histor-

ical data D,, and the filtered LLM-generated data
D filtered
u .

AW, = argmin CE(Mgeyice| Dy U D{:”t”ed)
(6)
where C'E(-) represents the cross-entropy loss
function.

After optimizing the personalized LM M jeyice,
users can then process queries locally without re-
lying on the cloud server, benefiting from lower
latency and without relying on network connec-
tion.

S Experiments

5.1 Experimental Settings

Datasets. To validate the effectiveness of the pro-
posed method, we conduct extensive experiments
on six personalization tasks in Large Language
Model Personalization (LaMP) benchmark (Salemi
et al., 2023).! In this study, we use the time-based
separation data in LaMP benchmark. Note that
our data usage slightly differs from the original
LaMP benchmark setting. Specifically, they ad-
dress multi-user personalization by training models
on the combined histories of multiple users, which
results in coarse-grained personalization. In con-
trast, our work focuses on fine-grained personaliza-
tion by training a separate model for each individ-
ual user using only their own historical data. The
core statistics of pre-processed datasets for each
task are presented in Appendix A. To promote the
personalization phenomenon, following (Tan et al.,
2024b), we select the 100 most active users with
the longest history logs as target users while using
all remaining users for base model training. Our
objective is to obtain on-device personalized LM
for each user among these 100 users. In addition, to
further investigate the effectiveness of our method,

'We exclude the LaMP-6: Email Subject Generation task
as it relies on private data that we cannot access.



Table 1: The performance of CDCDA-PLM and baselines on LaMP benchmark. The best performance of

Tasks Metric Non-Personalized RAG S]gz?;:;::;e Fine-tuning based M jcyice
M M Maowa  Maevice Mjoud M gevice M Direct EDA RKD CDCDA

cloud — Hdevice +BM25 +BM25 +Contriever +Contriever device -FT -FT FT  -PLM

LaMP-1 Accuracy T 0.520 0.390 0.560 0.310 0.630 0.230 0.500 0.420 0.410 0.460 | 0.530
F1 1 0.515 0.356 0.528 0.381 0.605 0.245 0.469 0.390 0.382 0.389 0.483

LaMP-2 Accuracy T 0.248 0.017 0.319 0.009 0.292 0.050 0.353 0.243 0.296 0283 | 0.391
F1 1 0.129 0.017 0.225 0.019 0.234 0.066 0.201 0.099 0.156 0.125 0.224

LaMP-3 MAE | 1.120 0.640 1.970 1.580 1.630 1.465 0.550 0.474 0.450 0.474 | 0.400
RMSE | 1.371 1.131 2.508 2.191 2.252 2.117 1.034 0.946 0.831 0912 | 0.834
ROUGE-11  0.107 0.102 0.122 0.092 0.121 0.098 0.110 0.106 0.117 0.116 0.120

LaMP-4 ROUGE-Lt 0.096 0.090 0.110 0.083 0.109 0.088 0.098 0.094 0.104 0.103 | 0.107
BERT-F1 1 0.847 0.838 0.849 0.837 0.850 0.839 0.847 0.845 0.847 0.847 | 0.849
ROUGE-11 0427 0.360 0.457 0.328 0.453 0.346 0.341 0.375 0.370 0.375 | 0.382

LaMP-5 ROUGE-Lt 0.362 0.309 0.379 0.292 0.387 0.292 0.279 0.314 0.316 0307 | 0.317
BERT-F1 1 0.894 0.885 0.896 0.882 0.896 0.878 0.879 0.886 0.885 0.884 0.886
ROUGE-11  0.365 0.337 0.355 0.296 0.338 0.230 0.354 0.337 0.373 0.374 | 0.383

LaMP-7 ROUGE-Lt 0.310 0.297 0.315 0.262 0.296 0.201 0.317 0.302 0.327 0.328 | 0.336
BERT-F1 1 0.881 0.877 0.881 0.869 0.879 0.854 0.878 0.875 0.880 0.882 0.881

we also implement experiments for additional users
from LaMP. The further experiment details are pro-
vided in Appendix D.

Evaluation Metrics. Following LaMP (Salemi
et al., 2023), we use accuracy and F1-score for the
LaMP-1 and LaMP-2, MAE and RMSE for the
LaMP-3, and ROUGE-1, ROUGE-L (Lin, 2004)
and BERTScore-F1 (BERT-F1) (Zhang et al., 2020)
for LaMP-4, LaMP-5 and LaMP-7. Except for
MAE and RMSE, where lower values are better,
all other metrics with higher values indicate better
performance.

Baselines. We compare CDCDA-PLM with the
non-personalized models and other personalized
baselines. In the non-personalized baselines, we se-
lect the cloud-based LLM (M ;,.,4) and on-device
LM (M gevice), which is fine-tuned only on the re-
maining users without the 100 target users.

The personalized baselines include RAG-based
methods, fine-tuning based methods, and specula-
tive decoding method, for fair comparison, these
personalized methods are all implemented on on-
device models: (1) Retrieval-Augmented Person-
alization (RAG): RAG incorporates relevant items
from target user history to the prompt (Salemi et al.,
2023) to achieve a personalized response. To show-
case the deteriorated performance of RAG in on-
device LM, we also present the performance of
RAG in the cloud counterpart. Follow by (Salemi
et al., 2023), in experiment, we implement a sparse
retriever: BM25 (Trotman et al., 2014) and a
dense retriever: Contriever (Izacard et al., 2021).
(2) Speculative Decoding: An optimization tech-
nique accelerates models’ inference by using a non-
personalized LLM on cloud to assist a personalized

Table 2: Ablation studies results with respect to server
LLM data augmentation (LDA) and data selection (DS)
components. The best are highlighted in bold.

LaMP-2 LaMP-7

Methods Acc  F1 |R-1 R-L
Full model (DS) 0.391 0.224 | 0.383 0.336
Full model (RS) 0324 0.157 | 0344 0302
DS 0360 0.187 | 0.354 0.314
DS -LDA 0243 0.099 | 0337 0302
DS-LDA -FT _ 0.017 0.017 | 0337 0.297

LM on device. We evaluate personalized tasks on
Google’s speculative decoding (Leviathan et al.,
2023) implemented by HuggingFace (Joao Gante,
2023). (3) Direct-FT (Tan et al., 2024b): Directly
LoRA fine-tuning M je.;c. uses the target user’s lo-
cal historical data. This method cannot be satisfied
due to limited local data size. (4) EDA-FT (Wei
and Zou, 2019): EDA (Easy Data Augmentation)
is a traditional text data augmentation method in-
cluding synonym replacement, random insertion,
random swap, and random deletion. (5) RKD-FT:
An LLM knowledge distillation method uses re-
verse KL divergence (Gu et al., 2024). For EDA-
FT, RKD-FT, and CDCDA-PLM, they augment
local knowledge based on users’ data.

Implementation. For all baselines in our study,
we choose models from one of the most widely
adopted open-source LLM series Qwen2.5 > (Yang
et al., 2024). Specifically, we use Qwen2.5-3B-
Instruct as the cloud-based model and Qwen?2.5-
0.5B-Instruct as the on-device model for each user.
To ensure efficiency, we choose one retriever item

2ht’cps: //github.com/QwenLM/Qwen2.5
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for all retrieval-based methods.

By default, we set the LLM generation samples
k to 5 in all experiments. We apply the LoRA
adapter on all linear layers of the on-device model,
and set the LoRA rank 7 to 16 and scaling factor «
to 8. We quantize the on-device model weight in
NF4 data type and use bfloat 16 for computation.
Followed by the Qwen2.5 technique report (Yang
et al., 2024), we used the multinomial sampling
decoding with temperature 7ye;,, = 0.7. We im-
plement all the experiments using Pytorch (Paszke
et al., 2017) and HuggingFace library (Wolf et al.,
2020) on an NVIDIA RTX A5000 GPU.

5.2 Overall Results

To validate our proposed method’s effectiveness,
we compare it with several baselines and show the
results in Table 1. From the results, we have some
interesting observations as follows.

First, by comparing the cloud model M yyq
with the device model M ..., We observe that
the cloud model performs significantly better than
the corresponding device model in both personal-
ized and non-personalized settings. This is because
cloud-based models have a much larger number
of parameters, approximately six times more in
our experiments, making them unsuitable for de-
ployment on edge devices. This finding highlights
the necessity of transferring knowledge from the
cloud-based LLM to support the weaker on-device
LM.

Furthermore, when comparing RAG-based per-
sonalization methods, we find that the performance
of the small on-device model actually declines after
incorporating RAG. This aligns with our argument
that on-device models are too small to effectively
support prompt-based personalization.

By comparing speculative decoding with other
baselines, we observe that it achieves relatively
strong performance. However, as discussed in the
baseline section, speculative decoding relies on fre-
quent interaction with a cloud-based LLM, which
introduces additional latency and requires a sta-
ble network connection. In addition, our proposed
CDCDA-PLM outperforms speculative decoding
by a clear margin, demonstrating its superiority in
terms of performance. Moreover, CDCDA-PLM
operates entirely on-device without the need for
network connectivity and enables fast decoding,
offering further advantages over the speculative
decoding approach.

Among fine-tuning-based personalization ap-

proaches, Direct-FT yields the worst performance
due to the limited availability of local user data,
which is typically insufficient for effective person-
alized fine-tuning. The baseline methods, EDA-FT
and RKD-FT, improve upon direct fine-tuning in
some tasks, but their enhancements are limited. In
some cases, their performance even deteriorates,
likely due to the simplistic knowledge augmenta-
tion techniques they employ.

Our proposed CDCDA-PLM consistently out-
performs all on-device baselines across all tasks.
Additionally, CDCDA-PLM achieves performance
comparable to cloud models, demonstrating its ef-
fectiveness and strong generalization ability.

5.3 Ablation Study

In this part, on LaMP-2 and LaMP-7, we demon-
strate the effectiveness of our delicately designed
modules in CDCDA-PLM, including LLM data
augmentation (LDA) and data selection (DS) com-
ponents. As shown in Table 2, when we replace
our carefully designed filters in DS with random
selection (RS), the accuracy of the full model with
DS drops from 0.391 to 0.324 on LaMP-2. When
we remove the DS (i.e., -DS), i.e., the on-device
model is directly trained on all augmented data,
the ROUGE-1 score also decreases from 0.391 to
0.360 on LaMP-2. Furthermore, when we fine-tune
on-device models without LLM data augmentation
(i.e., -LDA), the model performance further drops
to 0.243 accuracy and 0.337 ROUGE-1 score on
LaMP-2 and LaMP-7. Overall, the results support
the effectiveness of all the proposed components.

5.4 Hyper-parameter Analysis

In this part, we investigate the impact of the hyper-
parameters, synthetic data augmentation size k,
associated with our proposed method. To better
understand the impact of cloud-based LLM aug-
mentation, we vary the number of LLM-generated
samples k for both the classification (LaMP-2) and
generation (LaMP-7) tasks, as shown in Figure 2.
Overall, increasing k leads to improvements in both
tasks LaMP-2 and LaMP-7. Specifically, in both
tasks, performance stabilizes on generating 1 and 3
samples and achieves greater improvement when
increasing generated samples to 5.

5.5 Efficiency Analysis

To further evaluate the CDCDA-PLM’s efficiency
on real-world edge devices, we deploy personal-
ized on-device LM on two devices: (1) a work-
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Figure 2: The impact of hyperparameter in LLM data augmentation. % controls the number of samples generated by

server-sided LLM.

Table 3: Inference efficiency results. Storage size is
the required memory for deploying models. TTFT rep-
resents the time to generate the first token (sec), and
Decode represents the average number of output tokens
generated per second (tokens/s).

Models Storage Workstation Android
Size (GB) TTFT Decode TTFT Decode
Cloud-based LLM 2.36 4.8 234 31.7 23
On-device LM 0.42 0.9 688 49 8.6
(-82%)  (-81%) (2.9x) (-85%) (3.8x)

station with GPU NVIDIA RTX A5000 and (2)
a Samsung Galaxy Tab A8. We first train all the
on-device personalized LMs on a workstation with
a GPU, and then they are encapsulated by MLC-
LLM (MLC team, 2025), which is a compiler and
high-performance deployment engine for LLMs.
To compare the efficiency in on-device deploy-
ment, We evaluate on-device model deployment’s
efficiency from two perspectives: model storage
memory, and inference efficiency (TTFT and de-
coding speed). We record the inference efficiency
for 5 runs of each model on the randomly selected
queries from 6 tasks.

The results are reported in Table 3. Our on-
device models are much smaller and faster than the
cloud-based models on two devices. Specifically,
the memory footprint of our on-device model is
more than five times smaller than that of the server-
based model. The time-to-first-token (TTFT) for
our on-device model is just 0.9 seconds on a work-
station and 4.9 seconds on an Android phone—both
lower than the TTFT of the server model. In terms
of throughput, our on-device model generates out-
put tokens at a rate three times faster than the orig-
inal server model. Notably, according to Rayner
et al. (2016), the average human reading speed
is approximately 4 to 6 words per second. Our
on-device model, even on a low-end Android de-
vice, achieves a decoding speed of 8.6 tokens per
second, which is sufficient for real-world applica-
tions. Overall, the efficiency analysis proves that

Table 4: Comparative results with FlanT5-base model
on 6 tasks. In each task, the best result is marked in
bold.

Tasks FlanT5-base Qwen2.5-0.5B

+BM25 CDCDA-PLM CDCDA-PLM
LaMP-1 (Acc) 0.6 0.570 0.530
LaMP-2 (Acc) 0.3499 0.283 0.391
LaMP-3 (MAE) 0.4632 0.484 0.400
LaMP-4 (R-1) 0.0834 0.115 0.120
LaMP-5 (R-1) 0.2867 0.406 0.382
LaMP-7 (R-1) 0.2933 0.362 0.383

our developed personalized LM is able to achieve
more practical memory and response latency for
on-device services.

5.6 Generalization of our framework

In this part, we investigate the effectiveness of our
framework on another language model, FlanT5-
base (Chung et al., 2022). As shown in Table 4,
FlanT5-base with CDCDA-PLM achieves better
performance than FlanT5-base with BM25 RAG
on 4 tasks due to limited historical data on a sin-
gle user, indicating that our framework is able to
be implemented on different LM architectures to
improve the on-device personalized performance.

6 Conclusion

This paper introduces CDCDA-PLM, a person-
alized on-device LM deployment framework de-
signed to close the performance and efficiency
gap between cloud-based LLM and on-device LM
by augmenting user historical data. Specifically,
CDCDA-PLM first uses a server LLM to con-
struct a synthetic dataset containing similar sam-
ples as user data to assist the on-device personal-
ized model’s fine-tuning. The experimental results
demonstrate that CDCDA-PLM achieves better per-
formance on personalized content generation.



7 Limitations

Several limitations are concerned with our work.
Firstly, due to dataset constraints, our study aims to
deploy a personalized model to generate responses
on a specific task for each user, ignoring the user
behaviors from other tasks and domains. For ex-
ample, for the user who engages in news head-
line generation and scholarly title generation tasks,
both tasks could provide the user’s stylistic pat-
tern preference. Nevertheless, in the future, we
believe CDCDA-PLM can be applied to any NLP
task across different domains. Secondly, the data
quality of LLM augmentation can be affected by
the cloud-based LLM. Exploring a larger LLM or
multiple LLMs to augment user data remains an
area for future investigation.

8 Ethical Considerations

Training a personalized model heavily relies on
personal data, which may leak sensitive or pri-
vate information of users. Sharing user data with
server LLLM for user personal data augmentation
also leads to privacy concerns. Therefore, it is im-
portant to investigate further robust methods for
privacy protection in cloud-server LLM data aug-
mentation. In addition, a personalized model aims
to generate content aligning with user preferences
and interests shown in user data. However, per-
sonalization models may be trained with user data
consisting of biased and unfair information, lead-
ing to harmful responses. Within CDCDA-PLM,
the biased data is uploaded to server LLM for aug-
mentation, which further negatively affects the on-
device model. Future works may explore strategies
to avoid sharing or augmenting harmful data on the
server LLM.
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Table 5: Statistics of the preprocessed datasets..

Task Target Users Filtered Synthetic Dataset
#Q  #History Li, Low | #Q Lin Lout
LaMP-1 100 317.57 7843 3.0 15928 161.76 19.15
LaMP-2 2752 54.58 129.55 224 8962 121.21 2.20
LaMP-3 100  959.02 24479 1.00 15721 193.19 1.00
LaMP-4 955  269.08 3149 1560 12736 27.40 14.27
LaMP-5 100  443.03 222.60 1552 23473 156.92 18.63
LaMP-7 100 120.15 4090 27.66 16490 39.56 0.00
A Datasets

In Table 5, #Q and #History represent the total num-
ber of user queries and history, respectively, in the
target users test dataset and synthetic selected train-
ing dataset. L;,, and L., are the average tokens of
inputs and outputs.

B Prompt Details

In this part, we show the prompt used in our exper-
iment.

B.1 LaMP-1: Personalized Citation
Identification

<lim_startl>system

With the given examples, which reference is re-
lated?<lim_endI>

<lim_startl>user

{RETRIEVED USER HISTORY}

For an author who has written the paper with the
title {PAPER TITLE}, which reference is related?
Just answer with [1] or [2] without explanation. [1]:
{OPTION_1} [2]: {OPTION_2}<lim_endI>

B.2 LaMP-2: Personalized Movie Tagging

<lim_startl>system

With the given examples, generate a tag for the
given movie. <lim_endI>

<lim_startl>user

{RETRIEVED USER HISTORY}

Which tag does this movie relate to among the fol-
lowing tags? Just answer with the tag name with-
out further explanation. tags: [sci-fi, based on a
book, comedy, action, twist ending, dystopia, dark
comedy, classic, psychology, fantasy, romance,
thought-provoking, social commentary, violence,
true story] description: {MOVIE DESCRIPTION}
<lim_endI>

B.3 LaMP-3: Personalized Product Rating

<lim_startl>system

With the given examples, generate a score for the
given review. <lim_endI|>

<lim_startl>user
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{RETRIEVED USER HISTORY}

What is the score of the following review on a
scale of 1 to 57 just answer with 1, 2, 3,4, or 5
without further explanation. review: {REVIEW}
<lim_endl>

B.4 LaMP-4: Personalized News Headline
Generation

<lim_startl>system

With the given examples, generate a title for the
given article. Only output the title and nothing else.
<lim_endI>

<lim_startl>user

{RETRIEVED USER HISTORY}

Generate a headline for the following article: { AR-
TICLE} <lim_endI|>

B.5 LaMP-5: Personalized Scholarly Title
Generation

<lim_startl>system

With the given examples, generate a title for the
given article. Only output the title and nothing else.
<lim_endl>

<lim_startl>user

{RETRIEVED USER HISTORY }

Generate a title for the following abstract of a paper:
{PAPER} <lim_endl>

B.6 LaMP-7: Personalized Tweet
Paraphrasing

<lim_startl>system

With the given examples, paraphrase the following
tweet without any explanation before or after it.
<lim_endI>

<lim_startl>user

{RETRIEVED USER HISTORY}

Paraphrase the following tweet without any ex-
planation before or after it: USER TWEET
<lim_endI>

C Case Study

To further intuitively understand the personaliza-
tion effectiveness of CDCDA-PLM, we conduct a
case study for a user on the Personalized Scholarly
Title Generation (LaMP-5) task, which tests the
ability of models to capture stylistic patterns when
generating scholarly titles based on the abstract of
an article.

Figure 3 presents an example of a specific
user. Note that, according to this user’s historical
data, they prefer to directly include the proposed
method’s name from the abstract as part of the title.



User Device (11003279)

s
// ﬂJser Query: Generate a title for the following abstract of a paper:

Abstract: Because of the large number of online games available nowadays, online game recommender systems are necessary for users and
online game platforms. The former can discover more potential online games of their interests, and the latter can attract users to dwell longer in
the platform. This paper investigates the characteristics of user behaviors with respect to the online games on the Steam platform. Based on the
observations, we argue that a satisfying recommender system for online games is able to characterize: personalization, game contextualization
and social connection. However, simultaneously solving all is rather challenging for game recommendation. ... To this end, we propose a
Social-aware Contextualized Graph Neural Recommender System (SCGRec), which harnesses three perspectives to improve game
recommendation. We conduct a comprehensive analysis of users 2019 online game behaviors, which motivates the necessity of handling those
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Figure 3: A case study in LaMP-5, which is the task of Personalized Scholarly Title Generation.

Table 6: The performance of CDCDA-PLM and baselines on LaMP benchmark for other users. The best performance
of personalized on-device model M ey ;ce is highlighted in bold and the second best is underlined.

Tasks Metric Non-Personalized RAG S]l;ii:::;:;e Fine-tuning based M cyice
Mot Maovioe Meioud  Maevice Mo ud de‘z ce Moo Direct EDA RKD CDCDA

: o +BM25 +BM25 +Contriever +Contriever e -FT -FT -FT -PLM

LaMP-1 Accuracy T 0.480 0.500 0.530 0.480 0.550 0.500 0.480 0.520 0.520 0.470 | 0.580
F1 71 0.466 0.469 0.487 0.324 0.502 0.333 0.442 0.473 0.513 0.435 | 0.566

LaMP-2 Accuracy T 0.155 0.010 0.224 0.035 0.255 0.052 0.169 0.072 0.103 0.110 | 0.217
F1 71 0.139 0.013 0.233 0.044 0.258 0.081 0.114 0.065 0.076 0.070 | 0.169

LaMP-3 MAE | 1.100 0.790 1.540 1.410 0.950 1.010 0.580 0.580 0.480 0.610 | 0.460
RMSE | 1.386 1.330 2.159 1.972 1.584 1.559 1.149 1.105 0.980 1.171 | 1.000
ROUGE-11 0.133 0.128 0.151 0.122 0.159 0.122 0.145 0.136 0.111 0.149 | 0.148

LaMP-4 ROUGE-L1 0.117 0.113 0.134 0.109 0.143 0.110 0.125 0.124 0.099 0.131 | 0.133
BERT-F1 1 0.843 0.841 0.848 0.842 0.850 0.841 0.844 0.844 0.833 0.846 | 0.847
ROUGE-11 0438 0.365 0.448 0.356 0.464 0.343 0.354 0.363 0.343 0.371 | 0.376

LaMP-5 ROUGE-L1 0.370 0.301 0.375 0.286 0.386 0.289 0.313 0.311 0.288 0.318 | 0.324
BERT-F1 1 0.892 0.885 0.896 0.883 0.897 0.881 0.885 0.880 0.884 0.883 | 0.889
ROUGE-11  0.352 0.257 0.323 0.214 0.326 0.225 0.330 0.294 0.321 0.332 | 0.354

LaMP-7 ROUGE-L1 0.295 0.213 0.271 0.182 0.276 0.196 0.269 0.241 0.272 0.277 | 0.295
BERT-F1 1 0.884 0.862 0.882 0.856 0.884 0.858 0.881 0.877 0.881 0.882 | 0.884

In this case, they favor using the bold text “Social-
aware Contextualized Graph Neural Recommender
System” as indicated in the Golden Answer. How-
ever, all baseline models fail to capture this pref-
erence and instead generate titles by summarizing
the abstract’s semantics. Only our CDCDA-PLM
successfully identifies this pattern, producing a title
most similar to the Golden Answer.

D Performance of CDCDA-PLM and
Baselines On Additional Users

This section reports the results of experiment on
the additional users. In the previous experiment,
Table 1, we selected the top 100 most active users
followed by OPPU (Tan et al., 2024b) and Personal-
ized Piece (Tan et al., 2024a). To better validate the
effectiveness of our method, due to the limited com-
putational resources, we conducted an additional
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experiment on all baselines using 100 randomly
selected users from each task. Since these users
were chosen at random, the results are expected
to be representative of a broader user base. The
experimental results, Table 6, demonstrate that our
method outperforms nearly all baselines across all
tasks on additional users.
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