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ABSTRACT

Prognostic prediction using survival analysis faces challenges due to complex re-
lationships between risk factors and time-to-event outcomes. Deep learning meth-
ods have shown promise in overcoming these challenges, but their effectiveness
is often dependent on large datasets. Deep learning methods implemented on
moderate or small datasets often suffer from severe problems, such as insufficient
training data, overfitting, and difficulty in tuning hyperparameters. To address
these issues and enhance the accuracy of prognosis predictions, this paper intro-
duces a novel, flexible deep learning framework for integrating information from
external risk models with internal time-to-event data. Our approach accommo-
dates both homogeneous and heterogeneous settings, allows for the integration of
risk scores derived from various external models, and leverages the power of deep
neural networks to capture complex non-linear relationships. The approach makes
use of a generalized Kullback-Leibler distance measure between survival distribu-
tions, which is included as a penalization term in the estimation procedure. We
demonstrate the improved predictive accuracy of our approach through extensive
simulations and real-world applications.

1 INTRODUCTION

Prognosis prediction is an important topic in survival analysis. Historically, research aimed at pre-
dicting survival outcomes has largely been confined to individual datasets. These datasets often have
limitations, such as rare event rates, small sample sizes, high dimensionality, and low signal-to-noise
ratios. To overcome these limitations, transfer learning in survival analysis has been proposed to
improve prediction accuracy by transferring knowledge from external, pre-trained models into the
analysis of newly collected data (Huang et al., 2016; Chen et al., 2021). However, traditional inte-
grated approaches, such as the integrated Cox proportional hazards model, often face limitations in
prognostic prediction capabilities due to their dependence on the linearity and proportional hazards
assumptions. In reality, the relationship between event times and risk factors can be intricate, often
involving non-linear effects, influences that vary over time, and interactions. To effectively capture
the complexities of integrated time-to-event data, it is essential to employ computationally efficient
deep learning techniques.

Deep learning has been increasingly applied to survival analysis in recent years. Katzman et al.
(2018) extend the classical Cox proportional hazards model by parameterizing the risk function
using neural networks. The resulting algorithm (termed DeepSurv) models the risk function as a
non-linear transformation of input covariates, allowing the capture of complex nonlinear effects
and interactions. Cox-Time (Kvamme et al., 2019) further extends the Cox model by removing
the proportionality constraint and allowing the risk function to depend on time. This is achieved
by parameterizing the risk function using a neural network that takes both covariates and time as
input. Discrete-time methods, including DeepHit (Lee et al., 2018), Nnet-survival (Gensheimer &
Narasimhan, 2019), DRSA (Ren et al., 2019), and SSMTL (Chi et al., 2021), consider time as dis-
crete and employ classification techniques with binary event indicators for each time interval. Some
methods, such as DeepHit, SSMTL, and SSCNN (Agarwal et al., 2021) also incorporate ranking-
based losses to modify model performance. These diverse methodological advances demonstrate
the potential of deep learning in enhancing survival analysis by providing more flexible modeling
options, the ability to learn from complex and high-dimensional data, and improved predictive per-
formance compared to traditional statistical methods.
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Although deep learning methods have shown significant promise, their effectiveness often relies on
large datasets to fully capture the complex patterns and relationships. However, in many real-world
scenarios, sample sizes are often limited. This challenge is further exacerbated in time-to-event
data, where high censoring rates frequently result in low event rates. In such situations, deep learn-
ing methods often encounter severe problems including insufficient training data, model instability,
overfitting, and difficulty in tuning hyperparameters. This ”small data” challenge is a primary moti-
vation for transfer learning, where knowledge from a large source domain can be used to regularize
and guide a model being trained on a smaller target domain.

This research is motivated by The Michigan Urological Surgery Improvement Collaborative (MU-
SIC) study (Womble et al., 2014), which provides individual-level clinical and genomic data for
378 men with prostate cancer who were treated with surgery. The outcome of interest is time to
biochemical recurrence. Given the small sample size, integrating external information from vali-
dated prognostic tools presents a promising avenue to enhance survival prediction. One example of
such external information is the STAR-CAP (Staging Collaboration for Cancer of the Prostate) sys-
tem, which is a point-based clinical prognostic tool for localized prostate cancer (Dess et al., 2020)
assigning weights to various clinical factors to categorize patients into distinct risk groups. This
system provides a standardized and globally applicable framework for risk assessment. However,
the points-based nature of STAR-CAP pose challenges for integration with existing methods that
rely on survival probabilities or risk scores.

Previous research has explored the knowledge transfer from external information at the summary
level with internal survival data. Huang et al. (2016) developed an empirical likelihood approach
under a strong homogeneity assumption that internal data are collected from the same underlying
probability distribution from which external summary-level information is derived. To relax the ho-
mogeneity assumption, Chen et al. (2021) proposed an adaptive estimator that penalizes the potential
discrepancy between data sources, a challenge known in machine learning as domain shift. However,
this method only applies to external subgroup survival rates at certain time points defined based on
a few categorical variables. Alternatively, Kullback-Leibler (KL) information (Kullback & Leibler,
1951) has been applied to data integration. Specifically, Liu & Shum (2003), Schapire et al. (2005)
and Jiang et al. (2016) developed KL-based data integration techniques for binary and ordinal out-
comes. In the context of survival analysis, Wang et al. (2025) proposed a discrete failure time mod-
eling procedure using discrete hazard-based KL information as a metric to quantify discrepancies
between published models and internal datasets, demonstrating improved prediction performance in
a kidney transplant study. Recently, Wang et al. (2023) developed a partial likelihood-based KL ap-
proach for continuous survival data, integrating external risk scores with internal Cox models while
addressing population heterogeneity, or domain shift.

Although the data integration methods mentioned above have proven effective, they are primarily
designed to integrate external survival information that are linked to probabilities derived from tra-
ditional statistical models, such as the Cox proportional hazards model. However, these methods
are not directly applicable to the STAR-CAP system. In STAR-CAP, patients are classified into dis-
tinct risk groups based on a weighted sum of clinical factors. Such groups, which may not provide
direct probability interpretation, are used to classify patients rather than predict survival probabili-
ties. These issues preclude the application of the aforementioned integration methods that rely on a
probability-based metric to measure the discrepancy between the internal data and historical mod-
els. Furthermore, existing integration procedures are based on linear relationships between predic-
tors and survival outcomes. It is computationally challenging to extend these methods by allowing
for a flexible, non-linear function to model the relationship between covariates and the log-hazard
function.

To robustly incorporate external ranking knowledge and improve discriminatory power, we propose
a generalized KL-based transfer learning framework (named NNCoxKL). The proposed integration
framework is flexible in the following key aspects: (1) it leverages the power of deep neural networks
to capture complex non-linear relationships and interactions to gain improved predictive accuracy;
(2) it is robust to the domain shift between the source of external knowledge and the target data,
automatically integrating diverse information sources optimally; and (3) it flexibly transfers knowl-
edge from the external information whether it is a score produced by a survival model, or rankings
based on clinical knowledge. The remaining parts of this paper are organized as follows: Section 2
introduces the transfer learning framework. Section 3 presents a thorough evaluation through sim-
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ulation studies, with additional results from real-world data applications provided in the Appendix.
Section 4 concludes with a discussion.

2 METHODS

2.1 INTERNAL FLEXIBLE PROPORTIONAL HAZARDS MODEL

We first introduce the proportional hazards model for the target internal cohort, which consists of
individual-level data with time-to-event outcomes and risk characteristics.

Let Ti denote the event time of interest and Ci be the censoring time for the i-th individual, where
i = 1, . . . , n, and n is the sample size of the internal cohort. Let Zi denote a p-dimensional covariate
vector for each subject. We assume that Ti is independently censored by Ci, given Zi. The observed
time is Xi = min(Ti, Ci), and the event indicator is δi = I(Ti ≤ Ci). We consider proportional
hazards models, which are specified by the following hazard function:

λ(t;Zi) = lim
dt→0

1

dt
Pr(t ≤ Ti < t+ dt|Ti ≥ t,Zi) = λ0(t) exp{r(Zi,β)},

where λ0(t) is an arbitrarily unspecified baseline hazard function, r(Zi,β) specifies the log-relative
risk relationship between the covariates Zi and the hazard function, and β are the regression param-
eters. The corresponding log-partial likelihood is given by

ℓ(β) =

n∑
i=1

δi

r(Zi,β)− log


n∑

j=1

Yj(Xi) exp{r(Zj ,β)}


 , (1)

where Yj(Xi) = I(Xj ≥ Xi) is the at-risk indicator.

The classic Cox proportional hazards model is based on a linear function r(Zi,β) = Z⊤
i β (Cox,

1972). While the linearity assumption is often made, the Cox proportional hazards model may suffer
when the true covariate-hazard relationship is non-linear and includes interactions. To allow more
complex, potentially non-linear dependencies between covariates Zi and the hazard function, we
propose using a neural network for r(Zi,β).

2.2 EXTERNAL RISK SCORES

Access to individual-level data from external studies is usually limited. Often only summary-level
information can be obtained for the external model, for example from a publication. Specifically,
we consider the situation that some external risk scores, r̃(Zi), can be calculated based on external
studies, where Zi is the input covariate vector for the ith subject in the internal cohort.

In our proposed NNCoxKL framework, the form of the external risk scores r̃(Zi) can be very flex-
ible. They may originate from various models, such as neural networks, Cox proportional hazards
models, boosting methods, or regularized techniques like Lasso. They can even be in the form of
risk group classifications, such as those provided by the STAR-CAP system.

Furthermore, the covariates Zi used in the external risk score may not perfectly match those of
the internal cohort. The external model might have been developed using a subset of the internal
covariates and outcome measures, which could be related to, but not identical to, the actual outcomes
(e.g., a surrogate endpoint). This flexibility allows for the integration of diverse external information
into our analysis, enhancing its applicability in real-world scenarios where data availability and
consistency can be challenging.

2.3 GENERALIZED KL BASED TRANSFER LEARNING PROCEDURE

A unique challenge in transferring knowledge from external risk scores, such as STAR-CAP, is that
these scores are derived for the purpose of patient classification rather than prediction of survival
probabilities. Often, these scores cannot provide any probability interpretation. These issues pre-
clude the application of existing transfer learning methods.
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To address this issue, we propose a solution motivated by the Bregman divergence (Bregman, 1967).
For two vectors p and q and a strictly convex and differentiable function G, the Bregman divergence
is defined to be the difference between the value of G at point p and the value of the first-order
Taylor expansion of G around point q evaluated at point p:

BG(p∥q) = G(p)−G(q)− ⟨▽G(q),p − q⟩, (2)

where ⟨·, ·⟩ means the inner product and ▽G is the gradient vector.

To extract information from external risk scores, we cast the censored time-to-event data as a ranking
problem. Specifically, assume that the internal cohort has K unique failure times t1 < . . . < tK .
Let Rk be the set of items at risk of failure at time t−k , just prior to time tk. Thus, Rk consists of all
individuals who have not failed and are still under observation (uncensored) just before time tk. For
individual i belonging to Rk, define a Plackett-Luce (Plackett, 1975) type of ranking metric,

pk(i) =
exp{r̃(Zi)}∑

j∈Rk
exp{r̃(Zj)}

,

where r̃(Zi) is the external risk score, and the exponential transformation of the risk scores ensures
that pk(i) is non-negative. Similarly, define

qk(i) =
exp{r(Zi,β)}∑

j∈Rk
exp{r(Zj ,β)}

.

To measure the disparity between pk and qk, consider the generalized KL divergence,

d(pk∥qk) =
∑
i∈Rk

pk(i) log
pk(i)

qk(i)
−

∑
i∈Rk

pk(i) +
∑
i∈Rk

qk(i),

which is a special case of the Bregman divergence generated by the negative entropy func-
tion, G(pk) =

∑
i∈Rk

pk(i) log pk(i). Note that both pk and qk are standard simplex; that is,∑
i∈Rk

pk =
∑

i∈Rk
qk = 1. Thus, the generalized KL divergence d(pk∥qk) reduces to the usual

KL divergence,

d(pk∥qk) =
∑
i∈Rk

pk(i) log
pk(i)

qk(i)
.

To capture information across failure times t1, . . . , tK , the accumulated generalized KL is then
defined as

D(r̃ ∥ r) =
K∑

k=1

d(pk∥qk),

which measures the disparity between the historical risk scores, r̃ = {r̃(Zi), i = 1, . . . , n}, and the
internal risk scores, r = {r(Zi,β), i = 1, . . . , n}. To integrate information from both cohorts while
allowing for the potential disparities, we combine the log-partial likelihood from the internal data
and the accumulated generalized KL by constructing a penalized log-partial likelihood

ℓη(β) = ℓ(β)− η D(r̃ ∥ r),

where η is a tuning parameter weighing the relative importance of external and internal risk scores.
In the special case of η = 0, the penalized log-partial likelihood ℓη(β) is reduced to the log-partial
likelihood of the internal model ℓ(β). Finally, the tuning parameter η can be selected via V&V H
cross-validation (Verweij & Van Houwelingen, 1993).

Remark 1: Wang et al. (2023) proposed a partial likelihood-based KL to transfer knowledge from
external risk scores generated from Cox proportional hazards models. To incorporate more general
external information, such as ranking-based risk scores, we employ the generalized KL divergence.
This allows us to measure the disparities even when external risk scores are not derived from a
proportional hazards model.

Remark 2: We note that the divergence measure is not invariant to rescaling of r̃. In situations where
the vector pk does not have an explicit probability interpretation we rescaled r̃ so that the vector pk
is likely to be more closely aligned with the internal data. This was achieved this by first fitting a
Cox model to the internal data with the original r̃ as the only covariate, and then using this rescaled
r̃ in the subsequent method.
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2.4 DEEP NEURAL NETWORK

Proposition 1 Ignoring terms not involving β, the penalized log-partial likelihood is

ℓη(β) =

K∑
k=1

n∑
i=1

[
δi(tk) +

ηYi(tk) exp{r̃(Zj)}∑n
j=1 Yj(tk) exp{r̃(Zj)}

][
r(Zi,β)− log


n∑

j=1

Yj(tk) exp{r(Zj ,β)}


]

(3)

∝
n∑

i=1

[
δi + ηδ̃i
1 + η

r(Zi,β)− δi log

{ n∑
j=1

Yj(ti) exp{r(Zj ,β)}
}]

, (4)

where δi(tk) = I(Ti ≤ Ci, Ti = tk) is the event indicator for subject i at time tk, and

δ̃i =

K∑
k=1

Yi(tk) exp{r̃(Zi)}∑n
j=1 Yj(tk) exp{r̃(Zj)}

is a predicted event indicator, defined using external risk scores.

When comparing equations equation 1 and equation 3, a key aspect of our approach, demonstrated
in Proposition 1, is that the modified objective function retains a structure similar to the traditional
log-partial likelihood. Therefore, standard deep learning techniques can be easily implemented with
the proposed procedure to allow complex architectures and maintain computational efficiency.

Specifically, to implement the proposed transfer learning based framework, we adopt a standard
feed-forward architecture designed to model complex relationships between covariates and the haz-
ard function. This network takes as input both the predictor variables and the external risk score
information r̃(Zi), and produces a single output node that represents the risk score r(Zi,β). To en-
hance model performance, we standardize the input features and utilize Kaiming’s uniform initial-
ization (He et al., 2015) for weight initialization. To prevent overfitting, the loss function includes an
L2 regularization term applied to the weights. The hidden layers employ rectified linear unit (ReLU)
activation functions (Nair & Hinton, 2010). For optimization, we adopt the AdamW optimizer with
weight decay and employ a learning rate scheduler (Loshchilov & Hutter, 2017). Early stopping
techniques are also implemented (Prechelt, 2002). Hyperparameter optimization, including learn-
ing rate, weight decay coefficient, dropout rate, and number of hidden layers, is conducted using a
random search approach.

2.5 MODEL COMPLEXITY, OVERFITTING AND THE ROLE OF TRANSFER LEARNING

A key consideration in neural network design is the trade-off between model complexity and the
risk of overfitting. The number and configuration of hidden layers play a critical role in maintaining
this balance. Deeper networks with more hidden layers have a higher capacity to model complex
relationships within the data. However, they are also more susceptible to overfitting, especially when
training data is limited. As demonstrated in Section 4.1, transfer learning can enrich the model’s
learning process, allowing it to effectively utilize the increased complexity of deeper networks. By
transferring knowledge, the proposed procedure reduces the model’s reliance on potentially limited
patterns in the internal training data, thereby improving predictive performance while preserving
generalizability.

The choice of stopping criteria is crucial in deep learning to prevent overfitting, where the model
performs well on training data but poorly on unseen data. Early stopping is a common technique that
involves monitoring the performance of the model in a validation set during training and stopping
the training process when the validation loss starts to increase (Prechelt, 2002). This approach helps
ensure the selection of a model that generalizes well to new data. However, the choice of stopping
criteria and the optimal stopping point can be sensitive, particularly when dealing with small sample
sizes. Variations in performance introduced by different stopping criteria can have a significant
impact on the final results.

By transfer learning from external information, our proposed NNCoxKL method reduces reliance
on limited or unique patterns present only in the internal data. As a result, the NNCoxKL model’s
learning process becomes less sensitive to specific early stopping points, thereby mitigating the risk
of overfitting and delivering more robust and improved performance.

5
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3 SIMULATION STUDY

To assess the performance of the proposed NNCoxKL method, we conducted a simulation study
evaluating NNCoxKL’s prediction capabilities under various scenarios, including its integration with
different external models. Performance comparisons included the CoxKL method (Wang et al.,
2023), CoxKL-RIDGE (CoxKL with an additional L2 penalty), NNCox (a neural network Cox
model without transfer learning) and were performed on independent testing data. We included an
L2 penalty in CoxKL-RIDGE to match the neural network algorithms, that also have an L2 penalty.
Each simulation was replicated 100 times.

We simulated survival data from a Cox model with both linear (Setting 1) and non-linear/interaction
effects (Setting 2). To evaluate robustness, we introduced varying degrees of domain shift between
the external and internal cohorts across three scenarios (E1-E6). The full data-generating processes
are detailed in the Appendix.

3.1 LINEAR SIMULATION:

Figure 1 summarizes the results Simulation Setting I. For different levels of external model qual-
ity, the NNCoxKL method consistently outperformed the internal model, demonstrating lower loss
(negative log-partial likelihood) and a higher Harrell’s C-Index. Higher-quality external information
led to more improvements in model performance, as demonstrated by a lower loss and a higher C-
Index. Incorporating homogeneous external information led to a lower loss and a higher C-Index,
particularly when the quality of the internal cohort was limited. However, in heterogeneous set-
tings with misspecified external scores, the C-Index tended to decrease, though the loss often still
improved. As expected, the benefits of external information diminished with larger internal sample
sizes or lower censoring rates. As Figure 1 illustrates, the NNCoxKL model outperformed the in-
ternal model in all scenarios when an appropriate penalty η was selected. In addition, the optimal
range of η narrowed with decreasing external information quality.

Figure 1: Comparison of Loss and C-index with different η values under simulation setting I. Internal
= Deep Learning model based on the internal data only; NNCoxKL = transfer learning model by
the proposed method. Panel A and B corresponds to Setting (E1) with a good-quality external
model. Panel C and D corresponds to Setting (E2) with a fair-quality external model. Panel E and
F corresponds to Setting (E3) with a poor-quality external model. Details of external settings can be
found in Section 3. The simulation study was replicated 100 times. Higher C-index indicated better
prediction performance.
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3.2 NON-LINEAR SIMULATION:

Figure 2 compares the predictive performance (C-index) of CoxKL, CoxKL-RIDGE and NNCoxKL
under different scenarios. The internal dataset had 200 samples, while the external dataset had 3000
samples. A separate testing dataset of 1,000 samples was used for evaluation. ”Internal only”
refers to models fit exclusively on the internal data only. ”High quality” and ”Low quality” denote
transfer knowledge of external data from simulation settings (E4) and (E5), respectively. In all cases
the external model for NNCoxKL is neural network proportional hazards model, and for CoxKL
and CoxKL-RIDGE they are linear additive Cox models. Both CoxKL and NNCoxKL exhibited
improved performance after transfer learning, regardless of external data quality. Adding a ridge
penalty to CoxKL (CoxKL-RIDGE) further enhanced its performance compared to the base model.
However, NNCoxKL consistently outperformed CoxKL and CoxKL-RIDGE across all scenarios
(internal data only, low-quality, high-quality). This was likely attributable to the non-linear nature
of the data generating mechanism, which violated the linearity assumption of CoxKL methods.

Figure 2: Comparison of prediction performance (C-index and loss) using NNCoxKL, CoxKL and
CoxKL-RIDGE. Internal only refers to fitting on internal data only. Low quality refers to transfer
knowledge from low quality external data from simulation setting (E5). High quality refers to trans-
fer knowledge frp, high quality external data from simulation setting (E4). CoxKL is the method
proposed by Wang et al. (2023), while CoxKL-RIDGE adds a RIDGE penalty to CoxKL. NNCoxKL
refers to the proposed transfer learning framework.
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Figure 3 illustrates the test loss across epochs for NNCox (with internal data only) and NNCoxKL
(with external data) under different sample sizes (500 and 5,000) and settings. Note that, in the
context of deep learning, an epoch refers to one complete pass of the training algorithm over the en-
tire training dataset The internal dataset consistently comprised 500 samples, and a separate testing
dataset of 1,000 samples was used for evaluation. Notably, NNCox exhibited an initial decrease in
loss followed by an increase in later epochs, indicating overfitting. In contrast, NNCoxKL, when
integrating information from homogeneous (E4) and heterogeneous (E6) external datasets, reduced
overfitting, maintaining a relatively stable loss as the number of epochs increases. For the hetero-
geneous setting, while a slight increase in loss was observed with larger external sample sizes as
epochs increase, this performance remained significantly better than when using internal data only.
Consequently, after transfer learning, the performance of the model became less sensitive to the
selection of stopping criteria, a challenge often encountered with datasets of moderate size.

4 DATA ANALYSIS

Prostate cancer is the second leading cause of cancer death among men in the United States (Siegel
et al., 2022). Prognostic predictions are used to guide treatment decisions and improve patient
outcomes. The STAR-CAP system (Staging Collaboration for Prostate Cancer), a validated clinical
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Figure 3: Comparison of loss on an independent testing dataset using NNCox (without transfer
learning) and NNCoxKL (with transfer learning) with varying external sample sizes. NNCox shows
overfitting issues with increasing loss in later epochs, while NNCoxKL demonstrates more stable
loss for both homogeneous setting (E4) and heterogeneous setting (E6), highlighting the benefit of
transfer learning in mitigating overfitting, especially with limited internal data.

prognostic tool, developed from a study that included 19,684 patients and offered a standardized
framework for risk assessment in localized prostate cancer (Dess et al., 2020). However, its points-
based nature and potential non-linear relationship with survival outcomes may limit its predictive
power in certain contexts. Details of the STAR-CAP system can be found in the Appendix.

We leveraged the NNCoxKL framework to integrate STAR-CAP scores with internal patient-level
data from the Michigan Urological Surgery Improvement Collaborative (MUSIC). This data set
includes 378 patients diagnosed with prostate cancer and treated with surgery, together with their
corresponding STAR-CAP risk group. Our model for the internal data used age, percentage of pos-
itive core biopsy (ppc), and pretreatment prostate-specific antigen (PSA) as continuous predictors.
All other covariates were treated as categorical, including an additional covariate, the Decipher score
(a genomic test used in treatment decision making) with 3 levels, clinical T category with 3 levels,
clinical N category with 3 levels, and Gleason grade with 5 levels. The outcome of interest was the
time to biochemical recurrence (BCR), defined as at least two PSA values of 0.2 ng / ml or greater
after radical prostatectomy.

By tranferring knowledge from the STAR-CAP risk groups with the individual-level data from MU-
SIC, we aimed to leverage the strengths of both approaches. The STAR-CAP system provides a
robust and standardized risk assessment framework, while the NNCoxKL model allows for the cap-
ture of complex, nonlinear relationships between clinical factors, genomics information (decipher
score), and BCR outcomes. As illustrated in Figure 4, incorporating STAR-CAP scores into the
NNCoxKL model enhanced predictive performance by achieving a higher C-index and a lower Loss
compared to using MUSIC data alone.

5 DISCUSSION

In this paper, we have introduced NNCoxKL, a flexible deep learning framework designed to in-
tegrate external risk models with internal time-to-event data for enhanced prognostic prediction.
Our approach is adaptable to both homogeneous and heterogeneous settings, accommodating var-
ious types of external risk score, including those derived from nontraditional approaches such as
the STAR-CAP system. By leveraging the power of deep neural networks, NNCoxKL effectively
captures complex non-linear relationships between covariates and survival outcomes, leading to im-
proved predictive accuracy.

Through simulation studies and the three benchmark datasets, we have demonstrated the superior
performance of NNCoxKL compared to traditional methods, particularly in scenarios with limited
sample sizes or complex covariate relationships. The real-world application to the prognosis of
prostate cancer further highlights the practical utility of our framework. By integrating STAR-
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Figure 4: Results of predictive performance for biochemical recurrence (BCR). The censoring rate
is 81.37%. The internal data was randomly split into a training set (80%) and a testing set (20%).
Results are evaluated on the independent testing set. This random partitioning and evaluation was
repeated 20 times Internal only refers to fitting on internal data only without STAR-CAP informa-
tion. NNCoxKL refers to the proposed transfer learning framework. Optimal η was selected to be
around 1 via cross-validation. Panels (A) and (C) show the improvement in C-index and Loss, across
different random training/testing splits. Panel (B) shows the C-index across different values of the
transfer learning tuning parameter η, while Panel (D) presents the loss across different η values.
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CAP risk groups with individual-level data from the MUSIC cohort, we were able to improve the
prediction of biochemical recurrence, showcasing the potential of NNCoxKL.

Although our proposed framework offers significant advantages, it also presents some limitations.
The effectiveness of NNCoxKL is based on the quality and relevance of external risk scores. In cases
where the external information is poor quality or is misaligned with the internal data, the method
may not perform as well. Additionally, selecting the integration parameter η requires careful con-
sideration, as it balances the contributions of internal and external data sources. Furthermore, the
framework’s current formulation is not invariant to monotonic transformations of r̃(Z). A poten-
tial solution could involve replacing exp(r̃(Z)) with exp(f(r̃(Z))) , where f represents a suitable
monotonic function.

Future research could explore several extensions of the NNCoxKL framework. One potential di-
rection is to investigate alternative methods instead of cross-validation for selecting the integration
parameter, such as by using information criteria. Another potential area is to expand the framework
to accommodate multiple external risk models simultaneously, which could lead to further improve-
ments in predictive accuracy. Furthermore, exploring the application of NNCoxKL to other types of
survival outcomes and clinical settings would be valuable.

In conclusion, the proposed NNCoxKL offers a flexible and powerful framework for integrating
external risk models with internal time-to-event data, enhancing prognostic prediction in survival
analysis, particularly in challenging scenarios with limited data or complex relationships.

REPRODUCIBILITY STATEMENT

We provide the information needed to reproduce all results. The full learning objective, model class,
and training procedure are specified in Section 2 (including the penalized partial likelihood with the
generalized KL term and Proposition 1), with notation and implementation details given in Eqs.1 -
4 and the surrounding text. We describe the experimental design and evaluation protocol for simu-
lations in Section 3, and for real-data analyses in Section 4. Figures report performance on held-out
test sets and, where applicable, averages across repeated random splits; the MUSIC+STAR-CAP
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analysis also reports the cross-validated selection of η. The selection of the η employed 5-fold
cross-validation with the V&V H cross-validated partial likelihood (Verweij & Van Houwelingen,
1993) as the performance metric. To facilitate replication, we will release an anonymized repository
containing: (i) scripts to generate all simulated datasets and reproduce tables/figures; (ii) prepro-
cessing and split scripts for each real dataset; and (iii) training/evaluation code for NNCoxKL and
baselines with fixed random seeds and documented hyperparameters. The appendix includes a com-
plete proof of Proposition 1.

AI USAGE DISCLOSURE

The authors used an AI-powered language tool for copy editing purposes, including grammar checks
and refinement of wording for clarity.
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brei, Cornelia Schmoor, Christa Beyerle, Rolf L. Neumann, and Heinz F. Rauschecker. Random-
ized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive
breast cancer patients. german breast cancer study group. Journal of Clinical Oncology, 12(10):
2086–2093, 1994.

Rebecca L. Siegel, Kimberly D. Miller, Heather E. Fuchs, and Ahmedin Jemal. Cancer statistics,
2022. CA: A Cancer Journal for Clinicians, 72(1):7–33, 2022.

Pieter J. M. Verweij and Hans C. Van Houwelingen. Cross-validation in survival analysis. Statistics
in Medicine, 12(24):2305–2314, 1993.

Di Wang, Wen Ye, Ji Zhu, Gongjun Xu, Wenjing Tang, Marisa Zawistowski, Lars. Fritsche,
and Kevin He. Incorporating external risk information with the Cox model under popula-
tion heterogeneity: Applications to trans-ancestry polygenic hazard scores. arXiv preprint
arXiv:2302.11123, 2023.

Di Wang, Wen Ye, Randall Sung, Hui Jiang, Jeremy M. G. Taylor, Lisa Ly, and Kevin He. Kullback-
Leibler-based discrete failure time models for integration of published prediction models with new
time-to-event dataset. Annals of Applied Statistics, 2025. In Press.

Paul R. Womble, Mark W. Dixon, Sarah M. Linsell, Wei Ye, James E. Montie, Brian R. Lane,
David C. Miller, Frank N. Burks, and Michigan Urological Surgery Improvement Collaborative.
Infection related hospitalizations after prostate biopsy in a statewide quality improvement collab-
orative. The Journal of Urology, 191(6):1787–1792, 2014.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOF OF PROPOSITION 1

The generalized KL is given by

d(pk∥qk) =
∑
i∈Rk

pk(i) log
pk(i)

qk(i)

= −
n∑

i=1

Yi(tk) exp{r̃(Zi)}∑n
j=1 Yj(tk) exp{r̃(Zj)}

r(Zi,β)− log


n∑

j=1

Yj(tk) exp{r(Zj ,β)}


+Ψk,

where Ψk is a constant not involving β. The accumulated generalized KL is

D(r̃ ∥ r) =
K∑

k=1

d(pk∥qk)

= −
K∑

k=1

n∑
i=1

Yi(tk) exp{r̃(Zi)}∑n
j=1 Yj(tk) exp{r̃(Zj)}

r(Zi,β)− log


n∑

j=1

Yj(tk) exp{r(Zj ,β)}


+Ψ,

where Ψ =
∑K

k=1 Ψk is a constant not involving β. Ignoring such constant terms, the penalized
objective function is then given by:

ℓη =

K∑
k=1

n∑
i=1

[
δi(tk) +

ηYi(tk) exp{r̃(Zi)}∑n
j=1 Yj(tk) exp{r̃(Zj)}

][
r(Zi,β)− log


n∑

j=1

Yj(tk) exp{r(Zj ,β)}


]

=

n∑
i=1

[ K∑
k=1

δi(tk) · r(Zi,β) +

K∑
k=1

ηYi(tk) exp{r̃(Zi)}∑n
j=1 Yj(tk) exp{r̃(Zj)}

· r(Zi,β)

]

−
K∑

k=1

[ n∑
i=1

δi(tk) +

n∑
i=1

ηYi(tk) exp{r̃(Zi)}∑n
j=1 Yj(tk) exp{r̃(Zj)}

]
log


n∑

j=1

Yj(tk) exp{r(Zj ,β)}


=

n∑
i=1

K∑
k=1

[
δi(tk) +

ηYi(tk) exp{r̃(Zi)}∑n
j=1 Yj(tk) exp{r̃(Zj)}

]
r(Zi,β)

−
K∑

k=1

(1 + η) log


n∑

j=1

Yj(tk) exp{r(Zj ,β)}


=

n∑
i=1

[
(δi + ηδ̃i)r(Zi,β)− (1 + η)δi log


n∑

j=1

Yj(ti) exp{r(Zj ,β)}


]

∝
n∑

i=1

[
δi + ηδ̃i
1 + η

r(Zi,β)− δi log


n∑

j=1

Yj(ti) exp{r(Zj ,β)}


]
,

where δi(tk) = I(Ti ≤ Ci, Ti = tk) is the event indicator for subject i at time tk, and

δ̃i =

K∑
k=1

Yi(tk) exp{r̃(Zi)}∑n
j=1 Yj(tk) exp{r̃(Zj)}

.

Note that for the 2nd equation to the 3rd, we have
∑n

i=1 δi(tk) = 1, assuming no ties. To transition
from the 3rd equation to the 4th, we apply the following relationship:

K∑
k=1

(1 + η) log


n∑

j=1

Yj(tk) exp{r(Zj ,β)}

 =

n∑
i=1

(1 + η)δi log


n∑

j=1

Yj(ti) exp{r(Zj ,β)}

 .
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A.2 SIMULATION DETAILS

A.2.1 LINEAR SIMULATION SETTINGS

For simulation setting 1, six covariates (Z1, . . . ,Z6) were used. Z1 and Z2 were continuous, gener-
ated from a multivariate normal distribution (mean zero, unit variance) with AR1 correlation (param-
eter 0.5). Z3 and Z4 were binary with Pr(Zi = 1) = 0.5. To simulate distributional changes between
internal and external cohorts, Z5 and Z6 were continuous, normally distributed (unit variance) with
means of 2Zℓ and −2Zℓ, respectively, where Zℓ was a latent binary variable (Pr(Zℓ

i = 1) = pℓ).
We then generated survival times from a Cox model:

λ(t|Zi1, . . . ,Zi6) = 2t× exp(β1Zi1 + β2Zi2 + β3Zi3 + β4Zi4 + β5Zi5 + β6Zi6) (5)

with βI = (0.3,−0.3, 0.3,−0.3, 0.3,−0.3)⊤. The censoring times were uniformly distributed with
varying bounds for different censoring rates. The internal dataset had a sample size of 125, while
the external dataset had a sample size of 2,000. Model performance was evaluated on a separate,
independent testing dataset with a sample size of 1,000. For the internal cohort, pIℓ = 1. We explored
three external model settings:

(E1). The covariate distribution of the external population was the same as the internal
cohort; that is, pEl = 1; and the external model was the true model: ZE =
(Z1, Z2, Z3, Z4, Z5, Z6)

T .
(E2). The covariate distribution of the external population was slightly different from the in-

ternal cohort with pEl = 0.5; and the external model was a misspecified model: ZE =
(Z1, Z3, Z5, Z6)

T .
(E3). The covariate distribution of the external population was completely different from the

internal cohort with pEl = 0; and the external model was a misspecified model: ZE =
(Z1, Z5)

T .

A.2.2 NON-LINEAR SIMULATION SETTINGS

In simulation setting 2, we included 16 covariates Z1, . . . ,Z16. Except for Z3 and Z4, all covariates
were continuous, generated from a multivariate normal distribution (mean zero, unit variance) with
AR1 correlation (parameter 0.5), while Z3 and Z4 were binary with Pr(Zi = 1) = 0.5. In addition to
the main effect, we considered non-linear effects sin(2πZ1) and exp(−Z2), quadratic terms Z2

1, Z2
2

, Z2
3 and Z2

4, and interaction terms Z1Z2,Z2Z3,Z1Z3 and Z2Z4. Since in practice we may collect
some variables not included in the true model, we simulated twelve additional variables Z5, . . . ,Z16,
which did not contribute to the true underlying generating distribution of the event time. The true
generating model for the internal data was a proportional hazards model with a hazard function of

λ(t|Zi1, . . . .Zi4) = t× exp(sin(2πZ1) + exp(−Z2) + β1(Z
2
1 + Z2Z3)

+ β2(Z
2
2) + β3(Z

2
3 + Z1Z2) + β4(Z

2
4) + β5Z1Z3 + β6Z2Z4)

with β = (0.3,−0.3, 0.3,−0.3, 0.3,−0.3)⊤.

In a comprehensive evaluation of the proposed NNCoxKL, we explored the following external model
configurations, all constructed using neural network architectures:

• (E4) Homogeneous (High Quality): The external model was constructed using the same
neural network architecture and hyperparameter set as for the internal model.

• (E5) Homogeneous (Low Quality): The external covariate distribution mirrored the internal
cohort with different censoring distribution, resulting in an event rate of 42.2%.

• (E6) Heterogeneous: The external covariate set was reduced, represented as ZE =
(Z1, Z2, Z3)

⊤.

A.3 ADDITIONAL SIMULATION SETTING: EXTERNAL INFORMATION USING RISK GROUP
CLASSIFICATION

In this subsection, we generated external information to mimic the situation with the STAR-CAP
system. We included seven variables, Z1, . . . , Z7 derived from 5 covariates. We first generated a
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bivariate normal distribution for covariates Z1 and Z6 with mean vector 0, unit variance and AR1
correlation (parameter 0.5). We then dichotomized the Z1 and Z6 into binary variables (0 or 1), with
the probability of being zero uniformly varying from 0.25 to 0.35. We then created two categorical
variables with three distinct levels and encoded them using dummy variables Z2 and Z3, Z4 and
Z5 separately. Z7 was continuous and generated from a normal distribution with mean 0, 1 and 2,
corresponding to the values of (Z2 = 0, Z3 = 0), (Z2 = 1, Z3 = 0) and (Z2 = 0, Z3 = 1). The true
generating model for the internal data was a proportional hazards model with the following hazard
function:

λ(t|Zi1, . . . .Zi7) = 2t× exp(β1Zi1 + β2Zi2 + β3Zi3 + β4Zi4 + β5Zi5

+ β6Zi6 + β7(Zi1Zi6) + β8 exp(−Z2
i7)),

with β = (0.25, 0.25, 0.5, 0.5, 0.75, 0.25, 0.5,−0.5). To define the external risk groups, we as-
signed points based on specific covariates: 1 point was assigned if Z1 = 1; 1 point if Z2 = 1; 2
points if Z3 = 1; 2 points if Z4 = 1; and 3 points if Z5 = 1, and we added these points for each
individual.

Figure 5 presents the prediction performance of the proposed NNCoxKL framework versus the
stacked method of Debray et al. (2014). Panel A shows the C-index, and Panel B shows the predic-
tion loss, both evaluated across various values of the tuning parameter η. By increasing the weight
given to external information (i.e. higher η), the NNCoxKL framework achieved higher C-index and
lower prediction loss than the stacked method. This indicates that NNCoxKL effectively leverages
the points-based external data to improve prediction accuracy. Notably, the NNCoxKL framework
outperforms the use of internal data alone (solid line), while the stacked method shows limited im-
provement. These results demonstrate the advantage of the NNCoxKL framework in transferring
knowledge from points-based external information for enhanced prediction performance.

Figure 5: Comparison of prediction performance between the proposed NNCoxKL framework and
the stacked method of (Debray et al., 2014). (A) C-index. (B) Loss. Performance is evaluated across
different values of the tuning parameter η. The solid line represents results using only internal data,
while the long-dashed line represents results for the stacked method. The simulation setting is based
on Section A.3.

0.580

0.585

0.590

0 1 2 3 4 5
η

C
−

in
de

x

A

2.755

2.760

2.765

2.770

2.775

0 1 2 3 4 5
η

Lo
ss

B

Method Internal Only NNCoxKL Stacked

A.4 ADDITIONAL REAL WORLD DATASETS

We also performed experiments on three widely used machine learning datasets: the SUPPORT, the
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), and the Rotterdam
tumor bank and German Breast Cancer Study Group, (GBSG, Schumacher et al. (1994)). The sam-
ple sizes, percent censoring and number of covariates for each dataset were 8873, 32% and 14 for
SUPPORT, were 1904, 42% and 9 for METABRIC, and 2232, 43% and 8 for GBSG. To evaluate the
performance of transfer learning, we randomly split each dataset into internal, external, and testing
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sets using a 5:75:20 ratio. The C-index and loss values, calculated on the testing set, served as our
evaluation metrics. We compared the performance of models trained using internal data only, and
models trained using the external information. The external information came either from a CoxNN
model, a linear Cox model fit to the external data, or a CoxNN model fit to a reduced version of
the external data where in the external data certain covariates were removed. Specifically, 7 covari-
ates were removed from SUPPORT, 5 from METABRIC, and 4 from GBSG in this heterogeneous
setting.

As shown in Table 1 for all three datasets using a neural network Cox model (NNCoxKL) integrating
the best external model (Homo-NN) was better than not using the external information, and was
almost as good as a neural network Cox model fit to the large external dataset. For two of the three
datasets using the NNCoxKL, integrated with an inferior external model, was better than not using
the external information.

Table 1: Prediction performance of NNCoxKL and NNCox on the METABRIC, SUPPORT and
GBSG datasets. Data were randomly split into internal, external, and testing sets using a 5:75:20
ratio. Performance metrics were averaged over 20 different splits. NNCoxKL = model by the
proposed transfer learning method. The external model is either a neural network using all covariates
(Homo-NN), a linear Cox model using all covariates (Heter-Cox Linear) or a neural network model
using a reduced set of covariates (Heter-NN)

Data Internal Model External Model C-index (sd) Loss (sd)

METABRIC
NNCoxKL

Homo-NN 0.643 (0.019) 2.958 (0.124)
Heter-Cox Linear 0.635 (0.021) 2.971 (0.132)
Heter-NN 0.620 (0.021) 3.009 (0.122)

NNCox — 0.613 (0.017) 3.014 (0.164)

— NNCox 0.648 (0.014) 2.948 (0.124)

SUPPORT
NNCoxKL

Homo-NN 0.615 (0.010) 4.644 (0.029)
Heter-Cox Linear 0.597 (0.011) 4.652 (0.032)
Heter-NN 0.595 (0.014) 4.665 (0.030)

NNCox — 0.591 (0.005) 4.673 (0.035)

— NNCox 0.616 (0.005) 4.671 (0.033)

GBSG

NNCoxKL
Homo-NN 0.670 (0.015) 3.112 (0.146)
Heter-Cox Linear 0.648 (0.016) 3.189 (0.119)
Heter-NN 0.664 (0.021) 3.169 (0.138)

NNCox — 0.638 (0.013) 3.158 (0.145)

— NNCox 0.674 (0.008) 3.106 (0.147)

A.5 SUPPORT DATASET

The Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments (SUP-
PORT) is a publicly available dataset that is frequently used as a benchmark in survival analysis
research. It comprises data from approximately 8,800 hospitalized patients, including demographic
information, comorbidities, physiological measurements, and survival outcomes. This data set has
been used in various studies to develop and evaluate survival models, including deep learning ap-
proaches (Katzman et al., 2018; Lee et al., 2018; Gensheimer & Narasimhan, 2019; Kvamme et al.,
2019).

In our study, we used the preprocessed version of the SUPPORT dataset by Katzman et al. (2018).
To assess the effectiveness of our proposed NNCoxKL framework in a data-limited setting, we
randomly partitioned the SUPPORT dataset into internal and external data sets, consisting of 5%
and 95% of the data, respectively. We further split the internal data set into training sets (80%) and
testing sets (20%) for model development and evaluation. This partitioning strategy gave a scenario
in which the internal dataset is relatively small, reflecting real-world challenges in data availability.
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Figure 6: This figure evaluates the loss on a separate test set from the SUPPORT dataset for the
NNCoxKL model (with transfer learning, solid line) and the NNCox model (without transfer learn-
ing, dashed line). Panel A: Loss over training epochs, demonstrating that NNCox exhibits overfitting
as epochs increase, while NNCoxKL doesn’t suffer from overfitting. Panel B: Loss across varying
numbers of hidden layers, illustrating that NNCoxKL initially benefits from increased model com-
plexity, reaching its lowest loss with three hidden layers before slightly increasing with four. In
contrast, NNCox demonstrates a consistent upward trend in loss as the number of hidden layers
increases. These results highlight the benefits of transfer learning in reducing overfitting issues and
facilitating the use of more complicated model architectures for improved performance in survival
analysis.
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In our analysis of the SUPPORT dataset, the NNCoxKL method, which transfers knowledge from
external information, consistently outperformed the NNCox model, which uses only internal data.
The NNCox model, trained exclusively on a small subset (5%) of the dataset, showed signs of
overfitting as the training progressed. This is evident in Panel A of Figure 6, where the test loss for
NNCox initially declines but then begins to rise, indicating the model’s increasing specialization to
the training data and its diminishing ability to generalize to new data. In contrast, the NNCoxKL
model, leveraging a substantial external data set (95% of SUPPORT) during training, did not show
overfitting. Its test loss remained stable or gradually decreased over increasing epochs, suggesting
that the model continued to learn generalizable patterns from the expanded dataset.

Panel B of Figure 6 further illustrates the impact of transfer learning on model complexity. The
NNCoxKL model, enriched with external information, demonstrates improved performance with
increasing model complexity, reaching optimal performance with three hidden layers. This sug-
gests that transfer learning allows the model to utilize effectively the increased capacity of a more
complex architecture to capture intricate relationships in the data. Conversely, the NNCox model
without transfer learning consistently shows a higher loss as the number of hidden layers increases,
indicating that the model struggles to learn meaningful patterns from the limited internal data and
instead overfits to noise as complexity increases. These findings underscore the importance of trans-
fer learning not only in mitigating overfitting but also in enabling the use of more complex model
architectures to achieve superior performance, particularly when dealing with limited sample sizes.

A.6 STAR-CAP SYSTEM

The STAR-CAP system was developed from a study that included 19,684 patients from various cen-
ters throughout the United States, Canada, and Europe. The primary goal was to create a system that
could more accurately predict prostate cancer-specific mortality (PCSM) than the existing American
Joint Committee on Cancer (AJCC) 8th edition staging system. The researchers used a points-based
system, assigning points to the following clinical factors: age, T category (tumor size and extent),
N category (lymph node involvement), Gleason grade (tumor aggressiveness), pre-treatment PSA
levels, and the percentage of positive biopsy cores. These points were then summed to categorize
patients into nine distinct risk groups (new stages IA-IIIC). The STAR-CAP scores were originally
derived using hazard models where the outcome was prostate cancer specific survival, but with some
adaptations, including coarsening of variables and rounding of coefficient estimates to the nearest in-
teger. Thus the final grouping has the property that a higher group has meaningfully worse prognosis
than a lower group, but each group is not associated with a specific probability or risk.

The STAR-CAP system was validated using both internal and external datasets, demonstrating su-
perior discriminatory ability and overall performance compared to the AJCC 8th edition system. It
also outperformed other commonly used risk stratification systems like the National Comprehensive
Cancer Network (NCCN) and the Cancer of the Prostate Risk Assessment (CAPRA).
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