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Fig. 1. Semantic 3D Motion Transfer in Action. Our method extracts motion embeddings from a multiview video and applies them to a static 3D Gaussian
Splatting (3DGS) asset, bringing it to life with motion that matches the semantics of the source. Left: A bird’s wing flapping motion is transferred to an
elephant cartoon’s ears. Right: A horse’s rearing motion animates a vehicle lifting its front wheels. We encourage watching the supplementary video for a clearer

depiction of motion, which is best appreciated in dynamic form.

We present Gaussian See, Gaussian Do, a novel approach for semantic 3D
motion transfer from multiview video. Our method enables rig-free, cross-
category motion transfer between objects with semantically meaningful
correspondence. Building on implicit motion transfer techniques, we extract
motion embeddings from source videos via condition inversion, apply them
to rendered frames of static target shapes, and use the resulting videos to
supervise dynamic 3D Gaussian Splatting reconstruction. Our approach
introduces an anchor-based view-aware motion embedding mechanism, en-
suring cross-view consistency and accelerating convergence, along with
a robust 4D reconstruction pipeline that consolidates noisy supervision
videos. We establish the first benchmark for semantic 3D motion trans-
fer and demonstrate superior motion fidelity and structural consistency
compared to adapted baselines. Code and data for this paper available at
gsgd-motiontransfer.github.io.
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1 Introduction

Animation is the art of bringing still objects and characters to life.
The demand for realistic 3D animation is rapidly growing across
industries, from gaming and virtual/augmented reality (VR/AR) to
robotics and autonomous system simulations. As 3D content recon-
struction and generation scales, the need for a controllable, data-
driven approach to animating 3D objects across diverse categories
is more important than ever. However, generating high-quality 3D
motion remains a significant challenge. A major bottleneck is the
lack of methods that enable 3D objects—especially those without
predefined kinematic structures—to acquire motion in a semanti-
cally meaningful way. Traditional motion generation relies heavily
onrigging, where a predefined skeletal structure governs movement.
While well-established techniques exist for animating humans and,
to some extent, animals [Baran and Popovi¢ 2007; Li et al. 2021;
Ma and Zhang 2023; Xu et al. 2020], applying these principles to
arbitrary, non-rigged objects remains an open challenge [Chu et al.
2024; Liu et al. 2025]. Recent advances in 3D Gaussian Splatting
(3DGS) [Guo et al. 2024a] have streamlined the reconstruction of
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3D assets from images, yet these representations lack an inherent
motion structure, making animation even more difficult.

Even if we could control such objects, instructing them to move
meaningfully is another challenge. Some methods rely on textual
descriptions of motion [Bahmani et al. 2024b; Ling et al. 2024b;
Petrovich et al. 2022; Ren et al. 2023; Singer et al. 2023; Tevet et al.
2022; Wang et al. 2024b; Zhang et al. 2024a; Zhao et al. 2023b; Zheng
et al. 2024], but accurately describing complex motion in words
is inherently limited [Petrovich et al. 2024]. Motion is often too
nuanced for text-based instructions to capture effectively, making
such methods imprecise and difficult to generalize. A more natural
approach is motion transfer—enabling an object to mimic motion
demonstrated by another. While much research has focused on mo-
tion retargeting within the same category [Aberman et al. 2020;
Chen et al. 2023; Li et al. 2021; Raab et al. 2024; Sun et al. 2022;
Villegas et al. 2018; Zhang et al. 2023b], transferring motion be-
tween objects that do not share an explicit kinematic mapping is
significantly more challenging [Muralikrishnan et al. 2024].

Recently, semantic motion transfer techniques have emerged in
2D video generation [Kansy et al. 2024; Ling et al. 2024a; Materzynska
et al. 2023; Wang et al. 2024a; Wei et al. 2024; Xiao et al. 2024; Zhao
etal. 2023a], disentangling motion intent from appearance and trans-
ferring it to different targets. However, these capabilities remain
absent in 3D, despite their significant potential and necessity.

We propose a novel method for semantic 3D motion transfer from
multiview video, allowing motion from a dynamic source object to
be adapted to a static 3D target object while ensuring realistic and
coherent movement.

We assume access to multiview video of the source motion to re-
cover its full dynamics, since a single-view input can miss occluded
regions—for example, an octopus articulating its legs differently.
Such multiview videos may come from either computer animation,
or multiview captures obtainable with simple off-the-shelf equip-
ment, as demonstrated by the AIST Dance dataset [Tsuchida et al.
2019].

Uniquely, our method does not rely on structural similarity be-
tween the source and target, enabling motion transfer across vastly
different object categories—such as a horse rearing to a sports car
lifting its front wheels. Building on condition inversion in generative
video models [Gal et al. 2022; Kansy et al. 2024], we extend these
principles to 3D through a view-aware motion embedding mecha-
nism. Specifically, we introduce an anchor-based interpolator that
optimizes embeddings collaboratively across views, significantly
accelerating convergence while enhancing motion fidelity. We use
these embeddings to generate target supervision videos, which,
while capturing the intended motion, often contain artifacts and
inconsistencies.

To address these imperfections, we propose a robust 4D recon-
struction pipeline that effectively transforms noisy supervision sig-
nals into high-quality, temporally stable motion reconstructions.
Specifically, we employ a 3D Gaussian splatting representation of
the target object and infer its animation by optimizing a motion field
applied to a set of control points governing deformation. Through
carefully designed regularization strategies, we demonstrate that
even when supervision videos are inconsistent, our method pro-
duces realistic and stable 4D reconstructions.

To facilitate rigorous evaluation and drive progress on this un-
derexplored and challenging problem setup, we introduce the first
benchmark for semantic 3D motion transfer from multiview video.
It spans diverse, cross-category motion scenarios and includes care-
fully curated source-target pairs of structurally different 3D objects,
along with tailored evaluation metrics for both motion fidelity and
structural consistency.

Our work makes the following key contributions:

e We introduce a new problem setup for semantic 3D mo-
tion transfer, where motion from a multiview video of a dy-
namic source object is adapted to a static 3D Gaussian Splat-
ting (3DGS) target, even across vastly different categories,
without requiring predefined skeletal correspondences or
structural similarity.

e We propose a novel view-aware motion embedding strat-
egy, optimized collaboratively through an anchor-based in-
terpolator. This approach balances global coherence with
view-dependent details, ensuring motion fidelity while sig-
nificantly accelerating convergence.

e We develop a robust 4D reconstruction pipeline that
refines noisy, artifact-prone supervision videos into high-
quality, temporally stable dynamic 3D reconstructions.

e We introduce a benchmark for semantic 3D motion
transfer, evaluating diverse cross-category motion trans-
fers between structurally different 3D objects.

Our method outperforms adapted baselines in both motion fidelity
and structural consistency, delivering high-quality motion trans-
fer across diverse, cross-category scenarios. A user study further
confirms that our results are consistently preferred by human eval-
uators. Beyond synthetic settings, we also demonstrate compelling
results on real-world scenes by animating 3D assets reconstructed
from in-the-wild imagery (see Fig. 4), highlighting the practicality
and robustness of our approach.

2 Related Work

4D Generation. Over the past years, there has been a surge of
research in 4D content generation. [Bahmani et al. 2024a,b; Jiang
et al. 2024; Ling et al. 2024b; Miao et al. 2024; Ren et al. 2023; Uzolas
et al. 2024; Wu et al. 2024b; Zeng et al. 2024] primarily focus on
full generation, where both the 3D target object and its motion
are synthesized from textual input. Despite their capabilities, these
generation methods cannot incorporate unique motion patterns
from inputs videos, or to apply movement while preserving the
target’s distinctive identity. [Ling et al. 2024b; Ren et al. 2023] split
their pipeline, by first generating a static 3D figure, then animating
it, potentially allowing for target identity preservation.

3D Motion Transfer. Transferring motion from source input onto
a target 3D figure, often referred to as "Motion Retargeting’, is a
well-studied problem [Aberman et al. 2020; Kim et al. 2024; Raab
et al. 2024; Villegas et al. 2018; Wang et al. 2025; Zhang et al. 2024b,
2023b]. However, these methods typically rely on rigged figures and
are predominantly constrained to human characters. In contrast,
our approach allows for motion transfer onto arbitrary 3D objects
without requiring manual rigging, also enabling cross-category
motion transfer. One exception is the generative work of SC4D [Wu



et al. 2024b] which introduces 3D motion transfer without requiring
arigged figure.

Generative Models Based Motion Transfer. Recent years have wit-

nessed significant advancements in video generation models [Blattmann

et al. 2023; Guo et al. 2024b; Wang et al. 2023; Xing et al. 2023; Zhang
et al. 2023a]. These models provide a rich motion prior, encouraging
researchers to distill, represent, and apply the motion learned by
these models [Kansy et al. 2024; Ling et al. 2024a; Materzynska et al.
2023; Wang et al. 2024a; Wei et al. 2024; Xiao et al. 2024; Yatim
et al. 2024; Zhao et al. 2023a]. Typically, these approaches extract
motion from a reference video and apply it as a motion embedding
to a new image or prompt, generating a new video that replicates
the reference motion. However, they remain limited to 2D motion
transfer. Our approach extends this paradigm to the 3D domain,
leveraging the 2D learned motion priors to enable rigless, cross-
category motion transfer, effectively bridging the gap between 2D
motion learning and 3D animation.

3 Preliminaries

Semantic 2D Motion Transfer. Our setting assumes a conditional
latent Image-to-Video diffusion model [Blattmann et al. 2023], which
also uses an additional embedding input, e.g. a CLIP [Radford et al.
2021] embedding of a text prompt or image. [Kansy et al. 2024]
demonstrated that such video diffusion models [Blattmann et al.
2023; Zhang et al. 2023a] exhibit an implicit disentanglement in
the way motion and appearance are encoded, where the image
input controls the appearance and the embedding input manipulates
the motion of the generated video. Based on this finding, Kansy
et al. [Kansy et al. 2024] use condition embedding inversion [Gal
et al. 2022] to learn a multiframe representation m* € RM*(F+1)xd
where M denotes the number of d-dimensional tokens, capturing the
motion of a source video x, € RF¥XWX3 with F frames of size H X
W. This motion representation can then be transferred to animate
images of different subjects while largely preserving the semantic
intent of the original motion. Formally, the process is optimized
through a frozen video diffusion denoiser Dy by minimizing the
denoising score matching loss:

m" =argmin E [)LUHDg(xO +n;o,m,c) — x0||§] s (1)
m

where the expectation is w.r.t o,n ~ p(o, n), ¢ encompasses condi-
tion signals (e.g. first frame), and

p(o,n) = p(6)N(n;0,0%I) with p(o) being the probability distri-
bution over noise level o. Then n denotes the noise, and A, is a
weighting function. For the rest of the manuscript we will drop ¢
and replace x¢ + n with X,.

3D Gaussian Splatting and Low-Dimension Controllability.
Our setting assumes an input static target object, represented with
3D Gaussian Splats (3DGS) [Kerbl et al. 2023]. 3DGS optimizes differ-
entiable primitives to model volumetric radiance fields. Specifically,
Gaussian particles are projected and alpha-composited through ras-
terization to obtain high-quality 3D reconstructions of objects and
scenes. An object can be represented as a set of 3D Gaussians G;,
each parameterized with {pi, q;.si, 03, ci}, with mean p;, rotation
q;, scale s;, opacity ¢; and view dependent color ¢; modeled with
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Spherical Harmonic coefficients. The contribution of a single Gauss-
ian G; to the radiance field at point x € R? is expressed by the
probability density function: G(x) = e"%("_”i)Tzfl("_”i), where
the covariance can be decomposed to ¥; = RiS,-SiTRiT, with R;, S; be-
ing the rotation matrix derived from the rotation quaternion q; and
scale vector s; respectively. The final color of a pixel is determined
by all Gaussians that overlap it, by alpha-blending in depth order:

i-1
C=Zciail_|(1—aj) (2)
i j=1

Here, ¢; is a function of each Gaussian’s opacity and PDF post-
projection to image coordinates.

Building on this foundation, SC-GS [Huang et al. 2024] extends
3DGS for dynamic scenes by decomposing canonical appearance and
motion control using 3D Gaussians G; and control points { P € RS}
with a learnable coordinate and radius. A time-conditioned MLP
predicts the rotation and translation of control points at time ¢
as: ¥ : (pp.t) — (R]’;|Tkt) Gaussians are then deformed using
Linear Blend Skinning (LBS) [Sumner et al. 2007], where the warped
position p! and rotation ¢! for Gaussian G; are computed as:

wi= 3 iR = o+ o+ )il = () wart)ea; 9)
keN; keN;
such that the weights w; are based on the distances d;; between
the center of Gaussian G; and its neighboring control points N; and
their learned radii. ry is the quaternion form of Ry and ® symbolizes
a product of quaternions.

4 Semantic 3D Motion Transfer

We aim to transfer the dynamics of a source object Vs, represented
through a sparse set of N videos captured by static cameras po-
sitioned at different views, to a static target object of a different
structure and posture, Gr, represented as 3DGS [Kerbl et al. 2023]
(Section 3). Our goal is to reenact Gr with the semantic motion
patterns of Vs while preserving its identity, appearance and ge-
ometry as faithfully as possible. Formally, we take as input tensor
Vs € RNXFXHXWX3 of N videos of F frames, where each video is
associated with known camera extrinsics [R¢;|Tc;] € SE(3). Our
pipeline is made of two stages. First, we extract structured motion
embeddings m}..mj}. from Vs using a pre-trained video diffusion
model Dy [Blattmann et al. 2023], where K < N. In the second
stage, we fix a set of control points Pr, and use them to drive the
target shape Gr. This process is governed by optimizing a decoder
¥, with self-supervised labels generated by frozen video diffuser
Dy conditioned on the previously extracted motion embeddings
m..mj. Our setting allows the same motion code to be reused over
multiple target shapes.

4.1 Structured Multiview Motion Inversion

Inspired by the 2D motion inversion introduced in [Kansy et al.
2024], we devise a motion inversion process in 3D by extracting mo-
tion embeddings from each input view-video. Lifting the inversion
technique of [Kansy et al. 2024] to 3D, however, is not straightfor-
ward. Through experimentation, we observe that trained motion
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Fig. 2. Pipeline Overview. (1) Structured Multiview Motion Inversion. We extract motion embeddings from the source using the slerp interpolation from
the two nearest achor points. (2) View-aware Semantic Motion Transfer. We use the motion embeddings to generate supervision for the motion transfer
process, and then (3) 4D Consolidation. We apply the supervision onto the target shape to introduce actual motion

embeddings that have been optimized for a specific angle are not
necessarily suitable for generating motion from a different angle,
as shown in Figure 6. Intuitively, one can imagine that the pixels
depicting a "kicking" animation appearing somewhat different in
orthogonal directions. One simple solution is to optimize motion

. . AN L
embeddings mj, ..., mj}, for each source view {Vs[i]};:

m; = argmin E | A,[|Do(Vs[il: 0,m;) = Vs[i]

mj

©

and use them along with corresponding rendered views of the static
3DGS target object to generate N videos of the target object at
matching angles, which then serve as supervision for 4D reconstruc-
tion. However, this approach is suboptimal for several reasons. First,
it is inefficient in terms of runtime and storage costs - as it requires
training and bookkeeping a separate motion embedding for each
possible source angle. That leads to increased computational and
storage costs as the number of embeddings grows linearly with the
number of videos in Vs. Additionally, this method lacks general-
ization, as embeddings trained on specific angles cannot be reused
or adapted to unseen viewpoints, further limiting its flexibility and
applicability.

To overcome these limitations, we hypothesize that since motions
in different views share a common underlying 3D motion, their em-
beddings should share information. Since that does not seem to
naturally occur in the standard per view inversion procedure, we

propose to instill this relation by inducing view structure into the
optimization procedure. By doing so we aim to not only make the
resulting embeddings more generalizable but also speed up the op-
timization procedure. Specifically, we propose to optimize a fixed
number of K anchor motion embeddings {m;}X , distributed evenly
across a range of source view angles {(/5,} . When a motion embed-
ding for a specific angle ¢ € Ris requlred, we perform a spherical
linear interpolation between the two closest anchor embeddings
with:

my = slerp(m;, m;, ; fi; ) s.t.
j i

5
i = argmax{¢r|pr < P}; j=(imodK) +1 )
k

Here, slerp(-, -; #) denotes Spherical Linear Interpolation, ensur-
ing smooth transitions between the closest anchor embeddings m;
and m]. The parameter ¢ controls the interpolation, allowing for a
continuous blend between the two anchors. This formulation en-
ables the model to dynamically adjust motion embeddings while
maintaining efficiency and scalability. To sum up, each iteration of
our training loop samples a single video “Vs[i] of angle ¢, and uses
Equation 5 to obtain an interpolated code mg, which we then feed
into the score matching function:



{m} }f( = arg min

gmi B |20 Do (Vslil;0.mg) = Vs[illl3] . (6)
mp

It then follows that our backwards pass updates multiple anchor
motion embeddings at once.

4.2 View-aware Semantic Motion Transfer

After extracting motion embeddings {m; }f(: , from the multi-view

video Vs, our pipeline can readily apply them to a 3D shape rep-
resented with 3DGS [Kerbl et al. 2023] for flexible motion transfer.
First, we render an image of the target, R[Gr; C], with random
camera C € SE(3), sampled uniformly. Then, we use it to generate
2D supervision video Vr by conditioning the denoising process at
the right side of Equation 6 on the rendered image R[Gr; C], and its
corresponding motion embedding m. This process can be applied
to any number of views, as motion embeddings can be interpolated
between anchors, allowing flexible generation of supervision videos
from different perspectives.

4.3 4D Consolidation

Our final step is a consolidation process, transforming the generated
supervisions into a 4D representation. Since the static target shape
is already provided, we model the 4D scene as a dynamic-3DGS
representation leveraging the SC-GS foundation (Section 3), e.g.
our goal is to drive the 3DGS static shape with control points. We
begin by initializing a fixed set of control points Pr over target
shape Gr, using furthest point sampling. Then, we use the skinning
scheme depicted in Equation 3 with a relaxed weighting scheme:
Wik = exp(—dikz/zﬁz), where dj is the distance between gaussian i
and control point k, and f is a non-learned scalar which modulates
the area of effect per control point.

Given multi-view supervision videos Vr, we optimize a defor-
mation field network ¥ to map each control point p, € Pr to
a transformation (R}|T}) that when applied, aligns Gr with the
animation depicted within the supervision Vr. That is, our loss
function minimizes the discrepancy between the rendered dynamic
3DGS and the supervision videos. The supervision videos, being the
output of a video generative model, are inherently noisy and spa-
tially inconsistent, see Appendix B.3. Hence, using them directly as
supervision leads to a poorly reconstructed object (Figure 7, Vanilla).

ARAP Loss and ARAP Rotation. The As-Rigid-As-Possible (ARAP)
loss [Sorkine and Alexa 2007] is a widely used technique [Huang
et al. 2024; Li et al. 2024; Luiten et al. 2024] for preserving local
rigidity during deformation by minimizing distortions in the trans-
formed shape. In its standard form, ARAP loss is computed for each
control point p; € Pr and its nearest neighbors Ny, ensuring that
local relative positions remain consistent across transformations:

Larar = ), > wiell ol = pp) = Ri(pi = p0IP ()

tel..F ie Nk

where the optimal rotation 1@,’( is estimated as:

R =argmin " will(p} = pp) ~Rpi=po)II* (®
ie Nj
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However, a key limitation of the standard ARAP loss is that it
only regularize the positions of control points while leaving their
associated rotations R; unconstrained. This lack of rotational super-
vision leads to visible artifacts in the deformation process, as seen
in Figure 7, "Vanilla’. These artifacts arise from inaccurate rotation
predictions by the mlp ¥ which result from noisy and inconsistent
supervision. To address this issue, we propose an ARAP Rotation
mechanism, which explicitly enforces rigid rotational constraints
during training. Specifically, instead of relying on the MLP-predicted
rotation Ry, we replace it with the optimized rotation thc which is
derived by minimizing the same rigid motion assumption as in
Equation 8. In contrast to previous approaches, where such explicit
constraints are typically applied only in a post-processing step, we
integrate this constraint directly into the training process.

Perceptual Loss. When optimizing 4D reconstruction against con-
sistent and clean videos, MSE and mask loss are a popular and prag-
matic choice [Li et al. 2024; Wu et al. 2024b]. However, in scenarios
with spatial inconsistencies and significant noise, as is in our super-
vision videos, pixel-wise comparisons become insufficient, and the
learned deformations tend to inherit the spatial inconsistency from
the supervision itself, resulting in distorted reconstructed structure.
To address this, we replace pixel-wise losses with the LPIPS [Zhang
et al. 2018] loss, which operates in a perceptual space rather than
enforcing explicit pixel-wise correspondences. This approach has
previously been shown to be effective previously [Wu et al. 2024a]
in mitigating reconstruction artifacts. By leveraging perceptual sim-
ilarity rather than direct pixel alignment, our model becomes more
robust to view inconsistencies, reducing unwanted deformations
introduced by artifacts and leading to more stable and visually co-
herent reconstructions.

SDS Loss. A widely used strategy for reconstruction with gener-
ative models under view inconsistencies is the Score Distillation
Sampling (SDS) loss [Poole et al. 2022], commonly adopted in 4D
generation (e.g. [Wu et al. 2024b]). We experimented with adding
either plain SDS Loss or Iterative Dataset Update [Haque et al. 2023],
but found both to underperform compared to our method (see E.2).

5 Semantic Motion Transfer Benchmark

We introduce the first benchmark for general, cross-category 3D
motion transfer from multiview video. Since no existing benchmark
supports this task, we construct one to enable systematic evalua-
tion. Our benchmark combines curated source videos and static
3D target objects drawn from a subset of the Mixamo dataset [Inc.
2024] and from publicly available assets collected from the web.
Notably, the Mixamo subset includes paired motions—the same mo-
tion performed by both a source and a target character—allowing
for reference-based evaluation, as described in the next section.
The web-crawled, cross-category subset features a diverse range of
motions (human, animal, and object) and targets (from skeletons
to robotic arms), supporting broad evaluation of motion transfer
across semantically and structurally different entities. All target
assets were reconstructed using 3DGS. A detailed explanation about
the benchmark can be found in Appendix A.
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6 Experimental Evaluation

Evaluation Metrics. As no established metric exists for semantic
motion transfer in 3D, we adopt the Motion Fidelity measure from
[Yatim et al. 2024], originally proposed for 2D video motion. We
also assess appearance preservation using CLIP-I [Rahamim et al.
2024; Zhao et al. 2023b], and similarity to ground truth via the CLIP
similarity score. See Appendix C for details.

Methods in Comparison. To the best of our knowledge, no prior
work tackles semantic motion transfer from multiview video to
a 3DGS-represented target object. We therefore adapt the most
relevant methods to our setting to enable meaningful comparisons.

Our first baseline is SC4D [Wu et al. 2024b], a 2D-to-4D generation
method that takes a 2D video and a textual prompt describing the
target’s appearance to synthesize a dynamic 3DGS output. Unlike
our approach, SC4D does not perform direct motion transfer but
instead modifies the appearance of the generated object based on the
prompt. To align it with our setup, we adapt SC4D in two ways: (1)
we run its 2D-to-4D optimization using a primary view of the source
video to capture relevant motion patterns; (2) we employ GPT-4o to
generate a detailed textual description of the target, which SC4D
uses to condition its appearance generation and match the intended
object.

Our second baseline is DreamGaussians4D (DG4D)[Ren et al.
2023], an image-to-4D model that generates a dynamic 3DGS output
from a single 2D image. DG4D first produces a driving video and a
static 3D reconstruction, then optimizes a deformation field using
Score Distillation Sampling (SDS) with a generative view synthesis
model. To adapt it to our task, we replace the single input image
with the full 3D target object and substitute the driving video with
a reenacted source motion sequence, as described in Section4.1.

For our method, we use 5 anchor embeddings, 16 input views, 3K
inversion steps, and 5K optimization iterations during 4D reconstruc-
tion. Further implementation details are provided in Appendix B.

6.1 Comparing with Baselines

Table 1. Quantitative Comparison with Baselines. Our method achieves
significantly higher Motion Fidelity, CLIP-1, and CLIP similarity scores
across both benchmarks compared to the baselines. We encourage the
reader to refer to Figure 3 for a visual illustration of these improvements.

Motion Fidelity T CLIP-1T CLIP Score T
Mini-Mixamo ~ Cross-Category ~Mini-Mixamo ~Cross-Category =~ Mini-Mixamo
SC4D Motion Transfer 0.65 0.56 0.888 0.872 0.905
DreamGaussians4D 0.61 0.54 0.931 0.908 0.945
Ours 0.74 0.66 0.950 0.948 0.963
Ground Truth 0.87 - - - 1.0

A quantitative comparison with the adapted baselines is pre-
sented in Table 1. Our method outperforms both SC4D and DG4D
in Motion Fidelity and CLIP score, demonstrating superior align-
ment between source and target motions while preserving the target
object’s structure and identity. To further illustrate these improve-
ments, Figure 3 provides a qualitative evaluation, showing (Left)
rendered views of the target object and source videos, and (Right)
views of the reconstructed dynamic 3DGS outputs from our method

and the baselines. As shown, while SC4D captures the correct mo-
tion to some extent, its text-based appearance transfer introduces
a significant visual discrepancy from the original object. Similarly,
DG4D, despite leveraging the target’s original 3DGS, struggles to
maintain motion coherence over time, as reflected in both quanti-
tative scores and observable distortions. In contrast, our approach
produces visually coherent reconstructions while faithfully transfer-
ring the semantic essence of the motion. For example, our method
accurately captures the stalking crouch of the skeleton transferred
from the panther and the sliding motion of the robotic arm, trans-
ferred from a simple cube—demonstrating its ability to generalize
across diverse object categories and motion types.

6.2 In-the-wild Motion Transfer

Leveraging a video diffusion prior trained on real-world footage,
our model generalizes beyond synthetic settings by enabling the
application of motion embeddings to arbitrary 3D targets in real
scenes (see Fig.4). This capability is increasingly important given
the rapid progress in 3DGS, which supports high-quality reconstruc-
tions from in-the-wild imagery. As 3DGS pipelines become more
accessible and robust for real-world data, the ability to animate such
assets with semantically meaningful motion becomes a key step
toward practical deployment.

6.3 Human Preference Study

We conducted a human preference study to evaluate the perceived
quality of semantic motion transfer. Participants compared side-
by-side outputs from different methods and rated them based on
visual fidelity (i.e., adherence to the 3D asset) and motion plausibility.
Results are shown in Fig. 5. On the left, our method outperforms
adapted baselines in appearance quality, with an average rating of
4.66/5, and is the only one to consistently preserve object identity.
For motion quality, our approach matches SC4D—though SC4D fails
to maintain appearance—and surpasses DG4D.

On the right, we show an ablation study on regularization. Both
ARAP rotation and LPIPS loss improve perceived motion realism
and appearance fidelity. Survey examples and interface screenshots
are provided in Sec. E.3 of the supplementary.

6.4 Novel View Motion Synthesis

Our anchor-based mechanism is primarily designed to accelerate
motion transfer and collaborate motion cues across input views.
However, due to its interpolatory nature, it is natural to examine
whether it exhibits the emergent property of synthesizing motion
embeddings at unseen views. To evaluate this, we interpolate the
anchors to create novel-view embeddings and pair them with a
single frame from a previously unseen viewpoint to synthesize a
novel-view video of the source object. Table 2 presents the results.
Remarkably, the output exhibits excellent motion consistency and
structural integrity. Furthermore, we show that simple interpolation
of simple motion embeddings or a single global embedding both
fail at this task, underscoring the effectiveness of our approach
(See visual comparison in Fig. 6). This capability extends to the
target object as well (see Appendix D). We hypothesize that this
ability could be particularly valuable for viewpoint densification
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Fig. 3. Qualitative comparison of semantic 3D motion transfer. We compare our method to adapted baselines, showing two views of the source motion,
the target 3DGS object, and the generated output for each method. We demonstrate superior identity preservation while also accurately transferring the

source motion to the target.
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Fig. 4. In-the-wild Motion Transfer. Our method animates 3D assets
reconstructed from real-world imagery, demonstrating robust semantic
motion transfer in real scenes using 3DGS. The ‘Scanned scene’ column
visualizes sparse sample of the 3DGS scene produced by our reconstruction
stage, highlighting that the motion is applied directly to the scene.
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Fig. 5. Human preference study. Left: Mean subjective ratings for motion
plausibility and appearance fidelity. Our method is the only one to preserve
target identity while delivering high-quality motion transfer. Right: Prefer-
ence results from an ablation study, showing that both LPIPS and ARAP
rotation substantially improve perceptual quality.

applications. Incorporating this capability into a motion transfer
pipeline is an exciting avenue for future work.

Table 2. Quantitative results for Novel-view Motion Synthesis using MSE
and LPIPS. Metrics are computed only on viewing angles unseen during
training.

Method MSE | LPIPS |

Simple 0.0111 + 0.0034 0.1058 + 0.0179
Global ~ 0.0069 + 0.0049  0.0649 + 0.0306
Ours 0.0028 = 0.0016 0.0403 + 0.0170

6.5 Ablation Studies

Number of anchors. A key parameter in our method is the number
of anchors, K, which trades off convergence speed and reconstruc-
tion quality. As shown in Figure 8, fewer anchors speed up conver-
gence by encouraging broader view consistency, but too few—e.g.,
a single global embedding—degrade performance and cause mo-
tion hallucinations. We choose K =5 as a balanced setting. Visual
examples and further analysis appear in Appendix E.1.

Regularization terms. We refine the reconstruction pipeline us-
ing ARAP Rotation and LPIPS regularization, which significantly
improve structural integrity and fine-detail preservation (Figure 7).
These terms enhance texture stability, maintaining legibility of de-
tails like text and intricate patterns. See Appendix E.2 for details.

7 Conclusion & Limitations

We introduced Gaussian See, Gaussian Do, pioneering the first ap-
proach to lift implicit video diffusion motion transfer to 3D, achiev-
ing semantic 3D motion transfer from multiview video to 3DGS. We
also established the first benchmark for this task, demonstrating
superior performance over adapted baselines. However, we identify
several limitations as exciting directions for future work. Runtime
remains a challenge, as condition inversion is computationally ex-
pensive, and while our anchor-based mechanism accelerates con-
vergence, further speed improvements are necessary. Additionally,
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Fig. 6. Qualitative comparison of novel-view motion synthesis. Interpolating simple motion embeddings (Eq. 4) and a single global embedding both fail
to generalize motion embeddings to views unseen during optimization. In contrast, our anchor-based mechanism successfully recovers faithful motion. A
similar behavior is observed for the target object before and after reconstruction (Appendix D).
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Fig. 7. Qualitative comparison of reconstruction improvements. The vanilla reconstruction introduces geometric and texture artifacts, while ARAP
rotation and LPIPS regularization significantly enhance reconstruction quality, preserving fine details.
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the lack of a robust 3D semantic motion metric highlights a need
for better evaluation tools. Finally, our method shows promise in
synthesizing motion at novel views, and we aim to incorporate this
capability into the pipeline to further boost performance.

Release & Licensing. We release the code and benchmark under
the BigCode OpenRAIL-M v0.1 license, which explicitly prohibits
impersonation and deepfakes without consent, as specified in clause
h.
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A Additional details on Benchmark
A.1  Mini-Mixamo Rig-Less benchmark

To facilitate the evaluation of 3D rigless motion transfer, we intro-
duce a benchmark derived from the Mixamo dataset [Inc. 2024].
While motion transfer has been extensively studied in rigged set-
tings, no existing benchmark enables controlled and quantitative
assessment of motion transfer in a rig-less setup. Our benchmarks
aims to bridge this gap by providing a standardized evaluation pro-
tocol for future research in this under-explored domain. The core
challenge in evaluating motion transfer lies in the need for paired
data: a source object performing a given motion and a ground-truth
target object executing the same motion. This pairing allows compu-
tation of transfer accuracy by measuring discrepancies between the
predicted and actual target motion. Such pairing naturally exists in
the Mixamo dataset, which is already a widely used benchmark in
the rigged motion transfer domain [Da Costa et al. 2022; Raab et al.
2023; Zhang et al. 2023b]. Leveraging this property, we construct our
benchmark by selecting two source figures performing ten distinct
motions and ten target figures, for which we provide both their
static canonical poses and their ground-truth motion executions.

A.2  Web-Crawled Inter- and Cross-Category Dataset

A key aspect of 3D cross-domain motion transfer is enabling mo-
tion adaptation across diverse, rigless objects without requiring
predefined skeletal structures. Existing datasets rely heavily on Mix-
amo, which is limited in diversity and requires rigging, restricting
the scope of motion transfer benchmarks. In contrast, our dataset
removes this constraint, introducing motion transfer for a wider
variety of human and non-human targets. This necessitates an unsu-
pervised evaluation approach, for which we use the Motion Fidelity
metric to assess motion plausibility as well as target identity pre-
serving. In doing so, we establish a benchmark for this setting.
Our dataset serves two main purposes:

Inter-Category Diverse Motion Tranfer. By eliminating the reliance
on rigged characters, we provide a more diverse and challenging
evaluation set for human-to-human and animal-to-animal motion
transfer. Unlike prior datasets constrained to Mixamo’s limited
rigged models, ours enables motion adaptation to a broader range
of rigless human representations.

Cross-Category Motion Transfer. We extend motion transfer be-

yond human-to-human interactions, covering human-to-“human-
like” and animal-to-“animal-like” motion transfer. While these cat-
egories contain fewer target objects, they introduce meaningful
diversity beyond conventional datasets.
To construct the dataset, we sourced free, publicly available static
3D objects from the web and preprocessed them into a 3D Gaussian
Splatting (3DGS) format. This preprocessing step was essential for
our setup. Additionally, we built our multi-view motion sequences
using free, publicly available animated 3D objects, rendering them
into multi-view videos. Our dataset includes 31 diverse motion se-
quences applied to 33 rigless 3DGS target objects, covering humans,
animals, and objects with semantic correspondence to humans or
animals. All assets were independently curated to ensure a diverse
and challenging dataset.
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A.3 Data Production - Mini-Mixamo

Our dataset is derived from a portion of the Mixamo dataset and
follows a structured pipeline to generate both source and ground
truth videos, as well as target object reconstructions. Below, we
outline the steps taken to construct the dataset. Two characters,
Brian and Megan, were chosen as source figures, while ten target
characters were used: Aj, Amy, Castle Guard 01, Crypto, Eve, Knight,
Megan, Michelle, Mousey, Ortiz, and Sporty Granny.

To ensure consistency, all source and target objects were aligned
in a canonical pose with their right foot toe set at . Additionally, a
10x10 plane with a wooden texture (laminate_floor_03 from Poly-
Haven) was added at position (0,0, z canon) beneath the target
figures. For rendering, fourteen frames of the source figures were
captured along with the wooden plane to create the source videos
for each motion. Similarly, fourteen frames of both the source and
target figures were rendered without the wooden plane to generate
the ground truth videos.

For the reconstruction of target objects, we rendered 100 images
per object using the BlenderNeRF plugin in Blender. The camera
was set at a radius of 4, and a global exposure of 3.5 was applied to
maintain visual consistency. These rendered images were then used
to train each object with the original 3DGS repository for 30,000
iterations, with the maximum spherical harmonic order (max_sh)
set to 0.

This structured approach ensured consistency across our dataset,
allowing for accurate comparisons and evaluations in our experi-
ments.

A.4 Data Production - Web Crawled

Our dataset includes a diverse range of motions and target objects,
encompassing human, animal, and inanimate subjects. In total, we
incorporated thirteen human motions, with the majority (eleven)
sourced from the Mixamo benchmark and the remaining two from
Sketchfab. Additionally, we included eleven animal-specific motions,
all sourced from Sketchfab, and seven motions corresponding to
objects.

The dataset also features a variety of targets across different cat-
egories. For animal-related targets, we included twelve instances,
ranging from skeleton models to animal toys, all acquired from
Sketchfab. Additionally, we incorporated six animal-like object tar-
gets, primarily consisting of robotic figures and uniquely shaped
tables. For human-related targets, we gathered ten different models
from Sketchfab, including humanoid robots and figures demonstrat-
ing secondary motion characteristics. Furthermore, we introduced
five human-like object targets, such as clothing items, robotic arms,
and wooden cross structures.

This broad range of motions and targets ensures diversity in
our dataset, allowing for extensive evaluation of semantic motion
transfer and adaptation across different entities.

As in A.3, we rendered 100 images per object using the BlenderN-
eRF plugin in Blender. These rendered images were then used to
train each object with the original 3DGS repository for 30,000 itera-
tions, with the maximum spherical harmonic order (max sh) set to
0. All of these reconstructed objects were then manually scaled and
rotated to ensure pose and scale consistency across the dataset.
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Fig. 9. Qualitative comparison of motion learning with and without
curriculum learning. The left side demonstrates the control points of a
dynamic object after 4D consolidation without curriculum learning, where
the model struggles to generalize and produces broken transitions. The right
side also shows the control points of a dynamic object, but with curriculum
learning durin consolidation, leading to smoother and more natural motion
transitions. This effect is particularly significant for cases with large motion
variations.

B Method
B.1 Implementation details

Our model uses 5 anchors, 3000 inversion iterations, and motion
embeddings of size 15x5x1024. As a backbone, the generative video
model is the SVD model (stabilityai/stable-video-diffusion-img2vid).
With control points radius of § = 0.0745 and 512 control points
initialized via FPS. The MLP structure encodes input time into a
12D vector and control points into a 60D vector using positional
encoding. These are concatenated, projected to 256D via a linear
layer with ReLU, followed by a 4-layer 256—256 ReLU loop. A
residual connection concatenates the input, followed by a 256D
linear layer with ReLU, a 2-layer 256—256 ReLU loop, and a final
linear layer reducing output to 3D for deformation prediction.

B.2 Curriculum Learning

One optional component we experimented with, to attempt and
fix "hard" examples is Curriculum Learning. During training, we
noticed that the model struggles to directly learn poses that deviate
significantly from the canonical target shape. Furthermore, it tends
to overfit to these challenging poses, leading to discrete, step-like
motion rather than a smooth, continuous transition. To address
this, we introduce curriculum learning, where motion is gradually
incorporated over time. Initially, the model learns only small defor-
mations, focusing on local consistency. As training progresses, the
allowed deformation range expands, enabling the model to general-
ize to larger motion variations while maintaining smooth, coherent
movement. We note that while curriculum learning plays a crucial
role in certain cases, its impact is primarily significant when the
magnitude of motion change is large, requiring the model to handle
substantial deformations. In cases with smaller motion variations,
it is mostly unnecessary. Figure 9 showcase qualitative analysis of
one of the fail cases curriculum fix.

B.3 Noisy Supervisions

To better illustrate the noisy 2D supervisions generated by the Stable
Diffusion model, we provide two examples of the resulting videos.
Each figure presents a matrix in which each column corresponds to
a video frame, progressing from left to right. The first row displays

Supervision Matrix Visualization
Frame 0114 Frame 4114 Frame 8/14 Frame 49714

Source Motion 90.0°
Angle 0.0°

Angle 45.0°

Angle 90.0°

Angle 135.0°

Fig. 10. Supervision videos example 1. These are the videos generated
by the video model, conditioned on the interpolated motion embedding and
on the rendered first frame. They are being used as the supervision videos
during the 4D consolidation stage of our method.
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Fig. 11. Supervision videos example 2. These are the videos generated
by the video model, conditioned on the interpolated motion embedding and
on the rendered first frame. They are being used as the supervision videos
during the 4D consolidation stage of our method.

a single-view recording of the source motion, followed by multiple
rows showing 2D supervision videos from different viewpoints,
generated by applying the motion to the target 10,11.
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Fig. 12. Supervision videos example - Failure case. The generated videos
in this example are highly inconsistent and introduce noise into the consoli-
dation process, resulting in visible artifacts in the final dynamic scene.

Failure Case Result
Frame 0/14 Frame 4/14 Frame 8/14 Frame 12/14

Fig. 13. Final result example - Failure case. Final result rendered at a
45° angle, showing the kicking motion on the woman figure. The video
supervisions leading to this failure are shown in Fig. 12.

B.4 Failure Cases

Our method struggles with highly articulated motions, such as kick-
ing or jumping jacks. In these cases, per-view motion inversion
often fails, causing the synthesized reference videos to exhibit se-
vere artifacts and lose synchronization. Once this happens, our
consolidation phase cannot recover, and the artifacts propagate into
the final generated motion. We illustrate this in Figure 12, which
shows errors in the generated supervision for such a complex mo-
tion. Figure 13 illustrates the final outcome—failure to move the
legs and breakage of the thin arms. Since the main bottleneck of
our method stems from the noisy video supervisions generated by
the 2D video model, it is important to emphasize that our method
will improve as inversion techniques in video models improve.

C Evaluation Metrics
C.1 3D Motion Fidelity Metric

We observe that baselines often introduce degeneracies, such as
a hand remaining static and moving along with the torso instead

Gaussian See, Gaussian Do: Semantic 3D Motion Transfer from Multiview Video

of articulating independently. The original Motion Fidelity metric
computes a two-way trajectory distance, which fails to penalize
such degenerate cases due to the lack of a bijectivity requirement.
To address this, we modify the metric to measure motion fidelity
in only one direction—matching target trajectories to the closest
source trajectories. Formally, we define our modified Motion Fidelity
(MF3p) as:

Z max corr(z, 7), 9)

. TE€Source
TeTarget

141
MFp=—3 =
3D V;m

where V is the number of rendered views, m is the number of track-
lets in the source view, and corr(z, 7) remains unchanged:
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An additional advantage of this measure is that it does not require
ground truth, allowing us to evaluate on both of our benchmarks.

(10)

corr(r,7) =
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C.2 CLIP-I and CLIP score

In addition to motion quality, we assess appearance preservation us-
ing CLIP-I [Rahamim et al. 2024; Zhao et al. 2023b], which measures
the cosine similarity between the CLIP visual features of the initial
image rendered from the static object and each frame in the predicted
video. This provides a reference-free, view-invariant signal for how
well the object’s visual identity is preserved throughout the anima-
tion. We also compute CLIP similarity between individual frames
of the predicted dynamic 3DGS and reference target videos. This
frame-level comparison requires both source and target to perform
approximately the same motion and is therefore only applied to the
Mini-Mixamo benchmark. As with Motion Fidelity, all CLIP-based
metrics are averaged across rendered views. While CLIP is robust to
viewpoint variation and sensitive to visual attributes[Goh et al. 2021;
Jain et al. 2021], it may overestimate similarity in synthetic scenes,
often producing high scores despite structural inconsistencies.

D Novel-view Motion Synthesis

As explained in Section 6.4, we leverage the continuity of our anchor-
based embedding representation to interpolate motion embeddings
for any viewpoint between two anchors. Given a novel-view image
of the source motion, we can then generate a complete video of
the source object from this new perspective. In addition to Figure 6
where we demonstrated the source object animated from a novel
angle for which we did not obtain ground truth data, in Figure 14 we
showcase the ability to generalize to new angles, and new objects
at the same time.

D.1 Appearance preservation

In addition to motion quality, we assess appearance preservation us-
ing CLIP-I[Rahamim et al. 2024; Zhao et al. 2023b], which measures
the cosine similarity between the CLIP visual features of the initial
image rendered from the static object and each frame in the predicted
video. This provides a reference-free, view-invariant signal for how
well the object’s visual identity is preserved throughout the anima-
tion. We also compute CLIP similarity between individual frames
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Fig. 14. Qualitative comparison of novel-view motion synthesis. The
top row shows raw supervision, while the bottom row presents results after

reconstruction. Simple interpolation and global embeddings struggle to gen-
eralize to unseen views, whereas our anchor-based mechanism successfully
recovers faithful motion, even for a different target.

of the predicted dynamic 3DGS and reference target videos. This
frame-level comparison requires both source and target to perform
approximately the same motion and is therefore only applied to the
Mini-Mixamo benchmark. As with Motion Fidelity, all CLIP-based
metrics are averaged across rendered views. While CLIP is robust to
viewpoint variation and sensitive to visual attributes[Goh et al. 2021;
Jain et al. 2021], it may overestimate similarity in synthetic scenes,
often producing high scores despite structural inconsistencies.

E Additional details on Ablation
E.1 Inversion Ablation

Number of anchors. A key parameter of our method is the number
of anchors, K. Here, we analyze its impact on performance metrics
during optimization. In Figure 8 of the main paper, each point rep-
resents the average accuracy over five random seeds, with shaded
areas indicating the 95% confidence intervals. Different colors and
markers denote the number of learnable anchors used in training
and reconstruction. Figure 8 also reveals a notable behavior: First,
for both metrics, increasing the number of anchors generally de-
creases convergence speed. This phenomenon can be attributed to
the information-sharing mechanism among anchors. When fewer
anchors are used, each anchor benefits from a broader aggregation
of information across multiple source views. However, this trend
breaks when employing a single global embedding, which effectively
acts as a single anchor. In this case, we observe the slowest conver-
gence rate and lower final performance. This can be explained by the
fact that distant views require distinct embeddings, and forcing them
into a single representation results in suboptimal optimization. To
support this hypothesis, we visualize this effect in Figure 16, where
motion observed from opposite viewpoints—where in one view the
motion appears to the right and in another to the left—confuses
a single global embedding, leading to hallucinations in the recon-
structed motion. Based on this analysis, we select K = 5 anchors as
a practical balance between convergence speed and reconstruction
quality.

E.2 4D Consolidation Ablation

The Effect of Regularization on 4D Consolidation Quality. As de-
tailed in Section 4, we introduce several enhancements to the recon-
struction stage of our pipeline, including rotational ARAP and LPIPS

regularization. Figure 7 in the main paper visually demonstrates the
impact of these refinements, showing significant improvements in
structural integrity and fine-detail preservation. For example, text
originally visible on the target remains legible even during motion
(Figure 7, + rotational ARAP column), highlighting the improved
stability of our reconstructions—we encourage the reader to zoom
in for details. Similarly, our refinements ensure that fine details,
such as the flames on the glove, remain clearly visible throughout
motion (Figure 7, + LPIPS column), demonstrating the effectiveness
of our approach in preserving high-frequency information. Impor-
tantly, applying both regularizations together further improves CLIP
similarity scores, as shown in Table 3. Despite these clear visual en-
hancements, motion fidelity scores remain largely unchanged. This
suggests that our baseline method already preserves motion effec-
tively, but also highlights a limitation of the metric: motion fidelity
is primarily sensitive to trajectory alignment rather than reconstruc-
tion quality. Even when structural inconsistencies or artifacts are
present, high scores can still be achieved as long as sufficient tra-
jectory matches exist. This gap is reflected in the human preference
study which demonsrtaes clear preference to our regularized variant
in both appearance and motion preference (see Fig. 5). Thus, while
our refinements significantly enhance visual quality and structural
consistency, these improvements are not fully reflected in motion
fidelity scores.

SDS Loss. As discussed in Section 4, SDS [Poole et al. 2022] is a
widely used strategy for reconstruction with generative models un-
der view inconsistencies, commonly adopted in 4D generation [Bah-
mani et al. 2024a,b; Jiang et al. 2024; Ling et al. 2024b; Miao et al.
2024; Ren et al. 2023; Uzolas et al. 2024; Wu et al. 2024b; Zeng et al.
2024]. we explored SDS loss as an alternative to LPIPS loss and
ARAP regularization for handling multiview inconsistencies. How-
ever, applying plain SDS in a single-step UNet inference led to blur
in moving object regions (see Fig. 15). This blur caused a mismatch
with the sharp 3DGS primitives, prompting the optimization to over-
fit blurry areas with detailed splats—ultimately collapsing the shape
after a few iterations.

In an attempt to address this, we experimented with the Itera-
tive Dataset Update strategy [Haque et al. 2023], which replaces
single-step inference with multiple UNet steps per iteration, sim-
ulating the full generative process. It generates new supervision
videos by injecting noise into renderings and denoising iteratively.
However, this still produced similar artifacts, requiring ARAP regu-
larization and LPIPS loss for stability. While we did observe slight
improvement in motion quality when combined with our regular-
ization strategy, it substantially increased optimization time (1 hour
vs. 5 minutes), so we opted not to include it in our final method.
Quantitative comparisons are reported in Table 3.

Method Motion Fidelity T CLIP Score T

Naive 0.7663 + 0.0098
+ ARAP Rotation 0.7567 + 0.0108
+ LPIPS Loss 0.7602 £ 0.0106

0.9423 + 0.0019
0.9608 + 0.0010
0.9636 + 0.0010

Naive + Iterative DU 0.7822 + 0.0384
ARAP Rotation + LPIPS + Iterative DU 0.7686 + 0.0272

0.9412 £ 0.0075
0.9606 + 0.0027

Table 3. Ablation study results.
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Plain SDS Single-Step Prediction vs Regular Multi-Step Prediction
Result 2/9
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Fig. 15. SDS failure. In our setup, when trying to use SDS-Loss for the 4D

consolidation, the loss causes the Gaussians to collapse. We identify the —r | ([ NN
reason as the blurry single-step denoising prediction generated by SVD. See — | ()| ([
Sec. E.2 for details.
[ x|
E.3 Human Preference Study Fig. 17. Screenshot 1. A screenshot showing the qualitative comparison

We include here screenshots from our survey, both from the quali- survey.

tative comparison, and the ablation study.

Result3/16

Fig. 18. Screenshot 2. A screenshot showing the ablation user study.
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Epoch: 500
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Fig. 16. Intermediate steps of the optimization process for a single motion embedding. From an azimuth angle of 0°, the person in the video appears
to be moving toward the left side of the screen, whereas from an azimuth of 180°, the 2D motion looks entirely different, with the person appearing to move
toward the right. At the beginning of the training process (epoch 500, first two rows), the model starts learning the motion from the 0° viewpoint but struggles
with the motion from the 180° viewpoint. By epoch 1000, the model has overfitted to the motion observed from azimuth 0°, fully learning to move the object in
the first frame toward the left side of the screen. However, as a consequence, it fails to generalize to the azimuth 180° viewpoint, where the figure should move
to the right but instead also moves to the left. Additionally, there is some appearance leakage from the back view, resulting in artifacts in the front view.
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