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Abstract
While online video sharing becomes more popu-
lar, it also causes unconscious leakage of personal
information in the video retrieval systems like
deep hashing. An adversary can collect users’
private information from the video database by
querying similar videos. This paper focuses on
bypassing the deep video hashing based retrieval
to prevent information from being maliciously
collected. We propose universal adversarial head
(UAH), which crafts adversarial query videos by
prepending the original videos with a sequence
of adversarial frames to perturb the normal hash
codes in the Hamming space. This adversarial
head can be obtained just using a few videos, and
mislead the retrieval system to return irrelevant
videos on most natural query videos. Furthermore,
to obey the principle of information protection,
we expand the proposed method to a data-free
paradigm to generate the UAH, without access
to users’ original videos. Extensive experiments
demonstrate the protection effectiveness of our
method under various settings.

1. Introduction
As an era of big data arrives, massive videos are being up-
loaded to the Internet, e.g., YouTube, TikTok, and Twitter.
For instance, the users upload more than 500 hours of video
to YouTube every minute (Robertson) and more than 1 bil-
lion videos get viewed each day on TikTok (G). However,
this might cause unconscious leakage of personal informa-
tion by some content-based retrieval systems. For example,
utilizing the advanced face video retrieval techniques (Qiao
et al., 2020; Wang et al., 2020), a snoop holding a user’s
face video as the query can maliciously collect more per-
sonal information from online shared videos. The potential
threat of the video data leakage flow is shown in Figure
1. Traditional methods for video privacy protection hide
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Figure 1. Threat of the video data leakage and the expected pro-
tection effectiveness. Relevant videos in the database can be ma-
liciously collected by querying with the original video, while the
collection utilizing the modified video fails. Best viewed in color.

the privacy information by masking (Wickramasuriya et al.,
2004) or scrambling (Dufaux & Ebrahimi, 2008) the pro-
tected objects, which degrade the video quality and can
not be applied to the online shared videos. Therefore, it is
imperative to design a practical solution to prevent video
data leakage in the retrieval system, without affecting users’
experience.

Among video retrieval systems, the hashing method is
promising due to its low storage cost and high search effi-
ciency (Liong et al., 2016). It maps semantically similar
videos to similar compact binary codes in the Hamming
space by the hashing function. Along with the develop-
ment of deep learning, deep hashing has become a main-
stream video retrieval algorithm that achieves state-of-the-
art retrieval performance (Li et al., 2019; Yuan et al., 2020).
However, if it were exploited maliciously, the information
leakage concern for the video data would be intensified.
Therefore, we explore information protection on deep video
hashing in this paper.
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Figure 2. Illustration of the proposed universal adversarial head.

To address the above concern, this paper studies how to by-
pass the deep video hashing with slight changes to the query
video. In other words, the modification to the video has
little impact on normal usages (e.g., sharing online), but can
mislead the retrieval system to return the irrelevant videos,
so as to avoid malicious information collection. We demon-
strate the expected effectiveness of the protection in Figure
1. Specifically, the modification method should achieve two
goals: usableness and stealthiness. The usableness requires
that the modification can be applied to almost all videos in
the same manner without extra computation. It is especially
important for practicality since benign users can adopt our
technique directly on their videos. It alleviates the need for
them to share their videos or generate such modifications
specifically for their videos. The stealthiness requires that
the modification should not affect the normal usages of the
modified videos. For example, the quality of the video can
not be largely decreased, so that it can be normally shared
between benign users.

We accomplish the protection through a benign usage of the
adversarial attack (Szegedy et al., 2014; Kurakin et al., 2017;
Bai et al., 2020). The adversarial attack perturbs normal
samples by intentional small perturbations and fools Deep
Neural Networks (DNNs) to make incorrect predictions
confidently, which has been well-studied in the machine
learning security (Akhtar & Mian, 2018; Bai et al., 2021).
It is usually regarded as a threat to deep learning, especially
the universal attack. The universal attack calculates a uni-
versal perturbation based on only a few inputs and causes
almost all inputs to be misclassified with high probability
(Moosavi-Dezfooli et al., 2017; Benz et al., 2020; 2021;
Zhang et al., 2020a; 2021). Inspired by this, we utilize the
universal attack against deep video hashing as a modification
method for information protection, which ensures usable-
ness. However, prior works of the universal attack could
not meet the stealthiness requirement, since they mainly
considered the perturbations on original samples, which
partly decrease the quality of the modified videos. There-
fore, we propose to prepend a universal adversarial head
(UAH), as shown in Figure 2, that consists of a sequence

of clean frames (dubbed clean head) with an adversarial
perturbation. The content of the clean head can be speci-
fied flexibly. Although such an adversarial head is visible,
the UAH does not look suspicious because many videos
uploaded to the online video platforms may contain the clip
of welcome, introduction, or copyright information at the
beginning. Since there is no perturbation on the original
frames, the UAH avoids affecting the quality of the videos.
In addition, the superior performance of the UAH as demon-
strated in our experiments also motivates us to apply the
adversarial perturbation on the prepended head.

Once the clean head is specified, the remaining problem
is to generate an imperceptible adversarial perturbation of
the UAH. Utilizing some original videos, we optimize the
objective, which is to enlarge the distance between the hash
codes of the original videos and those of the videos with the
UAH. However, in the context of information protection for
the video data, we may not get access to the original videos
from the users. Therefore, we further explore to generate the
UAH in a more challenging and practical data-free scenario
(Mopuri et al., 2017; 2018). Extensive experiments verify
the effectiveness of our method under various settings.

2. The Proposed Method
2.1. Preliminaries

Let x ∈ RM×H×W×C denote a given query video sampled
from a distribution p, where M is the number of frames,
and H,W and C are the height, width and the number of
channels for each frame, respectively. fθ(·) is a non-linear
function parameterized by θ, which transforms the input
video x into a K-dimensional representation. A sign activa-
tion function is then used for binarizing the K-dimensional
representation into a K-bit hash code h ∈ {−1,+1}K . We
formulate the previous video hashing model F (·) as follows:

h = F (x) = sign (fθ(x)) . (1)

The most common choice for fθ(·) is the powerful feature
extractor-pair with CNN+RNN (Liong et al., 2016) frame-
work, i.e., features extracted by a CNN are fed into an RNN.
The hashing model F (·) generates a binary hash code for
each video in the database and the query video. To retrieve
the semantically similar videos, the similarity is measured
by Hamming distance between the hash code of each video
in the database and that of the query video. Then the re-
trieval system returns a sorted list of videos according to
these computed Hamming distances.

The main focus of this paper is to seek a modification T (·)
on the original query video x to generate an adversarial
video T (x), which can bypass the deep video hashing model
F (·). For the universal adversarial attack, T (·) is applied
to all videos sampled from a distribution p in the same
manner, which meets usableness requirement mentioned in
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the introduction. Moreover, T (x) can induce the hashing
retrieval system to generate a hash code which is close to
semantically irrelevant videos. Formally, we formulate it to
an optimization problem as follows:

max
T (·)

Ex∼p dH (F (x), F (T (x))) , (2)

where dH(·, ·) denotes the Hamming distance. As shown
in most works on universal attack (Moosavi-Dezfooli et al.,
2017; Khrulkov & Oseledets, 2018; Zhang et al., 2020b),
T (·) is specified as directly adding the universal adversarial
perturbation (UAP) to the original sample, i.e., (x + δ),
which partly decreases the quality of the video and further
affects the normal usages. In addition, it is difficult to
generate a universal adversarial perturbation on the original
video for attacking deep video hashing as demonstrated in
our experiments.

2.2. Universal Adversarial Head

To overcome the above challenges, we specify T (·) as
prepending adversarial frames in front of the original query
video. Thus the generation of adversarial video x̂ can be
represented as:

x̂ = T (x) = [t+ δ,x] , (3)

where t ∈ RMt×H×W×C denotes the clean frames and
δ ∈ RMt×H×W×C is the adversarial perturbation on t. We
name t and (t+ δ) as clean head and adversarial head in
this paper, respectively. [·] denotes the aggregation operator
that combines the adversarial head and the original video
into an adversarial video. The stealthiness requirement can
be realized by selecting the clean head which is adaptive to
the video content. The adversarial head (t+ δ) is universal,
which means that it can be prepended on almost all videos
from the distribution p to bypass the deep video hashing.

Next we show how to generate δ based on the adversarial
head. We assume that we can get access to a video set
X = {xi}Ni=1, where xi ∈ RM×H×W×C is sampled from
a distribution p. To mislead the output of the deep hash-
ing models on x̂i, the perturbation δ can be obtained by
enlarging the distance between the hash code of each video
xi ∈X and that of the corresponding adversarial video x̂i.
Moreover, to further ensure the stealthiness, we introduce
the `∞ restriction on δ. Then the objective function can be
formulated as follows:

max
δ

1

N

N∑
i=1

dH(F (xi), F ([t+ δ,xi])),

s.t. ||δ||∞ ≤ ε,

(4)

where ε denotes the maximum perturbation strength.

For a pair of binary codes hi and hj , since dH(hi,hj) =
1
2 (K − h

>
i hj), we can equivalently replace Hamming dis-

tance with inner product in the objective function. It’s worth

noting that the activation function sign(·) in Eq. (1) is not
differentiable in backpropagation. Thus, we alternatively
employ F ′(x) = tanh(fθ(x)) to approximate sign(·) in the
generation process. In summary, the overall optimization
objective is as follows:

min
δ

1

N ·K

N∑
i=1

(F (xi))
>F ′([t+ δ,xi]),

s.t. ||δ||∞ ≤ ε.

(5)

2.3. Data-free Adversarial Generation

In the optimization problem (5), generating UAH requires
access to the videos from users, which itself may be contrary
to the intention of information protection. Thus, we explore
the data-free scenario (Mopuri et al., 2017), in which we
can provide information protection technique without ac-
cess to original videos. Specifically, we are still allowed to
access the target model but not the data samples from the
distribution p, which results in a data-free variant of uni-
versal adversarial head (DF-UAH). The proposed DF-UAH
consists of two major steps: 1) generate proxy query videos;
2) optimize the universal adversarial head.

The videos are necessary carriers for solving the optimiza-
tion problem in Eq. (5) to obtain the UAH. Consequently,
we propose to generate some proxy query videos to realize
the attack. These generated videos are supposed to behave
similarly like the videos sampled from the data distribu-
tion p, i.e., they can be mapped through the target hashing
model into the Hamming space. The key idea in our method
is to sample some hash codes in the Hamming space and
reverse engineer the input videos that leads to the output
of these hash codes. We randomly sample a hash code
h′ ∈ [−1, 1]K to direct the proxy query video generation.
We initialize the proxy query video x′ as the random noise
and encourage the model output to be close to h′. The
objective function is as follows:

min
x′
||F ′(x′)− h′||22. (6)

When the loss value is optimized to approach 0, the proxy
query video can be mapped into the Hamming space by
the target model as the normal video. By minimizing the
optimization problem in Eq. (6) with different h′, we can
obtain a set of proxy query videos X ′ = {x′i}Ni=1. With
X ′, we can generate the UAH as the method in Section 2.2
by replacingX withX ′ in Eq. (5).

3. Experiments
We conduct experiments on a benchmark video dataset:
UCF-101 (Soomro et al., 2012). We set the maximal length
of the original video to 40. We follow the state-of-the-art
video hashing methods (Gu et al., 2016; Liong et al., 2016;
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Table 1. White-box attack results (MAP) against different archi-
tectures with various code lengths. “None” denotes the results of
clean query videos. The best results are indicated in bold.

Model Method 16bits 32bits 48bits 64bits

A-R

None 52.60 51.80 52.76 49.32
UAP 51.91 51.65 52.99 49.52

A2FM 10.39 11.77 12.90 9.40
UAH 6.79 4.21 5.00 2.85

DF-UAH 6.75 3.08 6.07 4.65

A-L

None 52.82 53.76 51.42 55.51
UAP 52.98 53.79 52.25 55.28

A2FM 21.63 17.15 20.91 17.93
UAH 16.06 10.76 13.57 9.16

DF-UAH 15.34 17.11 15.52 10.23

V11-R

None 54.07 57.85 55.78 54.76
UAP 54.48 57.52 56.18 55.02

A2FM 12.86 11.58 12.44 11.83
UAH 2.43 2.21 2.58 2.15

DF-UAH 2.99 2.26 2.06 2.23

V11-L

None 56.44 56.95 59.62 60.89
UAP 55.29 56.41 58.53 59.29

A2FM 18.07 15.61 18.68 17.97
UAH 3.97 3.81 4.25 4.64

DF-UAH 5.38 4.57 5.15 8.86

Li et al., 2019) to choose AlexNet (A), VGG11 (V11) and
VGG16 (V16) as CNN feature extractors, and use vanilla
RNN (R) and LSTM (L) as temporal encoders. The target
model is specified by a combination of two network archi-
tectures, e.g., A-R denoting the hashing model with vanilla
RNN following AlexNet.

We take the UAP attack (Moosavi-Dezfooli et al., 2017) as
a baseline, in which the adversarial perturbation is added on
the original frames. We also compare with the Appending
Adversarial Frames Method (A2FM) (Chen et al., 2021),
which appends a few dummy frames to a video clip and then
adds adversarial perturbations only on these new frames.
We adopt the standard evaluation metric mean average pre-
cision (MAP) in the video retrieval task (Gu et al., 2016)
to measure the attack performance. The lower MAP value
indicates a better attack performance.

For the UAH and A2FM attack, the length of the adversarial
frames is 5. For all attacks, the perturbation size ε is 0.031
and the number of iterations is 2,000. The perturbations of
UAP, A2FM, and UAH attack are computed on the set X
including 100 videos randomly selected from the query set
and evaluated on other 100 videos. For the DF-UAH, we
generate 10 proxy videos and retain the other settings as
above. We choose images with the texts of “Welcome to our
channel!” as the clean frame for the UAH and A2FM attack
in the following experiments (see Figure 2).

3.1. White-box Results

The results of the white-box attack are shown in Table 1.
Under the white-box setting, all attacks are generated on
the target model and used to attack this model. The UAP
attack can only reduce the MAP results slightly in all cases.
The MAP gaps between the query videos without and with

Table 2. Transfer-based black-box attack results (MAP) against
different architectures. “None” denotes the results of clean query
videos. The best results are indicated in bold.

Source
Model Method A-R A-L V11-R V11-L

None None 51.8 53.76 57.85 56.95

A-R

UAP 51.65 53.38 57.41 56.42
A2FM 11.77 28.70 35.95 48.09
UAH 4.21 20.90 34.29 42.17

DF-UAH 3.08 26.23 33.28 40.00

A-L

UAP 52.04 53.79 57.79 56.38
A2FM 16.43 17.15 36.90 47.87
UAH 10.42 10.76 35.36 42.98

DF-UAH 11.75 17.11 35.13 39.06

V11-R

UAP 51.87 53.48 57.52 56.06
A2FM 33.32 38.91 11.58 43.84
UAH 31.49 34.35 2.21 26.12

DF-UAH 33.06 33.82 2.26 18.07

V11-L

UAP 51.88 53.20 57.03 56.41
A2FM 33.04 38.89 14.75 15.61
UAH 31.13 33.97 5.85 3.81

DF-UAH 33.00 33.64 6.73 4.57

universal perturbations are only 0.20%. It indicates that
adding the perturbation on the original frames to perform
the universal attack is infeasible. In contrast, the A2FM and
UAH can effectively reduce the MAP results in attacking all
models with different code lengths on the two datasets. Fur-
thermore, the results demonstrate the significant superiority
of the proposed UAH compared with the A2FM. Specifi-
cally, the query videos with the UAH dramatically reduce
the MAP results by 48.87% on average. Moreover, the DF-
UAH attack can achieve satisfactory attack performance,
even with the absence of the data.

3.2. Black-box Results

Table 2 shows results of the transfer-based black-box attack,
i.e., attacking the target model using the adversarial videos
which are generated on a single source model. It shows
that the UAP attack fails to generate transferable adversarial
perturbations. Compared to the A2FM, our method can sig-
nificantly degrade the retrieval performance of the black-box
target model in all cases. We also observe that the DF-UAH
is also transferable across different architectures. Moreover,
an interesting phenomenon is that the transferability heavily
depends on the architectures of the source and target model.
More specifically, the source model whose architecture is
closer to the target model achieves lower MAP results.

4. Conclusion
In this paper, we introduce the UAH and extend it to the
data-free scenarios to protect the privacy information for the
video data. We would like to emphasize that privacy protec-
tion for online shared videos deserves attention greatly. This
work opens a door for applying the adversarial attack meth-
ods to the various video retrieval systems from the view of
privacy protection. The more effective and stealthy methods
are worth further study in the future.
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