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Efficiency of the Generalized Second-Price Auction for Value
Maximizers

Anonymous Author(s)

ABSTRACT
We study the price of anarchy of the generalized second-price auc-

tion where bidders are value maximizers (i.e., autobidders). We

show that in general the price of anarchy can be as bad as 0. For

comparison, the price of anarchy of running VCG is 1/2 in the au-

tobidding world. We further show a fined-grained price of anarchy

with respect to the discount factors (i.e., the ratios of click probabili-

ties between lower slots and the highest slot in each auction) in the

generalized second-price auction, which highlights the qualitative

relation between the smoothness of the discount factors and the

efficiency of the generalized second-price auction.
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1 INTRODUCTION
Generalized second-price (GSP) auctions have been the prevalent

auction format deployed in the online advertising market for almost

two decades [Edelman et al., 2007, Varian, 2007]. GSP auction, a

multi-slot extension of the classic Vickrey auction [Vickrey, 1961],

was initially designed for advertisers maximizing (quasi-linear) util-

ity given by the difference between value and payment. There is

a large body of literature investigating the theoretical properties

of GSP with utility-maximizing advertisers [Aggarwal et al., 2006,

Gomes and Sweeney, 2009, Hartline et al., 2014, Lahaie, 2006, Lucier

et al., 2012, Nekipelov et al., 2015, Roughgarden et al., 2017, Thomp-

son and Leyton-Brown, 2013]. In particular, Edelman et al. [2007]

and Varian [2007] characterized the class of envy free equilibria

(a.k.a., symmetric Nash equilibria), and showed that envy free equi-

libria coincides with the equilibrium of VCG in terms of allocation

so that they are always efficient. Caragiannis et al. [2015] charac-

terized its price of anarchy (PoA) [Koutsoupias and Papadimitriou,

1999], the ratio between the worst welfare performance in equilib-

rium and the socially optimal welfare for both the Bayesian setting

as 1/2.927 and the full information setting as 1/1.259.
However, the online advertising market has witnessed a signifi-

cant shift towards autobidding in recent years. Autobidding, namely

the procedure of delegating the bidding tasks to automated bidding

agents to procure online advertising opportunities, has become a

widely adopted mode of bidding, contributing to more than 80%

traffic of the online advertising market [Dolan, 2020]. Instead of
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setting their bids manually, the autobidding product allows the

advertisers to specify their high-level objectives and constraints.

With these inputs, the autobidding agents adjust bids in real time

to optimize on behalf of the advertisers (see Aggarwal et al. [2019],

Balseiro et al. [2021a], Deng et al. [2021] for more background on

auto-bidding). A popular autobidding product is target cost-per-

acquisition (target CPA), which aims to maximize the total value

subject to a target return-on-investment (ROI) constraint that spec-

ifies the minimum admissible ratio between value and payment.

Such a procedure greatly simplifies the interaction between the

advertisers and the ad platform; and moreover, the online autobid-

ding agent can better optimize the advertisers’ bids by leveraging

advanced machine learning techniques to predict how different

bids impact the advertisers’ payoffs. Following the recent line of

research on autobidding [Balseiro et al., 2021a], in this paper, we

denote advertisers maximizing their quasi-linear utility by utility
maximizers and denote advertisers adopting autobidding products

by value maximizers.
Such a significant shift in the behavior model of bidding agents

raises interesting and important research questions to revisit the

effectiveness of the existing mechanisms from the perspective of

autobidding [Aggarwal et al., 2019, Balseiro et al., 2021a, Deng

et al., 2022, 2021, Liaw et al., 2022]. Aggarwal et al. [2019] show

that the PoA of running the second-price auctions with value max-

imizers is only 1/2 in contrast to the well-known result that run-

ning the second-price auctions with utility maximizers is optimal

in terms of social welfare. Recently, inspired by the shift from

the second-price auctions to the first-price auctions in the display

ad markets [Paes Leme et al., 2020], Liaw et al. [2022] and Deng

et al. [2022] show that the PoA of running the first-price auctions

with value maximizers is also 1/2. However, the PoA of the widely

adopted GSP auctions for value maximizers still remains open. In

this paper, we aim to characterize the PoA of running GSP auctions
under autobidding.

1.1 Our Results
In this paper, we characterize the PoA of running the GSP auctions

for value maximizers. It turns out that the PoA can be as bad as

0 in the worst case. In comparison, the PoA of running VCG (in

particular, second price auctions) is 1/21. However, the worst case
instance for PoA being 0 is unlikely to appear in practice as it con-

tains an auction in which the ratio (a.k.a., discount factor) between

the second slot and the first slot approaches 0.

Our main contribution in this paper is to provide a fine-grained

characterization of PoA based on the sequence of discount factors

(Theorem 5.1). Our PoA bounds are tight in the worst-in-class

sense, i.e., among all instances that share the same bound as given

1
The PoA being 1/2 for VCG depends on the assumption that the bidders do not adopt

dominated strategies. In the case when the bidders can adopt dominated strategies,

the PoA of running VCG can be 0. In contrast, PoA can be 0 for GSP even assuming

that the bidders do not adopt dominated strategies.
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by Theorem 5.1, there is one instance for which the bound is tight

(Theorem 6.1). We complement our tight but complex bounds with

slightly loose but simplified bounds (Corollary 5.2) that highlight

the qualitative relation between the smoothness of the discount

factors and the efficiency of the generalized second-price auction:

The smoother the discount factors are, the better the PoA bound

is. Our bounds are obtained by a novel analysis that (1) establishes

the Pareto frontier of welfare decomposition between value and

payment for each auction with a charging scheme tailored to the

GSP auction, and (2) aggregates the Pareto frontiers across auctions

in an optimal way.

1.2 Further Related Work
Following the seminal works in GSP auctions for utility maximizers

from [Aggarwal et al., 2006, Edelman et al., 2007, Varian, 2007], La-

haie [2006] bounds its PoA for special cases in which click-through

rates decay exponentially at a fixed rate; Gomes and Sweeney [2009]

characterize the existence of symmetric Nash equilibria in Bayesian

settings with i.i.d. distributions. In addition to welfare performance,

revenue performance of GSP auctions for utility maximizers has

also been extensively studied in Hartline et al. [2014], Lucier et al.

[2012], Thompson and Leyton-Brown [2013].

Motivated by the recent rapid adoption of autobidding in online

advertising, there is a growing body of literature examining its im-

pact on mechanism design in an autobidding world. In the seminal

paper of Aggarwal et al. [2019], they show that uniform bidding

is optimal for truthful auctions (with respect to quasi-linear utility

maximizers), demonstrate the existence of equilibrium, and prove

the price of anarchy results for truthful auctions. Balseiro et al.

[2021a, 2022] consider the setting of Bayesian mechanism design

and provide the characterization of the revenue-optimal auctions

under different information structure and budget constraints. In

order to improve the PoA of the system, Mehta [2022] and Liaw et al.

[2022] show how to leverage randomization and non-truthfulness

to improve welfare efficiency. When machine-learned advice ap-

proximating buyers’ values is given, using boosts and reserves are

provably shown to be effective in improving the welfare efficiency

guarantees [Balseiro et al., 2021b, Deng et al., 2022, 2021].

2 PRELIMINARIES
Ad auctions. Following prior work in autobidding [Aggarwal

et al., 2019, Deng et al., 2022, 2021, Liaw et al., 2022], we consider the

following multi-auction model: There are 𝑛 bidders participating in

𝑚 auctions, where we will generally use 𝑖 to index bidders, and 𝑗 to

index auctions. Without loss of generality, we assume each auction

𝑗 has 𝑠 winning slots (where normally 𝑠 < 𝑛), and we generally use

𝑘 to index such slots. In each auction 𝑗 , each bidder 𝑖 has a value

𝑣𝑖, 𝑗 , and each slot 𝑘 has a discount factor 𝑑 𝑗,𝑘 . The value that bidder

𝑖 receives when winning slot 𝑘 in auction 𝑗 is 𝑣𝑖, 𝑗 · 𝑑 𝑗,𝑘 . Without

loss of generality, we assume that 𝑑 𝑗,𝑘 ≥ 𝑑 𝑗,𝑘+1 for any 𝑗 ∈ [𝑚]
and 𝑘 ∈ [𝑠 − 1]. For notational simplicity, we also assume 𝑑 𝑗,𝑘 = 0

for any 𝑘 > 𝑠 .

The generalized second-price auction. We focus on the generalized

second-price auction in this paper: Each bidder 𝑖 submits a single bid

𝑏𝑖, 𝑗 in each auction 𝑗 . Let 𝑖 ( 𝑗, 𝑘) be the bidder with the 𝑘-th largest

bid in auction 𝑗 .2 Then for each 𝑗 ∈ [𝑚] and 𝑘 ∈ [𝑠], bidder 𝑖 ( 𝑗, 𝑘)
wins slot 𝑘 in auction 𝑗 , receives value val𝑖 ( 𝑗,𝑘 ), 𝑗 = 𝑣𝑖 ( 𝑗,𝑘 ), 𝑗 · 𝑑 𝑗,𝑘
and pays the (𝑘 + 1)-th largest bid discounted by 𝑑 𝑗,𝑘 , i.e., bidder

𝑖 ( 𝑗, 𝑘) pays 𝑝𝑖 ( 𝑗,𝑘 ), 𝑗 = 𝑏𝑖 ( 𝑗,𝑘+1), 𝑗 · 𝑑 𝑗,𝑘 . We make a few remarks:

• The above fully specifies the slot received and payment

made by every bidder 𝑖 , since the mapping 𝑘 ↦→ 𝑖 ( 𝑗, 𝑘)
gives a permutation of the 𝑛 bidders [𝑛].

• {𝑖 ( 𝑗, 𝑘)}, {val𝑖, 𝑗 }𝑖 and {𝑝𝑖, 𝑗 }𝑖 depend on {𝑏𝑖, 𝑗 }𝑖 . We will

make this dependence explicit as needed.

• In general, bidders may bid randomly, in which case {𝑏𝑖, 𝑗 },
{𝑖 ( 𝑗, 𝑘)}, {val𝑖, 𝑗 } and {𝑝𝑖, 𝑗 } are all random variables. In

such cases, {𝑏𝑖, 𝑗 } must be independent across different bid-

ders 𝑖 .

ROI-constrained value-maximizing bidders. We consider auto-

bidders, who are technically ROI-constrained value maximizers.

That is, each bidder aims to maximize the total value they receive,

subject to the constraint that the total payment they make does not

exceed the total value. Formally, each bidder 𝑖 solves the following

optimization problem when deciding her (possibly randomized)

bidding strategy 𝒃𝑖 given all other bidders’ bids 𝒃−𝑖 :

max

𝒃𝑖

∑︁
𝑗∈[𝑚]

E
𝒃𝑖 ,𝒃−𝑖

[val𝑖, 𝑗 ]

subject to

∑︁
𝑗∈[𝑚]

E
𝒃𝑖 ,𝒃−𝑖

[val𝑖, 𝑗 ] ≥
∑︁
𝑗

E
𝒃𝑖 ,𝒃−𝑖

[𝑝𝑖, 𝑗 ] .

Equilibria and the price of anarchy. We study the worst-case

efficiency of the generalized second-price auction in equilibrium, as

measured by the price of anarchy. In words, the price of anarchy is

the ratio between the total value received by all bidders in the worst

equilibrium, and the optimal social welfare disregarding incentive

issues. Formally, given 𝑛,𝑚, the values {𝑣𝑖, 𝑗 } and discount factors

{𝑑 𝑗,𝑘 }, let opt𝑗 be the contribution of auction 𝑗 to the optimal

welfare, i.e.,

opt𝑗 =
∑︁

𝑘∈[𝑠 ]
𝑣𝑖∗ ( 𝑗,𝑘 ), 𝑗 · 𝑑 𝑗,𝑘 ,

where 𝑖∗ ( 𝑗, 𝑘) is the bidder with the 𝑘-th largest value in auction

𝑗 . We are interested in the worst-case price of anarchy (PoA) over

bidders’ values, i.e.,

PoA(𝑚, 𝑠, {𝑑 𝑗,𝑘 }) =

inf

𝑛,{𝑣𝑖,𝑗 },{𝒃𝑖 }𝑖 form an equilibrium

∑
𝑖∈[𝑛], 𝑗∈[𝑚] E[val𝑖, 𝑗 ]∑

𝑗∈[𝑚] opt𝑗
.

3 THE ANALYSIS AT A GLANCE
Limitations of and insights from existing approaches. First let us

review existing approaches of analyzing the PoA bounds under

autobidding. Key to many existing methods is the following simple

observation: The ROI constraints guarantee that the total amount

that all bidders pay is a lower bound of the total value that all

bidders receive. So, any lower bound on the total payment is also

a lower bound on the total value. Then, to lower bound the total

value, one only needs to establish “substituting” lower bounds on

2
For simplicity, we assume ties are broken in favor of the bidder with the smaller

index.
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the total value and the total payment respectively, and argue that

one of the two lower bounds must be large enough.

A simple concrete example is the analysis of the second-price

auctions with the no-underbidding assumption (as underbidding

is a dominated strategy for value maximizers in the second-price

auctions) [Aggarwal et al., 2019, Balseiro et al., 2021b, Deng et al.,

2021]: Suppose there is only one slot that matters in each auction,

i.e., 𝑑 𝑗,1 = 1 and 𝑑 𝑗,𝑘 = 0 for all 𝑘 > 1. Moreover, suppose all

bidders bid deterministically, and never bid below their values, i.e.,

𝑏𝑖, 𝑗 ≥ 𝑣𝑖, 𝑗 for all 𝑖 and 𝑗 . Then the following argument shows the

PoA is at least 1/2: Consider each auction 𝑗 . If the bidder with the

highest value (henceforth the rightful winner) in 𝑗 also has the

highest bid, then the rightful winner wins in 𝑗 , and the value they

receive is precisely the contribution of 𝑗 to the optimal welfare.

Otherwise, since the rightful winner bids at least their value, the

actual winner must pay at least the rightful winner’s value, which

is the contribution of 𝑗 to the optimal welfare. So 𝑗 contributes at

least its contribution to the optimal welfare, either to the total value

or to the total payment (note that we are relaxing the contribution

and considering lower bounds of the two quantities). It is not hard

to see that the worst-case situation is when the contributions of

all auctions are equally split between the value and the payment,

in which case we get 1/2 of the optimal welfare. It turns out this

ratio is tight for the second-price auction. (See proof of Theorem

3.3 in [Deng et al., 2021] for more details).

However, this argument no longer works as underbidding is no

longer a dominated strategy for value maximizers in GSP auctions.

In order to obtain the tight PoA for the generalized second-price

auction, we aim to develop new techniques to establish optimal

tradeoffs between value and payment lower bounds.

Our approach. We break down the analysis into two parts: (1)

establishing the optimal tradeoff between the contributions to the

value and the payment of each individual auction, and (2) aggre-

gating over all auctions in the optimal way to obtain the tight

worst-case lower bound on the welfare. In the first part, we charac-

terize the Pareto frontier between the contributions to the value

and the payment of each auction. This is done by considering which

slot each bidder would get if they bid their true value (a phantom
bidding strategy), fixing other bidders’ bids. The value obtained

by the bidder under the phantom bidding strategy is denoted by

proxy value. When aggregated over auctions, the total proxy value

each bidder receives under this phantom bidding strategy is a lower

bound of that bidder’s contribution to the value, since bidding true

values in all auctions is a feasible bidding strategy (i.e., the ROI

constraint is satisfied). Moreover, such phantom bidding strategies

also give lower bounds on the contribution to the payment: For

example, if a bidder with value 𝑣 would get the 𝑘-th slot by bid-

ding 𝑣 , then the (𝑘 − 1)-th largest bid must be at least 𝑣 , and by

the payment rule, the top 𝑘 − 2 winners must each pay at least 𝑣

discounted by the corresponding slot’s discount factor. We observe

that the tradeoff is dictated by the slot that the bidder with the

highest value would win when bidding their true value. This means

there are 𝑠 + 1 cases that we need to consider, which correspond

to the 𝑠 + 1 points (one of which is trivial) on the Pareto frontier.

We bound the coordinates of each of these points using a charging

scheme tailored to the generalized second-price auction (see Fig 1

and 2 for visual demonstrations).

Once we have the Pareto frontiers of all auctions, we can proceed

to the second part of the analysis, which is aggregating them in the

optimal way. This involves two conceptual steps: characterizing

the worst-case distribution of the optimal welfare into individual

auctions, and on top of that, determining the worst-case split be-

tween the contribution to the value and the contribution to the

payment in each auction. From a geometric point of view, both

steps boil down to the same operation: taking the convex closure

of the optimal tradeoffs obtained in the first part of the analysis.

The tight PoA ratio then corresponds to the (lower) intersection

point of this convex closure with the line 𝑦 = 𝑥 . Then, exploiting

the structure of the Pareto frontier curves, we obtain an explicit

formula for the outcome of the optimal way of aggregation, which

gives the tight PoA of the generalized second-price auction (see

Fig 3 for visual demonstrations). This is further complemented with

hard instances showing each term in our bound is necessary. Our

high-level approach can be adapted to other auction formats with

local changes, which may be of broader interest.

4 BOUNDING THE CONTRIBUTION OF AN
INDIVIDUAL AUCTION

In this subsection, we fix any bidding strategies 𝒃 = {𝑏𝑖, 𝑗 } (not
necessarily forming an equilibrium; we will use the equilibrium

condition later), and bound the contribution of each auction to the

proxy value and payment. In doing so, we will consider the proxy

value each bidder 𝑖 receives in each auction 𝑗 under the phantom

bidding strategy where they bid their true values, i.e., val𝑖, 𝑗 (𝑏𝑖, 𝑗 =
𝑣𝑖, 𝑗 , 𝒃−𝑖, 𝑗 ). For brevity, we let pval𝑖, 𝑗 = val𝑖, 𝑗 (𝑏𝑖, 𝑗 = 𝑣𝑖, 𝑗 , 𝒃−𝑖, 𝑗 ). Note
that pval𝑖, 𝑗 is generally a random variable. By default, when we

write val𝑖, 𝑗 or 𝑝𝑖, 𝑗 , they are induced by the fixed bidding strategies

𝒃 . We will replace this proxy value with the actual value received

by each bidder later after we aggregate the contributions of all

auctions.

The main claim we prove in this subsection is the following

lemma, which characterizes the worst-case tradeoff between each

auction’s contribution to the (proxy) value and its contribution to

the payment.

Lemma 4.1. Fix any bidding strategies 𝒃 . For each auction 𝑗 and
each 𝑘 ∈ [𝑠], let

𝑞 𝑗,𝑘 =

(
𝑑 𝑗,𝑘+1∑
ℓ≤𝑘 𝑑 𝑗,ℓ

,

∑
ℓ<𝑘 𝑑 𝑗,ℓ∑
ℓ≤𝑘 𝑑 𝑗,ℓ

)
∈ R2+ .

Moreover, let Δ1 = {(𝑡1, 𝑡2) ∈ R2+ | 𝑡1 + 𝑡2 = 1} be the standard
1-simplex. Then, for each auction 𝑗 , there exists 𝑘 ∈ [𝑠], 𝑟 ∈ Δ1 ⊆ R2+,
and 𝛼 ∈ [0, 1], such that

• The total proxy value contributed by auction 𝑗 is at least∑︁
𝑖∈[𝑛]

pval𝑖, 𝑗 ≥ (𝛼 · 𝑞 𝑗,𝑘
1

+ (1 − 𝛼) · 𝑟1) · opt𝑗 .

• The total payment contributed by auction 𝑗 is at least∑︁
𝑖∈[𝑛]

𝑝𝑖, 𝑗 ≥ (𝛼 · 𝑞 𝑗,𝑘
2

+ (1 − 𝛼) · 𝑟2) · opt𝑗 .

3
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Before diving into the proof, first let us understand the lemma.

Intuitively, the lemma says that if (without loss of generality) the

contribution of an auction 𝑗 to the optimal welfare is opt𝑗 = 1, then

𝑗 ’s contributions to the total proxy value and the total payment

are lower bounded by the two coordinates of 𝛼 · 𝑞 𝑗,𝑘 + (1 − 𝛼) ·
𝑟 ∈ R2+ respectively. This point is a convex combination of 𝑞 𝑗,𝑘

and 𝑟 . Observe that ∥𝑞 𝑗,𝑘 ∥1 ≤ 1 for all 𝑗 and 𝑘 , so 𝑞 𝑗,𝑘 generally

corresponds to the lossy component of the bound, whereas 𝑟 ∈ Δ1

generally corresponds to the lossless component. Intuitively, the

lossless component 𝑟 would not hurt the efficiency. Indeed, as we

will see later, the lossy component 𝑞 𝑗,𝑘 dominates the PoA of the

generalized second-price auction.

It may appear that the above lemma is unnecessarily complicated

by the way it is presented (e.g., the use of points in R2+), but we
will see how this helps in the next part of the analysis where we

aggregate the contributions. Also note that the lemma provides

bounds on random variables, which is intentional. The rest of the

subsection is devoted to the proof of the lemma.

Proof of Lemma 4.1. Fix some auction 𝑗 . Without loss of gen-

erality, suppose 𝑖∗ ( 𝑗, 𝑘) = 𝑘 for each 𝑘 ∈ [𝑛], i.e., bidder 𝑘 has the

𝑘-th largest value.

Warm-up: when bidder 1would win the first slot. We first consider

the case where bidder 1 would win the first slot when bidding

their true value. In this case, we argue that the contribution of

auction 𝑗 to the value and the payment together is at least opt𝑗 .
This corresponds to 𝛼 = 0 in the statement of the lemma. We only

need to show there exists 𝑟 ∈ Δ1
that satisfies the conditions in the

lemma. This is equivalent to the following:∑︁
𝑖∈[𝑛]

pval𝑖, 𝑗 +
∑︁
𝑖∈[𝑛]

𝑝𝑖, 𝑗 ≥ opt𝑗 .

We give a charging argument that implies the above, which also

serves as a warm-up for the more involved case that we will discuss

later. Recall that opt𝑗 =
∑
𝑘∈[𝑠 ] 𝑣𝑖∗ ( 𝑗,𝑘 ), 𝑗 ·𝑑 𝑗,𝑘 . Intuitively, in a charg-

ing argument, we would like to cover each 𝑣𝑖∗ ( 𝑗,𝑘 ), 𝑗 · 𝑑 𝑗,𝑘 by two

parts: the proxy value obtained by bidder 𝑖∗ ( 𝑗, 𝑘), i.e., pval𝑖∗ ( 𝑗,𝑘 ), 𝑗 ,
and a fraction of total payment

∑
𝑖∈[𝑛] 𝑝𝑖, 𝑗 in auction 𝑗 . The goal

of a charging argument is to properly select 𝑥𝑘 for each 𝑘 such that

pval𝑖∗ ( 𝑗,𝑘 ), 𝑗 + 𝑥𝑘 ≥ 𝑣𝑖∗ ( 𝑗,𝑘 ), 𝑗 · 𝑑 𝑗,𝑘 while

∑
𝑘 𝑥𝑘 not exceeding the

total payment

∑
𝑖∈[𝑛] 𝑝𝑖, 𝑗 . In particular, we will say “we charge 𝑥𝑘

to bidder 𝑖∗ ( 𝑗, 𝑘)”.
Our charging scheme is illustrated in Figure 1. The idea is to

differentiate the discount factors into “mass points”, and consider

the contribution to opt𝑗 of every mass point. For example, the top

left mass point in each subfigure corresponds to 𝑑 𝑗,1 − 𝑑 𝑗,2. The

mass points in each row are equivalent to each other. We use the

color of a mass point to represent the magnitude of the value or

payment associated with this mass point before discounting. For

example, the first column in the top left subfigure is black, which

means the summation of the values associated with black points in

the first column is 𝑣1, 𝑗 , the largest value in auction 𝑗 . Similarly, 𝑣2, 𝑗
and 𝑣3, 𝑗 correspond to dark grey and light grey respectively. Since

bidder 1 would win the first slot when they bid their true value,

the proxy value of bidder 1 in auction 𝑗 is the contribution of this

column, which is

𝑣1, 𝑗 ·[(𝑑 𝑗,1−𝑑 𝑗,2)+(𝑑 𝑗,2−𝑑 𝑗,3)+(𝑑 𝑗,3−𝑑 𝑗,4)+(𝑑 𝑗,4−𝑑 𝑗,5)+𝑑 𝑗,5] = 𝑣1, 𝑗 ·𝑑 𝑗,1 .

This is the same as bidder 1’s contribution to opt𝑗 , which is always

true in the case under discussion. As a result, we only need to bound

the proxy values of other bidders.

To illustrate the idea of the charging scheme, assume there are

only 3 bidders with positive values in auction 𝑗 (we will give a

fully general argument later). Moreover, bidders 2 and 3 would

win slots 3 and 5 when they bid their true values respectively. We

show that the proxy value of bidders 2 and 3 in auction 𝑗 plus the

payment made in auction 𝑗 is at least the contribution of bidders 2

and 3 to opt𝑗 . Take bidder 2 for example. Bidder 2’s proxy value is

𝑣2, 𝑗 · 𝑑 𝑗,3, and their contribution to opt𝑗 is 𝑣2, 𝑗 · 𝑑 𝑗,2, which means

in order to cover bidder 2’s contribution to opt𝑗 , we need to charge
𝑣2, 𝑗 · (𝑑 𝑗,2−𝑑 𝑗,3) from others’ payment to bidder 2. Here, we need to

pay special attention to two things: (1) we should never charge the

same mass point to two bidders,
3
and (2) the payment associated

with any mass point should never be less than the value of the

bidder to which the mass point is charged. To guarantee (1), we

divide the triangle of mass points into diagonal sequences, and

charge only points in the 𝑖-th sequence from the top to bidder 𝑖 , as

illustrated in the top right subfigure. More specifically, we charge

any mass point in the sequence that is equivalent to a mass point

in the difference between the contribution to opt𝑗 and the proxy

value of a bidder to that bidder.

To see why (2) is guaranteed, observe that any mass point in this

difference must lie to the left of the column corresponding to the

slot that the bidder would win, with at least one column in between

separating the two. Again, take bidder 2 for example. As illustrated

in the top right subfigure, the rightmost (and only) point in the

difference within the second diagonal sequence is the second point

in the first column in dark grey, whereas the column corresponding

to the slot that bidder 2 would win is the third column, with the

second column in between separating the two. We know that the

second highest bidder under the fixed bidding strategy 𝒃 , whose
slot corresponds to the second column, bids at least 𝑣2, 𝑗 . By the

payment rule, this means the payment before discounting made

by the bidder with the highest bid, whose slot corresponds to the

first column, is at least 𝑣2, 𝑗 . So, property (2) holds when charging

the second point in the first column to bidder 2. Similarly, one can

check that the light grey points charged to bidder 3 also respect

property (2). After performing the above charging, the total proxy

value received by bidders 2 and 3 and the payment charged to

the same bidders are illustrated in the bottom left subfigure. One

can compare this to the contribution of these two bidders to opt𝑗
illustrated in the bottom right subfigure, and conclude that they

are equivalent.

Nowwe present a fully general argument. For each bidder 𝑖 ∈ [𝑠],
we argue that the proxy value plus the payment charged to 𝑖 is at

least 𝑖’s contribution to opt𝑗 . Suppose the slot 𝑖 would win when

bidding 𝑣𝑖, 𝑗 is 𝑘 (where 𝑘 = 𝑠 + 1 if 𝑖 would not win any of the 𝑠

slots). Consider the following cases:

3
Note that we can still charge a mass point even if it already contributes to the proxy

value of a bidder. This is not illustrated in the example in Figure 1.
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Figure 1: Charging scheme used in the case where bidder 1 would win the first slot.

• If 𝑖 = 1, then 𝑘 = 1, and pval𝑖, 𝑗 = 𝑣1, 𝑗 · 𝑑 𝑗,1 is precisely 𝑖’s
contribution to opt𝑗 .

• If 𝑖 > 1 and 𝑘 ≤ 𝑖 , then pval𝑖, 𝑗 is at least 𝑖’s contribution to

opt𝑗 , i.e.,

pval𝑖, 𝑗 = 𝑣𝑖, 𝑗 · 𝑑 𝑗,𝑘 ≥ 𝑣𝑖, 𝑗 · 𝑑 𝑗,𝑖 .
• If 𝑖 > 1 and 𝑘 > 𝑖 , we need to charge at least 𝑣𝑖, 𝑗 · (𝑑 𝑗,𝑖−𝑑 𝑗,𝑘 )

to 𝑖 in terms of payment. The mass points we charge to 𝑖 are

{(1, 𝑖), (2, 𝑖+1), . . . , (𝑘−𝑖, 𝑘−1)}, where the two coordinates
correspond to the indices of the column (from the left) and

the row (from the top), respectively. Observe that the largest

𝑘 − 1 bids are at least 𝑖’s value 𝑣𝑖, 𝑗 ; otherwise, 𝑖 would win

a slot < 𝑘 using the phantom bidding strategy. Therefore,

for any ℓ < 𝑘 − 1, the payment before discounting made by

𝑖 ( 𝑗, ℓ) has the following lower bound:
𝑝𝑖 ( 𝑗,ℓ ), 𝑗/𝑑 𝑗,ℓ = 𝑏𝑖 ( 𝑗,ℓ+1), 𝑗 ≥ 𝑏𝑖 ( 𝑗,𝑘−1), 𝑗 ≥ 𝑣𝑖, 𝑗 .

So the total payment charged to 𝑖 is∑︁
1≤ℓ≤𝑘−𝑖

(𝑝𝑖 ( 𝑗,ℓ ), 𝑗/𝑑 𝑗,ℓ ) · (𝑑 𝑗,𝑖−1+ℓ − 𝑑 𝑗,𝑖+ℓ )

≥
∑︁

1≤ℓ≤𝑘−𝑖
𝑣𝑖, 𝑗 · (𝑑 𝑗,𝑖+1−ℓ − 𝑑 𝑗,𝑖+2−ℓ )

= 𝑣𝑖, 𝑗 · (𝑑 𝑗,𝑖 − 𝑑 𝑗,𝑘 ),
which is the difference to be filled between 𝑖’s contribution

to opt𝑗 and 𝑖’s proxy value in 𝑗 .

Finally, observe that no mass point is used twice across different

bidders in the third case above. This means∑︁
𝑖∈[𝑛]

pval𝑖, 𝑗 +
∑︁
𝑖∈[𝑛]

𝑝𝑖, 𝑗 ≥ opt𝑗 ,

which establishes the lemma in the case where 𝑣1, 𝑗 ≥ 𝑏𝑖 ( 𝑗,1), 𝑗 .

When bidder 1 would not win the first slot. Now consider the

more challenging case where 𝑣1, 𝑗 < 𝑏𝑖 ( 𝑗,1), 𝑗 , i.e., bidder 1’s value
is smaller than the highest bid. Suppose bidder 1 would win the

(𝑘 + 1)-th slot if they bid their true value (where 𝑘 = 𝑠 if bidder

1 would not win any of the 𝑠 slots). Then the largest 𝑘 bids are at

least 𝑣1, 𝑗 . We will argue about the contribution of bidders 1, . . . , 𝑘

and the contribution of bidders 𝑘 + 1, . . . , 𝑛 separately, using dif-

ferent charging schemes. In particular, we will cover most of the

contribution of the first 𝑘 bidders with highest values to opt𝑗 using
the proxy value of bidder 1 and the payment made by the bidders

who win the first 𝑘 − 1 slots under 𝒃 . This corresponds to 𝑞 𝑗,𝑘 in

the statement of the lemma. Then, for the other 𝑛 − 𝑘 bidders, we

reuse the charging scheme in the first case of the proof, and show

that the proxy value of these bidders and the payment made by the

bidders who win the other 𝑠 −𝑘 + 1 slots under 𝒃 together cover the

full contribution of these 𝑛 −𝑘 bidders. This corresponds to 𝑟 in the

statement of the lemma. The parameter 𝛼 ∈ [0, 1] then captures

how opt𝑗 is split between these two sets of bidders.
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Figure 2: Charging scheme used in the case where bidder 1 would not win the first slot.

For the first 𝑘 bidders, we use a new charging scheme, which

is depicted in Figure 2. Again, we first present the argument in an

intuitive way using a simple example. Suppose 𝑘 = 2, i.e., bidder

1 would win slot 3 when bidding 𝑣1, 𝑗 . As illustrated in the top left

subfigure, this means two things: (1) the proxy value of bidder 1 is

𝑣1, 𝑗 · 𝑑 𝑗,3, and (2) the top 2 bids under 𝒃 (corresponding to slots 1

and 2) are at least 𝑣1, 𝑗 , so the top 1 payment (corresponding to slot

1) is at least 𝑣1, 𝑗 . To see how this almost covers the contribution

of bidders 1 and 2 to opt𝑗 , we shift the proxy value in the third

column to the left, as shown in the top right subfigure. Then, the

payment in the first column covers the full contribution of bidder

1. As for bidder 2, the worst-case situation is where 𝑣2, 𝑗 = 𝑣1, 𝑗 ,

in which case the black points in the second column covers the

contribution of bidder 2 except for the top mass point in the column,

which is inevitably lost in the charging scheme. So for the first 2

bidders, their total proxy value covers at least 𝑑 𝑗,3/(𝑑 𝑗,1 + 𝑑 𝑗,2)
of their contribution to opt𝑗 , and the payment charged to them

covers at least 𝑑 𝑗,1/(𝑑 𝑗,1 + 𝑑 𝑗,2) of their contribution to opt𝑗 . This
corresponds to 𝑞 𝑗,2 in the statement of the lemma.

Now we still need to cover the contribution of bidders 3, 4, and

5, and as depicted in the bottom left subfigure, the mass points that

are still available for charging is everything except those in the

first column, which were already charged when covering bidders

1 and 2. So we have a 4-by-4 triangle of mass points that can be

used to cover 3 bidders, and we can reuse the charging scheme

introduced in the case where bidder 1 would win slot 1 to fully

cover the contribution of these 3 bidders. This is illustrated in the

bottom right subfigure. For example, if bidder 3 would win slot

4, then the proxy value of bidder 3 is 𝑣3, 𝑗 · 𝑑 𝑗,4, and we still need

to charge a mass point that is worth 𝑣3, 𝑗 · (𝑑 𝑗,3 − 𝑑 𝑗,4) to bidder 3
in terms of payment. For this we choose the second point in the

second column, which has the right mass. Moreover, the payment

before discounting corresponding to the second column is at least

𝑣3, 𝑗 , again because it is separated from the fourth column where

bidder 3 would be. Similarly, we can charge other points to bidders

4 and 5 to cover all their contribution to opt𝑗 .
Now we present a fully general argument. First consider bidders

1, . . . , 𝑘 . The goal is to show that the total proxy value of these 𝑘

bidders is at least 𝑑 𝑗,𝑘+1/
∑
ℓ≤𝑘 𝑑 𝑗,ℓ of their contribution to opt𝑗 ,

and charge an amount of payment to these bidders that is at least∑
ℓ<𝑘 𝑑 𝑗,ℓ/

∑
ℓ≤𝑘 𝑑 𝑗,ℓ of their contribution to opt𝑗 . For the first part,

it suffices to consider the proxy value of bidder 1, which is

pval
1, 𝑗 = 𝑣1, 𝑗 · 𝑑 𝑗,𝑘+1 =

𝑑 𝑗,𝑘+1∑
ℓ≤𝑘 𝑑 𝑗,ℓ

·
(∑︁
𝑖≤𝑘

𝑣1, 𝑗 · 𝑑 𝑗,𝑖

)
≥

𝑑 𝑗,𝑘+1∑
ℓ≤𝑘 𝑑 𝑗,ℓ

·
(∑︁
𝑖≤𝑘

𝑣𝑖, 𝑗 · 𝑑 𝑗,𝑖

)
,

where the inequality is because 𝑣𝑖, 𝑗 ≤ 𝑣1, 𝑗 for all 𝑖 ∈ [𝑛]. For the
second part, we charge all the payment made by bidders who win
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the first 𝑘 − 1 slots under 𝒃 to bidders 2, . . . , 𝑘 . The amount we get

is ∑︁
ℓ≤𝑘−1

𝑝𝑖 ( 𝑗,ℓ ), 𝑗 =
∑︁

ℓ≤𝑘−1
𝑑 𝑗,ℓ · 𝑏𝑖 ( 𝑗,ℓ+1), 𝑗 ≥

∑︁
ℓ≤𝑘−1

𝑑 𝑗,ℓ · 𝑏𝑖 ( 𝑗,𝑘 ), 𝑗

≥
∑︁

ℓ≤𝑘−1
𝑑 𝑗,ℓ · 𝑣1, 𝑗 =

∑
ℓ<𝑘 𝑑 𝑗,ℓ∑
ℓ≤𝑘 𝑑 𝑗,ℓ

·
∑︁
𝑖≤𝑘

𝑣1, 𝑗 · 𝑑 𝑗,𝑖

(bidder 1 would win slot 𝑘 + 1 when bidding 𝑣1, 𝑗 )

≥
∑
ℓ<𝑘 𝑑 𝑗,ℓ∑
ℓ≤𝑘 𝑑 𝑗,ℓ

·
∑︁
𝑖≤𝑘

𝑣𝑖, 𝑗 · 𝑑 𝑗,𝑖 . (𝑣1, 𝑗 ≥ 𝑣𝑖, 𝑗 )

This takes care of bidders 1, . . . , 𝑘 . One can check that the argument

goes through even if 𝑘 = 𝑠 , i.e., when bidder 1 would not win a slot

when bidding 𝑣1, 𝑗 .

Now consider bidders 𝑘 + 1, . . . , 𝑠 (if 𝑘 < 𝑠). The goal here is to

show that the total proxy value of these 𝑠 − 𝑘 bidders plus the total

payment charged to them is at least their contribution to opt𝑗 . The
argument is essentially the same as the one used in the first case of

the proof, where bidder 1 would win slot 1 when bidding 𝑣1, 𝑗 . For

each 𝑖 ∈ {𝑘 + 1, . . . , 𝑠}, let 𝑘′ be the slot 𝑖 would win when bidding

𝑣𝑖, 𝑗 . Consider two cases:

• If 𝑘′ ≤ 𝑖 , then pval𝑖, 𝑗 is at least 𝑖’s contribution to opt𝑗 .
• If 𝑘′ > 𝑖 , we need to charge at least 𝑣𝑖, 𝑗 · (𝑑 𝑗,𝑖 − 𝑑 𝑗,𝑘 ′ ) to 𝑖

in terms of payment. The mass points we charge to 𝑖 are

{(𝑘, 𝑖), (𝑘+1, 𝑖+1), . . . , (𝑘−1+𝑘′−𝑖, 𝑘′−1)}, where again the
two coordinates correspond to the indices of the column

(from the left) and the row (from the top), respectively.

Observe that the largest 𝑘′ − 1 bids are at least 𝑖’s value 𝑣𝑖, 𝑗 ,

so for any ℓ < 𝑘′ − 1, the payment before discounting made

by 𝑖 ( 𝑗, ℓ) has the following lower bound:

𝑝𝑖 ( 𝑗,ℓ ), 𝑗/𝑑 𝑗,ℓ = 𝑏𝑖 ( 𝑗,ℓ+1), 𝑗 ≥ 𝑏𝑖 ( 𝑗,𝑘 ′−1), 𝑗 ≥ 𝑣𝑖, 𝑗 .

So the total payment charged to 𝑖 is∑︁
𝑘≤ℓ≤𝑘−1+𝑘 ′−𝑖

(𝑝𝑖 ( 𝑗,ℓ ), 𝑗/𝑑 𝑗,ℓ ) · (𝑑 𝑗,𝑖−𝑘+ℓ − 𝑑 𝑗,𝑖−𝑘+ℓ+1)

≥
∑︁

𝑘≤ℓ≤𝑘−1+𝑘 ′−𝑖
𝑣𝑖, 𝑗 · (𝑑 𝑗,𝑖−𝑘+ℓ − 𝑑 𝑗,𝑖−𝑘+ℓ+1)

= 𝑣𝑖, 𝑗 · (𝑑 𝑗,𝑖 − 𝑑 𝑗,𝑘 ′ ),

as desired.

Finally, observe that (1) the above charging scheme for bidders

𝑘 + 1, . . . , 𝑠 only uses mass points in columns 𝑘, . . . , 𝑠 , and (2) each

mass point is used at most once across bidders 𝑘 + 1, . . . 𝑠 . This

means ∑︁
𝑘+1≤𝑖≤𝑠

pval𝑖, 𝑗 +
∑︁

𝑘≤ℓ≤𝑠
𝑝𝑖 ( 𝑗,ℓ ), 𝑗 ≥

∑︁
𝑘+1≤𝑖≤𝑠

𝑣𝑖, 𝑗 · 𝑑 𝑗,𝑖 .

Now we put together the bounds for the two sets of bidders to

conclude the proof. Let 𝛼 be the unique number in [0, 1] such that∑︁
𝑖≤𝑘

𝑣𝑖, 𝑗 · 𝑑 𝑗,𝑖 = 𝛼 · opt𝑗 ,
∑︁

𝑘+1≤𝑖≤𝑠
𝑣𝑖, 𝑗 · 𝑑 𝑗,𝑖 = (1 − 𝛼) · opt𝑗 .

The bounds we have for bidders 1, . . . , 𝑘 now become∑︁
𝑖≤𝑘

pval𝑖, 𝑗 ≥ 𝛼 · 𝑞 𝑗,𝑘
1

· opt𝑗 ,∑︁
ℓ≤𝑘−1

𝑝𝑖 ( 𝑗,ℓ ), 𝑗 ≥ 𝛼 · 𝑞 𝑗,𝑘
2

· opt𝑗 .

Moreover, the bounds we have for bidders 𝑘 + 1, . . . , 𝑠 imply the

existence of 𝑟 ∈ Δ1
such that∑︁

𝑘+1≤𝑖≤𝑠
pval𝑖, 𝑗 ≥ (1 − 𝛼) · 𝑟1 · opt𝑗 ,∑︁

𝑘≤ℓ≤𝑠
𝑝𝑖 ( 𝑗,ℓ ), 𝑗 ≥ (1 − 𝛼) · 𝑟2 · opt𝑗 .

Adding together the respective bounds for the proxy value and the

payment, we get∑︁
𝑖∈[𝑛]

pval𝑖, 𝑗 ≥ (𝛼 · 𝑞 𝑗,𝑘
1

+ (1 − 𝛼) · 𝑟1) · opt𝑗 ,∑︁
𝑖∈[𝑛]

𝑝𝑖, 𝑗 ≥ (𝛼 · 𝑞 𝑗,𝑘
2

+ (1 − 𝛼) · 𝑟2) · opt𝑗 .

This concludes the proof. □

5 AGGREGATING THE CONTRIBUTIONS OF
ALL AUCTIONS

Lemma 4.1 bounds the contributions of each auction to the total

proxy value and the total payment. In order to obtain a PoA bound,

we need to aggregate the bounds provided by Lemma 4.1 over all

auctions in a worst-case fashion. This subsection is devoted to such

an aggregation argument. By the end of the subsection, we will

have proved the main result of the paper, stated below.

Theorem 5.1. For any𝑚, 𝑠 , and {𝑑 𝑗,𝑘 }, let 𝑗0 = argmin𝑗∈[𝑚]
𝑑 𝑗,2

𝑑 𝑗,1
.

Then

PoA(𝑚, 𝑠, {𝑑 𝑗,𝑘 }) ≥

min

𝑗∈[𝑚],𝑘∈{2,...,𝑠 }

𝑑 𝑗0,2 ·
∑
ℓ<𝑘 𝑑 𝑗,ℓ

𝑑 𝑗0,1 ·
∑
ℓ<𝑘 𝑑 𝑗,ℓ − 𝑑 𝑗0,1 · 𝑑 𝑗,𝑘+1 + 𝑑 𝑗0,2 ·

∑
ℓ≤𝑘 𝑑 𝑗,ℓ

.

The above bound inevitably has a complex form. Nevertheless, as

discussed in the intial part of the proof, it has an intuitive geometric

interpretation: The bound is the 𝑥- or 𝑦-coordinate (they are the

same) of the lower intersection of the convex closure of {𝑞 𝑗,𝑘 }
and the line 𝑥 = 𝑦. Later we will also present a simplified (but

looser) version of the bound in Corollary 5.2. We defer the proof of

Theorem 5.1 to the appendix due to space constraints.

A simplified bound. Now we present a simplified bound on the

PoA of the generalized second-price auction, which can be obtained

by considering the sum of the contributions to the value and the

payment as in Lemma 4.1. This bound can be viewed as an approxi-

mation of Theorem 5.1. Geometrically, as we will see, the way we

derive this bound is equivalent to considering a tangent line of

the convex closure of {𝑞 𝑗,𝑘 }. Conceptually, this simplified bound

highlights the qualitative relation between the smoothness of the

discount factors and the efficiency of the generalized second-price

auction.
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Corollary 5.2. For any𝑚, 𝑠 , and {𝑑 𝑗,𝑘 },

PoA(𝑚, 𝑠, {𝑑 𝑗,𝑘 }) ≥ min

𝑗∈[𝑚],𝑘∈[𝑠 ]
1

2

·
∑
ℓ<𝑘 𝑑 𝑗,ℓ + 𝑑 𝑗,𝑘+1∑

ℓ≤𝑘 𝑑 𝑗,ℓ
.

Proof. The statement can be derived from Theorem 5.1 by relax-

ing the bound therein. Here we present a more intuitive geometric

argument that relies on Lemma 4.1. Recall that the bound in Theo-

rem 5.1 corresponds to the lower intersection of the convex closure

of {𝑞 𝑗,𝑘 } and the line 𝑥 = 𝑦. This can be relaxed to the intersection

of the tangent line of the convex closure that is parallel to 𝑥 +𝑦 = 1,

and the line 𝑥 = 𝑦. Below we argue that the latter intersection

corresponds to the bound in the statement to be proved.

Observe that the tangent line that we care about must be induced

by the point in {𝑞 𝑗,𝑘 } with the smallest sum of the two coordinates.

Moreover, the intersection between this tangent line and 𝑥 = 𝑦

must have the same sum of the two coordinates, which means each

coordinate of the intersection is precisely half of the sum. Recall

that the sum of the two coordinates of each 𝑞 𝑗,𝑘 is

∑
ℓ<𝑘 𝑑 𝑗,ℓ+𝑑 𝑗,𝑘+1∑

ℓ≤𝑘 𝑑 𝑗,ℓ
.

Taking the minimum over 𝑗 and 𝑘 and dividing it by two gives the

bound to be proved. □

Note that the simplified bound can never be actually attained:

In order for the simplified bound to be equal to the bound in The-

orem 5.1, it has to be the case that the lower intersection of the

convex closure and 𝑥 = 𝑦 is some point in {𝑞 𝑗,𝑘 }, say 𝑞 𝑗∗,𝑘∗
. Then

we know that 𝑞
𝑗∗,𝑘∗

1
= 𝑞

𝑗∗,𝑘∗

2
, which can only happen when 𝑘∗ = 2

and 𝑑 𝑗∗,1 = 𝑑 𝑗∗,2 = 𝑑 𝑗∗,3. This means 𝑞
𝑗∗,𝑘∗

1
= 𝑞

𝑗∗,𝑘∗

2
= 1/2, and

the simplified bound would be 1/2. However, the latter is impos-

sible, because the PoA of the generalized second-price auction is

always strictly worse than 1/2. This also highlights the necessity

of our aggregation argument used in the proof of Theorem 5.1 for

establishing a tight PoA bound.

6 TIGHTNESS OF THE BOUND
Now we discuss the tightness of the bound. The notion of tightness

we consider is a worst-in-class one: We show that among all in-

stances that share the same bound as given by Theorem 5.1, there

is one for which the bound is tight.

Theorem 6.1. For any 𝑡 ∈ (0, 1
2
), there exists a positive integer

𝑠 ≥ 2 and a real number 𝑥 ∈ R+, such that if we set𝑚 = 𝑠 , 𝑑 𝑗,1 = 𝑥 +1
for each 𝑗 ∈ [𝑚], and 𝑑 𝑗,𝑘 = 1 for each 𝑗 ∈ [𝑚] and 𝑘 > 1, then

• PoA(𝑚, 𝑠, {𝑑 𝑗,𝑘 }) = 𝑡 , and
• 𝑠−1+𝑥

(1+𝑥 ) · (𝑠−1+𝑥 )+𝑠+𝑥 = 𝑡 .

In particular, the quantity in the second condition is the bound given
in Theorem 5.1 evaluated on the instance (𝑚, 𝑠, {𝑑𝑖, 𝑗 }).

Proof. We first pick 𝑠 and 𝑥 satisfying the second condition.

Observe two facts:

• When 𝑥 = 0, the quantity reduces to
𝑠−1
2𝑠−1 , which increases

as 𝑠 increases and goes to 1/2.
• Fixing any 𝑠 , when 𝑥 goes to∞, the quantity goes to 0.

So one way to pick (𝑠, 𝑥) is to let 𝑠 be any positive integer such

that
𝑠−1
2𝑠−1 ≥ 𝑡 , and there must exist 𝑥 such that (𝑠, 𝑥) satisfies the

second condition.

Suppose without loss of generality ties are broken in favor of

bidders with smaller indices. We construct a valuation profile {𝑣𝑖, 𝑗 }
with 𝑛 = 2𝑠 bidders and deterministic bidding strategies 𝒃 that form

an equilibrium, parametrized by some 𝜀 > 0, where∑
𝑖, 𝑗 val𝑖, 𝑗∑
𝑗 opt𝑗

→ 𝑡, as 𝜀 → 0.

We partition the 𝑛 = 2𝑠 bidders into two groups each of size 𝑠 ,

{1, . . . , 𝑠} and {𝑠 + 1, . . . , 2𝑠}. Bidder 1 has value (1 + 𝜀) · (1 + 𝑥) in
auction 1, bidder 𝑠 has value 𝜀 in auction 1, while all other bidders

have value 0 in auction 1. For each 𝑖 ∈ {2, . . . , 𝑠 − 1}, bidder 𝑖 has
value (1 + 𝜀) in auction 𝑖 , bidder 𝑠 has value 𝜀 in auction 𝑖 , while

all other bidders have value 0 in auction 𝑖 . This fully specifies the

valuation profile in the first 𝑠 − 1 auctions. As for auction 𝑠 , each

bidder 𝑖 ∈ {𝑠 + 1, . . . , 2𝑠} in the second group has value 1, while all

bidders in the first group have value 0.

One equilibrium is where for each 𝑖 ∈ [𝑠−1], bidder 𝑖 bids𝑏𝑖,𝑖 = 𝜀

in auction 𝑖 , bidder 𝑠 bids ∞ in auction 𝑖 , while all other bidders 𝑖′

bid 𝑏𝑖′,𝑖 = 0 in auction 𝑖 . As a result, bidder 𝑠 wins the first slot in

each of these 𝑠 − 1 auctions, whereas bidder 𝑖 wins the second slot.

So bidder 𝑠 receives total value 𝜀 · (1+𝑥) · (𝑠 − 1) and pays the same

amount in total, bidder 1 receives value (1 + 𝜀) · (1 + 𝑥) in auction

1 and pays 0, and each bidder 𝑖 ∈ {2, . . . , 𝑠 − 1} receives value 1 + 𝜀

and pays 0 in auction 𝑖 . As for auction 𝑠 , each bidder 𝑖 ∈ [𝑠] in the

first group bids 𝑏𝑖,𝑚 = 1+ 𝜀, while each bidder 𝑖′ ∈ {𝑠 + 1, . . . , 2𝑠} in
the second group bids 𝑏𝑖′,𝑚 = 0. As a result, no bidder receives any

value in auction 𝑠 , bidder 1 pays (1 + 𝜀) · (1 + 𝑥), and each bidder

𝑖 ∈ [𝑠 − 1] pays 1 + 𝜀. One can check this is in fact an equilibrium,

since (1) the ROI constraint of each bidder is satisfied, (2) no bidder

𝑖 ∈ [𝑠 − 1] can win the first slot in auction 𝑖 without violating

their ROI constraint, and (3) no bidder in the second group can win

anything in auction 𝑠 without violating their ROI constraint.

Now we compute the ratio between the welfare in equilibrium

and the optimal welfare. The optimal welfare is simply∑︁
𝑗

opt𝑗 = opt
1
+ (𝑠 − 2) · opt

2
+ opt𝑠

= [(1 + 𝜀) · (1 + 𝑥) · (1 + 𝑥) + 𝜀]
+ (𝑠 − 2) · [(1 + 𝜀) · (1 + 𝑥) + 𝜀] + [(1 + 𝑥) + 𝑠 − 1]

= (1 + 𝑥) · (𝑠 − 1 + 𝑥) + 𝑠 + 𝑥 +𝑂 (𝜀),

where 𝑂 (·) hides a constant that depends on 𝑠 and 𝑥 . On the other

hand, the welfare in equilibrium is∑︁
𝑖, 𝑗

val𝑖, 𝑗 = val1,1 + (𝑠 − 2) · val𝑖,𝑖 + (𝑠 − 1) · val𝑠,1

= (1 + 𝑥) · (1 + 𝜀) + (𝑠 − 2) · (1 + 𝜀) + (𝑠 − 1) · 𝜀 · (1 + 𝑥)
= 𝑠 − 1 + 𝑥 +𝑂 (𝜀),

where again 𝑂 (·) hides a constant that depends on 𝑠 and 𝑥 . So the

ratio between the two goes to 𝑡 = 𝑠−1+𝑥
(1+𝑥 ) · (𝑠−1+𝑥 )+𝑠+𝑥 as 𝜀 goes to 0.

This concludes the proof. □
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A PROOF OF THEOREM 5.1
In this appendix we prove Theorem 5.1.

Proof of Theorem 5.1. Again we start with an intuitive geo-

metric interpretation in Figure 3, which also serves as an overview

of the proof. For simplicity, assume𝑚 = 2 and 𝑠 = 3. Lemma 4.1 is

visualized in the top left subfigure for auction 1. The dashed lines

connect points (which correspond to 𝑞1,𝑘 for 𝑘 ∈ [𝑠]) on the Pareto

frontier of auction 1, and the solid line 𝑥 +𝑦 = 1 corresponds to the

lossless component 𝑟 . The bounds given in Lemma 4.1 can only be

points within the region bounded by the dashed lines, 𝑥 +𝑦 = 1, and

the axes, as illustrated (some points within the region do not corre-

spond to bounds in Lemma 4.1). Note that everything is normalized

by the contribution of auction 1, opt
1
, in this subfigure.

Now in the top right subfigure, we further superimpose the

Pareto frontier of auction 2, and consider the aggregated contribu-

tion of auctions 1 and 2. Here, we view the respective contributions

of auctions 1 and 2 as points above the respective Pareto frontiers,

weighted by opt
1
and opt

2
. Then, the aggregated contribution of

the two auctions, normalized by opt
1
+opt

2
, is the weighted average

of these two points. Since the optimal welfare can be arbitrarily

distributed between the two auctions, the aggregated point can be

any convex combination of any two points in the respective regions.

In other words, the aggregated contribution of the two auctions

can be any point in the region bounded by solid lines, as illustrated.

To determine the worst-case aggregated bounds, consider the

bottom left subfigure. Recall that in expectation, the welfare in

equilibrium is lower bounded by both the total proxy value and the

total payment after aggregation (we will give a detailed argument

later). That is, both coorninates of the point corresponding to the

aggregated bounds are lower bounds of the welfare in equilibrium,

and the worst case is where the larger one of the two coordinates

is minimized. Now since the region bounding the aggregated point

is convex (it is the convex closure of the Pareto frontiers), the

worst case must be achieved when the two coordinates are equal.

Geometrically, this means the worst-case point is the intersection

of the lower envelope of {𝑞 𝑗,𝑘 } and the line 𝑥 = 𝑦, as illustrated in

the bottom left subfigure. This already gives a way for computing

the lower bound on the worst-case welfare in equilibrium.

To further simplify the bound, observe that the only points on

the right of the line 𝑥 = 𝑦 are {𝑞 𝑗,1} 𝑗∈[𝑚] . This is because for any
𝑗 and 𝑘 ≥ 2, ∑︁

ℓ<𝑘

𝑑 𝑗,ℓ ≥ 𝑑𝑘+1,ℓ ,

which means the 𝑦-coordinate of the point is no smaller than the

𝑥-coordinate. So, the intersection corresponding to the worst-case

bounds must be induced by some point from {𝑞 𝑗,1} 𝑗∈[𝑚] , and
some point from the rest of the Pareto frontiers. Moreover, the

𝑦-coordinate of each 𝑞 𝑗,1 is 0, so there is a worst point among {𝑞 𝑗,1}
regardless of which other point we pick, and the worst point is the

one with the smallest 𝑥-coordinate. Once we fix this worst point, we

only need to consider each point in the rest of the Pareto frontiers

and find the one inducing the worst-case bounds in combination

with the fixed point. This is illustrated in the bottom right subfigure.

Now we give a fully general proof. To aggregate Lemma 4.1

over auctions, we will show that there exist weights𝑤 𝑗,𝑘 for each

𝑗 ∈ [𝑚] and 𝑘 ∈ [𝑠] where ∑
𝑗,𝑘 𝑤 𝑗,𝑘 = 1, such that

∑︁
𝑖, 𝑗

pval𝑖, 𝑗 ≥ 𝑞1 ·
∑︁
𝑗

opt𝑗 ,
∑︁
𝑖, 𝑗

𝑝𝑖, 𝑗 ≥ 𝑞2 ·
∑︁
𝑗

opt𝑗

where𝑞 =
∑
𝑖, 𝑗 𝑤 𝑗,𝑘 ·𝑞 𝑗,𝑘 . Here we closely follow the plan illustrated

in Figure 3. By Lemma 4.1, for each 𝑗 , there exists 𝑘1 and 𝑘2 ∈ [𝑠],
9
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Figure 3: Geometric interpretation of the aggregation argument.

and𝑤1 and𝑤2 ∈ R+ where𝑤1 +𝑤2 = 1, such that∑︁
𝑖

pval𝑖, 𝑗 ≥ (𝑤1 · 𝑞 𝑗,𝑘1 +𝑤2 · 𝑞 𝑗,𝑘2 )1 · opt𝑗 ,∑︁
𝑖

𝑝𝑖, 𝑗 ≥ (𝑤1 · 𝑞 𝑗,𝑘1 +𝑤2 · 𝑞 𝑗,𝑘2 )2 · opt𝑗 .

In particular, this is because the lower envelope of {𝑞 𝑗,𝑘 }𝑘 is below

Δ1. So for 𝑗 , we let

𝑤 𝑗,𝑘1 = 𝑤1 ·
opt𝑗∑
𝑗 ′ opt𝑗 ′

, 𝑤 𝑗,𝑘2 = 𝑤2 ·
opt𝑗∑
𝑗 ′ opt𝑗 ′

,

and 𝑤 𝑗,𝑘 = 0 for 𝑘 ∈ [𝑠] \ {𝑘1, 𝑘2}. One can check {𝑤 𝑗,𝑘 } satisfy
the condition above.

The existence of these weights means that the lower bounds

normalized by the optimal welfare is a point in the convex closure

of {𝑞 𝑗,𝑘 }. Given this, we consider the worst-case point and the

corresponding lower bound of the welfare. As illustrated in Figure 3,

the worst-case point is the intersection of the lower envelope of

{𝑞 𝑗,𝑘 } with the line 𝑥 = 𝑦. Moreover, as discussed earlier, since

{𝑞 𝑗,1} are the only points on the right of 𝑥 = 𝑦, we only need to

consider segments between pairs of points in {𝑞 𝑗,1} × {𝑞 𝑗,𝑘 }𝑘>1.
And since 𝑞

𝑗,1

2
= 0 for all 𝑗 , we can further restrict to the leftmost

point in {𝑞 𝑗,1}, whose index is 𝑗0 = argmin𝑗
𝑑 𝑗,2

𝑑 𝑗,1
. For each 𝑗 and

𝑘 > 1, one can then compute the 𝑥- or 𝑦-coordinate (they are the

same) of the intersection of 𝑥 = 𝑦 and the line determined by 𝑞 𝑗0,1

and 𝑞 𝑗,𝑘 , which is

𝑑 𝑗0,2 ·
∑
ℓ<𝑘 𝑑 𝑗,ℓ

𝑑 𝑗0,1 ·
∑
ℓ<𝑘 𝑑 𝑗,ℓ − 𝑑 𝑗0,1 · 𝑑 𝑗,𝑘+1 + 𝑑 𝑗0,2 ·

∑
ℓ≤𝑘 𝑑 𝑗,ℓ

.

Taking the minimum over 𝑗 and 𝑘 > 1, we get

max

{∑
𝑖, 𝑗 pval𝑖, 𝑗 ,

∑
𝑖, 𝑗 𝑝𝑖, 𝑗

}∑
𝑗 opt𝑗

≥

min

𝑗∈[𝑚],𝑘∈{2,...,𝑠 }

𝑑 𝑗0,2 ·
∑
ℓ<𝑘 𝑑 𝑗,ℓ

𝑑 𝑗0,1 ·
∑
ℓ<𝑘 𝑑 𝑗,ℓ − 𝑑 𝑗0,1 · 𝑑 𝑗,𝑘+1 + 𝑑 𝑗0,2 ·

∑
ℓ≤𝑘 𝑑 𝑗,ℓ

.

The only step left is to relax the left hand side of the above to

the PoA. To this end, we only need to show that in equilibrium,∑︁
𝑖, 𝑗

E[val𝑖, 𝑗 ] ≥
∑︁
𝑖, 𝑗

E[pval𝑖, 𝑗 ],
∑︁
𝑖, 𝑗

E[val𝑖, 𝑗 ] ≥
∑︁
𝑖, 𝑗

E[𝑝𝑖, 𝑗 ] .

The latter follows directly from each bidder 𝑖’s ROI constraint. As for

the former, since 𝒃 consist of equilibrium strategies, fixing 𝒃−𝑖 , each
bidder 𝑖 must be maximizing their expected total value subject to

the ROI constraint. On the other hand, the ROI constraint is satisfied

under the proxy bidding strategy 𝑏𝑖, 𝑗 = 𝑣𝑖, 𝑗 , so the expected proxy

value cannot exceed the actual expected value in equilibrium. That

is, for each 𝑖 ∈ [𝑛],∑︁
𝑗

E[val𝑖, 𝑗 ] ≥
∑︁
𝑗

E[pval𝑖, 𝑗 ] .
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Summing over 𝑖 gives the desired bound. This concludes the proof

of the theorem. □
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