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ABSTRACT

Class imbalance remains a major challenge in machine learning, especially for
high-dimensional biomedical data where nonlinear manifold structures dominate.
Traditional oversampling methods such as SMOTE rely on local linear interpo-
lation, often producing implausible synthetic samples. Deep generative models
like Conditional Variational Autoencoders (CVAEs) better capture nonlinear dis-
tributions, but standard variants treat all minority samples equally, neglecting the
importance of uncertain, boundary-region examples emphasized by heuristic meth-
ods like Borderline-SMOTE and ADASYN. We propose Local Entropy-Guided
Oversampling with a CVAE (LEO-CVAE), a generative oversampling framework
that explicitly incorporates local uncertainty into both representation learning
and data generation. To quantify uncertainty, we compute Shannon entropy over
the class distribution in a sample’s neighborhood: high entropy indicates greater
class overlap, serving as a proxy for uncertainty. LEO-CVAE leverages this sig-
nal through two mechanisms: (i) a Local Entropy-Weighted Loss (LEWL) that
emphasizes robust learning in uncertain regions, and (ii) an entropy-guided sam-
pling strategy that concentrates generation in these informative, class-overlapping
areas. Applied to clinical genomics datasets (ADNI and TCGA lung cancer),
LEO-CVAE consistently improves classifier performance, outperforming both tra-
ditional oversampling and generative baselines. These results highlight the value
of uncertainty-aware generative oversampling for imbalanced learning in domains
governed by complex nonlinear structures, such as omics data.

1 INTRODUCTION

The class imbalance problem, characterized by a severely skewed distribution of samples across
classes, remains a critical challenge in machine learning (Chen et al., 2024). Standard learning
algorithms, optimized for overall accuracy, tend to develop a strong predictive bias towards the
majority class (Das et al., 2018). Consequently, instances from the minority class, which are often of
greatest interest in high-stakes domains like medical diagnosis, fraud detection, and industrial fault
prediction, are frequently misclassified (Buda et al., 2018; Makki et al., 2019; Malhotra & Kamal,
2019).

To mitigate this issue, a variety of techniques have been developed, broadly categorized into algorithm-
level and data-level approaches (Gao et al., 2025; Yang et al., 2024; Buda et al., 2018). Among
these, data-level oversampling methods are particularly popular due to their model-agnostic nature
(Chen et al., 2024; Buda et al., 2018). The simplest approach, Random Oversampling (Japkowicz,
2000), duplicates minority samples but risks severe overfitting. A more sophisticated alternative,
the Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002), generates new
samples via linear interpolation between neighboring minority instances. SMOTE has become a
foundational baseline and has inspired a wide range of variants (Fernández et al., 2018; Douzas et al.,
2018; Douzas & Bação, 2019; Kunakorntum et al., 2020; Li et al., 2025a; Wang et al., 2025b). For
example, Borderline-SMOTE (Han et al., 2005) and ADASYN (Haibo et al., 2008) direct synthetic
generation toward minority samples located near class boundaries, reflecting the intuition that these
“hard-to-learn” points are more critical for classification.
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Despite these advances, traditional oversampling methods share critical weaknesses. Their reliance
on local, linear interpolation restricts the diversity of generated data, often confining synthetic points
within the convex hull of minority samples (Dai et al., 2019; Wang et al., 2025a). Moreover, because
they rely solely on minority neighbors, they ignore the global data structure and the informative role
of the majority distribution, which frequently results in noisy samples in regions of class overlap
(Batista et al., 2004; Ai et al., 2023).

These shortcomings have motivated a paradigm shift towards deep generative models, which can
learn global data distributions to generate novel and consistent samples (Liu et al., 2007). While
Denoising Diffusion Models have achieved state-of-the-art performance in high-fidelity image
synthesis (Ho et al., 2020), their application to tabular data remains a challenging area of research
due to complex, non-Gaussian feature distributions (Li et al., 2025b). For tabular settings, they are
also computationally intensive to train and sample from (Shi et al., 2025).

By contrast, Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and Variational
Autoencoders (VAEs) (Kingma & Welling, 2013) have been more widely explored for tabular data
generation. GANs, however, often suffer from training instability (Sampath et al., 2021), whereas
VAEs provide a more stable and tractable alternative. Among them, the Conditional VAE (CVAE)
(Sohn et al., 2015) offers a principled framework for class-conditioned oversampling and has been
successfully applied in imbalanced learning (Fajardo et al., 2021). However, a key limitation of
standard CVAEs is that they are agnostic to sample importance, treating all minority instances as
equally informative. This uniform approach overlooks a critical insight from heuristic methods like
Borderline-SMOTE (Han et al., 2005) and the Adaptive Synthetic Sampling (ADASYN) (Haibo et al.,
2008): not all samples are equally valuable for refining a classifier’s decision boundary. Instances
located deep within a class’s feature space are less informative than those situated in regions of
high class overlap, where the boundary is most ambiguous. These ”borderline” or ”hard-to-learn”
samples are strategically crucial, as they provide the most challenging examples for a classifier to
learn (Japkowicz & Stephen, 2002; Haibo et al., 2008).

Recent research has extended CVAEs for imbalanced learning along several key axes: (i) loss-function
modification, which applies focal-style losses to the reconstruction objective to emphasize hard-to-
reconstruct samples (Lin et al., 2017); (ii) latent space structuring, as in DVAE (Guo et al., 2019)
and CTVAE (Wang et al., 2025a), which engineer a more discriminative latent space to generate
boundary-focused samples; and (iii) knowledge transfer, as in MGVAE (Ai et al., 2023), which uses
transfer learning from the majority class to learn robust representations for the minority class. While
these approaches improve generation quality, they either reweight reconstruction, engineer latent
geometry, or borrow majority information, and none directly address sample-level uncertainty.

Consequently, a significant gap remains in integrating this principle of uncertainty-awareness into
the powerful distributional learning capabilities of a deep generative model. This gap is particularly
pronounced in clinical genomics, which is the central focus of the current study. We hypothesize that
the high dimensionality and intricate, nonlinear relationships in this domain cause the core assumption
of linear interpolation used by SMOTE to break down, resulting in biologically implausible synthetic
data (Blagus & Lusa, 2012). Furthermore, the inherent biological heterogeneity and the continuum-
like nature of disease progression mean that class boundaries are rarely sharply defined, creating
regions of high predictive uncertainty for a classifier. To leverage this insight, we turn to information
theory to develop a formal measure of this local uncertainty. We quantify the degree of class overlap
using Shannon entropy, the canonical measure of uncertainty, allowing us to identify high-entropy
regions as a quantitative proxy for a sample’s ’hard-to-learn’ status.

In essence, this combination of a complex, non-linear data manifold and inherently ambiguous class
boundaries establishes clinical genomics as a uniquely challenging domain. This setting reveals the
limitations of two key approaches: traditional oversampling methods, which struggle with complex,
non-linear data, and standard generative models, which are agnostic to uncertain and hard-to-learn
regions in the feature space. Consequently, it provides an ideal setting to validate a generative
framework specifically engineered to target and learn from these high-uncertainty regions.

To this end, we propose the Local Entropy-Guided Oversampling with a CVAE (LEO-CVAE). We
formalize the notion of a ”hard-to-learn” or ”uncertain” region using local Shannon entropy, a measure
that quantifies the mixture of class labels within a sample’s local neighborhood. The LEO-CVAE
framework leverages this local entropy signal in two synergistic ways: first, it guides the CVAE’s
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training process through a weighted loss function that prioritizes learning in the high-entropy regions;
second, it directs the synthetic data generation by preferentially selecting high-entropy instances
as seeds. By concentrating both the learning and generative processes on these ambiguous areas,
LEO-CVAE directly reinforces the classifier’s decision boundary where it is weakest. The primary
contributions of this work are threefold: (i) a Novel Uncertainty Metric, where we introduce the
Local Entropy Score (LES) to formally quantify sample-level uncertainty, identifying the most
informative, class-overlapping regions for oversampling; (ii) an Uncertainty-Aware Generative
Framework, where we propose LEO-CVAE, which integrates the LES signal through two core
components: a Local Entropy-Weighted Loss (LEWL) and an entropy-guided sampling strategy;
and (iii) Empirical Validation, where we demonstrate the effectiveness of LEO-CVAE on challeng-
ing imbalanced clinical genomics datasets for both binary and multiclass classification through a
systematic comparison against a suite of traditional and generative oversampling methods.

2 METHODS

This section details our proposed oversampling method, Local Entropy-Guided Oversampling with a
Conditional Variational Autoencoder (LEO-CVAE). We first provide the problem formulation, fol-
lowed by an overview of the CVAE, which serves as our generative foundation. We then introduce our
core contribution: the Local Entropy Score (LES), a metric for quantifying sample-level uncertainty
to identify high-entropy regions within the feature space. Finally, we describe how LES is integrated
into the CVAE through our two novel mechanisms: the Local Entropy-Weighted Loss (LEWL) for
model training and the Entropy-Guided Sampling strategy for data generation.

2.1 PROBLEM FORMULATION

LetD = {(xi, yi)}Ni=1 be a training dataset of N samples, where xi ∈ RD is a D-dimensional feature
vector and yi ∈ {c1, c2, . . . , cC} is its corresponding class label. The dataset D is imbalanced if the
class distribution is skewed, i.e., there exists a majority class cmaj and a minority class cmin such
that the number of samples Nmaj ≫ Nmin. The goal of oversampling is to generate a new set of
synthetic minority samples, Dsyn, such that when combined with the original data (D′ = D ∪Dsyn),
the resulting dataset is balanced or near-balanced, leading to improved performance of a classifier
trained on D′.

2.2 CVAE FOUNDATION

Our method is built upon a CVAE (Sohn et al., 2015), a generative model that learns a latent
representation of data conditioned on class labels. A CVAE consists of two neural networks: an
encoder and a decoder.

The encoder network, parameterized by ϕ, learns to approximate the intractable true posterior
distribution p(z|x, c). It maps a data point x and its class condition c to the parameters of a diagonal
Gaussian distribution, qϕ(z|x, c) = N (z|µ, diag(σ2)). The mean vector µ and variance vector σ2

are the direct outputs of the encoder network.

The decoder network, parameterized by θ, reconstructs the data by modeling the distribution
pθ(x|z, c). To generate a reconstructed sample x̂, a latent vector z is first sampled from the en-
coder’s output distribution using the reparameterization trick: z = µ+ ϵ⊙ σ, where ϵ ∼ N (0, I).
This sample z is then concatenated with the one-hot class vector coh and passed as input to the
decoder.

The standard CVAE is trained by minimizing a loss function derived from the negative of the Evidence
Lower Bound (ELBO):

LCVAE = −Eqϕ(z|x,c)[log pθ(x|z, c)] + β ·DKL(qϕ(z|x, c)||p(z|c)) (1)

The first term is the reconstruction loss, which measures how well the model reconstructs the input
data, and the second is the Kullback-Leibler (KL) divergence, which regularizes the latent space to
follow a prior distribution p(z|c).
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2.3 LOCAL ENTROPY SCORE (LES)

The core novelty of our method is the introduction of LES to guide the CVAE. LES quantifies the
complexity of the feature space surrounding a given sample. For each sample xi, we first identify
its k nearest neighbors, Nk(xi). The neighborhood is determined using the standard Euclidean
distance between feature vectors. We then compute the probability distribution of classes within
this neighborhood. Let kj be the count of neighbors belonging to class cj . The local probability of
class cj is p(cj |xi) = kj/k. The LES for sample xi, denoted as H(xi), is then calculated using the
Shannon entropy formula:

H(xi) = −
C∑

j=1

p(cj |xi) log2 p(cj |xi) (2)

For this calculation, we follow the standard convention that the contribution of any class cj with
p(cj |xi) = 0 is taken to be 0, as limp→0+ p log p = 0.

The resulting score, which we denote Hi = H(xi), provides a quantitative measure of the hetero-
geneity of the sample’s local feature space. The score ranges from a minimum of 0, signifying a
perfectly homogenous neighborhood where all neighbors belong to the same class, to a theoretical
maximum of log2(C), where C is the total number of classes. This maximum value corresponds
to a state of maximum entropy, representing the highest possible uncertainty where neighbors are
uniformly distributed across all classes. A high LES, therefore, directly identifies a sample located in
a complex, class-overlapping region of the feature space. This score becomes the critical signal for
guiding both the learning and generation processes in our LEO-CVAE framework.

2.4 THE LEO-CVAE METHOD

LEO-CVAE leverages the calculated local entropy scores in two critical stages: modifying the CVAE
loss function to focus learning on high-entropy regions and guiding the generation of new synthetic
samples.

2.4.1 THE LOCAL ENTROPY-WEIGHTED LOSS (LEWL)

To guide the CVAE’s training, our primary innovation is a novel loss function, the LEWL. It instills
uncertainty-awareness by modifying the CVAE’s reconstruction component, while the standard KL
divergence term is retained for its conventional regularization role. The complete LEWL objective is
a composite function defined as:

LLEWL = LW-Recon + β · LKLD (3)
Here, β is a hyperparameter that weights the contribution of the Kullback-Leibler (KL) divergence
term. We detail each component below.

Weighted Reconstruction Loss (LW-Recon): The innovation of our training paradigm is captured
in this component. We replace the CVAE’s standard reconstruction error with a Weighted Mean
Squared Error (MSE). This loss component strategically prioritizes samples that are most informative
for learning a robust model: those belonging to minority classes and those located in complex,
class-overlapping regions identified by a high LES. The loss for a single sample xi with class label yi
and pre-calculated local entropy Hi is defined as:

LW-Recon,i = wclass(yi) · wentropy(Hi) · ∥xi − x̂i∥22 (4)
The two weighting factors are:

• Class-Imbalance Weight (wclass): This weight is calculated from the inverse frequency
of each class in the training data. By assigning a higher weight to samples from underrep-
resented classes, it compels the model to overcome the inherent bias of the imbalanced
dataset.

• Entropy-Focus Weight (wentropy): This factor directs the model’s attention toward samples
in ambiguous, high-entropy regions. It is defined as wentropy(Hi) = (1 +Hi)

γ , where the
hyperparameter γ ≥ 0 controls the intensity of the focus. When γ = 0, this guidance
is inactive. For γ > 0, the model is more heavily penalized for failing to accurately
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reconstruct samples located in high-entropy regions, forcing it to learn a more discriminative
representation of the decision boundary.

The final reconstruction loss, LW-Recon, is the mean of these individually weighted losses calculated
across all samples in a mini-batch.

KL Divergence Loss (LKLD): To ensure the latent space remains well-structured, we include
the standard KL Divergence Loss. This is the unmodified, conventional regularization term from
the CVAE’s ELBO. It measures the divergence between the encoder’s output distribution and a
class-conditional prior and is defined as:

LKLD = DKL(qϕ(z|x, c)||p(z|c)) (5)
To counteract the common CVAE training issue of posterior collapse, where the KLD term vanishes
and the decoder learns to ignore the latent code z, we enforce a minimum threshold on this loss
component during optimization. This ensures that the latent variables continue to encode meaningful
information throughout the training process.

2.4.2 ENTROPY-GUIDED SAMPLE GENERATION

After training the LEO-CVAE, we use it to generate synthetic samples for each minority class until it
reaches parity with the majority class. Applying the same core principle used in the LEWL, we focus
the creation of new samples on high-entropy regions. The procedure for a given minority class cmin

is as follows:

1. Calculate Generation Count: Ngen = Nmaj −Nmin (number of new samples).
2. Select Seed Samples: The seeds for generation are chosen from the original minority

class instances in the training set. To prioritize the synthesis of new data in high-entropy
regions, we employ a non-uniform selection strategy guided by LES. A sampling probability
distribution, P , is established over the minority class samples where, instead of uniform
selection, the probability of selecting a given sample xi is made proportional to its entropy-
focus weight, the same transformation of its LES used in the LEWL:

P (xi) ∝ (1 +Hi)
γ , for all (xi, yi) where yi = cmin (6)

The hyperparameter γ again controls how strongly this selection process favors samples in
high-entropy regions. From this entropy-weighted distribution, Ngen seed samples are drawn
with replacement to initiate the data generation process. This ensures that samples residing
in high-entropy neighborhoods are more likely to be chosen as templates for creating new
synthetic data.

3. Generate Synthetic Data: For each selected seed sample xseed, a new synthetic sample
x̂new is generated. This is achieved by first encoding the seed to its latent distribution, then
sampling a new latent vector znew ∼ qϕ(z|xseed, cmin) using the reparameterization trick.
Finally, the resulting vector znew is passed to the decoder to produce the synthetic sample
x̂new.

This ensures that the synthetic data is generated around the most informative minority samples located
in high-entropy regions, effectively reinforcing the decision boundary in contested regions of the
feature space. The complete LEO-CVAE oversampling process is summarized in Algorithm 1.

3 EXPERIMENTAL SETUP

Experimental validation was conducted on two challenging clinical genomics datasets: The Cancer
Genome Atlas (TCGA) lung cancer and Alzheimer’s Disease Neuroimaging Initiative (ADNI).
These datasets were specifically selected, as they are characterized by the high dimensionality and
complex, non-linear relationships inherent to genomic data, necessitating a powerful generative model.
Moreover, the inherent biological heterogeneity among patients and the gradual progression of disease
mean that class boundaries are not sharp, distinct lines. Instead, these factors create a continuum
where samples from different classes intermingle, forming complex, overlapping decision boundaries.
This results in the exact high-entropy regions that our entropy-guided (’LEO’) mechanism is designed
to target and resolve, providing a perfect testbed to rigorously evaluate our method’s capacity to
handle these real-world clinical data challenges.
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Algorithm 1 LEO-CVAE Framework

Input: Training data D = {(xi, yi)}Ni=1, k for k-nearest neighbors, hyperparameters γ, β.
Output: Resampled dataset D′ = D ∪Dsyn.

Step 1: Quantifying Sample-Level Uncertainty
1: for each sample xi ∈ D do
2: Find k-nearest neighbors Nk(xi).
3: Calculate local entropy score (LES) H(xi) using Eq. (2).
4: end for

Step 2: Training with Entropy-Weighted Loss
5: Initialize LEO-CVAE model (Encoderϕ, Decoderθ).
6: for number of training epochs do
7: for each mini-batch {(xb, yb, Hb)}Bb=1 do
8: Compute µb, log σ

2
b = Encoderϕ([xb, cb oh]).

9: Sample zb ∼ N (µb, diag(σ2
b )).

10: Reconstruct x̂b = Decoderθ([zb, cb oh]).
11: Calculate loss LLEWL using Eq. (3).
12: Update ϕ and θ via gradient descent.
13: end for
14: end for

Step 3: Entropy-Guided Generation
15: Dsyn ← ∅
16: Identify minority classes Cmin and majority count Nmaj .
17: for each class cj ∈ Cmin do
18: Let Dj be the set of samples in class cj .
19: Calculate sampling probabilities P (xi) for all xi ∈ Dj using Eq. (6).
20: Ngen ← Nmaj − |Dj |.
21: Select Ngen seed samples {xseed} from Dj with replacement using probabilities P .
22: Generate Ngen synthetic samples {x̂new} from {xseed}.
23: Dsyn ← Dsyn ∪ {(x̂new, cj)}.
24: end for
25: return Resampled dataset D′ = D ∪Dsyn.

3.1 DATASETS

TCGA Lung Cancer Dataset: Gene expression (RNA-Seq) and clinical data for lung adeno-
carcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were obtained from TCGA via
UCSC Xena (Tomczak et al., 2015). A total of 817 patient samples with complete expression and
Progression-Free Survival (PFS) records were included. From 17,738 gene expression features,
mutual information–based selection yielded 64 informative ones. The classification task was to
predict PFS, categorized as ‘short’ (≤1 year; 147 samples, minority class) or ‘long’ (>1 year; 670
samples, majority class).

ADNI Dataset: Blood-based gene expression data were obtained from the ADNI database
(adni.loni.usc.edu) for a multiclass classification task. ADNI, launched in 2003 as a pub-
lic–private partnership led by Principal Investigator Michael W. Weiner, was designed to assess
whether imaging, biomarkers, and clinical/neuropsychological measures could track progression
from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) (Petersen et al., 2010). Using
mutual information–based feature selection, the initial 49,386 probe sets per sample were reduced to
64 features. Data from 744 participants (246 cognitively normal (CN), 382 MCI, and 116 AD) were
analyzed for classification.

3.2 COMPARISON METHODS

We benchmarked our proposed LEO-CVAE against a diverse suite of seven comparison methods.
These included standard baselines (No Oversampling; Random Oversampling (Japkowicz, 2000)),
established heuristic methods (SMOTE (Chawla et al., 2002), Borderline-SMOTE (Han et al., 2005),
ADASYN (Haibo et al., 2008)), and two generative models (CVAE (Sohn et al., 2015) and a CVAE

6
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adapted with Focal Loss (Lin et al., 2017)). Full descriptions and specific configurations for each
method are detailed in Appendix A.1 to ensure reproducibility.

3.3 EVALUATION PROTOCOL AND IMPLEMENTATION DETAILS

All experiments followed a consistent and rigorous evaluation protocol to ensure fairness and repro-
ducibility.

Experimental Design: A 5-fold stratified cross-validation was employed. Oversampling methods
were applied only to the training data, while validation sets remained untouched for unbiased
performance estimates. A fixed random seed of 42 was used throughout.

Oversampling Models and Baselines: To ensure a fair comparison, baseline models were configured
with consistent parameters. All k-NN–based methods (SMOTE, Borderline-SMOTE, ADASYN)
used identical neighbor settings. Similarly, our proposed LEO-CVAE and all CVAE-based baselines
shared the same network architecture and training parameters. Full details on architectures and
hyperparameters are provided in Appendix A.1 and Appendix A.2.

Downstream Classifier: A Multi-Layer Perceptron (MLP) with a fixed architecture was used to
assess the quality of data generated by each oversampling method. The MLP was trained with the
Adam optimizer (learning rate: 1×10−4, weight decay: 1×10−3), and early stopping with a patience
of 20 epochs. Validation AUC-ROC was monitored for binary tasks and micro-averaged AUC-ROC
for multiclass tasks. Classifier details are in Appendix A.3.

Evaluation Metrics: For binary tasks, performance was assessed using AUC-ROC, Area Under the
Precision-Recall Curve (AUPRC), and F1-score. For multiclass tasks, these metrics were reported
with both macro and micro averaging (macro/micro AUC-ROC, macro/micro AUPRC, macro/micro
F1-score) to capture overall and per-class performance.

4 RESULTS

4.1 PERFORMANCE ON TCGA LUNG CANCER DATASET (BINARY CLASSIFICATION)

The LEO-CVAE model trained successfully, exhibiting stable convergence. As detailed in Ap-
pendix A.4, the validation loss closely tracked the training loss across all components (total, KL
divergence, and reconstruction), indicating no significant overfitting. Furthermore, the KL divergence
remained well above the posterior collapse threshold, and the reconstruction correlation approached
1.0, confirming a well-regularized and effective generative model.

The comparative classification results are presented in Table 1. LEO-CVAE achieved the highest
AUC-ROC (0.661 ± 0.030) and AUPRC (0.889 ± 0.021), indicating improved ranking ability and
a better precision–recall trade-off for the minority class compared with all other methods. The No
Oversampling baseline obtained the highest reported F1-score (0.903 ± 0.006).

Non-generative oversampling strategies, such as Borderline-SMOTE and ADASYN, showed modest
increases in AUPRC compared to the baseline, but these were often accompanied by minimal or
no gains in AUC-ROC, reflecting a common trade-off in which minority-class precision improves
at the expense of overall discriminative ability. In contrast, CVAE-based approaches generally
outperformed non-generative methods, with LEO-CVAE standing out as the only method to deliver
notable, simultaneous gains in both AUC-ROC and AUPRC over the baseline.

4.2 PERFORMANCE ON ADNI DATASET (MULTICLASS CLASSIFICATION)

This pattern of stable convergence was replicated on the multiclass ADNI dataset, confirming the
model’s reliability prior to performance evaluation (see Appendix A.4).

For the multiclass ADNI dataset (Table 2), the comparative results are more nuanced but again
highlight the strengths of LEO-CVAE in achieving balanced performance across classes. The
proposed model obtained the highest macro-averaged AUC-ROC (0.587 ± 0.025), macro-AUPRC
(0.412 ± 0.015), and micro-AUPRC (0.500 ± 0.014), indicating improved per-class discrimination
and a stronger precision–recall trade-off. The No Oversampling baseline performed strongly on
micro-averaged metrics, such as micro-AUC-ROC (0.690 ± 0.017) and micro-F1 (0.500 ± 0.027),
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Table 1: Performance on the TCGA Lung Cancer Dataset

Model AUC-ROC AUPRC F1-Score
No Oversampling 0.620 ± 0.040 0.868 ± 0.028 0.903 ± 0.006
Random Oversampling 0.613 ± 0.065 0.861 ± 0.040 0.767 ± 0.021
SMOTE 0.611 ± 0.023 0.868 ± 0.025 0.807 ± 0.023
Borderline-SMOTE 0.630 ± 0.044 0.874 ± 0.022 0.797 ± 0.026
ADASYN 0.617 ± 0.052 0.869 ± 0.031 0.786 ± 0.026
Standard CVAE 0.614 ± 0.074 0.869 ± 0.040 0.883 ± 0.015
CVAE + Focal Loss 0.645 ± 0.043 0.885 ± 0.016 0.871 ± 0.028
LEO-CVAE 0.661 ± 0.030 0.889 ± 0.021 0.881 ± 0.012

Note: Mean ± standard deviation over 5 folds. Best results are in bold.

Table 2: Performance on the ADNI Dataset

AUC-ROC AUPRC F1-Score
Model Macro Micro Macro Micro Macro Micro
No Oversampling 0.570 ± 0.033 0.690 ± 0.017 0.398 ± 0.022 0.492 ± 0.021 0.311 ± 0.026 0.500 ± 0.027
Random Oversampling 0.564 ± 0.029 0.588 ± 0.020 0.394 ± 0.027 0.393 ± 0.018 0.381 ± 0.012 0.402 ± 0.020
SMOTE 0.561 ± 0.041 0.606 ± 0.030 0.403 ± 0.035 0.416 ± 0.035 0.377 ± 0.043 0.410 ± 0.040
Borderline-SMOTE 0.558 ± 0.049 0.609 ± 0.030 0.392 ± 0.040 0.409 ± 0.027 0.373 ± 0.037 0.417 ± 0.028
ADASYN 0.556 ± 0.037 0.612 ± 0.032 0.383 ± 0.034 0.420 ± 0.026 0.367 ± 0.042 0.431 ± 0.021
Standard CVAE 0.563 ± 0.032 0.665 ± 0.027 0.386 ± 0.025 0.469 ± 0.038 0.359 ± 0.024 0.474 ± 0.033
CVAE + Focal Loss 0.562 ± 0.027 0.667 ± 0.022 0.395 ± 0.029 0.485 ± 0.039 0.347 ± 0.029 0.469 ± 0.030
LEO-CVAE 0.587 ± 0.025 0.683 ± 0.013 0.412 ± 0.015 0.500 ± 0.014 0.375 ± 0.043 0.484 ± 0.020

Note: Mean ± standard deviation over 5 folds. Best results are in bold.

which weight performance by class size and are often dominated by populous classes. In contrast,
LEO-CVAE’s superior macro-averaged metrics (unweighted averages that treat all classes equally)
highlight its ability to distribute performance gains more evenly, benefiting minority classes without
sacrificing overall discrimination.

CVAE-based methods generally delivered stronger micro-metrics, likely due to generating a more
diverse set of synthetic samples, but LEO-CVAE distinguished itself with a balanced macro/micro
profile.

5 ABLATION STUDY

We conducted a comprehensive ablation study to evaluate the contributions of LEO-CVAE’s three
core mechanisms by systematically disabling one or more of them: (i) the entropy-weighted loss, (ii)
entropy-guided sampling, and (iii) inverse frequency class weighting. The specific configurations for
each ablated model variant are detailed in Appendix A.5.

5.1 RESULTS AND ANALYSIS

The results for the binary TCGA lung cancer dataset are reported in Table 3, and for the multiclass
ADNI dataset in Table 4. Across both datasets, the full LEO-CVAE consistently achieved balanced,
high performance, demonstrating the value of integrating all three mechanisms.

On the TCGA lung cancer dataset (Table 3), the full LEO-CVAE achieved the highest AUC-ROC
(0.661 ± 0.030) and AUPRC (0.889 ± 0.021). Removing entropy-weighted loss (Ablation 1) or
entropy-guided sampling (Ablation 2) reduced both metrics, confirming the utility of each entropy-
based component. While the Standard CVAE achieved a high F1-score, this was accompanied by a
comparatively low AUC-ROC.

On the ADNI dataset (Table 4), the full LEO-CVAE achieved the highest macro-averaged AUC
(0.587± 0.025), indicating balanced performance across all classes. Ablation 2 (no entropy-guided
sampling) achieved the highest micro-averaged AUC (0.686± 0.019) and macro F1-score (0.379±
0.013), though differences with the full model were small and within standard deviations. This
highlights the LEWL as an especially impactful component of the LEO-CVAE.
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Table 3: Ablation Study Results on the TCGA Lung Cancer Dataset

Model Variant AUC-ROC AUPRC F1-Score
LEO-CVAE (Full Model) 0.661 ± 0.030 0.889 ± 0.021 0.881 ± 0.012
LEO-CVAE (w/o Entropy-Weighted Loss) 0.600 ± 0.054 0.863 ± 0.036 0.861 ± 0.025
LEO-CVAE (w/o Entropy-Guided Sampling) 0.631 ± 0.032 0.875 ± 0.025 0.861 ± 0.026
LEO-CVAE (w/o Class Weights) 0.616 ± 0.062 0.873 ± 0.023 0.865 ± 0.030
CVAE + Class Weights 0.617 ± 0.026 0.865 ± 0.025 0.868 ± 0.027
Standard CVAE 0.614 ± 0.074 0.869 ± 0.040 0.883 ± 0.015

Note: Mean ± standard deviation over 5 folds. Best results are in bold.

Table 4: Ablation Study Results on the ADNI Dataset

AUC-ROC AUPRC F1-Score
Model Variant Macro Micro Macro Micro Macro Micro
LEO-CVAE (Full Model) 0.587 ± 0.025 0.683 ± 0.013 0.412 ± 0.015 0.500 ± 0.014 0.375 ± 0.043 0.484 ± 0.020
LEO-CVAE (w/o Entropy-Weighted Loss) 0.544 ± 0.050 0.655 ± 0.031 0.380 ± 0.033 0.459 ± 0.043 0.322 ± 0.037 0.446 ± 0.031
LEO-CVAE (w/o Entropy-Guided Sampling) 0.579 ± 0.040 0.686 ± 0.019 0.412 ± 0.016 0.491 ± 0.023 0.379 ± 0.013 0.495 ± 0.025
LEO-CVAE (w/o Class Weights) 0.533 ± 0.019 0.646 ± 0.013 0.377 ± 0.021 0.445 ± 0.018 0.350 ± 0.034 0.458 ± 0.030
CVAE + Class Weights 0.566 ± 0.040 0.667 ± 0.031 0.387 ± 0.036 0.478 ± 0.040 0.322 ± 0.034 0.458 ± 0.044
Standard CVAE 0.563 ± 0.032 0.665 ± 0.027 0.386 ± 0.025 0.469 ± 0.038 0.359 ± 0.024 0.474 ± 0.033

Note: Mean ± standard deviation over 5 folds. Best results are in bold.

In summary, for the binary TCGA lung cancer dataset, all three components contribute to robust gains
in AUC and AUPRC, with the entropy-based mechanisms having the largest impact. In the multiclass
ADNI setting, the LEWL emerges as particularly effective, while removing entropy-guided sampling
(Ablation 2) does not substantially harm performance and, in some cases, even slightly improves
certain metrics. This validates the overall framework design by underscoring the power of the core
entropy-weighted loss, while also highlighting that the optimal configuration of complementary
components, such as class weighting and entropy-guided sampling, can be application-dependent.

6 CONCLUSION

In this work, we addressed the critical challenge of class imbalance in complex tabular data, with
a focus on its application to clinical genomics data. Traditional oversampling methods, which
rely on local, linear interpolation, are often ill-suited for such data. Their core assumption, that
a straight line between two minority samples represents plausible data, frequently fails within the
complex, non-linear manifolds characteristic of the biological processes underlying genomics data.
While deep generative models like the Conditional Variational Autoencoder (CVAE) can capture
these complex global distributions, a key limitation of standard CVAEs is that they learn the global
distribution of a class by implicitly treating all training samples as equally informative. This uniform
approach overlooks a critical insight: not all samples are equally valuable for refining a classifier’s
decision boundary. Instances located deep within a class’s feature space are less informative than
those situated in regions of high class overlap, where the boundary is most ambiguous. These
”hard-to-learn” or ”borderline” samples are strategically crucial, as they provide the most challenging
examples for a classifier. While heuristic methods like Borderline-SMOTE and ADASYN pioneered
the strategy of focusing on such instances, a significant gap remains in integrating a formal principle
of uncertainty-awareness into a powerful distributional learning framework.

To bridge this gap, we introduce the Local Entropy-Guided Oversampling with a CVAE (LEO-
CVAE), a novel generative oversampling framework that quantifies sample-level uncertainty using
local Shannon entropy. By synergistically integrating this signal through a Local Entropy-Weighted
Loss (LEWL) and an entropy-guided sampling strategy, LEO-CVAE focuses both its learning and
generative processes on the most informative, class-overlapping regions of the feature space. Our
empirical evaluation demonstrated that LEO-CVAE achieves superior and more balanced performance
on challenging genomics datasets, delivering notable gains in AUC-ROC and AUPRC. The ablation
study further revealed that the LEWL was the most impactful component, underscoring the benefit of
compelling the model to learn a more robust representation of the contested decision boundary.
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6.1 LIMITATIONS AND FUTURE DIRECTIONS

This work lays the foundation for a new uncertainty-aware generative framework for imbalanced
learning. Our study’s focus on clinical genomics data was deliberate, as our framework is specifically
designed for data with complex, non-linear characteristics. The principles of LEO-CVAE may
also be well-suited for other high-dimensional omics data, such as proteomics and metabolomics,
which share similar characteristics of complex, non-linear relationships. For simpler tabular data
lacking these complex characteristics, traditional methods may still perform adequately. Future
work should therefore extend this evaluation to a wider variety of tabular datasets, accompanied by
formal statistical significance testing, to better characterize the regimes where different oversampling
strategies are most effective.

Furthermore, several promising research avenues remain open. The core concepts of entropy-guided
learning and generation could be generalized to other data modalities, such as images, or adapted for
other generative architectures like GANs. One particularly promising direction could be adapting
the LEO framework to Denoising Diffusion Models. Applying it to diffusion-based synthesis could
amplify their strong generative capabilities: the denoising loss (LDDPM ) may be reweighted by the
Local Entropy Score (LES) to counter majority-class gradient domination, while LES could also
modulate class-conditional guidance during reverse diffusion, steering generation toward higher-
quality minority samples. This integration of uncertainty-guided sampling with state-of-the-art
synthesis offers a compelling path forward. Research also suggests that hybrid strategies combining
traditional and generative models may yield further improvements (Wang et al., 2025a).

Finally, the mechanism for calculating local entropy warrants further investigation. Our choice of
k-NN with Euclidean distance was a direct extension of the principles in SMOTE (Chawla et al.,
2002), providing a robust baseline. However, the effectiveness of this uncertainty metric could be
enhanced by exploring alternative distance metrics better suited for high-dimensional data, such
as Manhattan distance and cosine similarity, or by moving beyond distance-based methods with
techniques like Kernel Density Estimation (KDE). A particularly novel direction would be to leverage
the probability distributions from a pre-trained model to guide the entropy calculation, potentially
creating a more nuanced, model-aware measure of uncertainty.

ETHICS STATEMENT
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A APPENDIX

This supplement provides detailed information on the network architectures and hyperparameter
settings used in our experiments to ensure full reproducibility.

A.1 BASELINE MODEL DESCRIPTIONS AND CONFIGURATIONS

We compared LEO-CVAE against seven baseline and alternative methods:

1. No Oversampling: The baseline performance of the classifier on the original, imbalanced
data.

2. Random Oversampling (Japkowicz, 2000): The simplest approach, which randomly
duplicates samples from the minority class.

3. SMOTE (Chawla et al., 2002): The classic Synthetic Minority Over-sampling Technique
that generates new samples via linear interpolation.

4. Borderline-SMOTE (Han et al., 2005): An advanced SMOTE variant that focuses synthetic
sample generation on minority instances near the class boundary.

5. ADASYN (Haibo et al., 2008): An adaptive approach that generates more synthetic data
for minority samples that are harder to learn based on their local distribution.

6. Standard CVAE (Sohn et al., 2015): A baseline CVAE model with an identical architecture
to LEO-CVAE but trained using a standard, unweighted reconstruction loss.

7. CVAE with Focal Loss (Lin et al., 2017): A CVAE trained with a focal loss-inspired
reconstruction objective to focus learning on samples with high reconstruction error.
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Non-generative baselines were implemented using the imbalanced-learn Python library. All
CVAE-based baselines use the identical network architecture as LEO-CVAE (Supplement A.2).
Specific configurations are in Table 5.

Table 5: Baseline Model Hyperparameters

Model Library/Base Key Parameter Value
SMOTE imbalanced-learn ‘k neighbors‘ 7 (Binary) / 15 (Mul-

ticlass)

Borderline-SMOTE imbalanced-learn ‘kind‘ ’borderline-1’
‘k neighbors‘ 7 (Binary) / 15 (Mul-

ticlass)
‘m neighbors‘ 7 (Binary) / 15 (Mul-

ticlass)

ADASYN imbalanced-learn ‘n neighbors‘ 7 (Binary) / 15 (Mul-
ticlass)

Standard CVAE Our implementation KLD Weight (β) 1.0
Minimum KLD 0.1

CVAE with Focal Loss Our implementation KLD Weight (β) 1.0
Minimum KLD 0.1
Focusing Param. (γ) 1.0
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A.2 LEO-CVAE ARCHITECTURE AND HYPERPARAMETERS

Our proposed LEO-CVAE model and all CVAE-based baselines share the identical network architec-
ture detailed below, with an input dimension of 64.

• Encoder Architecture:
1. Input: Concatenation of feature vector (Din = 64) and one-hot class label (C), size =

64 + C.
2. ‘Linear‘(64 + C → 64)→ ‘LeakyReLU‘(0.2)→ ‘Dropout‘(p = 0.1).
3. ‘Linear‘(64→ 32)→ ‘LeakyReLU‘(0.2)→ ‘Dropout‘(p = 0.1).
4. Two parallel ‘Linear‘ output heads from the 32-neuron layer:

– ‘Linear‘(32→ 16) for the latent mean (µ).
– ‘Linear‘(32→ 16) for the latent log-variance (log σ2).

• Decoder Architecture:
1. Input: Concatenation of latent vector (Dz = 16) and one-hot class label (C), size =

16 + C.
2. ‘Linear‘(16 + C → 32)→ ‘LeakyReLU‘(0.2)→ ‘Dropout‘(p = 0.1).
3. ‘Linear‘(32→ 64)→ ‘LeakyReLU‘(0.2)→ ‘Dropout‘(p = 0.1).
4. ‘Linear‘ output layer mapping from 64→ 64 to reconstruct the original feature vector.

The hyperparameters for training LEO-CVAE are detailed in Table 6.

Table 6: LEO-CVAE Training Hyperparameters

Hyperparameter Symbol Value Description
Optimizer - Adam -
Learning Rate - 1× 10−3 -
Weight Decay - 1× 10−5 -
Batch Size - 32 -
Max Epochs - 500 -
Early Stopping Patience - 25 -
Gradient Clip Norm - 1.0 Maximum norm for gradient

clipping.
Latent Dimension Dz 16 Dimensionality of the latent

space.
k-nearest neighbors k 7 (Binary) / 15 (Multiclass) Neighbors for local entropy

calculation.
Focus γ 0.5 (Binary) / 2.5 (Multi-

class)
Weighting for high-entropy
samples.

KLD Weight β 4.0 Weight of the KL divergence
term.

Minimum KLD - 0.1 Floor to prevent posterior
collapse.
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A.3 MLP CLASSIFIER ARCHITECTURE

The Multi-Layer Perceptron (MLP) used as the downstream classifier has an input dimension of 64
and the following single-hidden-layer architecture:

• Hidden Layer: ‘Linear‘ layer (64 → 32) → ‘BatchNorm1d‘ → ‘ReLU‘ → ‘Dropout‘
(p = 0.5).

• Output Layer: ‘Linear‘ layer mapping from 32→ 1 (Binary) or 32→ 3 (Multiclass).

The MLP was trained using the hyperparameters listed in Table 7.

Table 7: MLP Classifier Training Hyperparameters

Hyperparameter Value
Optimizer Adam
Learning Rate 1× 10−4

Weight Decay 1× 10−3

Batch Size 32
Max Epochs 200

LR Scheduler ReduceLROnPlateau
LR Scheduler Patience 5
LR Scheduler Factor 0.7

Early Stopping Patience 20
Early Stopping Metric AUC (Binary) / AUC Micro (Multiclass)

Gradient Clip Norm 0.5
Label Smoothing 0.1
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A.4 TRAINING HISTORY

Figure 1: Training history of the LEO-CVAE model for a representative fold on the TCGA lung
cancer dataset.

Figure 2: Training history of the LEO-CVAE model for a representative fold on the ADNI dataset.
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A.5 ABLATION STUDY DESIGN

Table 8: Ablation Study Experimental Design

Model Variant Entropy-Weighted Loss Entropy-Guided Sampling Class Weighting Purpose
Full LEO-CVAE ✓ ✓ ✓ The complete proposed model.
LEO-CVAE (w/o Ent-Weighted Loss) ✗ ✓ ✓ Isolates the effect of the entropy-weighted loss.
LEO-CVAE (w/o Ent-Guided Sampling) ✓ ✗ ✓ Isolates the effect of entropy-guided sampling.
LEO-CVAE (w/o Class Weights) ✓ ✓ ✗ Isolates the effect of class weighting.
CVAE + Class Weights ✗ ✗ ✓ A simpler, non-entropy based model.
Standard CVAE ✗ ✗ ✗ The foundational generative baseline.

A.6 STATEMENT ON LARGE LANGUAGE MODEL (LLM) USAGE

The authors acknowledge the use of a large language model (Google’s Gemini) as an assistant in
the preparation of this manuscript. The LLM’s role was in the writing and editing process, and
included: (i) improving grammar, clarity, and conciseness throughout the paper; (ii) rephrasing and
restructuring paragraphs and sections to enhance narrative flow and meet page-limit constraints; and
(iii) assisting with LaTeX formatting and compliance checks against the conference style guidelines.
The LLM was not used for research ideation, experimental design, data analysis, or drawing the
scientific conclusions presented. All core intellectual contributions, including the proposal of the
LEO-CVAE framework and the interpretation of results, are solely those of the human authors.
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